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Abstract

We consider the low energy realization of QCD in terms of mesons when an axial chemical
potential is present; a situation that may be relevant in heavy ion collisions. We shall demonstrate
that the presence of an axial charge has profound consequences on meson physics. The most
notorious effect is the appearance of an explicit source of parity breaking. The eigenstates of
strong interactions do not have a definite parity and interactions that would otherwise be forbidden
compete with the familiar ones. In this work we focus on scalars and pseudoscalars that are
described by a generalized linear sigma model. We comment briefly on the screening role of axial
vectors in formation of effective axial charge and on the possible experimental relevance of our
results, whose consequences may have been already seen at RHIC.

ICCUB-12-363
UB-ECM-PF-80/12

1 Introduction

The possibility that in extreme conditions QCD breaks parity has been in the past years actively in-
vestigated. Indeed invariance under parity is one of the characteristic footprints of strong interactions.
Yet there are reasons to believe that this symmetry may be broken in Nature at least in two different
settings.

The first possibility is likely to occur in environments with a large baryonic chemical potential.
In this case the fermionic determinant in the QCD partition function is not anymore positive definite
and the studies that indicate that parity cannot be spontaneously broken [1] for µB = 0 simply do
not apply at µB 6= 0. In fact analytical studies with effective meson lagrangians realizing all the QCD
properties at low energies suggest that there is a definite window of baryonic chemical potentials
leading to a vacuum where parity is spontaneously broken [2]. Unfortunately it is difficult to verify
these results numerically using lattice field techniques due to the notorious problems that finite density
numerical simulations present [3].

A second possibility has been abundantly discussed in recent times in connection with the so-
called Chiral Magnetic Effect [4]. It is believed that thermal fluctuations may induce topological
charge fluctuations in the gauge configuration [5, 6] ∆T5 and they are detected on lattices [7]. This
leads to an effective ’θ- term’ in the effective action that in turn induces a coupling between the electric
and the magnetic fields, leading to the production of positively and negatively charged particles in
opposite directions. It has been claimed that this signal is observed in the STAR experiment at RHIC
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[8], although the issue still remains controversial. In addition the precise mechanism of creation of a
sufficiently intense topological fluctuation is also unclear at present.

This fluctuation, if extended over the whole fireball, may live for a sufficiently long time to generate
in practice a metastable state characterized by a topological chemical potential µθ. If this is the case,
in a finite volume and only for light quarks, the topological chemical potential can be transformed
into a chiral chemical potential µ5 thanks to the anomalous PCAC equation

∂µJ5,µ − 2iq̄m̂qγ5q =
Nf
2π2

∂µKµ, (1)

where

Kµ =
1

2
εµνρσTr

(
Gν∂ρGσ − i2

3
GνGρGσ

)
, (2)

and

∆T5 = T5(tf )− T5(0) =
1

4π2

∫ tf

0

dt

∫
vol.

d3x ∂µKµ. (3)

If mq ' 0 and no zero modes are present due to the finiteness of the volume then one gets,

d

dt
(Qq5 − 2NfT5) ' 0, Qq5 =

∫
vol.

d3x q̄γ0γ5q. (4)

This is the physical situation we will consider in the present work. In any case, it seems interesting
to investigate how hadronic physics is modified by the presence of µ5.

This paper is organized as follows. In Sec. 2 a generalized Σ model is presented. Mass-gap
equations for three v.e.v. of neutral scalar fields are derived and solved analytically. Then we de-
termine the best fit of parameters of the model comparing with the experimental inputs for scalar
and pseudoscalar meson spectral data [9]. In Sec. 3 the axial chemical potential is introduced and
treated as a constant time component of an isosinglet axial-vector field in the non-strange sector. We
obtain the modification of the mass-gap equations and find the distortion of a0- and π- meson spectra
caused by the parity breaking. In Sec. 4 a more complicated mixing of three meson states, σ, η, η′, is
investigated when the medium has an axial charge. At certain energies some particle states become
tachyons (recall we are in-medium so this actually does not represent a fundamental problem). In Sec.
5 all decay widths are calculated for both the rest frame and for moving particles (we note that when
axial charge fills the medium, the Lorentz invariance is broken). In Sec. 6 the problem of isosinglet
axial-vector meson condensation and its interference with the axial chemical potential is examined.
Sec. 7 is devoted to our conclusions and outlook.

2 Generalized Σ model

Our starting point will be the following Lagrangian, invariant under SU(3)F

L =
1

4
Tr
(
DµHD

µH†
)

+
b

2
Tr
[
M(H +H†)

]
+
M2

2
Tr
(
HH†

)
− λ1

2
Tr
[
(HH†)2

]
− λ2

4

[
Tr
(
HH†

)]2
+
c

2
(detH + detH†) +

d1

2
Tr
[
M(HH†H +H†HH†)

]
+
d2

2
Tr
[
M(H +H†)

]
Tr
(
HH†

)
(5)

where H = ξΣξ, ξ = exp
(
i Φ

2f

)
, Φ = λaφa and Σ = λbσb. This model can be confronted to similar

models in [10, 11, 12] with the important difference (see below) in the trilinear vertices with couplings
d1, d2. The neutral v.e.v. of the scalars are defined as vi = 〈Σii〉 where i = u, d, s, and satisfy the
following gap equations:

M2vi − 2λ1v
3
i − λ2~v

2vi + c
vuvdvs
vi

= 0. (6)
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For further purposes we need the non-strange meson sector and ηs. In terms of v.e.v. and physical
scalar and pseudoscalar states, the parametrization used here is

Φ =

ηq + π0
√

2π+ 0√
2π− ηq − π0 0

0 0
√

2ηs

 , Σ =

vu + σ + a0
0

√
2a+

0 0√
2a−0 vd + σ − a0

0 0
0 0 vs

 . (7)

The mixing among η’s is defined via the ψ angle(
ηq
ηs

)
=

(
cosψ sinψ
− sinψ cosψ

)(
η
η′

)
. (8)

As stated in the introduction, an axial charge can only be effectively generated for nearly massless
quarks. Therefore we exclude kaons and their scalar partners κ from the analysis. Let us take for the
time being µ5 = 0 and assume vu = vd = vs = v0 ≡ fπ ≈ 92 MeV because we only consider the effect
of masses perturbatively. As a function of the Lagrangian parameters, the main physical magnitudes
derived from this model are

v0 =
c±

√
c2 + 4M2(2λ1 + 3λ2)

2(2λ1 + 3λ2)
, m2

π =
2

v0
(b+ (d1 + 3d2)v2

0)m,

m2
a = 2(−M2 + 3(2λ1 + λ2)v2

0 + cv0 − 2(3d1 + 2d2)mv0 − 2d2msv0),

m2
σ = 2(−M2 + (6λ1 + 7λ2)v2

0 − cv0 − 6(d1 + 2d2)mv0 − 2d2msv0),

m2
η,η′ =

m2
π

2m
(m+ms) + 3cv0 ∓

√
8c2v2

0 +

[
m2
π

2m
(m−ms) + cv0

]2

,

Γ2
a =

(−4m2
ηm

2
π + (−m2

a +m2
η +m2

π)2)(m2
a −m2

η + 4d1mv0)4

(48m3
aπv

2
0)2

,

Γ2
σ =

9(m2
σ − 4m2

π)(m2
σ −m2

π + 4(d1 + 2d2)mv0)4

(32m2
σπv

2
0)2

,

sin(2ψ) =
4
√

2cv0

m2
η′ −m2

η

, (9)

with m/ms = (mu + md)/(2ms) ' 1/25. The angle ψ is not really necessary for our subsequent
discussion but it will be eventually useful in the computation of Dalitz decays and we can use it as a
test of the model. v0 is found via gap equations. These equations are inserted in MINUIT in order to
find the minimum of the χ2 estimator using the following experimental numbers (in MeV):

vexp
0 = 92± 5, mexp

π = 137± 5, mexp
a = 980± 50,

mexp
σ = 600± 120, mexp

η = 548± 50, mexp
η′ = 958± 100,

Γexp
a = 60± 30, Γexp

σ = 600± 120. (10)

The σ mass is assumed to be relatively large as we are not considering any glueballs, so this σ is a sort
of average of the real σ and other 0+ light states. We have assigned generous error bars to include
the uncertainties in the model itself. In the minimization process there are several control variables:

• The value of the potential in the minimum has to be V (v0) < 0 since v = 0 is an extremal point
with V (v = 0) = 0 but in the case the latter is a minimum, the true vacuum has to have a
lower energy. Also, there is a control of the third extremal, which has to be higher than the true
minimum.

V (v0) =
1

4
v2

0(−6M2 + 3(2λ1 + 3λ2)v2
0 − 4cv0)

3



• The Hessian matrix has degenerate eigenvalues and there are only two different eigenvalues
whose positivity should be provided

(V ′′)1(v0) = −M2 + 3(2λ1 + λ2)v2
0 + cv0,

(V ′′)2(v0) = −M2 + 3(2λ1 + 3λ2)v2
0 − 2cv0.

The final result of the minimization process is given in the following table:

Magnitude MINUIT value (MeV) Experimental value (MeV) Error
v0 92.00 92 −3.52× 10−7

mπ 137.84 137 6.10× 10−3

ma 980.00 980 −1.26× 10−6

mσ 599.99 600 −1.66× 10−5

mη 497.78 548 −9.16× 10−2

mη′ 968.20 958 1.06× 10−2

Γa 60.00 60 2.04× 10−5

Γσ 600.00 600 6.81× 10−6

All the requirements concerning the control parameters are satisfied at this global solution. The fit
makes the cubic (in H) terms in (5) actually more relevant than the linear one. As a last point, the
ψ angle is treated as a prediction. Experimentally [9], ψ ' −18◦+ arctan

√
2 ' −18◦+ 54.7◦ ≈ 36.7◦,

while our result is ψMINUIT ≈ 35.46◦, in excellent agreement.

3 Introducing the axial chemical potential

In order to introduce the axial chemical potential we have to recall that, just as the ordinary baryonic
potential is introduced as the zero-th component of a vector field, the axial chemical potential µ5 can
be implemented as the time component of an axial-vector field. We follow the arguments for strange
quark suppression [13] of parity breaking effects in fireballs created in heavy ion collisions. These
arguments are based on Eq. (1) where due to the unavoidable left-right oscillations the mean value of
strange quark axial charge is washed out as the strange quark mass is comparable with decay width
of fireballs. Accordingly we will use axial chemical potential in the non-strange sector only.

At the level of the meson Lagrangian (5) it will appear through the action of the covariant derivative

∂µ → Dµ = ∂µ − i{Iqµ5δµ0, ·} = ∂µ − 2iIqµ5δµ0. (11)

An extra piece which is proportional to µ5 appears in the P -even Lagrangian

∆L =
i

2
µ5Tr

[
Iq
(
∂0HH

† −H∂0H
†)]+ µ2

5Tr
(
IqHH

†) . (12)

For non-vanishing µ5, we will assume isospin symmetry and thus, we impose to our solutions to have
vu = vd = vq 6= vs. The corresponding gap equations are

M2 − 2(λ1 + λ2)v2
q − λ2v

2
s + cvs + 2µ2

5 = 0, (13)

vs(M
2 − 2λ2v

2
q − (2λ1 + λ2)v2

s) + cv2
q = 0. (14)

The correct solution is taken imposing the correct limit vq, vs → v0 when µ5 → 0 (see Figure 1 for the
µ5 evolution of the solution).

It should be clear that the inclusion of µ5 leads automatically to a source of parity violation in
the low-energy effective theory. The consequences are far reaching; parity ceases to be a guidance for

4



Figure 1: vq and vs dependence on µ5.

allowing/forbidding strong interaction processes, and states that have opposite parities, but otherwise
equal quantum numbers, mix.

As an example of such a mixing let us consider the two isotriplets of opposite parity π and a0.
After normalization of the states, let us consider the piece of the effective Lagrangian that is bilinear
in the π and a0 fields

L =
1

2
(∂a0)2 +

1

2
(∂π)2 − 1

2
m2

1a
2
0 −

1

2
m2

2π
2 − 4µ5a0π̇, (15)

where

m2
1 = −2(M2 − 2(3λ1 + λ2)v2

q − λ2v
2
s − cvs + 2(3d1 + 2d2)mvq + 2d2msvs + 2µ2

5),

m2
2 =

2m

vq

[
b+ (d1 + 2d2)v2

q + d2v
2
s

]
. (16)

Notice that the resulting Lagrangian is not Lorentz invariant, which is obvious from (11). We will
perform a diagonalization in momentum space, so the Lagrangian operator is written as

L = −1

2

(
a∗0(k) π∗(k)

)(−k2 +m2
1 4iµ5k0

−4iµ5k0 −k2 +m2
2

)(
a0(k)
π(k)

)
. (17)

Recall that fields in the momentum representation satisfy A∗(k) = A(−k). Note also the fact that the
mixing term has been rewritten as −4µ5a0π̇ = −2µ5(a0π̇− ȧ0π) in order the matrix to be hermitian.
The eigenvalues are 1

2 (k2 −m2
eff), where the (energy dependent) effective masses are

m2
eff ±(k0) =

1

2

[
m2

1 +m2
2 ±

√
(m2

1 −m2
2)2 + (8µ5k0)2

]
. (18)

The eigenstates are defined as

a0 =
∑
j

CajXj , π =
∑
j

CπjXj , Ca1 = iCπ2 = C+, Ca2 = −iCπ1 = −C−, (19)

with

C± =
1√
2

√
1± m2

1 −m2
2√

(m2
1 −m2

2)2 + (8µ5k0)2
. (20)
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Figure 2: Effective mass dependence on µ5 for π̃ and ã0. Left panel: comparison of masses at rest
and at low momentum q = 100 MeV. Right panel: masses at q = 200 MeV, where the π̃ mass goes
tachyonic, as discussed in the text. For such momenta, the variations in ã0 are almost invisible and
only slightly visible for large values of µ5 for π̃.

We can also use the notation X1, X2 ≡ ã, π̃, indicating that X1 (resp. X2) is the state that when
µ5 = 0 goes over to a0 (resp. π).

In Fig. 2, we present the results for the evolution of π̃ and ã0 effective masses with respect to
the axial chemical potential µ5. As stressed, both states tend to the known physical ones in the
limit µ5 → 0. A remarkable feature of this model is the appearance of tachyonic states at high
energies (or momenta). It is evident from Eq. (18) that for energies higher than a critical value

k0, |~k| > m1m2/(4µ5) ≡ kcπ̃, the square root term dominates, thus leading to a negative squared mass
for pions, as shown in the right panel of Fig. 2. Such a behaviour does not represent a serious physical
obstacle since it can be checked that the energies are always positive and no vacuum instabilities
appear. On the other hand, the ã0 mass shows an important enhancement, but in this model µ5 has
to be understood as a perturbatively small parameter, and very high values are beyond the domain
of applicability of the effective Lagrangian. A better treatment of ã0 would require the inclusion of
heavier degrees of freedom such as π(1300) for instance.

4 Mixing η − σ − η′

A similar analysis applies to the isosinglet case. We shall consider three states here: η, η′ and σ. As
before, the starting point will be the piece of the effective Lagrangian (5) that after the inclusion of
µ5 is bilinear in the fields, i.e. the properly normalized kinetic part

L =
1

2
[(∂σ)2 + (∂ηq)

2 + (∂ηs)
2]− 1

2
m2

3σ
2 − 1

2
m2

4η
2
q −

1

2
m2

5η
2
s − 4µ5ση̇q − 2

√
2cvqηqηs. (21)

The constants appearing in the previous equation are given by

m2
3 = −2(M2 − 6(λ1 + λ2)v2

q − λ2v
2
s + cvs + 6(d1 + 2d2)mvq + 2d2msvs + 2µ2

5),

m2
4 =

2m

vq

[
b+ (d1 + 2d2)v2

q + d2v
2
s

]
+ 2cvs,

m2
5 =

2ms

vs
[b+ 2d2v

2
q + (d1 + d2)v2

s ] +
cv2
q

vs
. (22)
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In matrix form

L = −1

2

(
σ∗(k) η∗q (k) η∗s (k)

)−k2 +m2
3 4iµ5k0 0

−4iµ5k0 −k2 +m2
4 2

√
2cvq

0 2
√

2cvq −k2 +m2
5

σ(k)
ηq(k)
ηs(k)

 . (23)

The equation for the eigenvalues (effective masses) is now a cubic one and the solution is determined
numerically

− 8c2v2
q (m2

eff −m2
3) + (m2

eff −m2
5)

[(
m2

eff −
1

2
(m2

3 +m2
4)

)2

− 1

4
(m2

3 −m2
4)2 − (4µ5k0)2

]
= 0. (24)

As before the eigenstates are defined via

σ =
∑
j

CσjXj , ηq =
∑
j

CηqjXj , ηs =
∑
j

CηsjXj , (25)

where

Cσj =
4iµ5k0(m2

5 −m2
j )

Nj
∏
k 6=j(m

2
j −m2

k)
, Cηqj =

(m2
5 −m2

j )(m
2
3 −m2

j )

Nj
∏
k 6=j(m

2
j −m2

k)
, Cηsj =

−2
√

2cvq(m
2
3 −m2

j )

Nj
∏
k 6=j(m

2
j −m2

k)

1

Nj
=

√
1 +

(4µ5k0)2

(m2
j −m2

3)2
+

8c2v2
q

(m2
j −m2

5)2
. (26)

Nj is the proper (eigen)field normalization factor.

Figure 3: Effective mass dependence on µ5 for η̃, σ̃ and η̃′. Left panel: comparison of masses at
rest and at low momentum q = 300 MeV. Right panel: masses at q = 550 MeV, where the η̃ mass
goes tachyonic, as discussed in the text. As in the previous example, for this range of momenta, the
variations in the heavier degrees of freedom σ̃ and η̃′ are almost invisible and only slightly visible for
large values of µ5 for η̃.

The µ5-dependence of the effective masses is plotted in Fig. 3. As in the previous example,
the lightest degree of freedom becomes tachyonic for big energies or momenta k0, |~k| > kcη̃ with

kcη̃ ≡ m3/(4µ5m5)
√
m2

4m
2
5 − 8c2v2

q , as shown in the right panel of Fig. 3. The tachyon critical energy

presents a similar behaviour as the one in the triplet case. In Fig. 4, both isotriplet kcπ̃ and isosinglet
critical energies kcη̃ are plotted together.
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Figure 4: µ5-dependence of the tachyon critical energy for isotriplet kcπ̃ and isosinglet case kcη̃.

5 New interactions and decay widths

After the inclusion of µ5 the cubic couplings present in the effective Lagrangian (5) are

Lσaa = 2[(3d1 + 2d2)m− 2(3λ1 + λ2)vq]σ~a
2,

Lσππ =
1

v2
q

[
(∂~π)2vq − (b+ 3(d1 + 2d2)v2

q + d2v
2
s)m~π2

]
σ,

Lηaπ =
2

v2
q

[∂ηq~a∂~πvq − (b+ (3d1 + 2d2)v2
q + d2v

2
s)mηq~a~π],

Lσaπ = −4µ5

vq
σ~a~̇π, Lηaa = −2µ5

vq
η̇q~a

2, Lηππ = 0. (27)

As seen in the previous expressions, decays that are normally forbidden on parity conservation
grounds are now possible with a strength proportional to the parity breaking parameter µ5. However,
the previous interaction terms are not physical because the properly diagonalized states are now Xi

rather than the original fields π, a0, etc. Going to the physical basis requires using the diagonalization
matrices defined in the previous section.

Our ultimate purpose is to check the relevance of dynamically generated parity breaking through
topological charge fluctuations in heavy ion collisions. It is natural then to ask how the previously
derived masses and vertices may influence the physics in the hadronic fireball.

It should be clear that the influence may be very important if µ5 is such that the induced parity
breaking effects are significant. After the initial collision of two heavy ions in a central or quasi-central
process a fireball is formed. This fireball could be described in rather simplistic terms as a hot and
dense pion gas. Pion-pion interaction is dominated by σ and ρ -particle exchanges and processes such
as η → ππ or η′ → ππ are forbidden. If parity is no longer a restriction, these two processes, or rather
processes such as Xi → π̃π̃ (i = 3, 4, 5) are for sure relevant and the new eigenstates produced due to
parity breaking could thermalize inside the fireball.

Let us now try to be more quantitative. It should be clear from the mass evolution as a function
of µ5 (Figure 2) that π̃ is the lightest state and it dominates the partition function in the fireball. As
a consequence, to get an estimate of the relevance of these new states let us compute their width in
order to see whether its inverse is comparable to the fireball lifetime. To do so we need the following

8



S-matrix element corresponding to Xi(q)→ π̃+(p)π̃−(p′)

iM =4i[(3d1 + 2d2)m− 2(3λ1 + λ2)vq]CσiC
+
a2C

−
a2 +

4µ5

vq
Cσi(Ep′C

+
a2C

−
π2 + EpC

−
a2C

+
π2)

− i

v2
q

[
(m2

Xi −m
2
π̃+ −m2

π̃−)vq + 2(b+ 3(d1 + 2d2)v2
q + d2v

2
s)m

]
CσiC

+
π2C

−
π2

− 4µ5Eq
vq

CηqiC
+
a2C

−
a2 +

i

vq
(m2

π̃+ −m2
π̃−)Cηqi(C

−
a2C

+
π2 − C

+
a2C

−
π2)

− i

v2
q

[2(b+ (3d1 + 2d2)v2
q + d2v

2
s)m−m2

Xivq]Cηqi(C
+
a2C

−
π2 + C−a2C

+
π2) (28)

We are dealing with a relativistic non-invariant theory and therefore the widths do not a priori
transform as one would naively think. We shall compute them first at rest, then for different values
of the 3-momentum of the decaying particle.

5.1 Widths at rest

The width of Xi is calculated from the amplitude shown before since we don’t include further decaying
processes. Recall that all masses are energy dependent. At the Xi rest frame, ~q = ~0 and Ep = Ep′ =

mXi(~q = ~0)/2 ≡ mXi
0 /2. Here, a momentum-dependent effective mass is taken instead of an energy-

dependent one since we assume the decaying particle to be on-shell so both m(~k) and m(k0) coincide.
Thus, the rest width is given by

ΓXi→π̃π̃ =
3

2

1

2mXi
0

|M|2 1

4π

pπ̃

mXi
0

dp2π̃
dE2

p

,
dp2
π̃

dE2
p

= 1 +
(4µ5)2√

(m2
1 −m2

2)2 + (8µ5Ep)2
(29)

where pπ̃(Ep) =
√
E2
p −m2

π̃(Ep) and the factor 3/2 accounts for the decay both to neutral and charged

π̃. The results of the widths are shown in Figure 5.

The new state η̃ exhibits a smooth behaviour with an average value ∼ 60 MeV, corresponding to
a mean free path ∼ 3 fm, which is smaller than the typical fireball size Lfireball ∼ 5 ÷ 10 fm. Hence,
the thermalization of this channel via regeneration of π̃ within the gas seems to be possible.

Another striking point concerning σ̃ takes place down to µ5 ∼ 100 MeV, when the decay width
decreases dramatically leading to scenarios where this state becomes stable. The visible bumps in
these two latter channels seem to reflect the tachyonic nature of the decaying π̃.

Finally, we present in the inset of Fig. 5 the detail of the η̃′ width, that grows up to the GeV
scale, showing clear violations of unitarity. As in the case of ã0, more hadronic degrees of freedom are
needed to obtain a reliable result, such as f0(980), etc.

5.2 Decay widths of moving particles

Next, let us compute the width when the decaying particle is not at rest. As explained before in a
non-relativistic theory this cannot be obtained from the one at rest by simply taking into account the
time dilatation effect. Then

ΓX→π̃π̃ =
3

2

1

2Eq

1

8πq

∫
|M|2pdp
Ep

dp2π̃
dE2

p

Θ(1− | cos θ|)Θ(Ep′) (30)

where the Heaviside step functions are introduced to make sure that both cos θ and Ep′ take physical
values in the numerical calculation. Of course, the limit q → 0 coincides with the calculation at rest
performed before.

9



Figure 5: η̃, σ̃ and η̃′ widths at rest depending on µ5. Down to µ5 = 50 MeV, η̃ acquires a width of
order 60 MeV, with a characteristic mean free path smaller than the typical fireball size of 5÷10 fm and
hence implying that thermalization may occur in this channel. Nevertheless, σ̃ shows a pronounced
fall and beyond µ5 = 100 MeV, it becomes a stable channel. Inset: Detail of η̃′ width reaching the
GeV scale, a clear violation of unitarity since we don’t include heavier degrees of freedom in our model.

In the η̃ channel (see the left section of Fig. 6), one may observe small variations at low 3-
momenta with respect to the width at rest, namely, two initial bumps at µ5 ∼ 80 MeV and 550
MeV (the latter being beyond the plot range) slowly separate as one increases q. However, the two-
dimensional representation Γη̃(µ5, q) exhibits a saddle point around µ∗5 ∼ 240 MeV and q∗ ∼ 500 MeV,
and in consequence, for large 3-momenta, a third intermediate bump appears opening the possibility
of creating two different tachyons at the same time. The latter maximum grows fast as one increases
q and becomes the global one when the 3-momentum goes beyond q & 700 MeV.

Figure 6: η̃ (left) and σ̃ (right) widths depending on µ5 for different values of the incoming 3-
momentum: q = 0, 500, 700 MeV. The first plot shows a non-trivial dependence on q (see text)
while the second one shows a fall that is mainly due to the Lorentz factor.

On the other hand, in the σ̃ and η̃′ channels no huge differences arise when boosting the decaying
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particle. In the right panel of Fig. 6, we show the σ̃ width for different values of q and the most
salient behaviour is, as in the previous case, the separation of the two minima as one increases q.

6 Axial-vector meson condensation

The introduction of axial chemical potential into the quark-meson model interferes with the flavor-
singlet axial-vector channel as this potential is just a time component of axial-vector field, ∆Lµ5

=
µ5q̄γ0γ5Iqq. Therefore if one includes the coupling of the singlet axial-vector quark current with
the corresponding meson field hµ one expects mixing and renormalization of the bare axial chemical
potential due to condensation of the time components of the axial-vector fields hµ ' 〈h0〉δ0µ. This
phenomenon is in full analogy to the condensation of the time component of the ω meson field when
a baryon chemical potential enters the Lagrangian [14] which is quite important to understand the
repulsive nuclear forces in this channel.

Let us elucidate this phenomenon in more details. The relevant Lagrangian for axial-vector mesons
reads

∆L = −1

4
hµνh

µν +
1

2
m2
hhµh

µ + q̄γµγ5(ghh
µ + δµ0µ5)Iqq, (31)

where h stands for the axial-vector meson h1(1170) [9] singlet in flavor and gh denotes its coupling to
the quark current. We assume the condensation of hµ ' 〈h0〉δ0µ

δ∆L
δh0

= m2
h〈h0〉+ gh〈q̄γ0γ5Iqq〉 = 0, (32)

so that the effective chemical potential µ̄5 ≡ µ5+gh〈h0〉 arises and determines the effective non-strange
axial-charge density ρ5 = 〈q̄γ0γ5Iqq〉

ρ5(µ̄5) =
µ5 − µ̄5

Gh
=
δ∆L
δµ̄5

, ∆V = −1

2
m2
h〈h0〉2 = −1

2

(µ̄5 − µ5)2

Gh
, (33)

where Gh = g2
h/m

2
h. Therefrom we can see that the axial charge density is directly related to the

axial-vector condensate. After including ∆V (Eq. (33)) in Eq. (12) the stationary point equation can
be derived

δL
δµ̄5

=
δ

δµ̄5

[
2µ̄2

5v
2
q +

1

2

(µ̄5 − µ5)2

Gh

]
= 0 (34)

that allows to relate the bare and effective axial chemical potentials

µ̄5

[
1 + 4Ghv

2
q (µ̄5)

]
= µ5. (35)

We stress that in the mass-gap equations for vq, vs the effective axial chemical potential µ̄5 must be
used. The relation (35) is smooth against the decoupling of axial-vector mesons gh → 0. It determines
unambiguously the axial charge density, ρ5(µ̄5) = 4µ̄5v

2
q (µ̄5), which exhibits, in general, lower values

when affected by axial meson forces, |µ̄5| < |µ5|.

7 Conclusions and outlook

Perhaps the main conclusion of the study of meson physics in an environment endowed with a net axial
charge is that is full of surprises. The axial chemical potential provides a source of parity violation.
This makes states of different intrinsic parities mix and allows for ‘exotic’ processes in hadronic
physics. The presence of the axial charge also leads unavoidably to a breaking of Lorentz invariance.
The effective in-medium masses are energy dependent and meson physics is frame-dependent, with
the natural consequence that widths or decay rates do depend non-trivially on the momentum of the
decaying particle.
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We have assumed that the parity breaking parameter -the axial chemical potential- is an SU(2)
singlet. This is natural if the mechanism to generate µ5 is via topological charge fluctuations as
advocated by some [4, 6]. Note, however, that it is not an SU(3) singlet, as the topological charge
fluctuations are not transmitted to the strange sector (and even less to the eventual charm sector).

It is natural to ask whether such a mixing of states of different parities occurs in the vector/axial-
vector sector. There are many models dealing with vector particles phenomenologically. If we assume
that the vector mesons appear as part of a covariant derivative (as postulated e.g. in hidden symme-
try models [15]), no mixing term can be generated by operators of dimension 4 if µ5 is an isosinglet.
However, such a mixing is not forbidden on (global) symmetry grounds if µ5 is present, appearing
as the time component of an axial-vector field (see e.g. [12]). This means that this coupling is very
much model dependent and, unfortunately, not much phenomenological information is present. It is
however an interesting point we plan to analyze in the future.

However parity breaking via a topological charge or axial chemical potential influences vector
mesons (and eventually photons too) in a different way discussed in detail in [13]. Their polarizations
are severely distorted and the breaking of Lorentz invariance, together with parity, reflects itself in
different polarizations acquiring different effective masses, which could hopefully be experimentally
measured. This issue has not been discussed here.

As argued in the introduction, many authors support the idea that topological charge fluctuations
may lead to visible effects via the Chiral Magnetic Effect. If this is so, not only peripheral collisions
(where the Chiral Magnetic Effect is present) will show traces of parity breaking. We have argued
elsewhere [13, 16] that parity breaking induced from topological charge fluctuation will lead to possibly
measurable effects in central collisions, in the dilepton spectrum from ρ and ω decays.

What we have seen in the work presented here is that the physics of spin zero resonances is also
strongly affected by the presence of an axial chemical potential. We have given convincing arguments
that, if µ5 6= 0 the pion gas in the fireball forming after a central heavy ion collision may actually not
be made of the usual pions, but instead of some states of non-defined parity and energy-dependent
effective mass. In addition all the lightest spin zero states have the same properties and perhaps more
importantly, they are all in thermal equilibrium with the ‘pion’ gas, as indicated by the characteristic
large widths, completely different from the ones in vacuum. These particles have Dalitz decays that are
therefore completely distorted with respect to the µ5 = 0 case usually considered. This phenomenon
may help in explaining the anomalous dilepton yield enhancement observed [17] for low dilepton
invariant masses in heavy ion collisions.
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