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Complex network null models based on entropy maximization are becoming a powerful tool to characterize
and analyze data from real systems. However, it is not easy to extract good and unbiased information from
these models: A proper understanding of the nature of the underlying events represented in them is crucial. In
this paper we emphasize this fact stressing how an accurate counting of configurations compatible with given
constraints is fundamental to build good null models for the case of networks with integer-valued adjacency
matrices constructed from an aggregation of one or multiple layers. We show how different assumptions about
the elements from which the networks are built give rise to distinctively different statistics, even when considering
the same observables to match those of real data. We illustrate our findings by applying the formalism to three
data sets using an open-source software package accompanying the present work and demonstrate how such
differences are clearly seen when measuring network observables.
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I. INTRODUCTION

Network science [1] is a prime example of the multiple uses
that many tools and methodologies extracted from traditional
physics can have when applied to a variety of transdisciplinar
problems. The advent of the so-called Big Data Era given
by the explosion of ICT technologies is providing researchers
with unprecedented large data sets in a myriad of fields ranging
from biology [2] to urban studies [3], including bibliometrics
[4], to chemical sciences [5] or even history [6], to cite just
a few. The current challenge is to extract knowledge and
useful information from such enormous data sets. A standard
approach is based on representing them as a graph. Network
representation of data is especially useful due to its relative
simplicity in terms of computational effort, visualization [7],
and analysis. However, it presents some serious limitations,
which force us to look for innovative methodological tools.

One way to go beyond simple network representation is
to generate appropriate null models. They must be flexible
and reliable enough for comparison with our original data in
the search for statistically relevant patterns. In general, this
is not a simple task; data processing is tricky and subtle in
many situations and it may lead to wrong conclusions based
on a poor understanding of the problem under study. A clever
strategy to find efficient null models consists of generating
randomized instances of a given network while keeping some
quantities constant [7,8]. This can be done by algorithmic
randomization of graphs [9] but such a procedure can be costly
in terms of computational time (especially for dense data sets)
and programming difficulty. Most importantly, most “rewiring
techniques” do not always generate an unbiased sampling of
networks [10].

A different approach to this problem has its roots in the anal-
ogy of networks with classical statistical mechanics systems
[11-15], though it was originally proposed by sociologists
and also by urban planners [16] under the name of exponential
random graphs [17]. It is based on the idea of constructing an
ensemble of networks with different probabilities of appear-
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ance, which on average fulfill the considered constraints. The
advantage of these methods is that they consider the possibility
of having fluctuations (as usually happens in real data) and
their derivation is completely analytical. Furthermore, such
methods provide an easy way of rapidly simulating (and
averaging) network instances belonging to a given ensemble.
So far in the literature successful development of this kind
of methodology has been performed for different types of
monolayered networks [13,18-20], directed [14] and bipartite
[21] structures, and stochastic block models [22] and some
multiplex weighted networks [4].

Recently, there is growing interest in the study of more
complex mathematical structures [23,24] to account for the
inherent multilayered character of some network systems.
This fact calls for the need to develop maximum entropy
ensembles with a multilayered perspective [4], which will
help in the analysis of real-world data sets. This is the main
goal of this work. In this paper, we complement previous
work on maximum-entropy-weighted networks by considering
systems of aggregated multiplexes, where we have information
about the layered structure of the system and the nature
of their events, but—as usually happens for real data—we
only have access to its accumulated structure (the sum of
weights connecting two nodes in each layer for each pair of
nodes). We show how the role of event and layer degeneracy
induces important differences in the obtained statistics for each
case, which recovers the monolayered studied cases when
the number of layers is set to unity. We further show that,
despite the statistics being different, all the cases considered
are examples of maximum likelihood networks of the dual
problem [25] but yield different expectations for network
quantities, highlighting the need to choose an appropriate null
model for each case study based on the weighted character of
the networks.

In Sec. I we present the mathematical framework and
calculations of degeneracy for maximum-entropy networks
with arbitrary constraints. Section III extends the calculation to
obtain explicit statistics for a very general case of constraints
for the different cases considered. Finally, Sec. IV presents
an application of the model for the particular case of fixed
strengths to the analysis of three real-world data sets. Extended
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mathematical calculations are provided in the Appendixes,
and details on the used data sets, measured quantities,
and numerical methods in the Supplementary Material [26],
including also a package for public use to apply the proposed
models [27].

II. MAXIMUM-ENTROPY-CONSTRAINED
GRAND-CANONICAL NETWORK ENSEMBLES WITH
INTEGER WEIGHTS

We consider a representation of a network of N nodes, based
on an adjacency matrix T composed of positive-integer-valued
entries #;; € N, which we call occupation numbers. Each
of these entries accounts for the intensity of the interaction
between any given pair of nodes i and j in the network,
measured in terms of discrete events (which may be trips
between locations in a mobility network or messages between
users in social networks for instance). We study the case of
directed networks with self-loops, albeit the undirected case
follows from the derivation. Our objective is to fully deter-
mine the grand canonical ensemble of networks [11,20,28]
which fulfill on average some Q + 1 given constraints
{T =3, 1:j,C4(T)}. The total number of events T =}, 1;;
determines the sampling of the network and is the minimal
required constraint to consider any ensemble under the present
framework [20]. In this paper, we examine the problem where
constraints take the form of linear combinations of functions
of the individual occupation numbers ¢;;:

C(My =) filtp, YqeQ. )

ij

To completely determine an ensemble, it is not enough to
specify the quantities we wish to fix (the constraints given by
the original data); we must also define the statistical nature of
the events allocated to the occupation numbers ;. In other
words, we have to count all the network instances which
give rise to the same particular configuration of the adjacency
matrix T. This degeneracy term D(T) depends solely on the
specifics of the system one represents and counts the number
of equivalent (micro) states that a particular unique realization
of the adjacency matrix T can describe.

Once a grand canonical ensemble is fully constructed,
the probability of obtaining a particular configuration of
occupation numbers T reads

P({6,},T) = Z7' D(T)e" )],

(2
H({64).T) = 07 T(T) + Y _ 0,C,(T).
q

The so-called grand-canonical partition function Z =
> D(Me” (D must be summed considering all the
possible configurations of the adjacency matrix T one can con-
sider, regardless of whether the proposed constraints are met.
Such a probability with an exponential form [17] is obtained
by maximizing the Shannon entropy S = ) m P(T)In P(T)
associated with the ensemble while preserving the Q + 1
constraints on average.
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Using Eq. (1) we reach
P(T) = Z_ID(T)HZ?Zij(tij)a
ij

o i . S
zij(ty) = [ [, zp =
q

Let us note that if the degeneracy term factorizes, i.e., D(T)
[1;; Dij(#), the partition function can be re-expressed as

o0
Z = HZU = l—[ Z Dij(tij)Zt;;fZij(tij)a
ij

l] l‘ij=0

“

Dij(lij)Zt}jZij(fij)
P =[] pin =[] — e,
ij i 2y =0 Dij )z 2ij (1))

where the statistics of T are formed by a set of independent
random variables corresponding to the occupation numbers
{t;;}. Whenever one defines the degeneracy term and is able
to sum the individual partition functions Z;;, then one gets
the explicit statistics of the occupation numbers. The values
of the Lagrange multipliers (67,{6,}) associated with the Q +
1 constraints (which can also be understood as a posteriori
hidden variables [29,30]) are obtained by solving the so-called
saddle-point equations,

C,=(CM) =Y (fiwp) =Y pi) ),
ij ij 1,=0
, )
T = Z(fij),
ij

where {C’q} are the values of the quantities one wants to keep
fixed (on average) in the ensemble.

The degeneracy terms are in general subtle to compute and,
to the best of our knowledge, are seldom considered in the
literature. In order to calculate them, however, we need to make
considerations about the type of networks under study and
their elements. In this work, we consider systems composed
of events that are either distinguishable or indistinguishable.
Additionally, we study the general representation of an
overlay multiplex network, which is obtained by aggregating
several layers of a system into a single (integer-weighted)
adjacency matrix [23,24]. Examples of such networks include
aggregation of transportation layers [31], networks generated
by accumulation of information over a certain time span such
as origin-destination matrices [3], e-mail communications [32]
or human contacts [33], and even an aggregation of trading
activities in different sectors such as the World Trade Network
(WTN) [34].

Thus the system under consideration is an aggregation of
M network layers containing the same type of events: They
can be either a group of layers composed of distinguishable
(multiedge; ME) or indistinguishable (weighted; W) events or
even an aggregation of binary (B) networks. The occupation
numbers corresponding to layer m are denoted ti’;‘, but we
only have access to information about their accumulated value
through all the layers, i.e., the aggregated occupation numbers

_ m
tij =2ty
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TABLE 1. Degeneracy terms corresponding to the elements of the system and their layers in each case.

Network type D(Tgyents D(T)Layers

Multidge (ME) T Iy S (ﬁ )1, MEe
i ! i) T 77

Weighted (W) 1 My (5 ™)

Binary distinguishable (BD) T! [T, (zf,g)

Binary indistinguishable (BI) 1 Hij (Z:”f,’)

Finally, the degeneracy term is the product of the multi-
plicity induced by the nature of the events times the nature
of the layers (which, in the only possible real scenario, are
always distinguishable): D(T) = D(T)gyents D(T)Layers- The
latter term is computed (for each pair of nodes or state ij) by
counting the number of different groupings one can construct
by splittingz;; =" t;; (distinguishable or indistinguishable)
aggregated events into M layers respecting the occupation
limitation of the considered events: either only one event per
layer (B network) or an unrestricted number (W and ME
networks).

The resulting degeneracy terms are listed in Table I (see
details in Appendix D), in which one can see that, in
principle, the event degeneracy term does not factorize for
the distinguishable cases due to the presence of the variable
T! = (Zij t;j))!. One can nevertheless obtain an effective

degeneracy term by substituting it with 7'! (a constant) (as
shown in Appendix D, where a complete discussion of the
implications of this substitution for the different cases is
provided), which leads to results fully equivalent to those
obtained by performing the exact calculation for the ME case
with constraints of the form (6). In doing so, two preliminary
conclusions can be drawn. First, both the distinguishable
and the indistinguishable binary cases will lead to the same
statistics since their degeneracy term for events will be constant
(hence in the remainder of the paper we omit the BD case).
Second, in all cases the complete degeneracy terms will
factorize into state ij independent terms, which means that
the statistics of the aggregated occupation numbers will be
state independent [Eq. (4)].

III. LINEAR CONSTRAINTS ON AGGREGATED
OCCUPATION NUMBERS

To go further in our derivation, we now consider the case
where the constraints are linear functions of the aggregated
occupation numbers:

fi ) = cltiy =l > . (6)
m

This case is very generic and includes networks with local
constraints on nodes [35], community constraints [18], and
generalized cost constraints such as distances [36]. The case
where the constraints depend on both the binary projection
of the occupation numbers and their values f;;(t;;) = ¢j t;; +

53’ O(t;;) can be derived from the methodology developed here
and is analyzed in Appendix A.
The individual partition functions can be summed:

Zij = Z Dij(tij)zlt';'/

tij

Lo Mz
ME: Zrlj:O e

ij-

=1 W X (N = A= <1
B: zﬁgzo(jff)zﬁyz(lJrz,»j)M; <M.
(7

In this case, we have redefined z;; = €’ ]_[qQ %l o ease
notation. This leads to

vz, (Mzij)
p}\J/'[E(tij) =e M”"—J',
tijt
M +t;; — 1\ 4
Py (i) = ( tu )Z;j(l -z, ®)

i

M Zi: lij
B _ ij —(M—t;})
(i) = 1+ i i,
i) (fij><1+2ij) ()

And we recover well-known probability distributions: a
Poisson distribution for the ME case [20] (independent of the
number of layers M), negative binomial for the W case (the
geometric distribution [19] being a special case when M = 1),
and a binomial distribution for the aggregated B case (the
Bernoulli distribution [11] being a special case for M = 1).

The resulting statistics show some important features: On
the one hand, one sees that although the degeneracy term
changes for ME networks for the case of either a monolayer or
a multilayer, the form of the obtained statistics does not. This
means that it is not possible to distinguish an ME monolayered
network from an aggregation of multiple ME layers belonging
to an ensemble with the same constraints. On the other hand,
the situation for the other cases changes: For multiplexes the
resulting occupation numbers will have statistics different from
those in the monoplex case. This has the implication that one
could in principle discern the aggregated nature of a network
by inspecting the accumulated edge statistics {#;;}, provided
that one has access to enough realizations of a system and
that it belongs to the same ensemble [i.e., the system evolves
according to some given, even if unknown, linear constraints
[3] of the form of Eq. (6)].
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TABLE II. First and second moments of the considered distribu-
tions, together with the relative fluctuations.

Network Domain
ol
type {ij) o ,?j e Zij
ME MZ,'j MZ,']‘ (MZ,'J')71 [0,00)
w ML M= (Mz;j)™! [0,1)
Zij —Zjj) ¥
B M2l M (Mz;)™! [0,00)

T4z (+z;;)?

Another important implication of the obtained statistics is
the very different interpretations encoded in the z;; values.
This collection of values is related to the constraints originally
imposed on the network ensemble through the set of Lagrange
multipliers (67,{6,}) [Eqgs. (3) and (5)] and can be understood
as a posteriori measures related to the intensity of each node
pair ij. These measures encode the correlations between
nodes imposed by the constrained topology (note that for
local constraints only at the level of nodes do we obtain a
factorization (t;;) = Mx;y;). Table Il lists the first two central
moments of each distribution. For the ME case z;; is directly
mapped both to the average occupation of the considered link
ij, (t;j), and to its (relative) importance in the network [20].
In all the other cases, however, z;; relates to a probability of a
set of events emerging from a given node, to be allocated to a
link ij. Obviously, as (t;;) increases, z;; increases in all cases,
but not in the same linear way (in the W case, for instance, z;;
is bounded to a maximum value of 1). This means that while
in all cases z;; is related to the importance of a given link with
respect to the others, the dependence in all non-ME cases is
highly nonlinear. Finally, we can see that for a large number
of layers M > T/N?, the ensembles become equivalent to
the ME, as the degeneracy term for (distinguishable) layers
dominates the configuration space of the ensembles.

The different obtained statistics are highly relevant, as their
marked differences point out a (regularly overlooked) problem:
Different maximum-entropy ensembles yield very different
statistics for the same considered constraints, and hence each
data set needs to be analyzed carefully, since the process
behind the formation of each network dictates its degeneracy
term. Furthermore, all the obtained statistics are derived
from a maximum-entropy methodology, and hence the values
z;j obtained from (5) are in all cases maximum-likelihood
estimates of the probability that T will belong to the set of
models described by Eq. (8) (see Appendix B). Thus, any of
the presented models will be a correct ensemble in a maximum-
likelihood sense [25] for some given constraints, and the
appropriate choice for each network representation depends
on the system under study, in contrast to the interpretation
given by [35].

This means that if one wants to assess the effects a given
constraint has on a network constructed from real data, one
needs to choose very carefully the appropriate null model to
compare the data to. It is also worth pointing out that most
of these ensembles are not equivalent to a manual rewiring of
the network [37] (although one expects small differences; see
Appendix C). However, maximum-entropy models allow for
an analytical treatment of the problem and simplify the gen-
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eration of network samples when the considered constraints
are increasingly complicated (both at the coding level and at
the computational one). This has many implications, including
the possibility of computing p values, information-theoretic-
related quantities such as ensemble entropies [13-15,18,22]
and model likelihoods as well as efficient weighted network
pruning algorithms [38,39]. Moreover, this procedure helps in
the fast and simple generation of samples of networks with
prescribed constraints.

The main difficulty with the soft-constrained maximum-
entropy framework presented here for null model generation
is the problem of solving the saddle-point equations, (5),
associated with each ensemble. With the exception of some
particular cases [37], these equations do not have an analytical
solution and must be obtained numerically. In this case, the best
approach is to maximize the associated loglikelihood of each
model to a set of observations (constraints), yet the difficulty of
each problem increases with the number of constraints since
each fixed quantity has an associated variable to be solved.
Considering the different statistics obtained in this paper, the
most difficult case by far is the W one, since the condition that
0 < z;; < 1 imposes a nonconvex condition in the domain of
the loglikelihood function to maximize, while the others are
in general easily solved using iterative balancing algorithms
(see the Supplementary Material for an extended discussion
and details on the numerical methods used [26]).

IV. APPLICATION TO REAL DATA: THE CASE
OF FIXED STRENGTHS

To highlight the importance of considering an appropriate
null model for the assessment of real data features, in this final
section we consider the case of networks with a fixed strength
sequence. Real networks usually display highly skewed node
strength distributions, which have important effects on their
observables. Hence, to correctly assess whether some observed
feature in a data set can be explained solely by the strength
distribution, it is crucial to choose an appropriate null model
to compare the data to. This situation is especially important,
for instance, with regard to community analysis through
modularity maximization for weighted networks, because the
modularity function to be optimized [18] needs as input
a prediction from a null model with fixed strengths [Q
Zij (fi; — (i ))8¢;c;» where {c} are the community node labels
associated with the optimal network partition]. For a directed
model with fixed strengths, the constraints in Eq. (1) read (67

1 _ in __ out
is not needed because T = ), 5" = Zj 5§

S;)U[:chjtijzzsqitij:thjs Vg=1...N;
ij ij J
S:,HZZC;.]II']':Z(SJ‘,IUZZ[H, Vr=1...N; 9)
ij ij i

0,8i 0/8,; _ _ 8 _ 0
Zijzl—qu ql_[e'f—xiyj, Xg=el, y=er.
q r

So the resulting saddle-point equations, (5), are

s:lf)ut — <S0m>, §:n — <Sin>’ [ = 1 . .N, (10)
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where § denotes the numerical value found in the data for the
random variable s, which, particularized to each case, reads

sout __
S =Mxi ) v,
ME ain

S = My; >~ xis

§put — Mx,- Z Vi ,
wi S i (11)

ain __ i Xi .

Sj - My] Zi I—x;y;’

asout __ X Vi
gli =M X Tony

ain __ X Xi

Sj - My] Zi I+xiy; *

The ME case has an analytical solution [37], while the others
must be solved computationally. The Supplementary Material
[26] provides extended details about the network quantities
computed, simulations, averaging and computational methods,
and algorithms used in this section, which are available in the
freely provided, open-source ODME package [27].

As real-world data sets we use a snapshot of the WTN,
the OD matrix generated by taxi trips in Manhattan for
the year 2011 [3,40], and the multiplex European Airline
Transportation network [31]. The WTN has been widely
studied in the literature and recently has been represented as
an aggregated system of M ~ 100 layers [41] representing
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different types of commodities being traded. In this network,
nodes represent countries and weights represent the amount of
trade between them, measured in millions of U.S. dollars. In
the OD taxi data set, which we construct as the aggregation
of M = 365 daily layer snapshots, each node represents an
intersection and each weight the number of trips recorded
between them [42]. Finally, in the airline network each node
is an airport and weights correspond to the number of airlines
providing direct connections between them, so the network is
an aggregation of M = 37 binary layers (one for each airline).

In all cases we consider directed networks, and throughout
this paper we only show results in the outgoing direction, as
the results in the incoming direction are qualitatively equal.
Note that the aggregated B case cannot always be applied
since the maximum number of events allocated per node pair
cannot exceed the number of layers, and for the WTN data set
this condition [max({§;}) < s™* = N M] is violated for some
nodes.

To analyze the difference between models, we compute
ensemble expectations for different edge- and node-related
properties suitably rescaled (fixing the original strength dis-
tribution of each data set) and then compare the obtained
results with the real observed data features. The airline data
set is very sparse and differences between models are not
great, which points out the need for adequate sampling for a
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FIG. 1. (Color online) Node pair statistics. (a, b) Binary connection probability and (c, d) rescaled average edge weight as a function of
the product of origin and destination node strength. Results averaged over r = 5 x 10% and r = 10* realizations for the different models,
respectively, with applied log-binning. The sudden increase in the binary pair-node connection probability is clearly shown for the W case.
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FIG. 2. (Color online) Weight statistics. Existing node pair weight complementary cumulative distribution for (a) the taxi and (b) the WTN
data sets. The same conditions as for Fig. 1 apply. The presence of extremely high weights is shown in the tails of the distributions for both the
W monolayer and the W multilayer case.
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FIG. 3. (Color online) First-order node statistics. Rescaled (a, b) degree and (c, d) disparity for (a, c) the taxi and (b, d) the WTN data sets.
The same conditions as for Fig. 1 apply. Dashed lines represent log-binned standard deviation ranges for the real data. The U-shaped disparity
profile is clearly shown for the W cases, in sharp contrast with the monotonous behavior of both the real data and the ME model.
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FIG. 4. (Color online) Second-order node statistics. Rescaled weighted average strength for (a) the taxi and (b) the WTN data sets. The
same conditions as for Fig. 1 apply. Dashed lines represent log-binned standard deviation ranges for the real data. A sharp increase is clearly

shown for high-strength nodes in the W cases.

successful analysis of weighted networks. Anyway, since it is
by construction an aggregation of binary layers, the B case
displays the most resemblance to the data, both qualitatively
and quantitatively (see the Supplementary Material [26]).

The WTN and taxi data sets, in contrast, contain enough
sampling for the wide differences between models to emerge.
All cases have the same number of events 7 on average, but
they are not distributed among connections between nodes
in the same way for the different models. Zero being the
most probable value for the geometric distribution, for the
W case with a single layer the connection probability initially
increases distinctively faster than in all the other cases, leading
to larger numbers of binary connections between low-strength
nodes [Figs. 1(a) and 1(b)]. Yet the higher relative fluctuations
of the geometric statistics also generate the extremely large
maximum weights in the tail of the existing occupation number
distribution (Fig. 2), which are concentrated in connections
between high-strength nodes [Figs. 1(c) and 1(d)]. Since the
total number of incoming and outgoing events at each node
is fixed, this means that the W case has comparatively the
lowest degrees for the most weighted nodes despite counting
the larger number of binary connections, E =} _,; O(t;;) =
>k = Zj ki, as shown in Figs. 3(a) and 3(b).

These anomalies for low- and high-strength nodes, re-
spectively, for the W case produce wild asymmetries in the
allocation of weights per node, which can be studied by
measuring their disparity, Y, =}, tizj /(i j)z [Figs. 3(c)
and 3(d)], which quantifies how homogeneously distributed the
weights emerging from each node are: It displays a U-shaped
form, with both low- and high-strength nodes tending to
very strongly concentrate their weights in a few connections.
This nonmonotonic behavior is in strong contrast with that
observed for the real data and usually for other data sets
[4]. Concerning second-order node correlations, the outgo-
ing weighted-average neighbor strength s =Y il js}“ /s
(Fig. 4) again displays a large range of variation for the W
case (with either one or more than one layer), in contrast with
the slightly assortative profile of the real data, the uncorrelated

profile in the ME case, and the slight disassortative trend in
the B case. The latter case is caused by the combination of two
factors: The limitation on the maximum weight of the edges
cannot compensate (with high weights connecting the nodes
of higher strength) the tendency of large nodes to be connected
to a macroscopic fraction of the network, which is dominated
by low-strength nodes.

Obviously none of the null models used reproduce the
real data, however, the goal in model construction is rather
to assess the structural impact that a given constraint (in this
case, a strength distribution) has on the network observables.
In this sense, we show that different models provide very
different insights into such impacts. In particular, since the
airline data set is by construction an aggregated B network and
the taxi data set an ME one (people riding in taxis are clearly
distinguishable), the fact that the B and ME cases, respectively,
lie closer to the real data comes as no surprise. The WTN case,
however, is unclear: The modeling of trade transactions does
not have a clearly defined nature, but if one assumes the WTN
to be a multilayered network, its aggregated analysis should
be performed using either the W case (with M > 1 layers) or
the ME case, which, again, are closer in both functional form
and qualitative values to the real case (in contrast with [41],
where the W model with a single layer is used).

V. CONCLUSIONS

In this work we have shown the importance of considering
the nature of the events one wishes to model when using
an integer-valued network representation of a system. We
have developed and solved a maximum-entropy framework
for model generation applied to networks generated by aggre-
gation [23,24] of multiplexes. We have shown how different
considerations about the nature of the events generating the el-
ements of the multiplex give rise to distinctively different node
pair statistics. For the case where one wants to fix properties
expressed as linear functions of the individual weights (and,
optionally, their binary projection) in the network, we elegantly
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recovered well-known statistics such as Poisson, binomial,
negative binomial, geometric, and Bernouilli in each case.

We have, further, provided a practical example by focusing
on the case of fixed strengths and applying the models to
assess relevant features of three real-world data sets containing
different types of weights, showing how the role of adjacency-
matrix degeneracy plays a crucial role in model construction.
To this end, we have considered the statistical nature of the
obtained models as well as the weaknesses and strengths
derived from their practical applications in real cases. Finally,
we provide the open-source software package ODME [27],
with which practitioners can apply the proposed models to
other data sets.

The insights derived from this paper can open the door to
the objective identification of truly multiplex structures (except
in one case where it has been shown to be impossible) by
inspection of the statistics of their edges, provided that several
instances of a network belonging to the same ensemble are
available. The take-home message of this work is that, in
order to perform a meaningful analysis of a given network,
a practitioner needs to be able to select an appropriate null
model, which depends not only on the endogenous constraints
one considers but also on the very nature of the process one
is modeling. Our work provides researchers with a range
of maximum-entropy (and maximum-likelihood) models to
choose from, covering a wide spectrum of possibilities for the
case of weighted networks. Each of these models is not wrong
or even right in the general case, despite yielding very different
predictions for the same sets of constraints, but just more or
less appropriate, depending on the problem one wants to study.
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APPENDIX A: BINARY CONSTRAINTS

We develop here the general case where the constraints
have the general form f (tij) = ¢4 i ;) + cq t, ;. The general
derivation remains essentially unchanged from the linear case
(see text), with a slight modification in the calculation of the
explicit partition function,

~O(t,) t;
Z; = Z’MW e

1;=0

Z Dl](tl])zll/

1;=0

ij
Zij = e 1_[ elaca ,
q

D;;(0)

05”
ﬂe ",

+ D;;(0),

(AL)
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where {z;;} have been redefined and the constraint on the
total number of events 7 =3 . #; is introduced in their
redefinition. This yields

S0 i
Dl] (tl]) ’ ,j/
pij(tij) = = ,
Zii( Z’{;:O Dij(tij)zj]"/ — D;;(0)) + D;;(0)
which corresponds to the zero-inflated versions of the previous
statistics recovered in the case f;; = ¢j t;;, that is, asymmetric

statistics where the probability of the first occurrence is
different from the rest. Note that, in this very general case, one

(A2)

can always set {c; = 0Vij} to include the case where only
binary constraints are considered. Explicitly, for the different
statistics, we have the following.

ME (zero-inflated Poisson):

. ~0i))
(Mz;;)' Zi; "

itz =D+

W (zero-inflated negative binomial):

pij(tij) =

~Oi;)
M+tij — o

1 1, ij
() = 2= :
Pijty) ( t ) E =) =D +1

B (zero-inflated binomial):

~0O(;)

piiti) = < )Z’u ij
vy i) LA+ M =)+ 1

We can then compute the binary connection statistics:

. Zi/(ﬁM:i-’ —1)
ME _Zij(eMle71)+1
_ L Z(=zi) M=)
—pij(0) =1 W z;,,-(?lfzi_,vf*Mfl)H
B: Zi/((leZij)M*l)
© (A4 =)+

(O@)) =1 (A3)

Note how the binary projection in all cases corresponds
to Bernouilli statistics. Regarding the occupation number
statistics, one has explicitly

1—e Wi
+y Zij 1
(t7) = (tijlti; > 0) = M =2 i
B: ML !

T4z (I=(1+zi;)~M)

. B Mij
ME: Mz 14Z;(e ’1171)
R p— .. +y — . Zij
<tlj> - <®(tlj)> (t’J> - W Ml —zij (1—z U)M+71/(1 (1— Z,,)M)

. j 1
B: M1+z,»j (I+zi)™M+2;;(1=(I4zi)~")

(A4)

And we observe a clear nontrivial relation between binary
statistics and weights, which leads to important correlations
between degrees and strengths in networks belonging to these
ensembles [20] which are also present in real data [43].

APPENDIX B: MAXIMUM-LIKELIHOOD

DISTRIBUTIONS

The probability distributions derived in this paper for
networks belonging to the different described ensembles
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fulfill the maximum-likelihood principle for networks [25].
Indeed, the constraint-point equations in (5) can be understood
as the equations resulting from maximizing the likelihood
of the inverse problem of finding the set of values for the
Lagrange multipliers (07,{6,}) that maximize the likelihood
of the observed adjacency matrix T to belong to each of the
described models. In other words, defining the loglikelihood
function of a network by

LOr10,)T) = In [ [T pij@r.16,)15)
i
= > " Inpi;(Or.{6,)1:))
and maximizing this expression with respect to (67,{6,}), one
is led to Eq. (5). Explicitly,

0, L =y (cliiy + & O —
ij

=é—4canzAg,

9p,.00 L = — E c’]c

(tlj> - C <®(tlj)>)

~1]~I_]

2
+¢5 Cq"T@(z ) = —o¢,c, {0g]);

(BI)

which, at the critical points, lead to AC, =0Vqg and the
condition of a maximum with respect to all the variables is
fulfilled (we also note that the problem in this form is concave).
We thus see that the initial statement of the paper is confirmed:
It is not enough to specify the constraints to fully define a
maximum-entropy ensemble; one needs also to state the nature
of its elements, since any maximum-entropy ensemble will
lead to a maximume-likelihood description of a data set. There
is not a “correct” ensemble to fix a given constraint: just one
that best describes the system that is being represented.

APPENDIX C: ENSEMBLE FLUCTUATIONS

If the maximum-entropy description provided here is to be
successful, then the fluctuations of the obtained networks need
to be bounded and have well-defined statistics. In particular,
we require that the associated entropy of the distribution and
the statistics of the constraints possess finite first and second
moments and that their relative fluctuations around the average
values need to be small in the limit of large sampling 7.
Explicitly, we have

2 ij i
oc, 2 (Cq) ;) a2y ]) (1))
2 2
(Cq> (Zijcq (flj>) M (Z]Cq <tl]))
2
( ) tlj) + a 1
(Zl} ‘]<t >) M1+O[q
D kilki g € €y (tij) ()
> (el i
where a = 0 for the ME case, a = 1 for the W case, and
a = —1 for the B case. We thus see that the fluctuations only
disappear for large sampling in the linear case given by Eq. (6)

for the ME description. By construction, the constraints are
extensive for the occupation numbers #;;, thus when the number

(ChH

a; =
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of events T increases, their average value (C,) must also
increase [20]; yet only for the ME case do we have (t;;) T,
and thus only in this case do relative fluctuations decay as
71 Otherwise, the maximally random allocation of events
will be made as homogeneous as possible among the states
while preserving the constraints, hence o, will in general be a
large number [the denominator in the sum has L terms, while
the numerator has L(L — 1), L being the number of available
node pairs for the allocation] and relative fluctuations will
be bounded and O(M ~"). For similar reasons, one expects the
first term to vanish for large sampling. For a very large number
of layers, the ensembles become equivalent to the ME case,
and fluctuations vanish in the large sampling limit [37].

For the case where any binary constraint is additionally
imposed (Appendix A), the relative fluctuations of the binary
structure dominate the statistics in the large sampling limit,
and despite being bounded, these never vanish [20].

Concerning the associated Gibbs-Shannon entropy of the
ensembles, since the occupation number statistics are indepen-
dent, we have the random variable In P(T) = In [T, ; Dij(tij) =
> In p; ;(tij) (associated with a given network instance), which
is the sum of independent contributions that, in all cases studied
(Poisson, negative binomial, and binomial), have well-defined
first and second moments when averaged over the ensemble.
Hence, the In P(T) statistics will be Gaussian, and no extreme
outliers are expected. This indicates that the total average
number of possible network instances compatible with a given
set of constraints is a well-defined quantity, and one can define
a typical network structure representing the ensemble (unlike
other studied cases in the literature [44]).

APPENDIX D: CALCULATION OF DEGENERACY TERMS
1. Layer degeneracy

For each state ij of the possible L(N) = N2 node pairs
[N(N — 1) if not accepting self-loops], one needs to consider
the process of allocating #;; events in M possible distinguish-
able levels. For the W case this corresponds to the urn problem
of placing ?;; identical balls in M distinguishable urns. For the
B case one faces the problem of selecting groups of #;; < M
urns out of a set of M urns, and finally, for the ME case
one must count how to place #;; distinguishable balls in M
distinguishable urns. These problems are well known and their
solution leads to the third column in Table I, with the product
over ij representing the fact that the allocation among the
layers for each node pair is independent.

2. Event degeneracy

For this calculation one only needs to take into account
the distinguishable case (otherwise there is no degeneracy).
This case, however is controversial to analyze. The correct
counting of configurations in a grand-canonical ensemble is
an issue spanning more than a century (see [45] and references
therein for details and extended discussion), ever since Gibbs
used it to establish the relation in classical statistical mechanics
between the canonical and the grand-canonical ensembles of
an ideal gas.
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Grand-canonical ensembles of networks can be faced in
many ways. The usual view is to imagine a collection of N
copies of a system in which to distribute F events in such a way
that there are T = F/\ events on average in each copy [46].
In this framework, the probability of obtaining a particular
copy with T =), ; 1;j events and a set of constraints {C,(T)}
reads

P(T) o e’ e2a%aCe(D (D1)

The prior expression is, however, related to the probability of
obtaining a given configuration of T, regardless whether or not
itis unique (several configurations can give rise to the same T).
For the case of distinguishable events, there are (; ) different
ways of obtaining the same number of events 7 among the
set of copies and T'!/[[;; #;;! ways of distributing them to
obtain a given adjacency matrix T, hence one must consider
an additional term in expression (D1),

F T!
D(T)Events = (T) m

For the case with linear constraints of the form of Eq (6), the

(D2)

system partition function Z reads (z;; = e ]_[ el

Z= ZD(T)H y
22(5) 2 n

T=0 (T Y, =T} ij

T F
F
=3 () (v Zw) = 1em s
T=0 ij ij

If we add the strong condition that the ensemble average
number of events has to be equal to 7', a scaling of M > ;i
on the total number of events F distributed among the copies
N is made apparent:

(D3)

MY .. zij
T)=05,InZ = (;; —”’
. T/F
2 1-T/F ®4)

ij
Wrapping together the previous expressions and considering
that the number of copies is arbitrary, one can imagine the
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limit where it goes to oo keeping 7' constant. This amounts to
considering F infinitely large too,

T/F
Z=1lim |1+ ———] = &) =112z,
F—o0 < 1— T/F) 1_[ l:[ !
(D5)
which leads to a factorizable partition function of the form of

Eq. (4) which does not depend on the number of copies of the
system; neither does its associated probability,

i) ij
(F)l—[’/t,j'l_[lj ((F'T))t
. T(I_F) '
L\ _ 7 -
o RURET (F T)
li.,'! Fooo\ F —T

ij

U\ i
) S | G
ij

P(T)ZFli P )H”Z = lim

—00 F—o0

-T 7T+T

(D6)

We have thus reached the same independent Poisson probabil-
ities as obtained by taking an effective factorizable degeneracy
term, 7! T,;(M" /1;;!) [see Eq. (8)].

These results are in accordance with previous works [20]
where the complete equivalence between canonical ensembles
[ensembles with soft linear constraints as in Eq. (6) but
with T =T fixed for every network in the ensemble] and
microcanonical ensembles (ensembles where all constraints
are exactly fulfilled) of ME networks was proven. The
equivalence between microcanonical ensembles and grand-
canonical ensembles in Poisson form has also been validated
by simulations for the case where strengths are fixed [37].

For nonlinear cases (such as the case with binary constraints
or the B case with distinguishable events), the effective
degeneracy term is an approximation, since the complete
calculation using partial sums where 7 is exactly fixed
cannot be performed. Approximating 7'! by 7! amounts to
considering that the possible fluctuations of the macroscopic
variable T are caused by the state-independent fluctuations
of the microscopic structure given by {f;;}. This, however,
leads to the same statistics emerging from the leading-order
terms in 7' of the system partition function computed using a
microcanonical formalism (see [20]).
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