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We found that a network-organized metapopulation of cooperators, defectors, and destructive

agents playing the public goods game with mutations can collectively reach global synchronization

or chimera states. Global synchronization is accompanied by a collective periodic burst of coopera-

tion, whereas chimera states reflect the tendency of the networked metapopulation to be fragmented

in clusters of synchronous and incoherent bursts of cooperation. Numerical simulations have shown

that the system’s dynamics switches between these two steady states through a first order transition.

Depending on the parameters determining the dynamical and topological properties, chimera states

with different numbers of coherent and incoherent clusters are observed. Our results present the

first systematic study of chimera states and their characterization in the context of evolutionary

game theory. This provides a valuable insight into the details of their occurrence, extending the rel-

evance of such states to natural and social systems. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4971974]

The public goods game with destructive agents is played

by cooperators, which create public goods at a cost to

themselves, defectors, which enjoy the benefits but do not

pay any cost, and destructive agents, which induce a

damage into the game. These strategies are also allowed

to mutate into one another, thus leading to the spontane-

ous emerge of periodic bursting of cooperation. Here, we

show that when this game is played in nonlocal ring

networks, the collective behavior is self-organized into

globally synchronized or chimera states. Global synchro-

nization corresponds to the steady state where all popula-

tions on the ring cooperate synchronously, whereas the

chimera states correspond to fragmented collective coop-

eration, where the clusters of synchronous cooperation

are separated by the zones of incoherent behavior.

I. INTRODUCTION

The public goods game (PGG) provides a classical

example that describes the evolutionary dynamics of com-

peting species or strategies in biological and social sys-

tems.1,2 Usually, this game is played by cooperators, which

create public goods at a cost to themselves, and defectors,

which enjoy the benefits but do not pay any cost.2 Then,

cooperation extinguishes and public goods creation vanishes

in the so-called tragedy of the commons.3 However, the

inclusion of a third non-participating strategy allows for a

sequential dominance of cooperation, defection, and absten-

tion from the game.4–7 This latter behavior resembles the

rock-paper-scissors game,1 which has been found experi-

mentally in the three competing strains of E. coli8 as well as

in social groups with cooperators, defectors, and volunteers.9

It has been shown that mutations among strategies could

give rise to more complex dynamical behavior, like the

emergence of self-sustained oscillations via a supercritical

Hopf bifurcation.6,7,10,11 Moreover, spontaneous formation

of complex patterns has been studied in spatially extended

ecological systems.12–14 Non-trivial spatiotemporal patterns

of synchronized action and their evolutionary role were also

reported.15 Nevertheless, other aspects of complexity and the

emergence of self-organization by means of synchroniza-

tion16 and chimera states17 have not been investigated inten-

sively in the context of evolutionary game theory. Our study

contributes to the acquisition of new findings in this

direction.

Chimera states are characterized by the coexistence of

coherent and incoherent behavior in systems of coupled

oscillators. They were initially reported for identical phase

oscillators,18 where the nonlocal coupling was thought to be

the source of this counter-intuitive phenomenon.19 However,

they have been recently found in systems with global20–23

and purely local coupling.24–26 Although most works on chi-

mera states consider simple network topologies (see Ref. 17

and references within), recently, they have been found in

real networks, like the C. elegans neural connectome27,28

and the cat cerebral cortex.29 It has been suggested that chi-

mera states may be related to bump states in neural sys-

tems,30,31 the phenomenon of unihemispheric sleep,32 or
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epileptic seizures.33 For finite systems, chimera states are

known to be chaotic transients,34 which can be stabilized by

various recently developed control schemes.35–38 The exis-

tence of chimera states has also been verified experimentally

over the last years in various settings.20,39–43

Here, we study the emergence of collective phenomena,

and specifically chimera states, in a PGG with mutations,6

which is organized on a ring network with nonlocal connec-

tions. In each node of the network-organized PGG, the species

can adopt one of the three different strategies as determined

by the replicator equation.1,2 They are also allowed to mutate

into one another with uniform rate. Moreover, the network

structure defines a mutual influence among strategies across

the network nodes. The latter process, under appropriate

conditions,13,44 resembles the diffusion of species across the

network. We show that the considered system exhibits syn-

chronization and chimera states and promotes, respectively,

bursting oscillations of cooperation either globally or in

regions separated by incoherent clusters.

II. REPLICATOR-MUTATOR DYNAMICS: ROBUST
EVOLUTIONARY CYCLES AND SELF-SUSTAINED
OSCILLATIONS

We assume a large well-mixed population of coopera-

tors, defectors, and destructive agents whose interactions are

governed by a PGG.6 At each round of the game, a group of

n individuals are randomly sampled: Cooperators from this

group pay a cost c and create a benefit b¼ rc (with r> 1),

which is distributed equally among all participants of the

group. Defectors receive their share from the benefits with-

out paying any cost. Destructive agents, without receiving

any benefits, induce a damage d into the game, which is

shared equally by cooperators and defectors. The fitnesses of

the individuals in a PGG determine their evolutionary fate

and are calculated as the average payoff of each strategy

after its participation in many interaction groups, which for

very large populations (M!1) results in

Px ¼ r
x

1� z
1� 1� zn

n 1� zð Þ

� �
þ r

n

1� zn

1� z
� 1� d

1� zn

1� z
� 1

� �
;

(1a)

Py ¼ Px þ 1� r

n

1� zn

1� z
; (1b)

Pz ¼ 0; (1c)

where x, y, and z are the fractions of cooperators, defectors,

and destructive agents (or the relative frequencies of individ-

uals playing each strategy), respectively; n is the group size

and d is the total damage that destructive agents inflict to the

participants of the game.6 Without loss of generality, we set

the cost paid by the cooperators to unity, c¼ 1. As a conse-

quence, the multiplicative factor r now represents the benefit

produced per cooperator in the group.

The evolution of the three strategies can be studied by

the replicator-mutation dynamics45,46 given by

_x ¼ xðPx � �PÞ þ lð1� 3xÞ; (2a)

_y ¼ yðPy � �PÞ þ lð1� 3yÞ; (2b)

_z ¼ zðPz � �PÞ þ lð1� 3zÞ; (2c)

where �P ¼ xPx þ yPy þ zPz is the average payoff of the

population at a given time. Obviously xþ yþ z ¼ 1; this

allows to reduce the dimensionality of the phase space and

analyze the dynamics of three strategies only by investigat-

ing x and y. In each of the equations (2), in addition to the

replication term that accounts for the variation of the frac-

tions of individuals due to the selection process (first term

on the right hand side), mutations are also included (second

term) and represent random changes between the strategies

at a rate l. This system has one non-trivial and three trivial

fixed points (see Figure 1). The trivial fixed points are sad-

dles and represent the dominance of cooperators (C; x ¼ 1),

defectors (D; y ¼ 1), or destructive agents (J; z ¼ 1). The

non-trivial point (gray dot) can behave as a stable focus

(see, e.g., Figure 1(a)) that attracts all the trajectories or as

an unstable focus (see, e.g., Figures 1(b)–1(d)) that repels

the trajectories, which, however, are confined within the

heteroclinic cycle; hence, they are attracted to a stable limit

cycle.

Linear stability analysis has shown that a supercritical

Hopf bifurcation occurs for increasing d or decreasing l,

beyond which self-sustained oscillations spontaneously

emerge. Figure 2(a) shows the Hopf bifurcation point (red

dot) for a fixed mutation rate, while the continuation of the

Hopf point determines the curve that separates different

dynamical regimes in the parameter space d–l (see Figure

2(b)). The amplitude and the period of the limit cycles

become larger as the parameters d and l lie further from the

Hopf point.

FIG. 1. The phase space of the replicator-mutator dynamics, Eq. (2),

exhibits various attractors that correspond to (a) a stable focus: d¼ 0.25

and l ¼ 0:006, (b) a limit cycle: d¼ 0.27 and l ¼ 0:004, (c) a limit

cycle: d¼ 0.3 and l ¼ 0:003, and (d) a limit cycle approaching a

heteroclinic orbit: d¼ 0.4 and l ¼ 0:001. Trajectories are projected into

a simplex whose corners correspond to the dominance of cooperators

(C), defectors (D), or destructive agents (J). Other parameters are n¼ 5

and r¼ 3.

123108-2 Kouvaris et al. Chaos 26, 123108 (2016)



III. NETWORK-ORGANIZED REPLICATOR-MUTATOR
DYNAMICS

Here, we consider a metapopulation of individuals,

which are organized on ring networks of N nodes with non-

local connections.47,48 Each node of such networks is occu-

pied by a large well-mixed population of individuals that

interact internally according to a PGG as described earlier.

In addition to the local interactions—that is, replications

and mutations—the populations in each node take into

account the strategies followed by the populations in their

connected nodes. In the ring networks considered here, the

population size in the nodes is assumed to be constant.

Therefore, the overall process can be described by the fol-

lowing equations:

_xi ¼ xi Px;i � �Pi

� �
þ l 1� 3xið Þ þ r

2R

Xj¼iþR

j¼i�R

xj � xið Þ; (3a)

_yi ¼ yi Py;i � �Pi

� �
þ l 1� 3yið Þ þ r

2R

Xj¼iþR

j¼i�R

yj � yið Þ; (3b)

zi ¼ 1� xi � yi; (3c)

where i ¼ 1;…;N. The summation terms account for the

mutual influence of strategies between populations in con-

nected nodes and r characterizes the strength of this influ-

ence. Taking into account Eq. (3c), the latter process is

equivalent to the diffusion of cooperators and defectors

across the network (c.f. Refs. 13 and 44).

In general, an increasing coupling strength r in the

system (3) results in the synchronization of the metapopula-

tion, where the fractions of cooperators, defectors, and

destructive agents in each node oscillate with the same phase

and amplitude. However, the nonlocal topology of the ring

network can induce non-trivial collective phenomena like

chimera states. In the following, we focus on the analysis of

these states.

As a measure indicating the existence of a chimera state,

we employ the mean phase velocity of each oscillator18,47

xi ¼
2pKi

DT
; (4)

where Ki is the number of periods of the i-th oscillator during

a time interval DT. The typical profile of xi in the case of a

chimera state is flat in the synchronous domains and arc-

shaped in the incoherent ones. In addition to the mean phase

velocity, we calculate the classification measures for chimera

states developed recently by Kemeth et al. in Ref. 49. In par-

ticular, we employ the local curvature of the phases of the

oscillators as a measure for the spatial coherence. The phase

of each oscillator is defined as

/ tð Þ ¼ arctan
y tð Þ � hyit
x tð Þ � hxit

 !
; (5)

where hxit; hyit denote time averages. In the ring networks

considered here, we calculate the local curvature at each

node i by applying the discrete Laplacian operator D̂ on each

snapshot f/1;/2;…;/Ng at time t. This operator reads

D̂/ðtÞ :¼ f/i�1ðtÞ � 2/iðtÞ þ /iþ1ðtÞ; 8 i 2 ð1;NÞ g; (6)

where /ðtÞ denotes the spatial distribution of the phases in

one spatial dimension with periodic boundary conditions at

time t. For the nodes in the synchronous/coherent clusters

/coh, it holds that jD̂/cohðtÞj ¼ 0, while for the nodes in the

incoherent clusters /incoh; jD̂/incohðtÞj is finite and has pro-

nounced fluctuations. The maximum value Dmax of jD̂/ðtÞj
corresponds to the local curvature of nodes whose two near-

est neighbors have the maximum phase difference.

The local curvature defined above allows for a clear repre-

sentation and characterization of the obtained chimera states.

Figure 3 (Multimedia view) shows a typical chimera state

emerging from the dynamics of our model: In Figure 3(a),

we see the space-time plot of the phase /, while Figures 3(b)

and 3(c) show the corresponding mean phase velocity profile

and a snapshot at a given time instance. Figure 3(d) shows

the space-time evolution of the spatial coherence index

(Eq. (6)) and Figure 3(e) illustrates a single time snapshot of

the chimera state in the phase space. The gray dots correspond

to the incoherent cluster, the red and orange segments refer to

the coherent domains, and the solid line marks the orbit of the

uncoupled unit.

In the example of Figure 3 (Multimedia view), the

observed chimera state has two (in)coherent regions. The

multiplicity of a chimera state (number of synchronous clus-

ters) may be manipulated by varying the coupling range of

each node. This results in the formation of multi-clustered

(or multi-headed) chimeras reported in many systems.47,50,51

The effect of the coupling range is illustrated in Figure 4,

where the space-time plots for the phase / and the corre-

sponding mean phase velocity profiles are shown for three

different values of R. Note that the coherent regions are

always in antiphase,52 which explains also the even number

of (in)coherent clusters in the obtained chimeras.

FIG. 2. Stability analysis of the system (2). (a) The fixed point of the system

has complex conjugate eigenvalues whose real part is shown as a function of

the damage parameter d for the mutation rate l ¼ 0:001. A stable focus

loses its stability via a supercritical Hopf bifurcation (red dot) and becomes

unstable giving rise to a limit cycle. (b) Continuation of the Hopf point

determines the curve that separates different dynamical regimes in the

parameter space d–l. Other parameters are n¼ 5 and r¼ 3.
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Based on the local curvature, we can measure the rela-

tive size of the spatially coherent (i.e., synchronized) clusters

at each time step. For this purpose, we consider the normal-

ized probability function g of jD̂/ðtÞj; gðjD̂/ðtÞj ¼ 0Þ; it

equals 0 in a non-synchronous system and 1 in a fully syn-

chronized one. Any value of gðjD̂/ðtÞj ¼ 0Þ between 0 and 1

indicates the coexistence of coherence and incoherence, i.e.,

a chimera state. The definition of the spatial coherence or the

incoherence is not absolute but depends on the maximum

curvature of the system. Therefore, this index is defined with

the threshold d ¼ 0:01Dmax as

g0 :¼
Xd

jD̂/ðtÞj¼0

gðjD̂/ðtÞjÞ : (7)

Apart from the spatial coherence, we also calculate the tem-

poral coherence as an indication of a chimera state, based on

the pairwise correlation coefficients49

FIG. 3. Clustered chimera state with

two (in) coherent clusters. (a) Space-

time plot of the phase /, (b) x-profile,

(c) chimera snapshot, (d) space-time

plot of spatial coherent index jD̂/ðtÞj,
and (e) phase space representation of

a chimera state. Other parameters

are N¼ 1000, R¼ 320, r ¼ 0:008; l
¼ 0:001, d¼ 0.23, n¼ 5, and r¼ 3.

(Multimedia view) [URL: http://

dx.doi.org/10.1063/1.4971974.1]

FIG. 4. Multi-clustered chimera states are shown for different values of R. (a) Space-time plot of the phase / for R¼ 70 and (b) corresponding xi profile; this

chimera state has eight clusters of (in)coherent nodes. Similar plots are shown in (c)–(d) for R¼ 110, and in (e)–(f) for R¼ 150, where the corresponding chi-

mera states have six and four clusters of incoherent nodes, respectively. Other parameters are N¼ 1000, r ¼ 0:008; l ¼ 0:001, d¼ 0.23, n¼ 5, and r¼ 3.
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qij ¼
h Ui � hUiið Þ Uj � hUji

� �
i

hU2
i i � hUii2

� 	1=2

hU2
j i � hUji2

� 	1=2
; (8)

where Ui; Uj are the time series of the phases of the oscilla-

tions in the nodes i and j, respectively. The normalized distri-

bution function hðjqjÞ is a measure for the correlation in

time, and the percentage of the time-correlated oscillators is

given by

h0 :¼
X1

jqj¼c

hðjqjÞ

0
@

1
A

1=2

; (9)

where the coherent accuracy for correlated oscillations is

c ¼ 0:99.

The influence of the coupling range on the spatial and

temporal coherence of the observed dynamics is depicted in

Figure 5. Both measures, g0 and h0, are within the parameter

range that ensures the existence of chimera states. As

R increases, so does the size of the coherent clusters, which

is reflected by the increasing values of h0 and g0. Moreover,

in all cases, h0 is fixed in time and g0 fluctuates slightly

around a constant value (this effect diminishes for larger R);

therefore, the chimera states are stationary and static accord-

ing to the classification scheme of Ref. 49.

IV. ABRUPT TRANSITIONS BETWEEN CHIMERA
STATES AND SYNCHRONIZATION

The above analysis elucidates that the replicator-mutator

dynamics of the PGG organized on ring networks with the

nonlocal coupling support either synchronization or chimera

states, whose features depend on the parameters determining

dynamical and topological properties.

In the following, a detailed analysis of this dependence

will be presented by focusing on two parameters, the damage

d and the coupling range R. For our analysis, we take into

account that the populations in the nodes of coherent and

incoherent domains oscillate with mean phase velocities

xcoh and xincoh, respectively. The faster populations in the

incoherent domain oscillate with xmax
incoh. Therefore, by look-

ing at the difference

Dx ¼ xmax
incoh � xcoh; (10)

one can ensure that chimera states exist when Dx is larger

than a certain threshold.

Extensive numerical simulations have revealed that a

small change in the parameter d can cause a first order transi-

tion between synchronized and chimera states, which is char-

acterized by a hysteresis loop (see Figure 6(a) orange

colored area).

Starting from an initial configuration of a chimera state

with four (in)coherent clusters, we perform numerical simu-

lations (continuation) by increasing and then decreasing

slowly the damage d for fixed coupling range R¼ 180.

FIG. 5. Measures for spatial (g0) and temporal (h0) coherence for the chi-

mera states shown in Figures 3 and 4 for (a) R¼ 70, (b) R¼ 110, (c)

R¼ 150, and (d) R¼ 320. Other parameters are N¼ 1000, r ¼ 0:008,

l ¼ 0:001, d¼ 0.23, n¼ 5, and r¼ 3.

FIG. 6. Increasing (blue color) and decreasing (green color) values of d cause first order transitions between chimera states and synchronization. This reveals a

hysteresis loop, shown in (a) for a ring of N¼ 1000 nodes and a coupling range R¼ 180. For values of d within the orange colored region, the system (3) can

exhibit either chimera states with four (in)coherent clusters or synchronization. Mean phase velocity xi of each population i is depicted as a function of d for

both scenarios of (b) increasing and (c) decreasing values. In all plots, the orange colored region corresponds to the same interval of values of d. Other parame-

ters are r ¼ 0:008; l ¼ 0:001, n¼ 5, and r¼ 3.
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Figure 6(b) shows that a gradual increase of the damage

(which shifts the system further from the Hopf bifurcation)

changes slightly the position and the size of the incoherent

clusters up to a critical value for which an abrupt transition

occurs suddenly and brings the system to a synchronized

state where it remains thereafter. Figure 6(c) shows an oppo-

site (but qualitatively similar) scenario: Decreasing the dam-

age of the game gives rise to an abrupt transition, which

brings the system back to a chimera state with four (in)coher-

ent clusters. However, this second transition takes place at a

different value of d, resulting in the observed hysteresis loop

(c.f., Ref. 51).

Starting from the same initial configuration as above, we

now perform the numerical continuation by decreasing and

then increasing the coupling range R for fixed damage

d¼ 0.23. Figure 7(a) shows that an abrupt transition from a

chimera to a synchronized state and back occurs suddenly

and is characterized by a hysteresis loop. Like in the case of

varying d, there is a window of values for the coupling range

(orange colored area) where for the same topology (i.e.,

same R) the system can either be self-organized into a chi-

mera state with four (in)coherent clusters or be synchronized,

depending on the initial conditions. Figures 7(b) and 7(c)

illustrate the mean phase velocity xi of each population i as

a function of R. This allows us to discriminate the existence

of (in)coherent clusters (i.e., existence of chimera states),

their position and their size, for both directions of the

continuation.

Numerical continuation between different limits for d or

R has revealed that, in general, different initial configurations

give rise to various transitions between synchronization and

chimera states. Interestingly, transitions between chimera

states with different numbers of (in)coherent clusters were

also found (see supplementary material).

V. DISCUSSION

For the first time, we report on the existence of synchro-

nization and chimera states in ring networks with nonlocal

coupling obeying the replicator-mutator dynamics of a PGG

with cooperators, defectors, and destructive agents. Our find-

ings reflect the tendency of metapopulations to evolve col-

lectively in a coherent way or be fragmented in clusters of

synchronous and incoherent behavior. The transition

between these steady states occurs through an abrupt first

order transition.

A systematic numerical analysis has revealed that chi-

mera states are stationary and static, while the number of

(in)coherent clusters varies depending on the coupling

range R and on the parameters that determine the local

dynamics. Interestingly, the first order transitions that shift

the system between steady states are characterized by

strong hysteresis loops, where multistability is observed. In

the hysteresis loop, depending on the initial conditions,

either global synchronization or chimera states with varying

number of (in)coherent clusters are achieved. This behav-

iour is related to a “collective memory” the populations

have of their previous steady state. This memory is main-

tained under small perturbations, but it is lost suddenly in

the transition points.

Our study provides a new framework for the analysis of

spontaneously emergent spatiotemporal phenomena in game

theory, and particularly their effect on the cooperation-defec-

tion-destruction cyclic dynamics triggered by damaging indi-

viduals. Since synchronized or incoherent actions can

influence cooperation and the efficiency of groups,53 the

appearance of the chimera states, in which the cyclic dynam-

ics is accelerated, may have a relevant impact on such public

goods creation and, hence, on the speed of evolution and

cooperation. Therefore, the stylized model presented here

may be adapted and completed to find applications in biolog-

ical, social, or economic systems. As an example, the results

found here can support the design of feedback schemes,

which, by promoting modifications in the strategy (dynam-

ics) or in the connectivity structure (topology), control the

collective—global or clustered—behavior of metapopula-

tions in order to, for instance, diminish long destructive peri-

ods or enhance cooperation, as well as on biological

synthetic systems, where chimera states may speed up reac-

tion processes and evolution.

FIG. 7. Decreasing (green color) and increasing (blue color) values of R cause first order transitions between chimera states and synchronization. This reveals

a hysteresis loop, shown in (a) for a ring of N¼ 1000 nodes and d¼ 0.23. For values of R within the orange colored region, the system (3) can exhibit either

chimera states with four (in)coherent clusters or synchronization. The mean phase velocity profile xi of each population i is depicted as a function of R for

both scenarios of (b) decreasing and (c) increasing values. In all plots, the orange colored region denotes the same interval of R values. Other parameters are

r ¼ 0:008, l ¼ 0:001, n¼ 5, and r¼ 3.
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SUPPLEMENTARY MATERIAL

See supplementary material for various hysteresis dia-

grams as a function of coupling range R. All parameters are

the same as in Figure 7. Starting from the different initial

configuration, we see that the collective dynamics of the sys-

tem can jump between synchronization and various chimera

states with different numbers of (in)coherent clusters.

Supplementary multimedia file shows the temporal evolution

of the clustered chimera state with two (in)coherent clusters

shown in Figure 3.

ACKNOWLEDGMENTS

N.E.K., R.J.R., and A.D.-G. acknowledge the financial

support by the LASAGNE (Contract No. 318132) EU-FP7

project. N.E.K. and A.D.-G. also acknowledge the financial

support by the MULTIPLEX (Contract No. 317532) EU-FP7

project, the MINECO (Project Nos. FIS2012-38266 and

FIS2015-71582), and the Generalitat de Catalunya (Project

No. 2014SGR-608). J.H. acknowledges the financial support

by the SIEMENS research program on “Establishing a

Multidisciplinary and Effective Innovation and

Entrepreneurship Hub.”

1J. Hofbauer and K. Sigmund, Evolutionary Games and Population
Dynamics (Cambridge University Press, Cambridge, 1998).

2K. Sigmund, The Calculus of Selfishness (Princeton University Press,

Princeton, 2010).
3G. Hardin, Science 162, 1243 (1968).
4C. Hauert, S. De Monte, J. Hofbauer, and K. Sigmund, Science 296(5570),

1129 (2002).
5C. Hauert, S. D. Monte, J. Hofbauer, and K. Sigmund, J. Theor. Biol. 218,

187 (2002).
6A. Arenas, J. Camacho, J. A. Cuesta, and R. J. Requejo, J. Theor. Biol.

279(1), 113 (2011).
7R. J. Requejo, J. Camacho, J. A. Cuesta, and A. Arenas, Phys. Rev. E 86,

026105 (2012).
8B. Kerr, M. A. Riley, M. W. Feldman, and B. J. Bohannan, Nature 418,

171 (2002).
9D. Semmann, H.-J. Krambeck, and M. Milinski, Nature 425, 390 (2003).

10M. Mobilia, J. Theor. Biol. 264, 1 (2010).
11D. F. P. Toupo and S. H. Strogatz, Phys. Rev. E 91, 052907 (2015).
12G. T. Vickers, V. C. L. Huston, and C. J. Budd, J. Math. Biol. 31, 411–430

(1993).
13J. Y. Wakano, M. A. Nowak, and C. Hauert, Proc. Natl. Acad. Sci. U.S.A.

106(19), 7910 (2009).
14J. Y. Wakano and C. Hauert, J. Theor. Biol. 268(1), 30 (2011).
15G. Szab�o and I. Borsos, Phys. Rep. 624, 1–60 (2016).
16A. Arenas, A. D�ıaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, Phys.

Rep. 469, 93–153 (2008).
17M. J. Pannagio and D. Abrams, Nonlinearity 28, R67 (2015).

18Y. Kuramoto and D. Battogtokh, Nonlinear Phenomena in Complex

Systems 5, 380 (2002).
19D. M. Abrams and S. H. Strogatz, Phys. Rev. Lett. 93, 174102 (2004).
20L. Schmidt, K. Sch€onleber, K. Krischer, and V. Garc�ıa-Morales, Chaos 24,

013102 (2014).
21G. C. Sethia and A. Sen, Phys. Rev. Lett. 112, 144101 (2014).
22A. Yeldesbay, A. Pikovsky, and M. Rosenblum, Phys. Rev. Lett. 112,

144103 (2014).
23F. B€ohm, A. Zakharova, K. L€udge, and E. Sch€oll, Phys. Rev. E 91, 040901

(2015).
24C. R. Laing, Phys. Rev. E 92, 050904 (2015).
25J. Hizanidis, N. Lazarides, and G. P. Tsironis, Phys. Rev. E 94, 032219

(2016).
26M. G. Clerc, S. Coulibaly, M. A. Ferr�e, M. A. Garc�ıa-N~ustes, and R. G.

Rojas, Phys. Rev. E 93, 052204 (2016).
27J. Hizanidis, N. E. Kouvaris, and C. G. Antonopoulos, Cybernetics and

Physics 4, 17 (2015).
28J. Hizanidis, N. E. Kouvaris, G. Zamora-L�opez, A. D�ıaz-Guilera, and C.

G. Antonopoulos, Sci. Rep. 6, 19845 (2016).
29M. S. Santos, J. D. Szezech, Jr., F. S. Borges, K. C. Iarosz, I. L. Caldas, A.

M. Batista, R. L. Viana, and J. Kurths, e-print arXiv:1609.01534.
30C. R. Laing and C. C. Chow, Neural Comput. 13, 1473 (2001).
31H. Sakaguchi, Phys. Rev. E 73, 031907 (2006).
32N. C. Rattenborg, C. J. Amlaner, and S. L. Lima, Neurosci. Biobehav.

Rev. 24, 817 (2000).
33R. G. Andrzejak, C. Rummel, F. Mormann, and K. Schindler, Sci. Rep. 6,

23000 (2016).
34M. Wolfrum and O. E. Omel’chenko, Phys. Rev. E 84, 015201 (2011).
35J. Sieber, O. E. Omel’chenko, and M. Wolfrum, Phys. Rev. Lett. 112,

054102 (2014).
36C. Bick and E. A. Martens, New J. Phys. 17, 033030 (2015).
37T. Isele, J. Hizanidis, A. Provata, and P. H€ovel, Phys. Rev. E 93, 022217

(2016).
38I. Omelchenko, O. E. Omel’chenko, A. Zakharova, M. Wolfrum, and E.

Sch€oll, Phys. Rev. Lett. 116, 114101 (2016).
39A. M. Hagerstrom, T. E. Murphy, R. Roy, P. Hovel, I. Omelchenko, and

E. Scholl, Nat. Phys. 8(9), 658 (2012).
40E. A. Martens, S. Thutupalli, A. Fourrière, and O. Hallatschek, Proc. Natl.

Acad. Sci. U.S.A. 110(26), 10563 (2013).
41M. R. Tinsley, S. Nkomo, and K. Showalter, Nat. Phys. 8(9), 662 (2012).
42S. Nkomo, M. R. Tinsley, and K. Showalter, Phys. Rev. Lett. 110, 244102

(2013).
43M. Wickramasinghe and I. Z. Kiss, PLoS One 8, e80586 (2013).
44R. J. Requejo and A. D�ıaz-Guilera, Phys. Rev. E 94, 022301 (2016).
45P. D. Taylor and L. B. Jonker, Math. Biosci. 40, 145 (1978).
46J. Hofbauer, P. Schuster, and K. Sigmund, J. Theor. Biol. 81, 609 (1979).
47I. Omelchenko, O. E. Omel’chenko, P. H€ovel, and E. Sch€oll, Phys. Rev.

Lett. 110, 224101 (2013).
48J. Hizanidis, E. Panagakou, I. Omelchenko, E. Sch€oll, P. H€ovel, and A.

Provata, Phys. Rev. E 92, 012915 (2015).
49F. P. Kemeth, S. W. Haugland, L. Schmidt, I. G. Kevrekidis, and K.

Krischer, Chaos 26, 094815 (2016).
50Y. Maistrenko, A. Vasylenko, O. Sudakov, R. Levchenko, and V. L.

Maistrenko, Int. J. Bifurcation Chaos 24, 1440014 (2014).
51A. V€ullings, J. Hizanidis, I. Omelchenko, and P. H€ovel, New J. Phys. 16,

123039 (2014).
52G. C. Sethia, A. Sen, and F. M. Atay, Phys. Rev. Lett. 100, 144102 (2008).
53S. S. Wiltermuth and C. Heath, Psychol. Sci. 20, 1–5 (2009).

123108-7 Kouvaris et al. Chaos 26, 123108 (2016)

ftp://ftp.aip.org/epaps/chaos/E-CHAOEH-26-011612
http://dx.doi.org/10.1126/science.162.3859.1243
http://dx.doi.org/10.1126/science.1070582
http://dx.doi.org/10.1006/jtbi.2002.3067
http://dx.doi.org/10.1016/j.jtbi.2011.03.017
http://dx.doi.org/10.1103/PhysRevE.86.026105
http://dx.doi.org/10.1038/nature00823
http://dx.doi.org/10.1038/nature01986
http://dx.doi.org/10.1016/j.jtbi.2010.01.008
http://dx.doi.org/10.1103/PhysRevE.91.052907
http://dx.doi.org/10.1007/BF00163924
http://dx.doi.org/10.1073/pnas.0812644106
http://dx.doi.org/10.1016/j.jtbi.2010.09.036
http://dx.doi.org/10.1016/j.physrep.2016.02.006
http://dx.doi.org/10.1016/j.physrep.2008.09.002
http://dx.doi.org/10.1016/j.physrep.2008.09.002
http://dx.doi.org/10.1088/0951-7715/28/3/R67
http://dx.doi.org/10.1103/PhysRevLett.93.174102
http://dx.doi.org/10.1063/1.4858996
http://dx.doi.org/10.1103/PhysRevLett.112.144101
http://dx.doi.org/10.1103/PhysRevLett.112.144103
http://dx.doi.org/10.1103/PhysRevE.91.040901
http://dx.doi.org/10.1103/PhysRevE.92.050904
http://dx.doi.org/10.1103/PhysRevE.94.032219
http://dx.doi.org/10.1103/PhysRevE.93.052204
http://dx.doi.org/10.1038/srep19845
http://arxiv.org/abs/1609.01534
http://dx.doi.org/10.1162/089976601750264974
http://dx.doi.org/10.1103/PhysRevE.73.031907
http://dx.doi.org/10.1016/S0149-7634(00)00039-7
http://dx.doi.org/10.1016/S0149-7634(00)00039-7
http://dx.doi.org/10.1038/srep23000
http://dx.doi.org/10.1103/PhysRevE.84.015201
http://dx.doi.org/10.1103/PhysRevLett.112.054102
http://dx.doi.org/10.1088/1367-2630/17/3/033030
http://dx.doi.org/10.1103/PhysRevE.93.022217
http://dx.doi.org/10.1103/PhysRevLett.116.114101
http://dx.doi.org/10.1038/nphys2372
http://dx.doi.org/10.1073/pnas.1302880110
http://dx.doi.org/10.1073/pnas.1302880110
http://dx.doi.org/10.1038/nphys2371
http://dx.doi.org/10.1103/PhysRevLett.110.244102
http://dx.doi.org/10.1371/journal.pone.0080586
http://dx.doi.org/10.1103/PhysRevE.94.022301
http://dx.doi.org/10.1016/0025-5564(78)90077-9
http://dx.doi.org/10.1016/0022-5193(79)90058-4
http://dx.doi.org/10.1103/PhysRevLett.110.224101
http://dx.doi.org/10.1103/PhysRevLett.110.224101
http://dx.doi.org/10.1103/PhysRevE.92.012915
http://dx.doi.org/10.1063/1.4959804
http://dx.doi.org/10.1142/S0218127414400148
http://dx.doi.org/10.1088/1367-2630/16/12/123039
http://dx.doi.org/10.1103/PhysRevLett.100.144102
http://dx.doi.org/10.1111/j.1467-9280.2008.02253.x

	s1
	s2
	d1a
	d1b
	d1c
	d2
	d2a
	d2b
	d2c
	f1
	s3
	d3
	d3a
	d3b
	d3c
	d4
	d5
	d6
	f2
	d7
	d8
	f3
	f4
	d9
	s4
	d10
	f5
	f6
	s5
	f7
	s6
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45
	c46
	c47
	c48
	c49
	c50
	c51
	c52
	c53

