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Abstract

Despite the fact that a rigid A-term is a fundamental building block of the concordance ACDM model, we show
that a large class of cosmological scenarios with dynamical vacuum energy density p, together with a dynamical
gravitational coupling G or a possible non-conservation of matter, are capable of seriously challenging the
traditional phenomenological success of the ACDM. In this paper, we discuss these “running vacuum models”
(RVMs), in which p, = p,(H) consists of a nonvanishing constant term and a series of powers of the Hubble rate.
Such generic structure is potentially linked to the quantum field theoretical description of the expanding universe.
By performing an overall fit to the cosmological observables SN Ia+BAO+H(z)+LSS+BBN+CMB (in which the
WMAPY, Planck 2013, and Planck 2015 data are taken into account), we find that the class of RVMs appears
significantly more favored than the ACDM, namely, at an unprecedented level of 224.2¢0. Furthermore, the Akaike
and Bayesian information criteria confirm that the dynamical RVMs are strongly preferred compared to the

conventional rigid A-picture of the cosmic evolution.
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1. Introduction

As of about 20 yr ago dark energy (DE) has become an
observational fact of the first magnitude in physics (Riess
et al. 1998; Perlmutter et al. 1999), and the most recent
observations do not cease to corroborate its existence as the
prime cause for the acceleration of the universe (Planck
XII 2015; Planck XIV 2015). Next year it will be the
centenary of the cosmological constant (CC) term, A, in
Einstein’s equations. The A-term is usually considered the
simplest possible explanation for the DE and is an essential
ingredient of the so-called concordance or ACDM model. On
the theoretical side, however, the explanation is not so easy. In
quantum field theory (QFT) the large value predicted for A, or
equivalently for the corresponding vacuum energy density
associated with it, p, = A/(87G) (G being Newton’s gravita-
tional coupling), as compared to the measured one generates
the old CC problem (for reviews see Weinberg 1989; Sahni &
Starobinsky 2000; Padmanabhan 2003; Peebles & Ratra 2003;
Sola 2013). It is probably one of the most fundamental and
unsolved conundrums of theoretical physics. The acclaimed
finding of the Higgs boson of the standard model of particle
physics at the Large Hadron Collider actually bolsters the
problem even more since it adopts a more experimental basis.
In fact, the associated electroweak (EW) vacuum energy
density reads |pgwl ~ M /Gr, where My ~ 125 GeV is the
measured Higgs boson mass and G is Fermi’s constant. Thus,
in this most realistic situation, the CC problem aypears
on comparing the two quantities pgy ~ 10°GeV® and
py ~ 10747 GeV*, which differ by an appalling amount of 56
orders of magnitude.

With such a state of affairs, cosmologists have felt motivated
to look for many other sources of DE beyond A. For example,
scalar fields in cosmology, ¢, have been used for many years,
most conspicuously in the context of Brans—Dicke theories
(Brans & Dicke 1961), where G o< 1/¢ (), and subsequently in
general scalar-tensor theories, but soon also playing a role as a
strategy for endowing the vacuum and the CC with some time

dependence in a QFT context, A = A(¢(¢)), and in some cases
with the purpose of adjusting dynamically its value. Some of
the old approaches to the CC problem from the scalar field
perspective are found in Endo & Fukui (1977), Fujii (1982),
Dolgov (1983), Abbott (1985), Zee (1985), Barr (1987),
Ford (1987), Weiss (1987) and Barr & Hochberg (1988).
Among the proposed dynamical mechanisms, let us mention
the cosmon model (Peccei et al. 1987), which was subsequently
discussed in detail by Weinberg (1989). In all cases, a more or
less obvious form of fine-tuning underlies the adjusting
mechanisms. For this reason scalar fields were later used
mostly to ascribe a possible evolution to the vacuum energy
with hopes of explaining the cosmic coincidence problem,
giving rise to the notion of quintessence and the like (see
Peebles & Ratra 1988a, 1988b; Wetterich 1988, 1995; Cald-
well et al. 1998; Zlatev et al. 1999; Amendola 2000), among
many other alternatives (see, e.g., the reviews by Padmanabhan
2003; Peebles & Ratra 2003; Copeland et al. 2006; and the
book by Amendola & Tsujikawa 2015, and references therein).
Let us also mention some of the old cosmological models based
on attributing a phenomenological direct time dependence to
the the CC term, A = A(¢), without an obvious relation to
scalar fields: see, e.g., Ozer & Taha (1986), Bertolami (1986),
Freese et al. (1987), Carvalho et al. (1992), Waga (1993), Lima
& Maia (1993), Arcuri & Waga (1994), and Arbab (1997).
Many other works are available in the literature; the reader can
consult the reviews by Overduin & Cooperstock (1998),
Vishwakarma (2001), Sola (2013), and references therein.

The old CC problem is a problem of fundamental nature that
shows the profound interconnection among different branches
of modern physics. Some of the above old works aimed at
solving the problem at a time when it was thought that A = 0,
so it was expected that some symmetry or some dynamical
mechanism could help. But the task became much harder when
it was realized that the CC value is nonvanishing and actually
very small in particle physics units (p, ~ 10747 GeV*).

In this work we will not face the CC problem as such, not
even the cosmic coincidence problem. Our main aim is much


mailto:sola@fqa.ub.edu
mailto:sola@fqa.ub.edu
mailto:sola@fqa.ub.edu
mailto:adriagova@fqa.ub.edu
mailto:adriagova@fqa.ub.edu
mailto:adriagova@fqa.ub.edu
mailto:decruz@fqa.ub.edu
mailto:decruz@fqa.ub.edu
mailto:decruz@fqa.ub.edu
http://dx.doi.org/10.3847/1538-4357/836/1/43
http://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/836/1/43&domain=pdf&date_stamp=2017-02-07
http://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/836/1/43&domain=pdf&date_stamp=2017-02-07

THE ASTROPHYSICAL JOURNAL, 836:43 (14pp), 2017 February 10

more modest. Taking into account the current amount and
quality of the cosmological data on distant Type Ia Supernovae
(SN Ia), baryon acoustic oscillations (BAOs), the known values
of the Hubble parameter at different redshift points, Large
Scale Structure (LSS) formation data, the big bang nucleo-
synthesis (BBN) bound on the Hubble rate, and, finally, the
cosmic microwave background (CMB) distance priors from
WMAP and Planck, we wish to put to the test the possibility
that the A-term and its associated vacuum energy density,
pp = A/(87G), could actually be dynamical (“running”)
quantities whose rhythms of variation might be linked to the
universe’s expansion rate, H. The idea is to check whether this
possibility helps to improve the description of the overall
cosmological data as compared to the rigid assumption A =
const. inherent to the concordance ACDM model. For the class
of models being considered we do not make any direct
association of the A and G running with the dynamical
evolution of scalar fields. The proposal being investigated here
can be motivated in QFT in curved spacetime (see Sola 2013;
Sola & Goémez-Valent 2015, and references therein), and we
want to show that it can be currently tested. Although a simple
Lagrangian description of these models at the level of standard
scalar fields is not available, attempts have been made in the
literature (Sola 2008, 2013), and in any case this is of course
something that one would eventually hope to find. There is,
however, no guarantee that such a description is possible in
terms of a simple local action (Sola 2008).

Our main aim here is phenomenological. We will argue upon
carefully confronting theory and observations that the idea of
running vacuum models (RVMs) can be highly competitive
with, if not superior to, the traditional ACDM framework. The
first serious indications of dynamical vacuum energy (at the
~30 cl) were reported in Sola et al. (2015). Earlier
comprehensive studies hinted also at this possibility but
remained at a lower level of significance (see, e.g., Basilakos
et al. 2009; Grande et al. 2011; Gomez-Valent et al. 2015).l
Remarkably, in the present work the reported level of evidence
is significantly higher than in any previous work in the
literature (to the best of our knowledge). While Occam’s razor
says, “Among equally competing models describing the same
observations, choose the simplest one,” the point we wish to
stress here is that the RVMs are able to describe the current
observations better than the ACDM, not just alike. For this
reason we wish to make a case for the RVMs, in the hope that
they could also shed some new light on the CC problem, e.g.,
by motivating further theoretical studies on these models or
related ones.

The plan of the paper is as follows. In Section 2 we describe
the different types of RVMs that will be considered in this
study. In Section 3 we fit these models to a large set of
cosmological data on SN Ia+BAO+H(z)+LSS+BBN+CMB.
We include also a fit of the data with the standard XCDM
parameterization, which serves as a baseline for comparison. In
Section 4 we present a detailed discussion of our results, and
finally in Section 5 we deliver our conclusions.

' Recent claims that the ACDM may not be the best description of our
universe can also be found in, e.g., Sahni et al. (2014), Ding et al. (2015), and
Zheng et al. (2016); see, however, Section 3, point S4.
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2. Two Basic Types of RVMs

In an expanding universe we may expect that the vacuum
energy density and the gravitational coupling are functions of
the cosmic time through the Hubble rate, thence py = p\(H (¢))
and G = G (H (t)). Adopting the canonical equation of state
(EOS) p, = —py(H) also for the dynamical vacuum, the
corresponding field equations in the Friedmann-Lemaitre—
Robertson—-Walker (FLRW) metric in flat space become
formally identical to those with strictly constant G and A:

3H? = 87 G(H)(p,, + p, + py(H)) (1)
3H? + 2H = —87 G(H)(p, — py(H)). @)

The EOSs for the densities of relativistic (p.) and dust matter
(p,) read p. = (1/3) p, and p,,, = 0, respectively. Consider now
the characteristic RVM structure of the dynamical vacuum
energy:

on(H; v, ) = 3 (co + vH? + %a H) + OHY, @)
81G 3
where G can be constant or a function G = G (H; v, «)
depending on the particular model. The above expression is the
form that has been suggested in the literature from the quantum
corrections of QFT in curved spacetime (see Sola 2013; Sola &
Gomez-Valent 2015, and references therein). The terms with
higher powers of the Hubble rate have recently been used to
describe inflation (see, e.g., Lima et al. 2013, 2015, 2016; Sola
2015a), but these terms play no role at present and will be
hereafter omitted. The coefficients v and « have been defined to
be dimensionless. They are responsible for the running of
pp(H) and G(H), and so for v = a = 0 we recover the ACDM,
with p, and G constants. The values of v and « are naturally
small in this context since they can be related to the S-functions
of the running. An estimate in QFT indicates that they are of
order 1072 at most (Sola 2008), but here we will treat them as
free parameters of the RVM, and hence we shall determine
them phenomenologically by fitting the model to observations.
As previously indicated, a simple Lagrangian language for
these models that is comparable to the scalar field DE
description may not be possible, as suggested by attempts
involving the anomaly-induced action (Sola 2008, 2013).
Two types of RVM will be considered here: (i) type-G models,
when matter is conserved and the running of p, (H) is compatible
with the Bianchi identity at the expense of a (calculable) running
of G; and (ii) type-A models, denoting, in contrast, those with
G = const. in which the running of p, must be accompanied by a
(calculable) anomalous conservation law of matter. Both situa-
tions are described by the generalized local conservation equation
V(G 1,,) = 0, where 1, = T, + p, 8w is the total energy-
momentum tensor involving both matter and vacuum energy. In

the FLRW metric, and summing over all energy components, we
find

LG+ ot +3GH T (o4 p =0 @

i=m,r

If G and p, are both constants, we recover the canonical
conservation law p, + p. + 3Hp,, + 4Hp, = 0 for the com-
bined system of matter and radiation. For type-G models
Equation (4) boils down to G (p,, + p, + py) + Gp, = 0 since
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P, + 3Hp, = 0 and p, + 4Hp, = 0 for separated conservation
of matter and radiation, as usually assumed. Mixed types of
RVM scenarios are possible, but will not be considered here.

We can solve analytically the type-G and type-A models by
inserting Equation (3) into Equations (1) and (2), or using one
of the latter two and the corresponding conservation law (4). It
is convenient to perform the integration using the scale factor a
(r) rather than the cosmic time. For type-G models the full
expression for the Hubble function normalized to its current
value, E (a) = H (a) /Hy, can be found to be

Q Q
E*(a)lype-c = 1 +(—’"+—f)
a)ltype-G ¢ ¢
e
1 —4¢' a§/+§Qr/Qm e 5
X +a (—£I+§Qr/9m , (O

where ; = p,,/p., are the current cosmological parameters for
matter and radiation, and we have defined

1—v 1—v
§= =1 — v, & =

_ _ 4
1 —« 1 JQ

=1 — vy (6)

Note that E(1) = 1, as it should. Moreover, for £, £’ — 1
Ge.,|v, ol < D,y ~ v — aand vy ~ v — (4/3)a. In the
radiation-dominated epoch, the leading behavior of
Equation (5) is ~, a745/, while in the matter-dominated
epoch it is ~€, a3, Furthermore, for v, o — 0,
E*a) - 1+ Q@3- 1)+ Q. @*—1). This is the
ACDM form, as expected in that limit. Note that the following
constraint applies among the parameters: ¢y = H02
[QA - v+ a(ﬂm + % Qr)], as the vacuum energy density
pp(H) must reproduce the current value p,, for H = Hy, using
Q, + 2, + Q4 = 1. The explicit scale factor dependence of
the vacuum energy density, i.e., p, = py(a), ensues upon
inserting Equation (5) into Equation (3). In addition, since the
matter is conserved for type-G models, we can use the
obtained expression for p, (a) to also infer the explicit form for
G = G (a) from Equation (1). We refrain from writing out
these cumbersome expressions, and we limit ourselves to
quoting some simplified forms. For instance, the expression
for py(a) when we can neglect the radiation contribution is
simple enough:

(@) = pug 03[035 + %(1 -£- a35)], ©)

where p., = 3H{ /87 Gy is the current critical density and
Go=G(a=1) is the current value of the gravitational
coupling. Quite obviously for £ = 1 we recover the ACDM
form: py = p.o(1 — ) = p.o% = const. As for the gravita-
tional coupling, it evolves logarithmically with the scale factor
and hence changes very slowly.” It suffices to say that it
behaves as

G(a) = Goa* " f(a) ~ Go(1 + 4l Ina) f(a), (8)

2 This is a welcome feature already expected in particular realizations of type-
G models in QFT in curved spacetime (Sola 2008, 2013). See also Grande
et al. (2011).
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where f(a) = f(a; Q, Q; v, @) is a smooth function of the
scale factor. We can dispense with the full expression here, but
let us mention that f(a) tends to 1 at present irrespective of the
values of the various parameters €, {2,, v, « involved in it,
and f(a) — 1 in the remote past (@ — 0) for v, a — 0 (i.e.,
& & — 1). As expected, G(a) — Gg for a — 1, and G(a) has
a logarithmic evolution for v.; = 0. Notice that the limit
a — 0 is relevant for the BBN epoch and therefore G(a) should
not depart too much from G, according to the usual bounds on
BBN. We shall carefully incorporate this restriction in our
analysis of the RVM models (see below).

Next, we quote the solution for type-A models. As indicated,
in this case we have an anomalous matter conservation law.
Integrating Equation (4) for G = const. and using Equation (3)
in it, one finds p,(a) = p, (@) + p.(a) = poa > + poa ¥
We have assumed, as usual, that there is no exchange of energy
between the relativistic and nonrelativistic components. The
standard expressions for matter and radiation energy densities
are recovered for &, ¢’ — 1. The normalized Hubble function
for type-A models is simpler than for type-G ones. The full
expression, including both matter and radiation, reads

E2@lypen = 1 + %(eﬂf 4 %(a“‘f’ . ©

From it and the found expression for p, (@) we can immediately
derive the corresponding p,(a):

pa(@) = ppo + Pmo(571 - D@* -1
+ 0 = D@ — 1), (10)

Once more for v, « — 0 (ie., & & — 1) we recover the
ACDM case, as easily checked. In particular, one finds
Py — Ppo = const. in this limit.

3. Fitting the Vacuum Models to the Data

In order to better handle the possibilities offered by the type-
G and type-A models as to their dependence on the two specific
vacuum parameters v, «, we shall refer to model G1 (resp. Al)
when we address type-G (resp. type-A) models with o = 0 in
Equation (3). In these cases v,;f = v. When, instead, a = 0, we
shall indicate them by G2 and A2, respectively. This
classification scheme is used in Tables 1-2 and 5-7 and in
Figures 1-6. In the tables we are including also the XCDM (see
Section 4) and the ACDM.

To this end, we fit the various models to the wealth of
cosmological data compiled from distant SN Ia, BAOs, the
known values of the Hubble parameter at different redshift
points, H (z;), the LSS formation data encoded in f (z;)03(z;),
the BBN bound on the Hubble rate, and, finally, the CMB
distance priors from WMAP and Planck, with the corresp-
onding correlation matrices in all the indicated cases.
Specifically, we have used 90 data points (in some cases
involving compressed data) from seven different sources S1—
S7, to wit:

(S1) The SN Ia data points from the SDSS-II/SNLS3 Joint
Light-curve Analysis (JLA; Betoule et al. 2014). We have used
the 31 binned distance moduli fitted to the JLA sample and the
compressed form of the likelihood with the corresponding
covariance matrix.

(S2) Five points on the isotropic BAO estimator
r;(za) /D, (z): z = 0.106 (Beutler et al. 2011), z = 0.15 (Ross
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Table 1
Best-fit Values for ACDM, XCDM, and the Various RVMs Using the Planck 2015 Results and the Full Data Set S1-S7

Model h wp = Qh? n, 0 Vert w Xmin /dof  AAIC  ABIC
ACDM 0693 +0.003 002255 + 0.00013  0.976 + 0.003  0.294 + 0.004 —1 90.4/85

XCDM  0.670 + 0.007 ~ 0.02264 + 0.00014 ~ 0.977 + 0.004  0.312 + 0.007 ~0916 + 0021  74.91/84 1323  11.03
Al 0.670 + 0.006  0.02237 + 0.00014  0.967 + 0.004  0.302 = 0.005  0.00110 + 0.00026 -1 7122/84 1692 14.72
A2 0.674 +0.005  0.02232 + 0.00014  0.965 + 0.004 0303 = 0.005  0.00150 + 0.00035 -1 7027/84  17.87 1567
Gl 0.670 + 0.006  0.02236 + 0.00014  0.967 + 0.004 0302 + 0.005  0.00114 + 0.00027 -1 71.19/84 1695 1475
G2 0.670 +£ 0.006  0.02234 + 0.00014  0.966 + 0.004  0.303 £ 0.005  0.00136 + 0.00032 -1 70.68/84  17.46 1526

Note. The best-fit values for the ACDM, XCDM, and the RVMs, including their statistical significance (Xz-test and Akaike and Bayesian information criteria, AIC
and BIC; see the text). The large and positive values of AAIC and ABIC strongly favor the dynamical DE options (RVMs and XCDM) against the ACDM (see text).
We use 90 data points in our fit, to wit: 31 points from the JLA sample of SN Ia, 11 from BAOs, 30 from H(z), 13 from linear growth, 1 from BBN, and 4 from CMB
(see S1-S7 in the text for references). In the XCDM model the EOS parameter w is left free, whereas for the RVMs and ACDM it is fixed at —1. The specific RVM
fitting parameter is ¢; see Equation (6) and the text. For the G1 and A1 models, .t = v. The remaining parameters are the standard ones (1, wy, ns, €2,,). The quoted
number of degrees of freedom (dof) is equal to the number of data points minus the number of independent fitting parameters (5 for the ACDM, 6 for the RVMs and
the XCDM). The normalization parameter M introduced in the SN Ia sector of the analysis is also left free in the fit (see Betoule et al. 2014), but it is not listed in the
table. For the CMB data we have used the marginalized mean values and standard deviation for the parameters of the compressed likelihood for Planck 2015 TT,TE,

EE + lowP data from Huang et al. (2015), which provide tighter constraints to the CMB distance priors than those presented in Planck XIV (2015).

et al. 2015), z; = 0.44, 0.6, 0.73 (Kazin et al. 2014), with the
correlations between the last three points.

(S3) Six data points on anisotropic BAO estimators: four of
them on Dy (z;) /r;(z4) and H (z;)r(zy) at z; = 0.32, 0.57, for
the LOWZ and CMASS samples, respectively. These data are
taken from Gil-Marin et al. (2016b), based on the redshift space
distortion (RSD) measurements of the power spectrum
combined with the bispectrum, and the BAO post-reconstruc-
tion analysis of the power spectrum (see Table 5 of that
reference), including the correlations among these data encoded
in the provided covariance matrices. We also use two data
points based on Dy (z;)/1;(z4) and Dy (z;) /1, (z4) at 7 = 2.34,
from the combined LyaF analysis (Delubac et al. 2015). The
correlation coefficient among these two points is taken from
Aubourg et al. (2015) (see Table 2 of that reference). We also
take into account the correlations among the BAO data and the
corresponding fog data of Gil-Marin et al. (2016b)—see point
S5 below and Table 4.

(S4) Thirty data points on H (z;) at different redshifts, listed
in Table 3. We use only H (z;) values obtained by the so-called
differential-age techniques applied to passively evolving
galaxies. These values are uncorrelated with the BAO data
points. See also Farooq & Ratra (2013), Sahni et al. (2014),
Ding et al. (2015), Zheng et al. (2016), and Chen et al. (2016),
where the authors only make use of Hubble parameter data in
their analyses. We find it, however, indispensable to take into
account the remaining data sets to derive our conclusions on
dynamical vacuum, especially the BAO, LSS, and CMB
observations. This fact can also be verified quite evidently in
Figures 5-6, to which we shall turn our attention in Section 4.

(S5) f(z)03(2): 13 points. These are referred to in the text as
LSS (large-scale structure formation). The actual fitting results
shown in Table 1 make use of the LSS data listed in Table 4, in
which we have carefully avoided possible correlations among
them (see below). Let us mention that although we are aware of
the existence of other LSS data points in the literature
concerning some of the used redshift values in our Table 4
(see, e.g., Percival et al. 2004; Turnbull et al. 2012; Hudson &
Turnbull 2013; Johnson et al. 2014), we have explicitly
checked that their inclusion or not in our numerical fits has no

significant impact on the main result of our paper, that is to say,
it does not affect the attained 240 level of evidence in favor of
the RVMs. This result is definitely secured in both cases, but
we have naturally presented our final results sticking to the
most updated data.

The following observation is also in order. We have included
both the WiggleZ and the CMASS data sets in our analysis. We
are aware that there exists some overlap region between the
CMASS and WiggleZ galaxy samples. But the two surveys
have been produced independently, and the studies on the
existing correlations among these observational results (Beutler
et al. 2016; Marin et al. 2016) show that the correlation is
small. The overlap region of the CMASS and WiggleZ galaxy
samples is actually not among the galaxies that the two surveys
pick up, but between the region of the sky they explore.
Moreover, despite that almost all of the WiggleZ region (5/6
parts of it) is inside the CMASS one, it only takes a very small
fraction of the whole sky region covered by CMASS, since the
latter is much larger than the WiggleZ one (see, e.g., Figure 1
in Beutler et al. 2016). In this paper, the authors are able to
quantify the correlation degree among the BAO constraints in
CMASS and WiggleZ, and they conclude that it is less than
4%. Therefore, we find it justified to include the WiggleZ data
in the main table of results of our analysis (Table 1), but we
provide also the fitting results that are obtained when we
remove the WiggleZ data points from the BAO and f (z)og(z)
data sets (see Table 2). The difference is small, and the central
values of the fitting parameters and their uncertainties remain
intact. Thus, the statistical significance of Tables 1 and 2 is
the same.

(S6) BBN: we have imposed the average bound on the
possible variation of the BBN speed-up factor, defined as the
ratio of the expansion rate predicted in a given model versus
that of the ACDM model at the BBN epoch (z ~ 10°%). This
amounts to the limit |AH2/Hz| < 10% (Uzan 2011).

(S7) CMB distance priors: R (shift parameter) and ¢,
(acoustic length) and their correlations with (wp, ng). For
WMAP9 and Planck 2013 data we used the covariance matrix
from the analysis of Wang & Wang (2013), while for Planck
2015 data we used those of Huang et al. (2015). Our fitting
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Table 2
Best-fit Values for the Various Vacuum Models and the XCDM Using the Planck 2015 Results and Removing the BAO and LSS Data from WiggleZ

Model h wp = Qh? n, 0 Vert w Xmin /dof  AAIC  ABIC
ACDM 0692 + 0.004 002254 + 0.00013 0975 + 0.004  0.295 + 0.004 —1 86.11/78

XCDM 0671 +0.007  0.02263 + 0.00014  0.976 + 0.004  0.312 + 0.007 ~0920 £ 0022 7301/77 1078  8.67
Al 0.670 + 0.007  0.02238 + 0.00014  0.967 + 0.004  0.302 = 0.005  0.00110 + 0.00028 -1 69.40/77 1439 1227
A2 0.674 + 0005  0.02233 + 0.00014  0.966 + 0.004  0.302 = 0.005  0.00152 =+ 0.00037 -1 6838/77 1541  13.29
Gl 0.671 +0.006  0.02237 + 0.00014 0967 + 0.004 0302 + 0.005  0.00115 + 0.00029 -1 6937/77 1442 1230
G2 0.670 + 0.006  0.02235 + 0.00014 ~ 0.966 + 0.004  0.302 £ 0.005  0.00138 = 0.00034 -1 68.82/77 1497 1285

Note. Same as in Table 1, but excluding from our analysis the BAO and LSS data from WiggleZ; see point S5 in the text.

results for the last case are recorded in all our tables (except in
Table 5, where we test our fit in the absence of CMB distance
priors R and ¢,). We display the final contour plots for all the
cases; see Figures 1-2. Let us point out that in the case of the
Planck 2015 data we have checked that very similar results
ensue for all models if we use the alternative CMB covariance
matrix from Planck XIV (2015). We have, however, chosen to
explicitly present the case based on Huang et al. (2015) since it
uses the more complete compressed likelihood analysis for
Planck 2015 TT,TE,EE + lowP data, whereas Planck XIV
(2015) uses Planck 2015 TT+lowP data only.

Notice that G1 and Al have one single vacuum parameter
(v), whereas G2 and A2 have two (v, «). There is nonetheless a
natural alignment between v and « for general type-G and type-
A models, namely, o = 3v/4, as this entails £ =1 (i.e.,
v = 0) in Equation (6). Recall that for G2 models we have
G(a) ~ Gy at1=o deep in the radiation epoch (see
Equation (8)), and therefore the condition £/ = 1 warrants G
to take the same value as the current one, G = G, at BBN. For
model G1 this is not possible (for v = 0), and we adopt the
aforementioned |AH?/H3| < 10% bound. We apply the same
BBN restrictions to the Al and A2 models, which have
constant G. With this setting all the vacuum models contribute
only with one single additional parameter as compared to the
ACDM: v, for G1 and Al; and vy = v — o = v/4, for G2
and A2.

For the statistical analysis, we define the joint likelihood
function as the product of the likelihoods for all the data sets.
Correspondingly, for Gaussian errors the total x> to be
minimized reads

2 _ 2 2 2 2 2 2
Xiot = Xsnta T XBao T X T X + XNy T Xewms: 1)

Each one of these terms is defined in the standard way (for
some more details see, e.g., Gomez-Valent et al. 2015),
although we should emphasize that here the correlation
matrices have been included. The BAO part was split as
indicated in points S2 and S3 above. Also, in contrast to the
previous analysis of Sola et al. (2015), we did not use here the
correlated Omh?(z;, z;) diagnostic for H (z;) data. Instead, we
use

ALY

i=1

* [H(zi, p) - Hobs(z,v)]zl a2

OH,i

As for the linear structure formation data, we have computed
the density contrast 6,, = 0p,,/p,, for each vacuum model by

adapting the cosmic perturbation formalism for type-G and
type-A vacuum models. The matter perturbation, §,,, obeys a
generalized equation that depends on the RVM type. For type-
A models it reads (as a differential equation with respect to the
cosmic time)

bm + QH + U)4,, — (47Gp,, — 2HY — 1)§,, =0, (13)
where ¥ = —Z—". For py, = const. we have ¥ =0, and
Equation (13) reduces to the ACDM form.> For type-G models
the matter perturbation equation is explicitly given in Sola et al.
(2015). From here we can derive the weighted linear growth
f2)og(z), where f(z) =dIné,/dlna is the growth factor
and og(z) is the rms mass fluctuation amplitude on scales of
Rg = 8 h™! Mpc at redshift z. It is computed from

2 o0

@ f k% P (k, p) W? (kRg)dk, (14)
22 Jo

with W a top-hat smoothing function (see, e.g., Gémez-Valent
et al. 2015 for details). The linear matter power spectrum reads
P(k, p) = Pyk™sT?(k, p), where p = (h, wp, ng, O, Vo) is
the fitting vector for the vacuum models we are analyzing
(including the ACDM, for which 1, = 0 of course), and
T (p, k) is the transfer function, which we take from Bardeen
et al. (1986), upon introducing the baryon density effects
through the modified shape parameter I' (Peacock &
Dodds 1994; Sugiyama 1995). We have also explicitly checked
that the use of the effective shape of the transfer function
provided in Eisenstein & Hu (1998) does not produce any
change in our results.

The expression (14) at z = 0 allows us to write og(0) in
terms of the power spectrum normalization factor Py and the

primary parameters that enter our fit for each model (see
Table 1). We fix P, from

03(2) =

2 a%,A
s
6m,A (0)

Py =

N -1
[f k2 msaT2 (k, py)W? (kR&A)dk] ’
0

15)

in which we have introduced the vector of fiducial parameters
Py = (hp, wpp, B0 Qmop, 0). This vector is defined in
analogy with the fitting vector introduced before, but all its

3 For details on these equations, see the comprehensive works by Gémez-

Valent et al. (2015), Gomez-Valent & Sola (2015), and Gdémez-Valent
et al. (2015).
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Figure 1. Likelihood contours in the (€2, v¢r) plane for the values —21n L/ L.« = 2.30, 6.18, 11.81, 19.33, and 27.65 (corresponding to 1o, 20, 30, 40, and 50 c.l.)
after marginalizing over the rest of the fitting parameters indicated in Table 1. We display the progression of the contour plots obtained for model G2 using the 90 data
points on SN Ia+BAO+H(z)+LSS+BBN+CMB, as we evolve from the high-precision CMB data from WMAP9, Planck 2013, and Planck 2015—see text, point S7.
In the sequence, the prediction of the concordance model (1. = 0) appears increasingly more disfavored, at an exclusion c.l. that ranges from ~2¢ (for WMAPY), to
~3.5¢0 (for Planck 2013), and up to 40 (for Planck 2015). Subsequent marginalization over £2,, increases slightly the c.l. and renders the fitting values indicated in
Table 1, which reach a statistical significance of 4.2¢ for all the RVMs. Using numerical integration, we can estimate that ~99.81% of the area of the 40 contour for
Planck 2015 satisfies v > 0. We also estimate that ~95.47% of the 5o region also satisfies v, > 0. The corresponding AIC and BIC criteria (see Table 1)

consistently imply a very strong support to the RVMs against the ACDM.

parameters are fixed and taken to be equal to those from the
Planck 2015 TT,TE.EE+lowP-+lensing analysis (Planck
XIII 2015) with v = 0. The fiducial parameter og 5 is also
taken from the aforementioned Planck 2015 data. However,
Om.A(0) in Equation (15) is computable: it is the value of
Om(z = 0) obtained from solving the perturbation equation of
the ACDM using the mentioned fiducial values of the other
parameters. Finally, from o3(z) = 03(0)6,,(z)/6,,(0) and
plugging Equation (15) into Equation (14), one finds

Su(e) | Sy KT (k, )W (KRg)dk 1/

SmaO) | [ k2 +maT2 (k, py ) W2 (kRs n)dk
(16)

o3(z) = ogA

Computing next the weighted linear growth rate f (z)og(z) for
each model under consideration, including the ACDM, all
models become normalized to the same fiducial model defined
above. The results for f(z)og(z) in the various cases are
displayed in Figure 4, together with the LSS data measure-
ments (see Table 4). We will further comment on these results
in the next section.

4. Discussion

Table 1 and Figures 1-2 present in a nutshell our main
results. We observe that the effective vacuum parameter, vy, is
neatly projected non-null and positive for all the RVMs. The
presence of this effect can be traced already in the old WMAP9
data (at ~20), but as we can see, it becomes strengthened at
~3.50 c.l. with the Planck 2013 data and at ~40 c.l. with the
Planck 2015 data; see Figures 1 and 2. For Planck 2015 data it
attains up to =>4.2¢ c.l. for all the RVMs after marginalizing
over the other fitting parameters.

It is also interesting to gauge the dynamical character of the
DE by performing a fit to the overall data in terms of the well-
known XCDM parameterization, in which the DE is mimicked

through the density py(a) = py,a 34+ associated with
some generic entity X, which acts as an ersatz for the A term,
Pxo being the current energy density value of X and therefore
equivalent to p,,, and w is the (constant) EOS parameter for X.
The XCDM trivially boils down to the rigid A-term for
w = —1, but by leaving w free, it proves a useful approach to
roughly mimic a (noninteractive) DE scalar field with constant
EOS. The corresponding fitting results are included in all our
tables along with those for the RVMs and the ACDM. In
Table 1 (our main table) and in Figure 3, we can see that the
best-fit value for w in the XCDM is w = —0.916 £+ 0.021.
Remarkably, it departs from —1 by precisely 4o.

Obviously, given the significance of the above result, it is
highly convenient to compare it with previous analyses of the
XCDM reported by the Planck and BOSS collaborations. The
Planck 2015 value for the EOS parameter of the XCDM reads
w = —1.019759% (Planck XIII 2015), and the BOSS one is
w = —0.97 £ 0.05 (Aubourg et al. 2015). These results are
perfectly compatible with our own result for w shown in
Table 1 for the XCDM, but in stark contrast to our result, their
errors are big enough to be also fully compatible with the
ACDM value w = —1. This is, however, not too surprising if
we take into account that none of these analyses included LSS
data in their fits, as explicitly indicated in their papers.” In the
absence of LSS data we would find a similar situation. In fact,
as our Table 6 clearly shows, the removal of the LSS data set in
our fit induces a significant increase in the magnitude of the
central value of the EOS parameter, as well as the corresp-
onding error. This happens because the higher |w| is, the higher
is the structure formation power predicted by the XCDM, and
therefore the closer is such prediction with that of the ACDM
(which is seen to predict too much power as compared to the
data; see Figure 4). In these conditions our analysis renders

4 Furthermore, at the time these analyses appeared they could not have used

the important LSS and BAO results from (Gil-Marin et al. 2016b), i.e., those
that we have incorporated as part of our current data set, not even the previous
ones from (Gil-Marin et al. 2016a). The latter also carry a significant part of the
dynamical DE signature we have found here, as we have checked.
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Figure 2. As in Figure 1, but for model A2. Again we see that the contours tend to migrate to the . > O half plane as we evolve from WMAP9 to Planck 2013 and
Planck 2015 data. Using the same method as in Figure 1, we find that ~99.82% of the area of the 40 contour for Planck 2015 (and ~95.49% of the corresponding 5o
region) satisfies i > 0. The ACDM becomes once more excluded at ~4o c.l. (see Table 1 for Planck 2015).
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Figure 3. As in Figures 1 and 2, but for model XCDM and using Planck 2015
data. The ACDM is excluded at ~40 c.l. (cf. Table 1).

028 030

w = —0.991 + 0.040, which is definitely closer to (and
therefore compatible with) the central values obtained by the
Planck and BOSS teams. In addition, this result is now fully
compatible with the ACDM, as in the Planck 2015 and BOSS
cases, and all of them are unfavored by the LSS observations.
This is consistent with the fact that both information criteria,
AAIC and ABIC, become now slightly negative in Table 6,
which reconfirms that if the LSS data are not used, the ACDM
performance is comparable to or even better than the other
models. So in order to fit the observed values of fog, which are
generally lower than the predicted ones by the ACDM, |w|
should decrease. This is exactly what happens for the XCDM,
as well as for the RVMs, when the LSS data are included in our
analysis (in combination with the other data, particularly with
BAO and CMB data). It is apparent from Figure 4 that the
curves for these models are then shifted below and hence adapt
significantly better to the data points. Correspondingly, the
quality of the fits increases dramatically, and this is also borne
out by the large and positive values of AAIC and ABIC, both
above 10 (see Table 1).

The above discussion explains why our analysis of the
observations through the XCDM is sensitive to the dynamical
feature of the DE, whereas the previous results in the literature

f(z)og(z)
0.7
0.6 |
05
0.4 ___—‘_j__'___'..._ """""""""""""""""""""""""""""""""""""""" =23
— LCDM 05(0) = 0.796
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Figure 4. The f(z) 03 (z) data (Table 4) and the predicted curves by the RVMs,
XCDM, and the ACDM, using the best-fit values in Table 1. Shown are also
the values of o3 (0) that we obtain for all the models. The theoretical predictions
of all the RVMs are visually indistinguishable, and they have been plotted
using the same (blue) dashed curve.

are not. It also shows that the size of the effect found with such
a parameterization of the DE essentially concurs with the
strength of the dynamical vacuum signature found for the
RVMs using exactly the same data. This is remarkable, and it
was not obvious a priori since for some of our RVMs
(specifically for Al and A2) there is an interaction between
vacuum and matter that triggers an anomalous conservation
law, whereas for others (Gl and G2) we do not have such
interaction (meaning that matter is conserved in them, thereby
following the standard decay laws for relativistic and
nonrelativistic components). The interaction, when it occurs,
is, however, proportional to v and thus is small because the
fitted value of 1.¢ is small. This probably explains why the
XCDM can succeed in nailing down the dynamical nature of
the DE with a comparable performance. However, not all
dynamical vacuum models describe the data with the same
efficiency (see, e.g., Salvatelli et al. 2014; Murgia et al. 2016;
Li et al. 2016). A detailed comparison is made among models
similar to (but different from) those addressed here in Sola et al.
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Figure 5. Reconstruction of the contour lines for model A2, under Planck 2015 CMB data (rightmost plot in Figure 2) from the partial contour plots of the different
SN Ia+BAO+H(z)+LSS+BBN+CMB data sources. The 1o and 20 contours are shown in all cases. For the reconstructed final contour lines we also plot the 30, 40,

and 50 regions.

(2016). In the XCDM case the departure from the ACDM takes
the fashion of “effective quintessence,” whereas for the RVMs
it appears as genuine vacuum dynamics. In all cases, however,
we find unmistakable signs of DE physics beyond the ACDM
(see Table 1), and this is the most important result of our work.

As we have discussed in Section 2, for models Al and A2
there is an interaction between vacuum and matter. Such
interaction is, of course, small because the fitted values of vg
are small; see Table 1. The obtained values are in the ballpark
of e ~ O(1073), and therefore this is also the order of
magnitude associated with the anomalous conservation law of
matter. For example, for the nonrelativistic component we have

P (@) = proa ¢ = p,oa >, (17)
This behavior has been used in the works by Fritzsch & Sola
(2012, 2015) as a possible explanation for the hints on the time
variation of the fundamental constants, such as coupling
constants and particle masses, frequently considered in the
literature. The current observational values for such time
variation are actually compatible with the fitted values we have
found here. This is an intriguing subject that is currently of high
interest in the field (see, e.g., Uzan 2011; Sola 2015b). For
models G1 and G2, instead, the role played by ¢ and vy is
different. It does not produce any anomaly in the traditional
matter conservation law (since matter and radiation are
conserved for type-G models), but now it impinges a small
(logarithmic) time evolution on G in the fashion sketched in
Equation (8). Thus, we find, once more, a possible description
for the potential variation of the fundamental constants, in this
case G, along the lines of the above-cited works (see also
Fritzsch & Nunes 2016). There are, therefore, different
phenomenological possibilities to test the RVMs considered
here from various points of view.

We may reassess the quality fits obtained in this work from a
different point of view. While the szin value of the overall fit
for any RVM and the XCDM is seen to be definitely smaller
than the ACDM one, it proves very useful to reconfirm our
conclusions with the help of the time-honored Akaike and
Bayesian information criteria, AIC and BIC (see Akaike 1974;
Sugiura 1978; Schwarz 1978; Burnham & Anderson 2002).

They read as follows:

min N-—n-—1 min

AIC = x +nInN. (18)

In both cases, n is the number of independent fitting parameters
and N the number of data points used in the analysis. To test the
effectiveness of a dynamical DE model (versus the ACDM) for
describing the overall data, we evaluate the pairwise differ-
ences AAIC (ABIC) with respect to the model that carries a
smaller value of AIC (BIC)—in this case, the RVMs or the
XCDM. The larger these differences, the higher is the evidence
against the model with a larger value of AIC (BIC)—the
ACDM, in this case. For AAIC and/or ABIC in the range
6—10 one may claim “strong evidence” against such a model,
and above 10, one speaks of ‘“very strong evidence”
(Akaike 1974; Burnham & Anderson 2002). The evidence
ratio associated with rejection of the unfavored model is given
by the ratio of Akaike weights, e2AIC/2, Similarly, ¢®BIC/2
estimates the so-called Bayes factor, which gives the ratio of
marginal likelihoods between the two models (Amendola 2015;
Amendola & Tsujikawa 2015).

Table 1 reveals conspicuously that the ACDM appears very
strongly disfavored (according to the above statistical standards)
as compared to the RVMs. Specifically, AAIC is in the range
17-18 and ABIC around 15 for all the RVMs. These results are
fully consistent, and since both AAIC and ABIC are well above
10, the verdict of the information criteria is conclusive. But there
is another remarkable feature to single out at this point, namely,
the fact that the simple XCDM parameterization is now left
behind as compared to the RVMs. While the corresponding
XCDM values of AAIC and ABIC are also above 10
(reconfirming the ability of the XCDM to improve the ACDM
fit), they stay roughly four points below the corresponding
values for the RVMs. This is considered a significant difference
from the point of view of the information criteria. Therefore, we
conclude that the RVMs are significantly better than the XCDM
in their ability to fit the data. In other words, the vacuum
dynamics inherent to the RVMs seems to describe better the
overall cosmological data than the effective quintessence
behavior suggested by the XCDM parameterization.
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Figure 6. Upper left: two-dimensional €2,, — w contours at 1o and 20 c.l. obtained with only the LSS data set. The dotted contours in blue and purple are the exact
ones, while the red and green ellipses have been obtained using the Fisher’s approximation. Upper right: same as the upper right panel, but for the combination BAO
+LSS. Lower left: same as in the upper panels, but for the CMB data. Lower right: Fisher’s generated contours at 1o and 20 c.l. for all the data sets: SN Ia (dotted
lines), H(z) (solid lines), BAO (dot-dashed lines), LSS (dotted, very thin lines), and CMB (solid lines, tightly packed in a very small, segment-shaped region at the
scale of the plot). The exact, final, combined contours (from lo up to 50) can be glimpsed in the small colored area around the center. See the text for further

explanations and Figure 3 for a detailed view.

With the ratio of Akaike weights to the Bayes factor being
much bigger for the RVMs than for the ACDM, the former
appear definitely much more successful than the latter. The
current analysis undoubtedly reinforces the conclusions of our
previous study (Sola et al. 2015), with the advantage that the
determination of the vacuum parameters is here much more
precise and therefore at a higher significance level. Let us
highlight some of the most important differences with respect
to that work: (1) To start with, we have now used a larger and
fully updated set of cosmological data. (2) The selected data set
is uncorrelated and has been obtained from independent
analysis in the literature; see points S1-S7 above and
references therein. (3) We have taken into account all the
known covariance matrices among the data. (4) In this work, A,
wp, and ng are not fixed a priori (as we did in the previous one);
we have now allowed them to vary in the fitting process. This
is, of course, not only a more standard procedure but also a
most advisable one in order to obtain unbiased results. The lack
of consensus on the experimental value of 4 is the main reason
why we have preferred to use an uninformative flat prior—in
the technical sense—for this parameter. This should be more
objective in these circumstances, rather than being subjectively
elicited—once more in the technical sense—by any of these
more or less fashionable camps for & that one finds in the
literature (Riess et al. 2011; Chen & Ratra 2011; Freedman
et al. 2012; WMAP9 2013; ACT 2013; Aubourg et al. 2015;
Planck XIII 2015; Riess et al. 2016), whose ultimate fate is

unknown at present (compare, e.g., the value from Planck XIII
(2015) with the one from Riess et al. (2016), which is ~3c
larger than the former). (5) But the most salient feature perhaps,
as compared to our previous study, is that we have introduced
here a much more precise treatment of the CMB, in which we
used not only the shift parameter, R (which was the only CMB
ingredient in our previous study), but also the full data set
indicated in point S7 above, namely, R together with /,
(acoustic length) and their correlations with (wy, ny).
Altogether, this explains the substantially improved accuracy
obtained in the current fitted values of the 1.¢ parameter as
compared to Sola et al. (2015). In particular, concerning points
1-3 above, we should stress that for the present analysis we are
using a much more complete and restrictive BAO data set.
Thus, while in our previous work we only used six BAO data
points based on the A(z) estimator (see Table 3 of Blake et al.
2011b), here we are using a total of 11 BAO points (none of
them based on A(z); see points S2-S3). These include the
recent results from Gil-Marin et al. (2016b), which narrow
down the allowed parameter space in a more efficient way, not
only because the BAO data set is larger but also owing to the
fact that each of the data points is individually more precise and
the known correlation matrices have been taken into account.
Altogether, we are able to significantly reduce the error bars
with respect to the ones we had obtained in our previous work.
We have actually performed a practical test to verify what
would be the impact on the fitting quality of our analysis if we
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Table 3 Table 4
Compilation of H(z) Data Points Compilation of f(z)og(z) Data Points
z H(z) References Survey z f@og(2) References
0.07 69.0 + 19.6 Zhang et al. (2014) 6dFGS 0.067 0.423 + 0.055 Beutler et al. (2012)
0.09 69.0 + 12.0 Jiménez et al. (2003) SDSS-DR7 0.10 0.37 £ 0.13 Feix et al. (2015)
0.12 68.6 + 26.2 Zhang et al. (2014) GAMA 0.18 0.29 + 0.10 Simpson et al. (2016)
0.17 83.0 £ 8.0 Simon et al. (2005) 0.38 0.44 + 0.06 Blake et al. (2013)
0.1791 75.0 £ 4.0 Moresco et al. (2012) DR12 BOSS 0.32 0.427 + 0.052 Gil-Marin et al. (2016b)
0.57 0.426 + 0.023
0.1993 75.0 £5.0 Moresco et al. (2012)
WiggleZ 0.22 0.42 + 0.07 Blake et al. (2011a)
0.2 72.9 £ 29.6 Zhang et al. (2014) 041 045 + 0.04
0.27 77.0 £ 14.0 Simon et al. (2005) 0.60 0.43 + 0.04
0.78 0.38 £ 0.04
0.28 88.8 + 36.6 Zhang et al. (2014)
2MTF 0.02 0.34 + 0.04 Springob et al. (2016)
0.3519 83.0 £ 14.0 Moresco et al. (2012)
VIPERS 0.7 0.380 £ 0.065 Granett et al. (2015)
0.3802 83.0 £+ 13.5 Moresco et al. (2016)
VVDS 0.77 0.49 £ 0.18 Guzzo et al. (2008)
0.4 95.0 + 17.0 Simon et al. (2005) Song & Percival (2009)
0.4004 77.0 £ 10.2 Moresco et al. (2016) . .
Note. Current published values of f (z)os(z). See the text, point S5.
0.4247 87.1 £ 11.2 Moresco et al. (2016)
04497 92.8 + 129 Moresco et al. (2016) acoustic length, or if we were to remove only the data points on
0.4783 80.9 + 9.0 Moresco et al. (2016) LSS. The results are presented in Tables 5 and 6, respectively.
048 970 £ 620 Stern ot al. 2010) We observe that the AAIC and ABIC values become 2-4
: i i em et 4 points negative. This means that the full CMB and LSS data are
0.5929 104.0 £+ 13.0 Moresco et al. (2012) individually very important for the quality of the fit and that
without any of them the evidence of dynamical DE would be
. 2.0 £ 8. M 1. (2012 .
06797 920 £ 8.0 oresco et al. (2012) lost. If we were to restore part of the CMB effect on the fit in
0.7812 105.0 £ 12.0 Moresco et al. (2012) Table 5 by including the R-shift parameter in the fitting
T r 1 1 T T roximately, th
0.8754 125.0 £ 17.0 Moresco et al. (2012) procedure, we would be able to recover, approximately, the
situation of our previous analysis, but not quite since the
0.88 90.0 + 40.0 Stern et al. (2010) remaining data sources used now are more powerful.
It is also interesting to explore what would have been the
0.9 117.0 £ 23.0 Si t al. (2005 .
tmon et al. (2005) result of our fits if we had not used our rather complete SN Ia
1.037 154.0 & 20.0 Moresco et al. (2012) +BAO-+H(z)+LSS+BBN+CMB data set and had restricted
ourselves to the much more limited one used by the Planck
1.3 168.0 £ 17.0 Si t al. (2005 . .
imon et al. (2005) 2015 collaboration in the paper Planck XIV (2015). The
1.363 160.0 + 33.6 Moresco (2015) outcome is presented in Table 7. In contrast to Planck XIII
. (2015), where no LSS (RSD) data were used, the former
1.43 177.0 + 18.0 Simon et al. (2005 . .
¢ ) reference uses some BAO and LSS data, but their fit is rather
1.53 140.0 + 14.0 Simon et al. (2005) limited in scope since they use only four BAO data points, one
75 202.0 4 40.0 Simon et al. (2005) AP (Als:ock—Paczynskl parameter) data point, apd one single
LSS point, namely, fog at z = 0.57 (see details in that paper).
1.965 186.5 + 50.4 Moresco (2015) In contradistinction to them, in our case we used 11 BAO and

Note. Current published values of H(z) in units of km s~ ' Mpc 'obtained
using the differential-age technique (see the quoted references and point S4 in
the text).

were to remove the acoustic length /, from the CMB part of our
data and replace the current BAO data points by those used in
Sola et al. (2015). Notice that the CMB part is now left
essentially with the R-shift parameter only, which was indeed
the old situation. The result is that we recover the error bars’
sizes shown in the previous paper, which are ~4-5 times larger
than the current ones, i.e., of order O(10~3). We have also
checked what would be the effect on our fit if we were to
remove both the data on the shift parameter and the data on the
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13 LSS data points, some of them very recent and of high
precision (Gil-Marin et al. 2016b). From Table 7 it is seen that
with only the data used in Planck XIV (2015) the fitting results
for the RVMs are poor enough and cannot still detect clear
traces of the vacuum dynamics. In particular, the AAIC and
ABIC values in that table are moderately negative, showing
that the ACDM does better with only these data. As stated
before, not even the XCDM parameterization is able to detect
any trace of dynamical DE with that limited data set, as the
effective EOS is compatible with w = —1 at roughly lo
(w = —0.960 & 0.033). This should explain why the features
that we are reporting here have been missed until now.

We complete our analysis by displaying in a graphical way
the contributions from the different data sets to our final
contour plots in Figures 1-3. We start analyzing the RVM case.



I

Best-fit Values for the Various Vacuum Models and the XCDM Using the PT;E? 5015 Results and Removing the R-shift Parameter and the Acoustic Length [,

Model h wp = Oy ny o Vet w Xmin /dof AAIC ABIC
ACDM 0.679 £ 0.005 0.02241 £ 0.00017 0.968 + 0.005 0.291 £ 0.005 -1 68.42/83

XCDM 0.673 £ 0.007 0.02241 £ 0.00017 0.968 + 0.005 0.299 + 0.009 —0.958 £ 0.038 67.21/82 —1.10 —3.26
Al 0.679 £ 0.010 0.02241 £ 0.00017 0.968 + 0.005 0.291 £ 0.010 —0.00001 =+ 0.00079 -1 68.42/82 —2.31 —4.47
A2 0.676 £ 0.009 0.02241 £ 0.00017 0.968 + 0.005 0.295 £ 0.014 0.00047 £ 0.00139 -1 68.31/82 —2.20 —4.36
Gl 0.679 £ 0.009 0.02241 £ 0.00017 0.968 + 0.005 0.291 £+ 0.010 0.00002 £ 0.00080 -1 68.42/82 —2.31 —4.47
G2 0.678 £ 0.012 0.02241 £ 0.00017 0.968 + 0.005 0.291 £ 0.013 0.00006 + 0.00123 —1 68.42/82 —2.31 —4.47

Note. Same as in Table 1, but removing both the R-shift parameter and the acoustic length /, from our fitting analysis.

01 Aren1qaq £107 ‘(ddy1) €4:9€8 “TVNINO[ TVOISAHIONISY TH],

Z319d ZnID) dp 29 JUI[BA-ZOWOL) B[OS
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Table 6
Best-fit Values for the Various Vacuum Models and the XCDM Using the Planck 2015 Results and Removing the LSS Data Set

Model h wy = Qb2 n, 0 Veit w Xmin /d0f  AAIC  ABIC
ACDM  0.685 + 0.004  0.02243 + 0.00014  0.969 + 0.004  0.304 = 0.005 1 61.70/72

XCDM  0.683 +0.009  0.02245 + 0.00015  0.969  0.004 ~ 0.306 + 0.008 ~0.991 +0.040  61.65/71 230 429
Al 0.685 + 0.010  0.02243 + 0.00014  0.969 + 0.004  0.304 + 0.005  0.00003 + 0.00062 -1 61.70/71  —2.36  —4.34
A2 0.684 + 0.009  0.02242 + 0.00016  0.969 =+ 0.005  0.304 + 0.005  0.00010 + 0.00095 -1 61.69/71 235 —4.33
Gl 0.685 +£ 0010  0.02243 £ 0.00014  0.969 + 0.004  0.304 £ 0.005  0.00003 = 0.00065 -1 61.70/71  ~236  —434
G2 0.685 + 0.010  0.02242  0.00015  0.969 = 0.004  0.304 £ 0.005  0.00006 -+ 0.00082 -1 6170/71  ~2.36  —4.34

Note. Same as in Table 1, but removing the points from the LSS data set from our analysis, i.e., all 13 points on fog.

For definiteness we concentrate on the rightmost plot for model
A2 in Figure 2, but we could do similarly for any other one in
Figures 1-2. The result for model A2 is depicted in Figure 5,
where we can assess the detailed reconstruction of the final
contours in terms of the partial contours from the different SN
la+BAO+H(z)+LSS+BBN+CMB data sources. This recon-
struction is presented through a series of three plots made at
different magnifications. In the third plot of the sequence we
can easily appraise that the BAO+LSS+CMB data subset
plays a fundamental role in narrowing down the final physical
region of the (€2, ) parameter space, in which all the
remaining parameters have been marginalized over. This
reconstruction also explains in very obvious visual terms why
the conclusions that we are presenting here hinge to a large
extent on considering the most sensitive components of the
data. While CMB obviously is a high-precision component in
the fit, we demonstrate in our study (both numerically and
graphically) that the maximum power of the fit is achieved
when it is combined with the wealth of BAO and LSS data
points currently available.

In Figure 6 we show the corresponding decomposition of the
data contours for the XCDM model as well. In the upper left
panel we display the two-dimensional contours at 1o and 20 c.
L. in the (£2,,, w) plane, found using only the LSS data set. The
elliptical shapes are obtained upon applying the Fisher matrix
formalism (Amendola 2015), i.e., assuming that the two-
dimensional distribution is normal (Gaussian) not only in the
closer neighborhood of the best-fit values but also in the entire
parameter space. In order to obtain the dotted contours, we
have sampled the exact distribution making use of the
Metropolis—Hastings Markov chain Monte Carlo algorithm
(Metropolis et al. 1953; Hastings 1970). We find a significant
deviation from the ideal perfectly Gaussian case. In the upper
right panel we do the same for the combination BAO+LSS.
The continuous and dotted contours are both elliptical, which
remarkably demonstrates the Gaussian behavior of the
combined BAO+LSS distribution. Needless to say, the
correlations among BAO and LSS data (whose covariance
matrices are known) are responsible for that, i.e., they explain
why the product of the non-normal distribution obtained from
the LSS data and the Gaussian BAO one produces perfectly
elliptical dotted contours for the exact BAO+LSS combination.
Similarly, in the lower left panel we compare the exact (dotted)
and Fisher’s generated (solid) lines for the CMB data. Again, it
is apparent that the distribution inferred from the CMB data in
the (€2,,, w) plane is a multivariate normal. Finally, in the lower
right panel we produce the contours at 1o and 2o c.l. for all the
data sets in order to study the impact of each one of them. They
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have all been found using the Fisher approximation, just to
sketch the basic properties of the various data sets, despite the
fact that we know that the exact result deviates from this
approximation and therefore their intersection is not the final
answer. The final contours (up to 50) obtained from the exact
distributions can be seen in the small colored area around the
center of the lower right panel. The reason to plot it small at
that scale is to give sufficient perspective to appreciate the
contour lines of all the participating data. The final plot
coincides, of course, with the one in Figure 3, where it can be
appraised in full detail.

As is clear from Figure 6, the data on the H(z) and SN Ia
observables are not crucial for distilling the final dynamical DE
effect, as they have a very low constraining power. This was
also so for the RVM case. Once more the final contours are
basically the result of the combination of the crucial triplet of
BAO+LSS+CMB data (upon taking due care in this case of
the deviations from normality of the LSS-inferred distribution).
The main conclusion is essentially the same as for the
corresponding RVM analysis of combined contours in Figure 5,
except that in the latter there are no significant deviations from
the normal distribution behavior, as we have checked, and
therefore all the contours in Figure 5 can be accurately
computed using the Fisher’s matrix method.

The net outcome is that using either the XCDM or the
RVMs, the signal in favor of the DE dynamics is clearly pinned
down, and in both cases it is the result of the combination of all
the data sets used in our detailed analysis, although to a large
extent it is generated from the crucial BAO+LSS+CMB
combination of data sets. In the absence of any of them the
signal would get weakened, but when the three data sets are
taken together, they have enough power to capture the signal of
dynamical DE at the remarkable level of ~4c.

5. Conclusions

To conclude, the RVMs emerge as serious alternative
candidates for the description of the current state of the
universe in accelerated expansion. These models have a close
connection with the possible quantum effects on the effective
action of QFT in curved spacetime (see Sola 2013, and
references therein). There were previous phenomenological
studies that hinted in different degrees at the possibility that the
RVMs could fit the data similarly to the ACDM,; see, e.g., the
earlier works by Basilakos et al. (2009, 2012), Grande et al.
(2011), and Basilakos & Sola (2014), as well as the more recent
ones by Gémez-Valent et al. (2015) and Gémez-Valent & Sola
(2015), including of course the study that precedes this work,
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Best-fit Values for the Various Vacuum Modi?sb;ig the XCDM Using the Planck 2015 Data Set

Model h wp = Qh? n, O Verr w Xmin /dof  AAIC  ABIC
ACDM  0.693 £ 0.006  0.02265 £+ 0.00022  0.976 &+ 0.004  0.293 + 0.007 -1 39.35/38

XCDM  0.684 £ 0.010  0.02272 £ 0.00023  0.977 £+ 0.005  0.300 £ 0.009 —0.960 £ 0.033  37.89/37 —1.25 230
Al 0.681 £ 0.011  0.02254 £ 0.00023  0.972 £ 0.005  0.297 &+ 0.008  0.00057 + 0.00043 -1 37.54/37 —-090 —1.95
A2 0.684 £ 0.009  0.02252 £ 0.00024  0.971 £ 0.005  0.297 &+ 0.008  0.00074 + 0.00057 -1 37.59/37 —-0.95 —2.00
Gl 0.681 £ 0.011  0.02254 £ 0.00023  0.972 £+ 0.005  0.297 &+ 0.008  0.00059 + 0.00045 -1 37.54/37 —-090 —1.95
G2 0.682 £ 0.010  0.02253 £ 0.00024  0.971 &+ 0.005  0.297 4+ 0.008  0.00067 + 0.00052 -1 37.61/37 —097 —2.02

Note. Fitting results using the same data as in Planck XIV (2015).

Sola et al. (2015). However, to our knowledge there is no
devoted work comparable in scope to the one presented here
for the RVMs under consideration. The significantly enhanced
level of dynamical DE evidence attained with them is
unprecedented, to the best of our knowledge, all the more if
we take into account the diversified amount of data used. Our
study employed for the first time the largest updated SN Ia
+BAO+H(z)4+LSS+BBN+CMB data set of cosmological
observations available in the literature. Some of these data
(especially the BAO+LSS+CMB part) play a crucial role in
the overall fit and are substantially responsible for the main
effects reported here. Furthermore, recently the BAO+LSS
components have been enriched by more accurate contribu-
tions, which have helped to further enhance the signs of the
vacuum dynamics. At the end of the day it has b een possible to
improve the significance of the dynamical hints from a
confidence level of roughly 3o, as reported in our previous
study (Sola et al. 2015), up to the 4.2¢ achieved here. Overall,
the signature of dynamical vacuum energy density seems to be
rather firmly supported by the current cosmological observa-
tions. Already in terms of the generic XCDM parameterization
we are able to exclude, for the first time, the absence of vacuum
dynamics (ACDM) at 40 c.l., but such a limit can be even
surpassed at the level of the RVMs.

It may be quite appropriate to mention at this point of our
analysis the very recent study by us (Sola et al. 2016) in which
we have considered the well-known Peebles & Ratra scalar
field model with an inverse power-law potential V (¢) o< ¢ ¢
(Peebles & Ratra 1988a, 1988b), where the power & here
should, of course, not be confused with a previous use of « for
model A2 in Section 2). In that study we consider the response
of the Peebles & Ratra model when fitted with the same data
sets as those used in the current work. Even though there are
other recent tests of that model (see, e.g., Samushia 2009;
Farooq et al. 2013; Pourtsidou et al. 2013; Pavlov et al. 2014;
Avsajanishvili et al. 2014; Pourtsidou & Tram 2016), none of
them used a comparably rich data set to the one we used here.
This explains why the analysis of Sola et al. (2016) was able to
show that a nontrivial scalar field model, such as the Peebles &
Ratra model, is able to fit the observations at a level
comparable to the models studied here. In fact, the central
value of the « parameter of the potential is found to be nonzero
at ~40 c.l., and the corresponding EOS parameter w deviates
consistently from —1 also at the 40 level. These remarkable
features are only in reach when the crucial BAO+LSS+CMB
data are at work in the fitting analysis of the various
cosmological models. The net outcome of these investigations
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is that several models and parameterizations of the DE do
resonate with the conclusion that there is a significant (~40)
effect sitting in the current wealth of cosmological data. The
effect looks robust enough and can be unveiled using a variety
of independent frameworks. Needless to say, compelling
statistical evidence conventionally starts at 5o c.l., and so we
will have to wait for updated observations to see whether such
a level of significance can eventually be attained. In the
meantime, the possible dynamical character of the cosmic
vacuum, as suggested by the present study, is pretty high and
gives hope for an eventual solution of the old CC problem,
perhaps the toughest problem of fundamental physics.
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estimators. J.S. has been supported by FPA2013-46570
(MICINN), CSD2007-00042 (CPAN), and 2014-SGR-104
(Generalitat de Catalunya); A.G.-V. acknowledges the support
of an APIF grant of the U. Barcelona. We are also partially
supported by MDM-2014-0369 (ICCUB).
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