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Abstract

Resistance to first-line treatments for Plasmodium falciparum malaria and the insecticides

used for Anopheles vector control are threatening malaria elimination efforts. Suboptimal

responses to drugs and insecticides are both spreading geographically and emerging inde-

pendently and are being seen at increasing intensities. Whilst resistance is unavoidable, its

effects can be mitigated through resistance management practices, such as exposing the

parasite or vector to more than one selective agent. Resistance contributed to the failure of

the 20th century Global Malaria Eradication Programme, and yet the global response to this

issue continues to be slow and poorly coordinated—too often, too little, too late. The Malaria

Eradication Research Agenda (malERA) Refresh process convened a panel on resistance

of both insecticides and antimalarial drugs. This paper outlines developments in the field

over the past 5 years, highlights gaps in knowledge, and proposes a research agenda

focused on managing resistance. A deeper understanding of the complex biological pro-

cesses involved and how resistance is selected is needed, together with evidence of its pub-

lic health impact. Resistance management will require improved use of entomological and

parasitological data in decision making, and optimisation of the useful life of new and exist-

ing products through careful implementation, combination, and evaluation. A proactive, col-

laborative approach is needed from basic science and the development of new tools to

programme and policy interventions that will ensure that the armamentarium of drugs and

insecticides is sufficient to deal with the challenges of malaria control and its elimination.

Summary points

• Since 2011, significant progress has been made in understanding resistance. Surveillance

has been expanded and improved in many malaria-endemic countries and there is a bet-

ter understanding of the genetic basis of resistance, identifying some molecular markers

that can be used to track its emergence and spread. Better tools to measure and manage

the intensity of resistance are available.
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• However, our response to increases in the prevalence and intensity of resistance has

been slow and reactive. A promising pipeline of new vector control tools and therapeu-

tics is in development, but all actors in the malaria community need to plan proactively

how to implement, integrate, and evaluate these products.

• Quantifying the public health impact of resistance has been difficult, particularly for

insecticides. For both insecticides and drugs, defining the minimum essential evidence

required for policy makers to manage resistance and ensuring that programs employ

rigorous quality assurance in collecting and managing these data are critical.

• As malaria control increases, the selection pressure on the parasite or mosquito vector

increases. Strategies for resistance management are therefore crucial for all stages of

elimination. Countries need to allocate funding and human resources to effectively

manage the threat of resistance and sustain the gains achieved to date.

• This paper reviews the current knowledge base and identifies research priorities

addressing resistance to drugs and insecticides. It is a result of a unique collaborative

effort of experts in drug and insecticide resistance brought together for the malERA

Refresh process.

Introduction and rationale

Over the past decade, unprecedented progress has been made in reducing malaria morbidity

and mortality [1]. However, growing resistance to the first-line treatment for P. falciparum
malaria, artemisinin-based combination therapies (ACTs), and the insecticides used to sup-

press mosquito vectors threaten the sustainability of recent gains in malaria control and lon-

ger-term prospects for elimination.

Vector control and antimalarial treatment depend on a limited armamentarium, and when

single drugs and insecticides are widely deployed, selection pressure is intense and the emer-

gence of resistant parasites and mosquitoes is inevitable.

Drug and insecticide resistance were crosscutting issues in the original malERA (Malaria

Eradication Research Agenda) series in 2011 [2]. However, the parasite and vector communi-

ties rarely interact. The increasing urgency of these issues and the contrasting operational

responses warranted a dedicated panel in the malERA Refresh process. The failure of drug

treatment has human consequences: recurrent parasitaemia, severe malaria, anaemia, and

associated morbidity and mortality. In the early 2000s, resistance to single antimalarials led to

policy changes recommending deployment of ACTs [3]. In contrast, resistance to the most

widely used class of insecticide, pyrethroids, was first documented in the 1980s, but pyrethroid

monotherapies still dominate current control efforts [4].

This paper aims to review developments in drug and insecticide resistance over the past 5

years (Box 1), discuss gaps in knowledge, and identify key research priorities (Box 2).

Methods

The findings presented in this paper result from an extensive literature review of published

and unpublished materials and the deliberations of the 2015 malERA Refresh Consultative

Panel on Insecticide and Drug Resistance. Electronic databases were systematically searched
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for published literature between January 1, 2010, and November 2, 2015, without language

limitations. Panellists were invited to recommend additional literature. A 2-day workshop was

held with the majority of the panel members, including specialists from basic science and

product development, field researchers, and WHO representatives. The panel broke into 2

working groups to identify the problems that need to be solved in insecticide and drug resis-

tance and what research is needed to address these problems. Each group fed back to the ple-

nary session, in which further robust discussions and input occurred. This helped refine the

opportunities and gap areas in which research is needed. The final findings were arrived at

with input from all panellists and several iterations of the manuscript.

What do we know about resistance?

Insecticides for malaria vector control are limited to pyrethroids for long-lasting insecticidal

nets (LLINs) and pyrethroids, organochlorines, organophosphates, and carbamates for indoor

residual spraying (IRS). Vector resistance has been detected across Africa to all insecticide clas-

ses. However, resistance to the pyrethroids is the most widespread [5]. In Asia, insecticide

resistance is common in some Anopheles species [6]. Sixty countries have reported resistance

to at least 1 insecticide, but the scale of the problem is likely to be much greater [7].

Despite ubiquitous pyrethroid resistance in some areas, millions of pyrethroid-impregnated

nets are distributed annually. Once distributed, these nets can contribute to the selection of

resistant vectors for the duration of their 3-year life. In Burkina Faso, the intensity of the pyre-

throid resistance seen in A. gambiae increased 10-fold in a single year [8], and this trend is

apparent in multiple locations throughout Africa [9]. A. funestus also exhibits resistance to

multiple insecticides at increasing intensities [10–12]. Proactive defensive strategies are critical

Box 1. Progress over the past 5 years in drug and insecticide
resistance research

• A promising pipeline of new therapeutics, insecticides, and noninsecticidal vector con-

trol tools is in development, largely due to the work of the Medicines for Malaria Ven-

ture (MMV) and the Innovative Vector Control Consortium (IVCC)

• Recognition of the impact and importance of drug and insecticide resistance with the

creation of the WHO Global Plan for Insecticide Resistance Management in malaria

vectors (GPIRM) and WHO Global Plan for Artemisinin Resistance Containment

(GPARC)

• Identification of genes and molecular markers associated with drug and insecticide

resistance

• Improved understanding of resistance mechanisms in parasite and vector populations

• Global databases to monitor drug and insecticide resistance

• Development of new tools to study resistance in vivo and in vitro, e.g., ring-stage sur-

vival assay, parasite clearance estimator, human blood-stage challenge studies for drug

resistance, and bioassays that measure the intensity of insecticide resistance
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Box 2. Research and development agenda for drug and insecticide
resistance

Crosscutting issues for drug and insecticide resistance

Applied research.

• Use in vitro, in vivo, and mathematical models to identify new combinations of drugs

and insecticides, and understand how mechanisms of action and mechanisms of resis-

tance inform this

• Determine which conditions are optimal for the emergence and spread of drug and

insecticide resistance and how these can be minimised

• Evaluate whether resistance management strategies can restore susceptibility to drugs

and insecticides

• Evaluate how new intervention types/paradigms should be introduced and assessed to

limit the selection of resistant phenotypes

• Evaluate the optimal surveillance systems for resistance and determine the appropriate

data that must be collected (including technical approach, frequency, geography, and

temporal–spatial factors)

• Determine and validate the relationships between molecular markers and parasite/vec-

tor resistance phenotypes in different transmission settings

Policy and advocacy.

• Develop a framework to cost-elimination strategies that accounts for resistance man-

agement practices and increasing cost per case of malaria/malaria death averted and

identify sources of funding for these strategies

• Agree on the process and minimum data required by the normative bodies to enable a

new drug or insecticide product to complete the route to market

• Devise market strategies and incentives to ensure a mix of drug and insecticide prod-

ucts remains available and is used strategically to manage resistance

• Assess which decision-support systems can efficiently and rationally be adapted to

drug and insecticide policies

• Determine the minimum dataset required to guide drug and insecticide resistance

management and the level of evidence required to switch to new drug or insecticide

strategies

Insecticide resistance

• Analyse the most cost-effective ways of slowing the spread and emergence of insecti-

cide resistance (e.g., by using a combination of interventions, spatial mosaics, or mix-

tures of insecticides)

• Determine which spatial and temporal scale insecticide resistance management strate-

gies should be carried out

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002450 November 30, 2017 4 / 16

https://doi.org/10.1371/journal.pmed.1002450


to reducing the spread and emergence of resistant phenotypes and preventing broad-spectrum

cross resistance to multiple insecticides.

In the case of the antimalarials chloroquine and sulfadoxine-pyrimethamine (SP), resistant

P. falciparum and P. vivax parasites evolved in the Greater Mekong Subregion (GMS) and the

island of Papua and South America, respectively [13,14]. Retrospective analysis of molecular

markers showed resistant P. falciparum parasites spread from Southeast Asia foci across Asia

and throughout Africa over several decades [15–18]. ACTs were promoted to prevent or retard

the selection of resistance by simultaneously administering 2 drug components with different

modes of action [19]. However, resistance to artemisinins and their partner drugs is spreading

and emerging independently among P. falciparum populations in the GMS [20–23].

Identifying resistance

Two main mechanisms of insecticide resistance have been identified: target site mutations

(such as kdr and ace) [24,25] and metabolic resistance involving mutation, duplication, or

• Study how much insecticide resistance has a negative impact on mosquito fitness sur-

vival or parasite development in the mosquito and investigate how this compares for

different active ingredients

• Develop a method to assess the age of resistant mosquitoes

• Define the optimal use of bioassays and molecular markers to accurately predict the

efficacy of vector control in relation to insecticide resistance

• Study the mechanisms of mosquito behavioural resistance and assess if this is sus-

tained across generations

• Assess which novel, noninsecticidal tools for controlling mosquito populations would

help to slow or prevent the emergence of resistance or restore susceptibility

Drug resistance

• Evaluate if the timing of community-based prevention, e.g., mass drug administration,

can be optimised to reduce the risk of emerging drug resistance

• Investigate why drugs such as quinine are less likely to develop resistance and use this

knowledge for future drug development

• Determine which approaches are most sensitive and specific to determine true drug

treatment efficacy (e.g., molecular correction) in P. falciparum and P. vivax parasites

• Define what studies are required by policy makers to evaluate the use of multiple

therapies

• Define the minimal criteria for inclusion of existing and new drugs in multiple agent

regimes (e.g., efficacy, resistance, pharmacokinetic factors, and drug–drug interac-

tions) and whether these criteria change in different programmatic modes

• Study the extent to which human immunity masks the presence of drug resistance,

especially resistance to artemisinins
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altered regulation of enzymes and transporters that increase insecticide metabolism or excre-

tion. Metabolic resistance has greater implications for malaria vector control because the effi-

cacy of a range of insecticides is usually affected [5,26].

Routine monitoring of insecticide susceptibility uses phenotypic bioassays that expose live

mosquitoes to a single dose of a given insecticide over a fixed time period and measure mortal-

ity. The results are highly variable; hence, more laborious methods utilising a range of insecti-

cide concentrations may be needed [27]. These assays have local utility but are often

logistically challenging. Larger numbers of mosquitoes can be screened using molecular tech-

niques, although it is unclear under what conditions validated molecular markers could serve

as a replacement for phenotypic assays or if this might be appropriate for malaria control pro-

grammes [28].

The mechanisms of insecticide resistance can manifest as major changes in the insect ner-

vous system or metabolome. Resistance may have an effect on insect longevity, mating com-

petitiveness, and vectorial capacity [29,30]. Alongside physiological resistance, there is

potentially also behavioural resistance, as increased mosquito numbers that bite or rest out-

doors have been observed. There is limited evidence on the genetic basis of behavioural resis-

tance, but determining whether vector control interventions are selecting a heritable trait

warrants further research [31].

Resistance to artemisinins is assessed in clinical studies by measuring the parasite clearance

in a patient in the first several days after treatment [32]. A lab-based assay that correlates with

the in vivo parasite response to artemisinins has also been validated [33]. Mutations in the pro-

peller domain of Kelch 13 (PF3D7_1343700) (K13) were identified as a major determinant of

artemisinin resistance and may be reliable molecular markers in the GMS [34,35]. Outside the

GMS, parasites with K13 mutant alleles are present in many areas at low levels; there is cur-

rently no molecular evidence to suggest that these alleles are being selected [22,36–38]. More

than 100 K13 mutant alleles have been reported outside of Southeast Asia [22,38–40], but

none have yet been associated with the slow-clearing phenotype [41]. One hypothesis is that

artemisinin resistance may require additional genetic determinants in these locations to allow

selection of K13 mutant parasites that exhibit the slow-clearing phenotype in vivo [20,42].

Nevertheless, the adoption of molecular markers to monitor drug resistance has been much

faster than markers to assess insecticide resistance.

Molecular markers correlated with resistance to nonartemisinin antimalarials have also

been identified. Polymorphisms or multicopy numbers in the P. falciparum chloroquine resis-

tance transporter (pfcrt) and P. falciparum multidrug resistance 1 (pfmdr1) genes have been

associated with resistance to chloroquine and mefloquine [43,44] and polymorphisms or mul-

ticopy numbers in the P. falciparum dihydrofolate reductase (pfdhfr) and P. falciparum dihy-

dropteroate synthase (pfdhps) genes have been associated with resistance to SP [45]. Changes

in the prevalence of pfcrt and pfmdr1 alleles have been observed in many areas where ACTs

including amodiaquine or lumefantrine have been intensively used [46,47]. However, clinical

efficacy of leading ACTs that include lumefantrine, amodiaquine, piperaquine, or mefloquine

appears to remain acceptable in areas outside the GMS. Recent research suggests that plasmep-

sin 2–3 is associated with clinical and in vitro piperaquine resistance (PSA, piperaquine sur-

vival assay) but other markers could also be involved [48]. In Southeast Asia, intensive use of

dihydroartemisinin-piperaquine (DP) in parasites already resistant to piperaquine and artemi-

sinin has selected parasites with multiple resistance mechanisms, and high levels of treatment

failure to DP are now observed in Cambodia [49].

Chloroquine remains the recommended treatment for P. vivax, but resistance and declining

efficacy has been noted in several populations, and ACTs are recommended in some areas

[50,51]. There are no standardized molecular correlates of chloroquine resistance for P. vivax,
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but P. vivax multidrug resistance 1 (pvmdr1) has been associated with resistance [52]. Beyond

this, the understanding of resistance in nonfalciparum malaria is very limited.

Public health impact of resistance

While ecological studies have found broad evidence of dramatic health effects of spreading

drug resistance [18], efficient assessment of the public health impact of antimalarial and insec-

ticide resistance has been difficult. First, assessments of resistance prevalence are drawn from a

few sentinel sites, but the heterogeneity of resistance in neighbouring populations can be enor-

mous, making specific predictions difficult. Second, molecular markers are easier to measure

at finer spatial and temporal scales, but the relationship with the drug or insecticide response

is not direct [53,54]. Third, most policies on malaria treatment and vector control are imple-

mented nationally, so recommending policies for regions within a country may be operation-

ally unfeasible.

Drug resistance increases the risk of treatment failure and therefore transmission, but these

relationships can be difficult to establish in the field. Human factors, especially immunity,

affect treatment efficacy, so treatment failure in the whole population is not obvious until para-

site resistance is well established [55]. However, in children there is a clear relationship

between parasitaemia and anaemia, with associated morbidity and mortality [55,56]. Studies

have correlated the prevalence of molecular markers with the risk of treatment failure, but no

metric that works in all regions has been defined [57]. As a result, the prevalence of molecular

markers has had a limited impact on policies for routine antimalarial use [58]. This disconnect

is changing in the GMS, where ACT treatment failure has reached crisis levels [59], and rapid

assessments of molecular markers for resistance to artemisinins and partner drugs are cur-

rently being used [47].

There are few published studies on the epidemiological impact of insecticide resistance, so

decisions rely primarily on entomological end points. Evidence from a 5-country evaluation

attempted to assess whether LLINs remain effective in the presence of pyrethroid resistance,

although the studies were in areas with low to moderate resistance as measured in single-dose

bioassays without assessment of resistance intensity [60]. This study was not able to quantify

the effect on LLINs [59]. For IRS, the best evidence for an epidemiological impact of pyre-

throid resistance comes from settings where pyrethroids were replaced in IRS campaigns with

alternative insecticides and parasite prevalence rapidly declined [61, 62]. Similar evidence is

available from a study in an area of Sudan with pyrethroid resistance but carbamate suscepti-

bility, in which IRS with pyrethroids in addition to LLINs had no added impact, but changing

to carbamate IRS halved the malaria incidence [60].

Managing resistance, moving toward elimination

Optimizing drug and insecticide use. Avoiding parasite or mosquito population expo-

sure to a single selective agent is the central principle of resistance management. Ideally, insec-

ticidal compounds with different modes of action should be used simultaneously or in spatial

or temporal rotation. These principles, which are identical to those used in the management of

insecticides used for crop pests, have been outlined in the GPIRM in malaria vectors [63].

Unfortunately, implementation has been challenging; pyrethroid resistance is ubiquitous, non-

pyrethroid LLINs are not currently available, and other forms of vector control can signifi-

cantly increase costs [64]. New public health insecticides with different modes of action are on

the horizon [65], but we lack information on the effectiveness of the proposed strategies to

slow the emergence or spread of insecticide resistance, and there is no clear indication of how

they should be integrated alongside existing tools. This includes those that are noninsecticidal
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and products that work on different targets, e.g., spatial repellents and endocticides, whose effi-

cacy may not be influenced by insecticide resistance [65]. Another confounder is the applica-

tion of most insecticides for both agricultural and public health use. The impact of this on

public health is highly variable depending on crop type and volume and timing of insecticide

application.

What are the benefits of insecticide rotations, mixtures, or spatial mosaics of different com-

pounds? What is the impact of adding nonpyrethroid IRS where LLINs are already deployed

at high coverage and quality? When should new insecticides be adopted? What is the ideal

rotation period or mosaic configuration? How many insecticide classes are needed for effective

rotation or mosaic strategies? Despite the absence of data to answer these questions, some

countries have already developed operational frameworks for resistance management that

could be adopted by other programmes [66].

ACTs are still effective in most regions outside the GMS. Optimisation of dose, duration of

treatment, timing of treatment, and pharmacokinetic-dynamic profiles in specific subpopula-

tions, e.g., children and pregnant women, should be systematically encouraged post-licensure

to maximise efficacy and slow selection for resistance. Pooled analyses have assessed the effect

of dosing strategies for the several currently used ACTs, but the uptake of this by malaria con-

trol programmes is limited [67]. Molecular markers are being used in addition to therapeutic

efficacy studies in specific locations in the GMS to choose treatment policies more accurately

[67], but far more complete information on all ACTs is needed.

Different published models diverged on the conclusion that implementation of multiple

first-line therapies could more effectively prevent the emergence of drug resistance compared

with the temporal rotation or sequential use of first-line treatments [68–71]. Multiple models

need to be evaluated and studies to verify this must be defined [72]. We also need to better

understand why parasites do not seem to have developed resistance to quinine and factor this

into future drug development efforts. In Southeast Asia, the use of triple therapies using exist-

ing antimalarials is currently being tested and could be considered in the context of multi-

drug-resistant malaria [73].

Assessment of the selective pressures and emergence of resistance to antimalarials is diffi-

cult with small-scale studies, but large-scale public health interventions may provide evidence.

For example, studies should be undertaken in countries using different drug combinations for

treatment and mass chemoprevention campaigns, such as seasonal malaria chemoprevention,

mass drug administration, or intermittent preventive treatment in pregnancy (IPTp). Coordi-

nation of these interventions in the same locality may provide one way to reduce or disrupt the

selection pressure exerted on a single class of compound [74].

Using data to support resistance management. Entomological data generated by coun-

tries vary in quantity and quality, and limited information flow between entomologists, pro-

gramme managers, and research institutes has hindered advocacy efforts around improved

resistance management. Linking entomological data to epidemiological outcomes is extremely

complex [75] and by the time resistance has a demonstrable public health impact, it may be

too late to intervene against it. However, South Africa [62], Zambia [76], and Equatorial

Guinea [64] have resistance management plans in place. Similarly, molecular marker surveil-

lance can inform which drug regimens are the most suitable for particular programmatic

modes. This approach is now routine in some African countries [74,77] but is not universal.

Drug-resistance monitoring in some countries also requires strengthening, and despite the

tighter link to public health impact, the ability to respond rapidly may be lost if resistance

monitoring is not well embedded. For both insecticides and drugs, defining the minimum

essential data required for policy makers to manage resistance and ensuring that programs

employ rigorous quality assurance in collecting and managing these data are critical.
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Resistance surveillance is weak in many endemic countries. Inadequate attention and fund-

ing have been allocated to entomological monitoring and insecticide susceptibility research.

Several countries in Africa have established sentinel sites for the longitudinal monitoring of

insecticide resistance [5]. However, the methods, timing, and sampling are inconsistent, mak-

ing meaningful inferences difficult [78]. Most of these sites use discriminating dose assays

[79]. All bioassays are performed on 3–5-day-old mosquitoes under standard insectary condi-

tions, so the effect of natural mosquito traits (e.g., age, blood-feeding status, circadian rhythm

[80,81], and climatic variables [82]) on resistance is not assessed or reported [83]. Molecular

species identification of mosquitoes undergoing resistance tests may also increase accuracy

when compared to morphological identification. Techniques have been developed to measure

the age distribution of mosquito populations in the laboratory [84], but a more precise, low-

cost, field-applicable method is needed to allow malaria control programmes to evaluate the

efficacy of vector control interventions is needed.

Anticipating the challenges of lower transmission. High-level use of interventions can

suppress malaria transmission but also increases the risk of selection of resistance, creating

new challenges at the later stages of elimination. Resistance surveillance in low transmission

regions is increasingly expensive, and maintaining human and material capacity in the context

of many other public health needs is crucial. The minimal criteria for the inclusion of new or

existing therapeutics or insecticides in a multi-agent regimen must be defined. For drugs,

these criteria might depend on transmission levels and could include pharmacokinetic-

dynamic profiles, mechanisms of resistance, cross resistance, and drug–drug interactions. The

corresponding parameters for insecticides of persistence/residual efficacy, mechanisms of

resistance/cross resistance, or compound interactions are equally relevant. If a robust resistant

phenotype can be defined, whole genome sequencing of parasites and vectors can identify

regions under selection very early in the process, giving clues to associated genetic changes

[85].

Market strategies and getting products to market. Single first-line antimalarial treat-

ments or insecticide monotherapies may be cheaper in the short term, but the long-term cost-

effectiveness will be compromised by increasing levels of resistance [86]. Development of nor-

mative guidance on product use within a multiyear programme of interventions is essential if

short-term decision-making is to change. The selection of products may be based on a number

of epidemiological, entomological, logistic, and financial variables. It is critical to develop a

framework that reliably costs the long-term elimination strategies, rather than short-term

‘delivered units’, and takes into account resistance management practices. As we head toward

elimination, the increased cost of keeping drugs and insecticides available for a diminishing

number of cases means incentives and market strategies for keeping the pipeline of products

active are paramount.

Clarity is needed on the evidence required by normative bodies to approve new products

and develop treatment guidelines. New tools are likely to have a higher unit price, so clear data

requirements and paths to their use require definition. Without this, programme financial

constraints; uncertainties around cost-effectiveness; and delays in recommendation, produc-

tion, and procurement could mean products to overcome resistance are underutilised. If this

situation becomes the norm, incentives for innovation will diminish and the pipeline of effica-

cious tools will soon be depleted.

Conclusion

Resistance is an inevitable consequence of drug and insecticide treatment, but the malaria

community as a whole has repeatedly failed to respond to this issue in a proactive way.
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Programme and policy decisions should be based on comprehensive resistance data, and this

should be coupled with improved efforts to understand the complex biological processes that

select for resistant phenotypes. The tools to surmount resistance are limited and little is known

about the most effective resistance management measures, so new therapeutics and vector

control products should have a clear route to market and be carefully implemented and evalu-

ated to optimise the choice of interventions. Multidrug and insecticide regimens are not

unique to malaria control and other disease systems such as HIV [87], tuberculosis [88], and

agricultural pest control [89] offer important insights into the management of insecticide- and

drug-based approaches. The malaria community must learn from other disease groups and

industries and heed the lessons of the past or risk further erosion of the malaria elimination

agenda as renewed efforts are undermined by resistance.
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Sciences de la Santé, Ouagadougou, Burkina Faso; Abdoulaye Djimdé, University of Science,
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