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1. SUMMARY 

Solubility determination is one of the most important parameters to study when developing a 

new drug. Solubility gives information about the tendency of the compound to be dissolved 

when having a particular liquid media surrounding it. Ensuring the drug solubility in body fluids 

enhances bioavailability which is completely necessary to have the desired effect on cells. 

A significant factor that must be taken into consideration while determining solubilities is the 

possibility of most compounds of pharmaceutical interest to have ionisable groups. The 

presence of acid and/or basic groups in the molecule would imply a variation of the solubility 

with the pH. Therefore, depending of the pH of the media and the pKa of the molecule, it will be 

ionised or in its neutral form and as a consequence, its solubility will vary. 

In this work, two ionisable drugs relatively insoluble have been studied: pioglitazone which is 

an amphoteric substance and glimepiride which is an acidic compound.  

In order to determine solubility, shake-flask method has been used. Although there are other 

recognized procedures, shake-flask is the reference method to carry out solubility 

determinations. It consists of reaching the thermodynamic equilibrium between a saturated 

solution and the precipitated solid at different pH. Then, the supernatant is analysed through 

HPLC to determine solubility and, as the solubility is measured for the solid in equilibrium with 

the saturated solution, the solid is analysed by X-Ray diffraction to know which compound and 

in which polymorphic form is being studied. As a result, the solubility-pH profile of the compound 

is obtained. 

Keywords: Solubility, drug, ionisable group, shake-flask, X-Ray diffraction, solubility-pH profile. 
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2. RESUM 

La solubilitat és un dels paràmetres més importants que cal estudiar quan es s’investiga el 

desenvolupament d’un nou fàrmac, dóna informació sobre la tendència del compost a 

dissoldre’s en presència d’un medi líquid concret. Garantint la solubilitat del principi actiu en els 

fluids corporals es potencia la biodisponibilitat que és completament necessària per tenir els 

efectes desitjats en les cèl·lules. 

Un factor rellevant que s’ha de tenir en compte quan es determinen solubilitats és l’alta 

possibilitat dels compostos d’interès farmacèutic de tenir grups ionitzables. La presència de 

grups àcids i/o bàsics a la molècula implicaria una variació de la solubilitat amb el pH. Per tant, 

depenent del pH del medi i el pKa de la molècula, aquesta estarà ionitzada o en la seva forma 

neutra i com a conseqüència, la seva solubilitat variarà. 

En aquest treball, s’han estudiat dos fàrmacs ionitzables relativament insolubles: la 

pioglitazona, un compost amfòter, i la glimepirida, un compost àcid. 

Per la determinació de solubilitat, s’ha seguit el mètode shake-flask. Encara que hi ha altres 

procediments reconeguts, el shake-flask és el mètode de referència per dur a terme 

determinacions de solubilitat. El mètode consisteix en establir l’equilibri termodinàmic entre una 

solució saturada i el precipitat sòlid a diferents pH. A continuació, el sobrenedant és analitzat 

mitjançant HPLC per tal de determinar la solubilitat i, com que la solubilitat que es mesura és la 

del sòlid en equilibri amb la solució saturada, el sòlid s’analitza mitjançant difracció de raig X 

per conèixer quin compost i en quina forma polimòrfica està sent estudiat. Com a resultat s’obté 

el perfil de solubilitat del compost. 

Paraules clau: Solubilitat, fàrmac, grup ionitzable, shake-flask, difracció de raig X, perfil de 

solubilitat. 
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3. INTRODUCTION 

Solubility determination of drug candidates is important in drugs research, both in discovery 

and development stages. Physicochemical characterization (not only solubility) in early stages is 

a key point for saving money and time and avoiding the development of a not viable drug. 

Despite the wide variety of physicochemical parameters, solubility is one of the most important 

features to be determined so that drug solubility in aqueous media can be ensured and 

consequently, its proper oral absorption. As the pH of the human body changes in its different 

parts, solubility has to be determined in a wide range of pH to be able to compare it to each pH 

of the digestive system and know where the active pharmaceutical ingredient (API) is more 

likely to be dissolved in [1,2]. 

Not only does the determination of solubility consist of measuring the compound in a 

saturated solution but also of analysing the solid in equilibrium with the solution to know the 

solubility of which compound and in which form is being measured. 

In case the drug is not enough soluble, an effective and recurrent way to increase drug 

solubility and dissolution rate is salt formation. In general, salts of basic and acidic drugs have a 

higher solubility than their corresponding base forms. However, paying careful attention to 

identify and develop an optimal salt form is essential to ensure the desired solubility raise [3,4]. 

3.1. SOLUBILITY DEFINITIONS 

Solubility is the property of solute to dissolve in a solvent and it depends on the solute 

chemical parameters and other external ones such as pH or temperature.  In case of drug 

solubility, it is as important to determine it in aqueous media (gastrointestinal fluids and blood) 

as in lipid based media (cell membranes). In this study, only aqueous solubility will be taken into 

account. The solubility in water, Sw, is defined by the saturation concentration of the substance 

in water [5,6]. 

Other relevant solubility definitions are kinetic and equilibrium solubilities. Kinetic solubility, 

Sk, is defined as the concentration of a compound at the time when an induced precipitate first 

appears in the solution. However, when the compound is in a saturated solution with excess of 
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solid precipitated, then the equilibrium solubility is reached. When working with ionisable 

substances, talking about intrinsic solubility and solubility at a determined pH has sense. 

Intrinsic solubility, S0, refers to the equilibrium solubility of the free acid or base form of an 

ionisable compound at a pH where it is fully un-ionised. For the same kind of compounds, 

solubility at a certain pH, SpH, is defined as the sum of the concentrations of all compounds 

species dissolved in the aqueous solution.   

Solubility is generally expressed in mg/mL, moles/L or logS (decimal logarithm of solubility 

expressed as moles/L) [1]. 

3.2. SOLUBILITY-PH PROFILES 

The theoretical solubility-pH profile of a compound can be obtained through the Henderson-

Hasselbalch (HH) equations just using the pKas and the intrinsic solubility of the studied 

compound [2]. 

3.2.1. Solubility of acidic substances  

 In the case of an acidic compound, the equilibriums that would take place in an aqueous 

solution are represented in figure 1 where HA represents the neutral form of the acid and A- the 

deprotonated one. 

 

 

 

The mathematical equations for each equilibrium are: 

HA(s)                  HA(aq)     S0=[HA(aq)]            (1) 

HA(aq)                  H+ + A-    Ka=[A-][H+]/[HA]                    (2) 

At a determined pH, the solubility is described as follows: 

SpH=[HA]+[ A-]              (3) 

Finally, combining all the 3 equations above, the HH equation for acid compounds is 

obtained. 

logS=logS0+log(1+10pH-pKa)                          (4) 

pKa 

HA(aq) 

S0 

HA(s) 

H+ + A- 

Figure 1. Acid-base and solubility equilibriums of an acid substance HA. 
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If logS0 and pKa are known, the theoretical solubility-pH profile of an acid substance can 

be represented using equation (4). Figure 2 shows the solubility-pH profile for a hypothetical 

acid compound of logS0=-3 and pKa=7.  

 

 

 

 

 

 

 

As figure 2 depicts, the minimum solubility of an acidic compound is found under its pKa 

where the logS is constant and corresponds to logS0. When pH is higher than its pKa the 

solubility increases performing a line of slope +1 as the pH rises. 

3.2.2. Solubility of amphoteric substances  

As it has been previously explained for acidic compounds, the HH equations can also be 

deduced for amphoteric compounds.  

In this case, the equilibriums that an amphoteric molecule would suffer in an aqueous 

solution are represented in figure 3 where H2X+ represents the protonated molecule, HX the 

neutral form of the amphoteric substance and X- the deprotonated one. 

 

 

 

The mathematical equations for each equilibrium are: 

HX(s)                  HX(aq)     S0=[HX(aq)]             (5) 

Figure 3. Acid-base and solubility equilibriums of an amphoteric substance HX. 

pKa1 

S0 

pKa2 

H2X+ HX(aq) 

HX(s) 

H+ + X- 

Figure 2. Solubility-pH profile for a hypothetical 
acid compound of logS0=-3 and pKa=7. 
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H2X+                  HX(aq) + H+    Ka1=[HX][H+]/[H2X+]           (6) 

HX(aq)                  H+ + X-    Ka2=[X-][H+]/[HX]           (7) 

At a determined pH, the solubility is described as follows: 

SpH=[HX]+[X-]+[ H2X+]                          (8) 

Finally, combining all the equations above the HH equation for amphoteric compound is 

obtained. 

logS=logS0+log(1+10pKa1-pH+10pH-pKa2)           (9) 

If logS0, pKa1 and pKa2 are known, as a result of using equation (9), the theoretical curve 

for solubility-pH profile of an amphoteric substance is deduced, figure 4. It shows the 

solubility-pH profile for a hypothetical amphoteric compound of logS0=-3, pKa1=4 and 

pKa2=9. 

 

 

 

 

 

 

 

 

 

As figure 4 deploys, the minimum solubility of an amphoteric compound is found 

between its two pKa, where the logS is constant and corresponds to logS0. Therefore, if 

there is enough difference of pH between the two pKas of the compound, the logS0 can be 

deduced. When pH is lower than its pKa1, the solubility increases performing a line of slope -

1 as the pH decreases. The same way, when pH is higher than its pKa2, the solubility 

increases performing a line of slope +1 as the pH rises. 

 

Figure 4. Solubility-pH profile for a hypothetical 
amphoteric compound of logS0=-3, pKa1=4 and pKa2=9. 
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3.3. METHODS TO MEASURE SOLUBILITY 

3.3.1. Shake-flask method 

Shake-flask is the method used in this study to determine solubility. In fact, it is the 

reference one. It consists of two important but different parts; first of all samples are vigorously 

agitated in different pH buffers in presence of solid phase and then, they sediment until they 

reach the equilibrium. Once the procedure has finished, the liquid and solid phase are 

separated and they are analysed independently. There are some variables that must be 

considered because they might have an effect on the reliability of results [1]. 

3.1.1.1. Buffer solution  

Solubility of ionisable drugs depends on pH, therefore a buffer solution is required to 

maintain the pH stable when studying ionisable drugs at an specific pH value.  

There are multiple buffers solutions which have a buffer effect on a wide range of pH such 

as Britton-Robinson buffer, Sörensen buffer or the minimalist universal buffer (MUB). 

Nevertheless, depending on the chosen buffer the solubility determination might be affected by 

the variation of ionic strength of the buffer with the pH. A proper option is to use the MUB whose 

ionic strength keeps constant in all its range of buffer capacity as it can be observed in figure 5 

[5]. 

 

 

 

 

 

 

 

 

3.3.1.2 Amount of solid excess 

In shake-flask method, an amount of solid excess is required to reach equilibrium with the 

dissolved solid. Studies that have been carried out show that the amount of solid excess does 

Figure 5. Buffer capacity and ionic strength of 
minimalist universal buffer as function of pH. [5] 
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not affect to the final solubility result whereas it might influence the solubility rate. The advice is 

to weight small amount of solid (5-10mg/5ml) in order to avoid difficulties in sampling [1]. 

3.3.1.3 Temperature 

The dependence of solubility on temperature is well known due to the fact that temperature 

has an effect on equilibrium constants. This fact implies the necessity of a controlled and 

constant temperature during the shake-flask procedure. In general, drugs have an endothermic 

dissolution process and consequently solubility increases when there is a temperature rise. [5] 

3.3.1.4 Time of stirring 

Time of stirring has to be controlled because it is necessary to ensure enough time to 

dissolve the maximum possible quantity of compound.  

Figure 6 shows an increase of solubility until 6 hours of stirring however, from 6 to 48 hours 

there are no significant differences. As a consequence, the minimum stirring time is six hours 

although a longer time will not have a negative impact on the results [1]. 

 

 

 

 

 

 

 

3.3.1.5 Time of sedimentation 

After the stirring process, a supersaturated solution is obtained where the solute 

concentration exceeds the concentration of the real thermodynamic equilibrium. In order to 

obtain the real solubility and not a higher one, time of sedimentation has also to be controlled to 

ensure enough time to reach the equilibrium [5]. 

In figure 7, it can be observed how the solubility decreases as the equilibration time 

increases due to the fact that equilibrium is not reached before 24 hours of sedimentation. 

Therefore, the samples need to sediment at least for 24 hours [1]. 

Figure 6. Variation of solubility of 
hydrochlorothiazide with stirring time. [3] 



Solubility determination of compounds of pharmaceutical interest. 13 

 

 

 

 

 

 

 

 

3.3.1.6 Separation of solid and liquid phases 

When separating the solid and liquid phases after the sedimentation time, it is important to 

ensure that aliquots taken are completely transparent and free of solid particles which might 

lead to a higher solubility result than real. 

Two separation techniques are compared in studies: centrifugation and filtration. The 

obtained results showed that when using filtration the solubility results were further to reality 

than with centrifugation. With filtration unreal results could be obtained: a higher solubility 

caused by particles that are still suspended in the solution which are smaller than the porus size 

and cannot be separated and also a lower solubility because of a possible favourable interaction 

between the filter and the molecule. Therefore, centrifugation seems a clear better option to 

separate phases in shake-flask method [1,7]. 

3.4. X-RAY CRYSTALLOGRAPHY 

X-ray crystallography is a technique used to determine the atomic and molecular structure 

of a crystal. The incidental X-rays are diffracted by the electrons surrounding the atoms because 

their atomic radius are of the same order of magnitude as the incidental wavelength. The X-ray 

beam emerging after this interaction contains information about the position and type of atoms 

found along the ray path. By measuring the angles and intensities of these diffracted beams, a 

three dimensional picture of the density of the electrons in the crystal can be deduced. 

Consequently, from this electron density, the main positions of the atoms in the crystal can be 

determined, as well as their chemical bonds.   

 

Figure 7. Variation of solubility of 
hydrochlorothiazide with sedimentation time [1]. 
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3.5. STUDIED DRUGS 

The most significant characteristics of the pharmaceutical drugs that have been studied are 

explained below. Pioglitazone and glimepiride are used to treat diabetes mellitus type 2 (T2DM) 

which is a type of diabetes caused by cells that fail to respond to insulin properly although the 

pancreas does produce insulin effectively. Both drugs act increasing the activity of intracellular 

insulin receptors in order to decrease blood sugar levels [8]. 

3.5.1. Pioglitazone  

Pioglitazone is an amphoteric molecule whose structure is shown in figure 8. It has a basic 

centre (N, marked in green) with a pKa of 5.65 and an acid centre (NH, marked in red) with a 

pKa of 6.62. As it is an amphoteric substance, its solubility-pH profile is expected to be like 

figure 4 with its minimum solubility around pH 6 [9]. 

Its molecular weight is 356.44 g/mol. 

 

 

 

 

 

Its hydrochloride salt is also studied. Its solubility-pH profile is expected to be the same as 

for pioglitazone; it would only change if the solid in the saturated solution was different from 

pioglitazone or a different polymorphic form. 

3.5.2. Glimepiride  

Glimepiride is an acidic molecule whose structure is shown in figure 9. It has an acid centre 

with a pKa of 5.22 (N, marked in red). As it is an acidic substance, its solubility-pH profile is 

expected to be like figure 2 [9]. 

Its molecular weight is 490.62 g/mol. 

 

Figure 8. Pioglitazone structure. 
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Figure 9. Glimepiride stucture. 
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4. OBJECTIVES 

The main objective of this study is to determine the solubility-pH profiles of molecules of 

pharmaceutical interest, specifically pioglitazone and glimepiride. As they are active ingredients 

of drugs, ensuring the solubility in body fluids enhances bioavailability which is completely 

necessary to have the desired effect on cells. Both pioglitazone and glimepiride are ionisable 

substances therefore, their solubility vary with pH. Solubility will be determined at a wide range 

of pH so that a relationship between the solubility-pH profile and the pH at the different body 

parts can be established.  
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5. EXPERIMENTAL SECTION 

5.1. REAGENTS AND MATERIALS  

5.1.1. Reagents  

Water used was purified by a Milli-Q gradient system from Millipore (Bedford, MA, USA), 

with a resistivity of 18.2 MΩ·cm.  

The buffer used in the shake-flask method was prepared using acetic acid (HAc) (99.0-

100%), ethylendiamine (en) (98.8%) from J.T.Baker (Deventer, Holland) and trifluoroacetic acid 

(TFA) (>99%) from Merck (Darmstadt, Germany). The pH adjustment was done with 0.5 M 

sodium hydroxide solution from Merck.  

Two different buffers were used for HPLC mobile phase. One of them was the formate 

buffer prepared with formic acid (99.5%) from J.T.Baker and sodium hydroxide (>98%) from 

Sigma-Aldrich (St. Louis, Missouri, USA) and the other one was the ammonium buffer prepared 

with ammonia 25% and chlorhydric acid 30% both from Merck.  

5.1.2. Studied drugs  

The pharmaceutical studied drugs, pioglitazone and glimepiride, were supplied by the Unitat 

de Polimorfisme dels Centres Científics i Tecnològics de la UB, Barcelona, Spain.   

5.2. INSTRUMENTATION 

Two rotational stirrers Movil-ROD from Selecta (Abrera, Spain) were used to shake the 

samples. In order to measure pH, a pH electrode connected to a potentiometer GLP 22 from 

Crison (Alella, Spain) was employed. The centrifugation of the samples were carried out using a 

Rotanta 460RS from Hettich (Tuttlingen, Germany). 

Regarding the quantification of the pioglitazone supernatant in the shake-flask method, a 

liquid chromatograph from Shimadzu (Kyoto, Spain) was used. The chromatograph consists of 

two LC-30AD pumps which include a degasser, a SPD-M20A UV-Vis diode array detector, a 

https://en.wikipedia.org/wiki/St._Louis,_Missouri
https://www.google.es/search?q=chlorhydric+acid&spell=1&sa=X&ved=0ahUKEwid_rb1hdzXAhWGEVAKHUmSDn8QvwUIIygA
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CTO-10ASVP column oven which controls the temperature at 25 ºC and a SIL-30AC automatic 

injector. The column, which is connected to a pre-column, is an Acquity BEH C18 reversed 

phase column from Waters (Mildford, MA, USA), its particle size is 1,7 µm and its dimensions 

2,1x50 mm.   

With reference to the quantification of the glimepiride supernatant in the shake-flask 

method, a different liquid chromatograph from Shimadzu was used. The chromatograph 

consists of two LC-20AD pumps which include a degasser, a SPD-10AV UV-Vis detector, a 

CTO-10ASVP column oven which controls the temperature at 25 ºC and a SIL-20AC HT 

autosampler. The column is a Symmetry C18 reverse phase column from Waters, its particle 

size is 5 µm and its dimensions 4,6x150 mm.   

For X-Ray diffraction, the instrument used was a PANalytical X’Pert PRO MPD 0/0 power 

diffractometer of 240 mm of radius equipped with a PIXcel detector from PANalytical B.V. 

(Almelo, Netherlands). 

5.3. PROCEDURES 

5.3.1. Shake-flask method 

The MUB was used to control the pH during the shake-flask method. First of all, a solution 

of 50 mM HAc, 50 mM en and 150 mM TFA was prepared. Then, an aliquot of 25 mL was taken 

and adjusted at the desired pH using the necessary quantity of NaOH in each case. Finally, it 

was brought to a final volume of 50 mL reaching a concentration of 25 mM HAc, 25 mM en and 

75 mM TFA and an ionic strength of 0.125 M. As a result, different buffers at different pH were 

obtained. 

To start with the shake-flask procedure itself, between 5 mg and 20 mg of solid were 

weighed. There has to be enough solid to saturate the solution, therefore 3 times the expected 

solubility has to be weighed. An aliquot of 3 mL of the buffer at the desired pH was added to the 

solid. The shake-flask experiment was repeated 3 times for each pH. Right after, the samples 

were stirred during 24 hours at 25 ºC. Four hours later, the pH was measured and adjusted, if 

necessary, to the initial pH. When the stirring time had ended, the samples rested during 

another 24 hours also at 25 ºC until the equilibrium was reached. Afterwards, the pH was 

measured so that the final conditions which the solubility will be determined in were known and 

the samples were centrifuged during 30 minutes at 25 ºC and 3500 rpm in order to separate 
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completely the solid from the saturated solution. Finally, the supernatant was separated from 

the solid with Pasteur pipettes. While the supernatant was analysed by liquid chromatography, 

the solid was filtered and dried to be analysed by X-ray diffraction. 

Table 1 summarizes the shake-flask method conditions used, which have been previously 

optimized by the same research laboratory team. 

Table 1. Conditions used in the shake-flask method. 

Parameter Conditions 

Buffer MUB (0.125 M) 

Amount of solid 5-20 mg 

Temperature 25 ºC 

Stirring time 24 h 

pH adjustment After 4 h started stirring 

Sedimentation time 24 h 

Phase separation Centrifugation 

5.3.2. Quantification by liquid chromatography 

For the liquid chromatography assays, a calibration curve for each drug was prepared. 

Standards were prepared with methanol:aqueous solution in the same percentage as the mobile 

phase used in the chromatographic conditions. The separation of substances was carried out in 

isocratic mode and the chromatogram was registered at the maximum absorption wavelength in 

order to obtain the maximum signal for each compound. The parameters of chromatographic 

conditions are described in table 2. 
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Table 2. Chromatographic conditions for each studied drug. 

 Pioglitazone and its hydrochloride Glimepiride 

Aqueous phase; pH HCOOH / COOH-; 3.75 NH4+ / NH3; 9 

Organic phase MeOH MeOH 

Separation mode Isocratic Isocratic 

% Organic phase 45 60 

Total time [min] 5 10 

Calibration curve [mg/L] 0.05-100 0.1-100 

λ [nm] 267 225 

Injection volume [µL] 10 10 

5.3.3. Ray-X diffraction 

The solid remaining after removal of the supernatant with the Pasteur pipette is filtered and 

dried.  

The XRDs were performed in the CCiTUB by external staff.  

In this study, the diffractograms of the samples obtained in the different pHs were compared 

with a standard sample of high purity to determine which solid is in equilibrium with the solution 

at each pH.  

  



Solubility determination of compounds of pharmaceutical interest. 23 

 

6. RESULTS AND DISCUSSION 

6.1. OPTIMIZATION OF CHROMATOGRAPHIC CONDITIONS FOR PIOGLITAZONE 

DETERMINATION 

In order to establish the chromatographic conditions, a standard of 50 mg pioglitazone/L is 

prepared. Several trials with different flows and mobile phase compositions are carried out. 

Finally, the chosen method has the following conditions: a flow of 0.5 mL/min, a composition of 

the mobile phase of MeOH:HCOOH/NaCOOH (45:55) pH=3.75. Using this method, the 

pioglitazone peak appears at 1.1 minutes which is enough separated from the dead time peak 

and does not imply a long time of analysis, 2 minutes are enough. The working wavelength is 

267 nm where the pioglitazone has a maximum of absorption in its spectrum.   

Whereas at first 2 minutes of analysis seem to be enough, when the firsts samples are 

injected in the chromatograph, other peaks appear between 3 and 4 minutes, so the total time of 

analysis has to be 5 minutes. 

With reference to the working pH, it is 3.75 where the pioglitazone will be positively charged 

and consequently, its solubility will be considerably high and the retention time will be 

shortened.  

 

 

 

 

 

 

 

 

Figure 10. Chromatogram of standard 50 mg/L pioglitazone 

using the established chromatographic conditions. 
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6.1.1. Calibration curve 

Once the chromatographic conditions have been established, standards between 1-100 

mg/L dissolved in mobile phase are injected in the chromatograph. Figure 11 (right) shows the 

calibration curve obtained which has been used to quantify most of the samples. However, the 

areas of the chromatographic peaks of the samples with pH between 4 and 8 are considerably 

lower than the area of the less concentrated standard (1 mg/L). This fact suggests that the lower 

concentration range of the calibration curve would be better defined if more diluted standards 

(0.01-2.5 mg/L) were considered. It should be pointed out that all standards used must be 

above the limit of quantification. For this reason, the limits of detection and quantification are 

calculated.  

The limits of detection and quantification of the instruments are calculated following the next 

steps. First of all, different volumes (1 µL, 2.5 µL, 5 µL and 10 µL) of a standard 0.01 mg/L are 

injected. When 1 µL is injected, which corresponds to a concentration of 0.001 mg/L when 

considering a reference injection volume of 10 µL, it is hard to differentiate the peak from the 

noise signal of the base line whereas injecting 2.5 µL (0.0025 mg/L) the peak starts to become 

visible. Once this information is already known, the following volumes of the lowest standard 

(0.01 mg/L) are injected 10 times each: 2.5 µL (0.0025 mg/L), 5 µL (0.005 mg/L) and 10 µL 

(0.01 mg/L). Also 10 µL of the second standard (0.05 mg/L) is injected 10 times. With all of the 

obtained chromatograms, the average intensity (Inoise) and its associated standard deviation 

(snoise) of the baseline next to the pioglitazone peak is calculated. As a result, the intensity for 

the limit of detection (ILOD) and quantification (ILOQ) of each peak can be calculated applying the 

equations (10) and (11) respectively. 

ILOD=Inoise + 3snoise            (10) 

ILOQ=Inoise + 10snoise         (11) 

Then, if the intensity of a peak is higher than its corresponding ILOD, the peak can be 

detected. At the same time, if the intensity of a peak is higher than its corresponding ILOQ, the 

peak can be quantified. After treating the chromatograms, the conclusions obtained are: only 

the concentration of 0.05 mg/L is quantifiable nevertheless, from concentration 0.0025 mg/L all 

of them are detectable. Therefore, I0.001mg/L < ILOD< I0.0025mg/L which means that the concentration 

of the limit of detection is the concentration whose intensity corresponds to peaks of 

concentration between 0.001 mg/L and 0.0025 mg/L. The same way,  I0.01mg/L < ILOQ< I0.05mg/L 
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which means that the concentration of the limit of quantification is the concentration whose 

intensity corresponds to peaks of concentration between 0.01 mg/L and 0.05 mg/L. 

Finally, a calibration curve in the lower concentration range from 0.05 mg/L to 5 mg/L is 

prepared (figure 11, left) and used to quantify the samples between pH 4 and 8.  

6.2. PIOGLITAZONE SOLUBILITY-PH PROFILE DETERMINATION 

The solubilities of pioglitazone and its hydrochloride salt have been determined through 

shake-flask method at different pH values between 2 and 11, three determinations have been 

done at each pH. As the pH has a great influence on the solubility, if the variation of the final pH 

in these repetitions is lower than 0.1 units of pH, the average has been calculated for all the 

repeated determinations and if it is higher, then, the repetitions have been treated as individual 

experiments. 

Tables 3 and 4 show the obtained results including all pH variations during all shake-flask 

procedure for pioglitazone and its hydrochloride salt. These tables summarize different values of 

pH in consecutive columns: initial pH (pH0), pH after 4 hours of stirring the samples (pH4h) and 

pH at the end of the procedure (pHf). They also show the logS and the solid state of the solid in 

equilibrium with the solution according to the XRD data.  

Table 3. Results of shake-flask method for pioglitazone (standard deviations in brackets). 

pH0 pH4h pHf logS Solid State 

2.075 No data 2.167 -3.306 Neutral form 

2.075 No data 2.035 -3.336 Neutral form 

2.075 No data 1.979 -3.425 Neutral form 

Figure 11. Calibration curve for pioglitazone 0.05-5 mg/L (left) and 1-100 mg/L (right). 
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3.130 3.32(0.02) 3.2(0.1) -4.06(0.09) Neutral form 

4.092 4.0(0.3) 4.22(0.01) -5.2(0.2) Neutral form 

4.092 4.080 4.080 -4.959 Neutral form 

4.950 4.9(0.1) 5.11(0.04) -5.7(0.1) Neutral form 

6.110 5.9(0.2) 6.08(0.07) -6.15(0.09) Neutral form 

6.980 6.862(0.021) 7.028(0.025) -5.82(0.01) Neutral form 

7.995 7.80(0.01) 7.92(0.02) -5.18(0.07) Neutral form 

9.120 8.948 9.254 -4.163 Neutral form 

9.120 9.050(0.004) 9.09(0.04) -4.62(0.04) Neutral form 

9.966 9.746(0.007) 9.87(0.01) -3.79(0.04) Neutral form 

11.100 10.89(0.05) 10.96(0.05) -2.74(0.06) Neutral form 

 

Table 4. Results of shake-flask method for pioglitazone hydrochloride (standard deviations in brackets). 

pH0 pH4h pHf logS Solid State 

2.055 2.213 2.360 -3.134 Neutral form 

2.055 2.088 2.036 -3.157 Neutral form 

2.055 2.103 2.058 -2.935 Neutral form 

3.130 2.254 3.563 -4.773 Neutral form 

3.130 2.337 3.771 -4.885 Neutral form 

3.130 2.144 2.959 -4.311 Neutral form 

3.977 3.60(0.08) 4.04(0.07) -5.13(0.03) Neutral form 

4.950 4.66(0.02) 5.01(0.02) -6.43(0.07) Neutral form 

5.995 5.56(0.02) 6.02(0.08) -6.71(0.03) Neutral form 

6.980 6.56(0.01) 7.01(0.02) -6.32(0.07) Neutral form 
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7.968 7.67(0.03) 7.94(0.01) -5.52(0.05) Neutral form 

9.120 8.24(0.05) 9.12(0.04) -4.42(0.04) Neutral form 

9.991 9.71(0.01) 9.93(0.03) -3.56(0.05) Neutral form 

11.100 10.54(0.03) 11.08(0.06) -2.52(0.01) Neutral form 

As the solubility of ionisable molecules depends on the pH, it is important to control this 

parameter in order to maintain it as stable as possible. This is why after 4 hours of stirring pH is 

measured and readjusted if necessary. In the case of pioglitazone, pH does not change 

significantly. Therefore, experimentally it has been observed that pioglitazone does not break 

the buffering capacity of the buffer. However, table 4 shows how pHs of pioglitazone 

hydrochloride samples are more likely to decrease. This fact is caused by the presence of an 

hydrochloride molecule in the salt which is soluble and as it gets dissolved it has an effect on 

the media by decreasing the pH and breaking the buffering capacity of the buffer.  

With regard to the solid state in the shake-flask method, X-Ray diffraction of the solid 

collected at different pH values has been performed in order to elucidate if the solid has its 

neutral form structure or a salt structure. The diffractograms obtained have been compared to 

the ones of the raw materials. Figure 12 shows the diffractograms of pioglitazone and 

pioglitazone hydrochloride raw materials. The most significant differences can be observed in 

the regions between the angles 9 and 16 and the angles 24 and 26. In the first region, 

pioglitazone shows four peaks with medium intensity (9.2; 10.3; 15.1 and 16.3) whereas 

pioglitazone hydrochloride only shows two peaks with medium intensity (9.0 and 12.8). In the 

second region, pioglitazone presents several peaks with different intensities whereas no peak is 

observed for pioglitazone hydrochloride. The diffractograms of all the samples tested, 

independently of the raw material used (pioglitazone or pioglitazone hydrochloride), are in 

agreement with the pioglitazone reference diffractogram so the determination of pioglitazone 

solubility can be ensured in both cases. That means that, in the case of pioglitazone 

hydrochloride, as much hydrochloride as the sample has, it is all dissolved leaving only pure 

pioglitazone as a solid. As a result of having the same solid in both cases, the expected 

solubility-pH profiles are the same for pioglitazone and its hydrochloride salt. 
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The solubility-pH profile for each substance is represented in figure 13. The represented pH 

is the final one where the equilibrium has been reached. As expected after comparing the X-Ray 

diffractograms, both profiles follow the same tendency and similar to the one predicted by HH 

model for amphoteric substances (figure 4): the minimum solubility is reached between the two 

pKas and it increases as the pH gets more acid or more basic. If pioglitazone solubility-pH 

profile and its hydrochloride salt profile are compared, they perfectly match from pH 2 to 4 and 

from pH 9 to 11. However, in the centre of the pH scale, from 5 to 8, they differ slightly probably 

due to the fact that this is where the concentration is lower and where there have been more 

difficulties in quantification.  

 

 

 

 

 

 

 

 

 

Figure 12. X-Ray diffractogram for pioglitazone (blue) and pioglitazone hydrochloride (red) raw materials. 

Figure 13. Solubility-pH profile of pioglitazone and its hydrochloride salt. 
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Once the experimental solubility-pH profiles are known, the intrinsic solubility can be 

deduced following the HH model for amphoteric substances, equation (9), and using the pKa1 

and pKa2, 5.65 and 6.62 respectively, previously determined by the research group [9]. LogS0 is 

determined by direct adjust of experimental points to equation (9) through Excel software using 

supplementary optimization Excel Macro [10], and the obtained result is  

-6.78(0.04). The adjustment, which is showed in figure 13, fits all experimental data quite well 

despite having fixed the pKa values. As a result, it is deduced that the equilibriums involved in 

the determination of solubility are only acid-base equilibriums. Finally, using equation 9, as pKas 

and logS0 are now known, solubility at every pH can be estimated. 

6.3. OPTIMIZATION OF CHROMATOGRAPHIC CONDITIONS FOR GLIMEPIRIDE 

DETERMINATION 

The first trials for glimepiride quantification are carried out with the same UHPLC 

chromatograph than for pioglitazone. Once the chromatographic method has been developed 

and the quantification of samples starts, it is found that the limit of detection of this drug is 

substantially high and it does not allow the quantification of glimepiride samples with pH lower 

than 7. Finally, the determinations have been carried out with a HPLC instrument which 

provides two improvements in quantification. On the one hand, as an HPLC column is going to 

be used, which have bigger dimensions than UHPLC columns, the injection volume will be 

higher and that will improve detection and quantification. On the other hand, the new 

chromatograph option has a single wavelength UV-Vis detector which might detect lower 

concentrations of glimepiride.  

In order to establish the chromatographic conditions in the HPLC, several trials with different 

flows and mobile phase compositions are carried out. Finally, the chosen method has the 

following conditions: a flow of 0.7 mL/min, a composition of the mobile phase of 

MeOH:NH4+/NH3 (60:40) pH=9. Using this method, the glimepiride peak appears at 2.5 minutes 

which is enough separated from the dead time peak, whereas at first 5 minutes of analysis 

seem to be enough, when the samples at lower pHs are injected in the chromatograph, other 

peaks appear until 7 minutes, so the total time of analysis has to be 10 minutes. 

Glimepiride has its highest maximum of absorption at 200 nm, however it is not the chosen 

wavelength because solvents which absorb at this wavelength cause a significant noise in the 

base line making more difficult the determination of solubility at lower pHs. Therefore, the 
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working wavelength is 225 nm where the glimepiride also has a maximum of absorption in its 

spectrum. 

With reference to the working pH, it is 9 where the glimepiride will be negatively charged 

and consequently, its solubility will be the considerably high and the retention time will be 

shortened.  

6.3.1. Calibration curve 

After optimizing the chromatographic conditions and the equipment to be used, standards 

between 0.1-100 mg/L dissolved in mobile phase are injected in the chromatograph. Figure 14 

shows the calibration curve obtained which has been used to quantify the samples.  

 

 

 

 

 

 

6.4. GLIMEPIRIDE SOLUBILITY-PH PROFILE DETERMINATION 

The solubility of glimepiride has been determined through shake-flask method at different 

pH values between 2 and 11.5, three determinations have been done at each pH. If the 

variation of the final pH in these repetitions is lower than 0.1 units of pH, the average has been 

calculated for all the repeated determinations and if it is higher, then, the repetitions have been 

treated as individual experiments. 

Table 5 shows the obtained results including all pH variations during all shake-flask 

procedure for glimepiride. This table summarize different values of pH in consecutive columns: 

initial pH (pH0), pH after 4 hours of stirring the samples (pH4h) and pH at the end of the 

procedure (pHf). They also show the logS and the solid state of the solid in equilibrium with the 

solution according to the XRD data. 

 

y = 58339x + 60013
R² = 0,9987

0

2000000

4000000

6000000

0 20 40 60 80 100

A
re

a 
(m

U
A

)

Concentration (mg/L)

Figure 14. Calibration curve for glimepiride 0.1 mg/L-100 mg/L. 
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Table 5. Results of shake-flask method for glimepiride (standard deviations in brackets). 

pH0 pH4h pHf logS Solid State 

2.122 2.177 2.256 -4.445 Neutral form 

2.122 2.12(0.01) 2.131(0.004) -4.4(0.1) Neutral form 

2.411 2.418 2.611 -4.453 Neutral form 

2.411 2.391 2.391 -4.453 Neutral form 

3.204 3.234 3.314 -4.400 Neutral form 

3.204 3.208 3.813 -4.408 Neutral form 

3.586 3.664 3.670 -4.447 Neutral form 

3.586 3.623(0.005) 3.79(0.03) -4.400(0.004) Neutral form 

4.152 4.155(0.009) 4.19(0.04) -4.40(0.04) Neutral form 

4.567 4.58(0.02) 4.57(0.02) -4.439(0.005) Neutral form 

5.061 5.077 5.295 -4.389 Neutral form 

5.061 5.10(0.03) 5.16(0.04) -4.33(0.05) Neutral form 

5.432 5.43(0.01) 5.410(0.009) -4.41(0.03) Neutral form 

6.170 6.059 6.199 -4.436 Neutral form 

6.170 6.042 6.155 -4.429 Neutral form 

6.170 6.032 6.264 -4.404 Neutral form 

6.555 6.429(0.009) 6.54(0.04) -4.42(0.01) Neutral form 

7.098 6.93(0.01) 7.03(0.04) -4.412(0.003) Neutral form 

7.489 7.36(0.01) 7.49(0.03) -4.37(0.03) Neutral form 

7.857 7.690 8.125 -4.148 Neutral form 

7.857 7.72(0.03) 8.025(0.001) -4.189(0.002) Neutral form 

8.501 8.362 8.364 -4.105 Neutral form 

8.501 8.392(0.008) 8.502(0.004) -4.07(0.09) Neutral form 
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9.134 8.981(0.004) 9.080(0.006) -3.49(0.03) Neutral form 

9.510 9.372(0.008) 9.46(0.02) -3.24(0.01) Neutral form 

10.044 9.826 10.290 -2.654 Neutral form 

10.044 9.84(0.02) 10.02(0.01) -2.68(0.02) Neutral form 

10.445 10.176(0.006) 10.14(0.02) -2.667(0.001) Neutral form + other peaks 

11.003 10.23(0.04) 10.91(0.02) -2.78(0.04) Neutral form + other peaks 

11.461 10.502 11.425 -2.777 Neutral form + other peaks 

11.461 10.316 11.290 -2.777 Neutral form + other peaks 

11.461 10.319 11.358 -2.803 Neutral form + other peaks 

Table 5 shows that for pH lower than 7.5 there are not significant changes in pH. 

Nevertheless, at pH above 7.5 the variation of pH increases as the pH gets higher. The most 

significant change occurs at pH 11.5 where the variation is 1.14 units. Therefore, glimepiride is 

able to break the buffering capacity of the buffer.  

With regard to the state of the solid in the shake-flask method, X-Ray diffraction has been 

performed for gliempiride at different pH values. The reference diffractogram for glimepiride  

(raw material) is showed in figure 15. The diffractograms of the samples between pH 2 to 10 

tested are in agreement with the glimepiride reference diffractogram. However, in diffractograms 

of samples from pH 10.5 to 11.5 some peaks correspond to glimepiride (5-10%) but there are 

other peaks which do not correspond to the raw material. The most significant differences of the 

diffractograms are located between angles 3 and 7 and around angle 22. In the first region, 

sample at pH 11 has a peak at angle 3.3 while glimepiride raw material does not. Both present a 

peak in 6.5, which corresponds to glimepiride neutral form structure. The intensity in the sample 

is much lower than in the raw material indicating that the percentage of glimepiride in the 

sample only corresponds to 5-10%. In the second region, sample at pH 11 has a peak (angle 

21.9) with high intensity which does not appear in glimepiride raw material diffractogram. 

Finding different solid states in samples from pH 10.5 to 11.5 was expected because when the 

solids were filtered, they were more crystalline than in the lower pHs. Therefore, determination 

of solubility from pH 2 to 10 corresponds to neutral form of glimepiride whereas from pH 10.5 to 

11.5, the solubility corresponds to a glimepiride derivate.  
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The solubility-pH profile for glimepiride is represented in figure 16. The represented pH is 

the final one where the equilibrium has been reached. Although the profile is similar to the one 

predicted by HH model for acidic substances (figure 2), there are some differences with the 

expected profile. On the one hand, it can be observed how from pH 10.5 the solubility-pH profile 

curve declines. On the other hand, the solubility is constant until pH 8 contradicting what is 

expected by HH equation (4) that predicts a rise of solubility from pH above the pKa of the 

molecule, in this case 5.22.    

With regard to the decrease of solubility from pH 10.5 to 11.5, taking into account the 

presence of two solids (one of them glimepiride) in the samples at these pH values, it suggests 

the formation of a salt of glimepiride. At these pHs, the transformation of glimepiride into a salt is 

taking place, this is why there are peaks in different percentages of two structures in the X-Ray 

diffractograms. When the formation of a salt occurs, there is a parameter named pHmax which 

defines the pH where the solubility is the highest because both species, salt and neutral form, 

coexist contributing to the total solubility of the drug, in this case it is 10.5 approximately [4]. 

LogS0 and pKa are determined by direct adjust of experimental points to equation (4) 

through Excel software using a supplementary optimization Excel Macro [10], the adjustment is 

showed in figure 16. As deduced thanks to X-Ray diffractograms, not all the solids of the 

samples are pure glimepiride so, only the samples at pH where the solid is just glimepiride are 

Figure 15. X-Ray diffractogram for glimepiride raw material (blue), and glimepiride sample at pH 11 (red). 
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taken into account to adjust the experimental data. The obtained values of pKa and logS0 after 

the adjustments are 8.34(0.03) and -4.41(0.1) respectively.  

 

 

 

 

 

 

 

 

 

 

The pKa value obtained in the adjustment of experimental data differs significantly from the 

one that the research group has previously determined using the reference potentiometric 

method, there is a difference of 3,12 units of pH. This fact suggests that there are other 

equilibriums involved in the solubility determination different from acid-base equilibriums already 

considered by HH equation (4). Therefore, glimepiride solubility-pH profile does not fit with the 

HH model for acidic substances. These additional equilibriums affect the adjustment of pKa to 

the experimental data by obtaining an apparent pKa quite higher than the real one. Moreover, as 

the other involved equilibriums affect pKa they also might have an effect on the logS0 value and 

the obtained one through the adjustment could differ from reality. In order to confirm or discard 

this hypothesis, the planning of new experiments and deeper studies of glimepiride solubility is 

essential [11]. 

Figure 16. Solubility-pH profile of glimepiride. 
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7. CONCLUSIONS 

Solubility of pioglitazone has been determined through shake-flask method using two 

different raw materials: pioglitazone and its hydrochloride salt. The solubility-pH profiles 

obtained are really similar between themselves, as it was expected after finding just pioglitazone 

for all the samples in the X-Ray diffractograms. A slight difference appears between pH 5 and 7 

where there have been more difficulties in quantification caused by the low solubility of 

pioglitazone at these pHs. After adjusting the experimental data to HH model for amphoteric 

substances, it has been found that the experimental values are in accordance with the predicted 

model what concludes that the only equilibriums involved are acid-base equilibriums already 

considered by HH. As pioglitazone is an amphoteric molecule with two close pKa values, it is 

quite difficult to calculate the intrinsic solubility just with experimental values, so the adjustment 

has enabled to deduce it obtaining the following result:-6.78(0.04). 

Solubility of glimepiride has also been determined through shake-flask method. It has been 

found the formation of a salt of glimepiride above pHmax, confirmed by the presence of two 

substances (one of them glimepiride) in X-Ray diffractograms. In the case of glimepiride, the 

solubility experimental data is not in accordance with HH model for acidic molecules because 

after adjusting the experimental values, it has been found that the pKa obtained does not 

correspond to the pKa determined by potentiometric technique. This fact implies that there are 

other equilibriums involved different from acid-base equilibriums already considered by 

Henderson-Hasselbalch. In order to confirm this hypothesis, further studies are needed. 
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9. ACRONYMS 

API  Active pharmaceutical ingredient 

en  Ethylenediamine 

HAc  Acetic acid 

HH  Henderson-Hasselbalch 

HPLC High performance liquid chromatography 

MUB  Minimalist universal buffer 

TFA  Trifluoroacetic acid 

UHPLC Ultra high performance liquid chromatography 





 

 

  



 

 

 


