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An important field of study in pharmacology comprises the investigation of drug-target interaction
kinetics. Thus, assessing both the lifetime of a drug on its receptor (i.e., drug-target residence
time; Copeland, 2016) and the magnitude of drug-mediated receptor activation (i.e., drug efficacy)
across the time are critical to understand in vivo pharmacological activity of small-molecule
drugs. Of note, while classical in vitro methods view drug-receptor interaction in terms of
equilibrium affinity, the residence time model considers the dynamics of receptor conformational
rearrangements, which affect drug association and dissociation. Although, classical binding
experiments can also address kinetics questions, they are tedious and very time consuming.
Accordingly, monitoring drug-receptor interaction dynamics by means of receptor biosensors has
become fundamental for understanding how drugs trigger receptor activity over the time. Precisely,
in the last years, a number of Fluorescence Resonance Energy Transfer (FRET)-based assays have
been developed to accurately display drug-receptor interaction in real time (Lohse et al., 2012).
Indeed, one of the most outstanding methods consists of assessing intramolecular conformational
rearrangements upon receptor challenge by monitoring intramolecular FRET changes (Vilardaga
et al., 2009). Thus, a FRET-based receptor biosensor is built by fusing both donor and acceptor
fluorophores to the receptor sequence (Vilardaga et al., 2009). Importantly, a general consensus has
prompted to basically attach these molecules (i.e., cyan and yellow fluorescent proteins, CFP and
YFP, respectively) intracellularly, this is, in the cytosolic side of the receptor’s structure (Figure 1A).
Accordingly, when the receptor is activated and a conformational rearrangement occurs the
distance and/or orientation of the fluorophores within the receptor biosensor changes and it is
possible to monitor FRET changes in real time, thus permitting to finely characterize receptor’s
activation. Needless to say, although precision is higher than that obtained in classical binding
assays, the present biosensors cannot discern between receptors expressed at the cell surface or
intracellularly, thus much effort is needed in order to exactly elucidate ligand-receptor kinetics
constants.

Within this scenario, we recently developed a dynamic σ1 receptor (σ1R) biosensor able to
achieve ligand-specific conformational rearrangements with high temporal resolution (Gómez-
Soler et al., 2014). The σ1R gene encodes an endoplasmic reticulum and plasma membrane
anchored protein of 223 amino acids, which shows no similarity to any other known mammalian
protein receptor but that is quite conserved across species (Vela et al., 2015). The σ1R has
been lately defined as a ligand-regulated chaperone that is able to interact with a myriad of
other proteins including receptors, enzymes or ion channels. For instance, it has been linked to
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FIGURE 1 | Scheme of the σ1R biosensor. A schematic diagram illustrating

the topology of the σ1R as considered before (A) and after (B) its

crystallization. ER, endoplasmic reticulum.

serotonin or NMDA receptors, which may be of interest for
the management of neurological or neurodegenerative disorders
(Nguyen et al., 2015). In fact, this latter topic has recently
gained a great interest, thus a number of animal models have
been developed to study neuroprotective effects of σ1R ligands
(Nguyen et al., 2015). Needless to say, a σ1R-defficient mouse
model was developed, which exhibited no overt phenotype in
terms of baseline behavior or immune profile (Langa et al., 2003).
Hence, the σ1Rmay basically modulate the intracellular signaling
evoked by those interacting partners rather than by exerting
an action by itself (Romero et al., 2012). Due to the lack of
this direct functional effect or signaling by its own, it has been
difficult to classify σ1R ligands by their intrinsic activity and
time-consuming in vivo tests are frequently used to determine
the functional characteristics of σ1R ligands. Accordingly, we
designed a CFP/YFP-tagged σ1R aiming to distinguish agonists
from antagonists based on the conformational rearrangement
engaged. We thus attached CFP and YFP to the N- and C-
terminus of the receptor based on the most accepted structural
model available, in which both extremes of the receptor faced
the cytoplasm (Ruoho et al., 2012). Of note, a few months ago,
the crystal structure of the human σ1R was finally disclosed
(Schmidt et al., 2016). This seminal study revealed that the σ1R
holds a triangular structure comprising three tightly associated
protomers, each with a single transmembrane domain that
segregates the N- and C-terminus of the receptor (Schmidt et al.,
2016) (Figure 1B). Indeed, previous biochemical studies also
supported the contention that σ1R do oligomerize (Gromek et al.,
2014; Mishra et al., 2015). Interestingly, the σ1R oligomerization
status seems to be ligand-dependent, thus while antagonists
stabilize high molecular mass oligomers the agonists prompt the
dissociation of these complexes (Mishra et al., 2015). Collectively,
these results suggest that σ1R oligomerization might play a
key role in receptor functioning by controlling ligand efficacy
(Schmidt et al., 2016).

In view of the σ1R molecular structure, we blindly designed
a transmembrane biosensor, since we thought that both CFP
and YFP were inside the cell while they were really in opposite
sides of the cell surface (Figure 1B). Nevertheless, we observed
by means of donor recovery after acceptor photo bleaching that
there was constitutive intramolecular FRET (Gómez-Soler et al.,

2014). And subsequently, once ascertained that the biosensor
retained its essential ligand binding properties we performed
real-time FRET, in which the superfusion of σ1R agonists or
antagonists led to a decrease or increase, respectively, of energy
transfer (Gómez-Soler et al., 2014). Since it has been postulated
that σ1R antagonists are analgesic and agonists preclude opioid-
mediated pain relief (Prezzavento et al., 2010), we assessed
antinociception elicited by σ1R ligands in the formalin pain
animal model to correlate with the FRET-induced changes.
Hence, while σ1R antagonists led to a FRET increase and
produced analgesia, agonists led to a FRET decrease and did not
induce antinociceptive effects (Gómez-Soler et al., 2014).

The development of our σ1R biosensor permitted to classify
σ1R ligands according to its intrinsic activity, since it was
possible to correlate FRET changes upon ligand activation with
analgesic efficacy. This tool may therefore represent a powerful
approach in drug discovery in the intriguing world of the σ1R.
But on the other hand, it may also represent the beginning
of a new generation of biosensors able to characterize ligand-
receptor kinetics constants with high precision. In such way,
as commented above, we blindly developed the first receptor
biosensor able to detect intramolecular FRET changes through
the cell surface. Needless to say, although scarcely assayed,
transmembrane FRET has been previously described; thus, it
was demonstrated that energy transfer is possible between
fluorophores despite they are segregated by a lipid bilayer
(Majoul et al., 2001; Haga et al., 2012). Taken together, data
support that conformational receptor rearrangement can be
monitored by means of FRET across the plasma membrane.
Thus, in order to exclusively target receptors expressed at the
cell surface different approaches would be intended. For instance,
by substituting the outer-fluorophore (i.e., CFP) by another
protein (i.e., O-6-methylguanine-DNAmethyltransferase, AGT),
which may be selectively labeled when expressed at the plasma
membrane (Maurel et al., 2008). Upon these conditions, when
challenging the new biosensor with selective ligands, the FRET
process would only occur with these receptors expressed at the
cell surface, thus permitting to perform themost real-time precise
kinetics.

Overall, pharmacologists have explored for a long time the
activity of σ1R based on structural models that have been finally
overruled by the recent elucidation of its structure (Schmidt et al.,
2016). The precise knowledge of σ1R structure may not only
prompt to review a number of previous inaccurate conclusions
with direct impact on the σ1R pharmacology, but it also may lead
to design novel strategies to wholly characterize ligand-receptor
interaction kinetics. In conclusion, the delayed discovery of the
first transmembrane biosensor may represent a kind of paradigm
shift. Hence, after witnessing an apple falling from the tree, a new
frontier has been torn down to develop novel tools for studying
receptors’ pharmacology.
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