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Abstract: We study the induced aggregation operators. The analysis begins with a revision 

of some basic concepts such as the induced ordered weighted averaging (IOWA) operator 

and the induced ordered weighted geometric (IOWG) operator. We then analyze the 

problem of decision making with Dempster-Shafer theory of evidence. We suggest the use 

of induced aggregation operators in decision making with Dempster-Shafer theory. We 

focus on the aggregation step and examine some of its main properties, including the 

distinction between descending and ascending orders and different families of induced 

operators. Finally, we present an illustrative example in which the results obtained using 

different types of aggregation operators can be seen. 

JEL Classification: C44, C49, D81, D89. 

Keywords: Decision making; aggregation operators; Dempster-Shafer belief structure; 

uncertainty; IOWA operator. 

 

Resumen: En este trabajo se estudian los operadores de agregación inducidos como son el 

induced ordered weighted averaging (IOWA) operator y el induced ordered weighted 

geometric (IOWG) operator. También se analiza el proceso de toma de decisiones mediante 

la estructura de credibilidad de Dempster-Shafer. La principal propuesta del trabajo es la 

utilización de operadores de agregación inducidos en la toma de decisiones mediante la 

estructura de credibilidad de Dempster-Shafer. Se da especial atención al proceso de 

agregación estudiando algunas de sus principales propiedades como son la distinción entre 

órdenes ascendentes y descendentes, y el estudio de diferentes familias de operadores 

inducidos. Finalmente, se desarrolla un ejemplo ilustrativo en donde se pueden observar los 

diferentes resultados obtenidos según el tipo de operador utilizado. 

Palabras clave: Toma de decisiones; operadores de agregación; estructura de credibilidad 

de Dempster-Shafer; incertidumbre; operador IOWA. 
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1. Introduction 

 

The Dempster-Shafer (D-S) theory of evidence was developed by 

Dempster (Dempster, 1967; 1968) and Shafer (Shafer, 1976) and has 

subsequently been used in an astonishingly wide range of applications (see, 

among others, Yager et al., 1994; Srivastava and Mock, 2002). It provides a 

unifying framework for representing uncertainty as it can include situations of 

risk and ignorance in the same formulation.  

 

When using the D-S theory in decision making, the decision information 

must first be aggregated. A very common aggregation method is the ordered 

weighted averaging (OWA) operator developed by Yager (1988). Since it first 

appeared, the OWA operator has been used in a wide range of applications (see, 

among others, Calvo et al., 2002; Yager and Kacprzyk, 1997). It provides a 

parameterized family of aggregation operators that includes the arithmetic mean, 

the maximum and the minimum as special cases (Yager, 1988). Recently, 

Chiclana et al. (2000) have developed the ordered weighted geometric (OWG) 

operator and it has subsequently been extensively analysed by a number of 

authors (see, among others, Herrera et al., 2003; Merigó and Casanovas, 2006; 

Xu and Da, 2002). It combines the OWA operator with the geometric mean in 

the same aggregation thereby providing another parameterized family of 

aggregation operators that include the maximum and the minimum among others 

(Chiclana et al., 2000). 

 

In 1999, Yager and Filev introduced an extension of the OWA operator – 

the induced ordered weighted averaging (IOWA) operator – while, in 2003, Xu 

and Da introduced a geometric version of the IOWA operator, known as the 

induced ordered weighted geometric (IOWG) operator. Since their introduction, 

they have been examined in a number of studies (S.J. Chen and S.M. Chen, 
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2003; Chiclana et al., 2004; Mitchell and Schaefer, 2000; Xu, 2005a; Xu, 2006a; 

Xu, 2006b; Xu, 2006c; Yager, 2002a; Yager, 2003a; Yager, 2004a). The main 

characteristic of the induced aggregation operators is that the reordering step is 

not conducted with the values of the arguments used for the OWA operators. In 

these cases, the reordering step is induced by means of another mechanism so 

that the order of the arguments depends upon the values of their associated 

inducing variables.  

 

Yager (1992a) developed a more general formulation for decision making 

in the face of evidential knowledge by using the OWA operator. This problem 

has also been studied in (Merigó and Casanovas, 2006; Engemann et al., 1996; 

Yager, 1996a; Yager, 2002b; Yager, 2004b; Yager, 2004c). In this paper, we 

suggest the use of induced aggregation operators in situations of decision 

making with D-S theory of evidence. The reason for doing this is because there 

are situations where we prefer to aggregate the variables with an inducing order 

instead of aggregating with the traditional OWA operator. For example, such a 

method is useful when the attitudinal character of the decision maker is 

particularly complex or when there are a number of external factors affecting the 

decision analysis. We also propose using different types of orderings in the 

aggregation of the D-S theory depending on the specific situation with which we 

are dealing. We study these problems in detail by conducting an extensive 

analysis of the induced aggregation operators in which we introduce different 

families of induced operators such as the step-IOWA operator, the window-

IOWA operator, the olympic-IOWA operator, the E-Z IOWA operator and the 

median-IOWA operator, among others. 

 

The remainder of this paper is organized as follows. In Section 2, we 

describe different types of aggregation operators. In Section 3, we briefly 

describe the Dempster-Shafer theory of evidence. In Section 4, we describe the 
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process for using induced aggregation operators in decision making with D-S 

belief structures. In Section 5, we provide an illustrative example of the new 

approach. Finally, in Section 6 we summarize the main conclusions of the paper. 

 

 

2. Aggregation operators 

 

In this Section, we briefly describe the basic aggregation operators that 

are used in the paper. 

 

2.1. OWA operator 

 

The OWA operator, introduced by Yager (1988), provides a 

parameterized family of aggregation operators that include the arithmetic mean, 

the maximum and the minimum. 

 

Definition 1. An OWA operator of dimension n is a mapping OWA:Rn
→R that 

has an associated weighting vector W of dimension n such that ∑ = =n
j jw1 1 and wj 

∈ [0,1], then: 

                                                               

 OWA(a1, a2,…, an) = ∑
=

n

j
jjbw

1
                                                                  (1) 

 

where bj is the jth largest of the ai.  

 

From a generalized perspective of the reordering step, we have to 

distinguish between the descending OWA (DOWA) operator and the ascending 

OWA (AOWA) operator (Yager, 1992b). The weights of these operators are 
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related by wj = w*n+1−j, where wj is the jth weight of the DOWA (or OWA) 

operator and w*n+1−j the jth weight of the AOWA operator.  

 

2.2. OWG operator 

 

The OWG operator was introduced in Chiclana et al. (2000). It combines 

the OWA operator and the geometric mean in the same aggregation. The OWG 

operator provides a parameterized family that includes the minimum, the 

maximum and the geometric mean. In the following, we provide a definition of 

the OWG operator as introduced by Xu and Da (2002) where we can distinguish 

between descending and ascending orderings.  

 

Definition 2. An OWG operator of dimension n is a mapping OWG:R
+n
→R

+
 

that has an associated weighting vector W of dimension n such that ∑ = =n
j jw1 1 

and wj ∈ [0,1], then: 

 

       OWG(a1, a2,…, an) =   ∏
=

n

j

w
j

jb
1

                                                                    (2) 

 

where bj is the jth largest of the ai, and R
+
 is the set of positive real numbers. 

 

2.3. Induced OWA operator 

 

The induced OWA (IOWA) operator was introduced in Yager and Filev 

(1999) and is an extension of the OWA operator. It differs in the fact that the 

reordering step is not carried out with the values of the arguments ai. In this 

case, the reordering step is induced by another mechanism represented as ui, 
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where the ordered position of the arguments ai depends upon the values of the 

inducing variables ui.  

 

Definition 3. An IOWA operator of dimension n is a mapping IOWA: Rn → R 

that has an associated weighting vector W of dimension n such that ∑ = =n
j jw1 1 

and wj ∈ [0,1], then: 

  

IOWA(〈u1,a1〉, 〈u2,a2〉…, 〈un,an〉) = ∑
=

n

j
jjbw

1
                                              (3) 

 

where bj is the ai value of the OWA pair 〈ui,ai〉 having the jth largest ui, ui is the 

order inducing variable and ai is the argument variable. 

 

From a generalized perspective of the reordering step, we have to 

distinguish between the descending IOWA (DIOWA) operator and the 

ascending IOWA (AIOWA) operator. Note that these orderings are based on the 

inducing variable and their weighting vectors are related by wj = w*n+1−j, where 

wj is the jth weight of the DIOWA (or IOWA) operator and w*n+1−j the jth 

weight of the AIOWA operator. Note also that the elements bj of the AIOWA 

operator are ordered in an increasing way such that 〈Min{ ui},b1〉 ≤ … ≤ 

〈Max{ui},bn〉.  

 

 

2.4. Induced OWG operator 

 

The induced OWG (IOWG) operator was first introduced in Xu and Da 

(2003) and is an extension of the OWG operator. It involves combining the 

IOWA operator with the geometric mean. Unlike in the OWG operator, the 
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reordering step in the IOWG is not carried out with the values of the arguments 

ai. In this case, the reordering step is induced by another mechanism represented 

by ui, where the ordered position of the arguments ai depends upon the values of 

the inducing variable ui.  

 

Definition 4. An IOWG operator of dimension n is a mapping IOWG: R+n
 → R+ 

that has an associated weighting vector W of dimension n such that ∑ = =n
j jw1 1 

and wj ∈ [0,1], then: 

  

IOWG(〈u1,a1〉, 〈u2,a2〉…, 〈un,an〉) = ∏
=

n

j

w
j

jb
1

                                              (4) 

 

where bj is the ai value of the OWG pair 〈ui,ai〉 having the jth largest ui, ui is the 

order inducing variable and ai is the argument variable. 

 

From a generalized perspective of the reordering step, we can distinguish 

between the descending IOWG (DIOWG) operator and the ascending IOWG 

(AIOWG) operator. Note that these orderings are also based on the inducing 

variable such that the DIOWG operator is ordered as 〈Max{ui},b1〉 ≤ … ≤ 

〈Min{ ui},bn〉, and the AIOWG operator as 〈Min{ ui},b1〉 ≤ … ≤ 〈Max{ui},bn〉. 

Note also that the weighting vectors are related by wj = w*n+1−j, where wj is the 

jth weight of the DIOWG (or IOWG) operator and w*n+1−j the jth weight of the 

AIOWG operator.  
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3. The Dempster-Shafer theory of evidence 

 

The D-S theory of evidence was introduced by Dempster (1967; 1968) 

and Shafer (1976) and subsequently many new developments have been made 

(for example, Yager et al., 1994; Srivastava and Mock, 2002). Formulations of 

this type provide a unifying framework for representing uncertainty as it can 

include cases of risk and ignorance as special occurrences. Obviously, the case 

of certainty is also included in this generalization as it can be seen as a particular 

situation of risk or ignorance. Note that the case of certainty could also appear in 

other particular situations of the D-S formulation. Apart from these traditional 

cases, the D-S framework allows other forms of information that a decision 

maker might have about the states of nature to be represented. 

 

Definition 5. A D-S belief structure defined on a space X consists of a collection 

of n nonnull subsets of X, Bj for j = 1,…,n, called focal elements and a mapping 

m, called the basic probability assignment, defined as, m: 2X → [0, 1] such that: 

 

(1) m(Bj) ∈ [0, 1]. 

(2) )(
1∑ =

n

j
jBm = 1. 

(3) m(A) = 0,  ∀ A ≠ Bj. 

 

As described above, the cases of risk and ignorance are included as 

special cases of belief structure in the D-S framework. In the case of risk, a 

belief structure is known as a Bayesian belief structure if it consists of n focal 

elements such that Bj = {xj}, where each focal element is a singleton. Then, it is 

evident that we are in a situation of decision making under a risk environment as 

m(Bj) = Pj = Prob {xj}.  
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The case of ignorance is found when the belief structure consists in only 

one focal element B, where m(B) essentially is the decision making under 

ignorance environment, as this focal element comprises all the states of nature. 

Thus, m(B) = 1. Other special cases of belief structures such as the consonant 

belief structure or the simple support function are studied in Shafer (1976). 

 

Two important evidential functions associated with these belief structures 

are the measures of plausibility and belief. In the following, we provide a 

definition of these two measures as developed by Shafer (1976). 

 

Definition 6. The plausibility measure Pl is defined as, Pl: 2X → [0, 1] such that: 

 

    Pl(A) = )(∑
∅≠jBA

jBm
I

                                                                          (5) 

 

Definition 7. The belief measure Bel is defined as Bel: 2X → [0, 1] such that:                         

            

     Bel(A) = ∑
⊆ AB

j
j

Bm )(                                                                            (6) 

 

Bel(A) represents the exact support to A and Pl(A) represents the possible 

support to A. With these two measures we can form the interval of support to A 

as [Bel(A),Pl(A)]. This interval can be seen as the lower and upper bounds of the 

probability to which A is supported such that Bel(A) ≤ Prob(A) ≤ Pl(A). From 

this we see that Pl(A) ≥ Bel(A) for all A. Another interesting feature about these 

two measures is that they are connected by Bel(A) = 1 – Pl(Ā) or Pl(A) = 1 – 

Bel(Ā), where Ā is the complement of A. 
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4. Induced OWA operators in decision making with Dempster-Shafer belief 

structures 

 

4.1. Decision making approach 

 

The problem of decision making with D-S belief structures has been 

studied by various authors (Merigó and Casanovas, 2006; Engemann et al., 

1996; Yager, 1996a; Yager, 2002b; Yager, 2004b; Yager, 2004c). In 1992a, 

Yager proposed a more generalized methodology by using the OWA operator.  

 

A new method for decision making with D-S belief structures is possible 

by using the IOWA operator in the aggregation step instead of the OWA 

operator. The reason for using the IOWA operator in these cases is that the 

decision maker may, on occasions, have an attitudinal character that differs from 

the values of the arguments. Then, in order to aggregate the arguments, he 

prefers to use another mechanism in the reordering step which is closer 

accordance with his interests. Similar explanations for using the IOWA operator 

in such circumstances might be offered, but the principal idea is the possibility 

of using different reordering methods in the aggregation.  

 

The procedure to follow for taking decisions with the IOWA operator in 

the D-S theory of evidence is similar to that used with OWA operators, with the 

difference that now the IOWA operator is used in the aggregation step. The 

procedure can be summarized as follows. 

 

Assume we have a decision problem in which we have a collection of 

alternatives {A1, …, Aq} with states of nature {S1, …, Sn}. aih is the payoff to the 

decision maker if he selects alternative Ai and the state of nature is Sh. The 

knowledge of the state of nature is captured in terms of a belief structure m with 
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focal elements B1, …, Br and associated with each of these focal elements is a 

weight m(Bk). The objective is to select the alternative which gives the best 

result to the decision maker. In order to do so, the following steps should be 

taken: 

 

Step 1: Calculate the payoff matrix. 

Step 2: Calculate the belief function m about the states of nature. 

Step 3: Calculate the attitudinal character of the decision maker by determi-

ning the values ui. Note that in this case the measure α(W) is different from that 

adopted by Yager (1988) and is dependent upon the mechanism used in the 

reordering step. That is: 

 

∑
=

=
n

j
jj ewW

1
)(α                                                                           (7) 

 

where ej is the di value of the OWG pair 〈ui,di〉 having the jth largest ui, ui is the 

order inducing variable and di = (n − j) / (n − 1). 

Step 4: Calculate the collection of weights, w, to be used in the IOWA 

aggregation for each different cardinality of focal elements. Note that it is 

possible to use different methods depending on the interests of the decision 

maker (Xu, 2005b). 

Step 5: Determine the payoff collection, Mik, if we select alternative Ai and the 

focal element Bk occurs, for all the values of i and k. Hence Mik = {aih | Sh ∈ Bk}. 

Step 6: Calculate the aggregated payoff, Vik = IOWA(Mik), using Eq. (3), for 

all the values of i and k. 

Step 7: For each alternative, calculate the generalized expected value, Ci, 

where:  
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Ci =  ∑
=

r

k
kik BmV

1
)(                                                                            (8) 

 

Step 8: Select the alternative with the largest Ci as the optimal. Note that in a 

situation of costs or similar, we should select the alternative with the lowest Ci. 

 

From a generalized perspective of the reordering step, we can distinguish 

between ascending and descending orders in the IOWA aggregation. The reason 

for drawing this distinction is the reordering of the inducing variables, among 

which the highest value is sometimes the first result in the reordering step, but 

on other occasions the first result is the lowest value. This depends on the 

mechanism used for the reordering of the arguments.  

 

The procedure to follow if we use the AIOWA operator in the aggregation 

step is the same than the procedure used for the IOWA or DIOWA operator with 

the following differences. 

 

In Step 3, when calculating the inducing variables we should consider that 

in these cases, the lowest inducing variable is the first result in the reordering of 

the arguments.  

 

In Step 4, when calculating the collection of weights, we should consider 

that the reordering will now be different so that we might associate each weight 

correctly with its corresponding position. 

 

In Step 6, when calculating the aggregated payoff, we should use Vik = 

AIOWA(Mik), using Eq. (4), for all the values of i and k. 
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4.2. Using IOWA operators in belief structures 

 

Analyzing the aggregation in Steps 6 and 7 of Section 4.1., we can 

formulate the whole aggregation process in one equation. Then, the result 

obtained is that the focal weights are aggregating the results obtained by using 

the IOWA operator. We will call this process the BS-IOWA operator and it can 

be defined as follows. 

 

Definition 8. A BS-IOWA operator is defined by  

 

         Ci =   ∑ ∑
= =

r

k

q

j
jjk

k

k
kk

bwBm
1 1

)(                                                               (9) 

 

where 
kj

w  is the weighting vector of the kth focal element such that ∑ = =n
j kjw1 1 

and 
kj

w ∈ [0,1], 
kj

b is the 
ki

a  value of the IOWA pair 〉〈
kk ii au ,  having the jkth 

largest 
ki

u , 
ki

u  is the order inducing variable, 
ki

a  is the argument variable and 

m(Bk) is the basic probability assignment. Note that qk refers to the cardinality of 

each focal element and r is the total number of focal elements. 

 

The BS-IOWA operator is commutative, monotonic, bounded and 

idempotent. We can prove these properties with the following theorems. 

 

THEOREM 1 (Commutativity). Assume f is the BS-IOWA operator, then 

 

),,...,,(),,...,,( ***
1

*
111 1111

〉〈〉〈=〉〈〉〈
rrrr qqqq auaufauauf                       (10) 
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where ),,...,,( **
´

*
1

*
1 11

〉〈〉〈
rr qq auau  is any permutation of ),,...,,(

11 11 〉〈〉〈
rr qq auau  for 

each focal element k. 

 

Proof. Let 

 

∑ ∑
= =

=〉〈〉〈〉〈
r

k

q

j
jjkqqqq

k

k
kkrr

bwBmauauauf
1 1

11 )(),,...,,,...,,(
1111

      and 

 

∑ ∑
= =

=〉〈〉〈〉〈
r

k

q

j
jjkqqqq

k

k
kkrr

bwBmauauauf
1 1

***
´

***
1

*
1 )(),,...,,,...,,(

1111
 

 

Since ),,...,,( **
´

*
1

*
1 11

〉〈〉〈
rr qq auau  is a permutation of ),,...,,(

11 11 〉〈〉〈
rr qq auau for 

each focal element k, we have *
kk jj bb = , and then 

 

              ),,...,,(),,...,,( ***
1

*
111 1111

〉〈〉〈=〉〈〉〈
rrrr qqqq auaufauauf                            ■ 

 

THEOREM 2 (Monotonicity). Assume f is the BS-IOWA operator, if 
kk ii aa ˆ≥ , 

∀i, then 

 

)ˆ,,...,ˆ,(),,...,,(
1111 1111 〉〈〉〈≥〉〈〉〈

rrrr qqqq auaufauauf                       (11) 

 

Proof. Let 

 

∑ ∑
= =

=〉〈〉〈〉〈
r

k

q

j
jjkqqqq

k

k
kkrr

bwBmauauauf
1 1

11 )(),,...,,,...,,(
1111

      and 
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∑ ∑
= =

=〉〈〉〈〉〈
r

k

q

j
jjkqqqq

k

k
kkrr

bwBmauauauf
1 1

11
ˆ)()ˆ,,...,ˆ,,...,ˆ,(

1111
 

 

Since 
kk ii aa ˆ≥ , ∀i, it follows that 

kk jj bb ˆ≥ , and then  

 

)ˆ,,...,ˆ,(),,...,,(
1111 1111 〉〈〉〈≥〉〈〉〈

rrrr qqqq auaufauauf                           ■ 

 

THEOREM 3 (Boundedness). Assume f is the BS-IOWA operator, then 

 

}max{),,...,,,...,,(}min{
1111 11 iqqqqi aauauaufa

rr
≤〉〈〉〈〉〈≤                 (12) 

 

Proof. Let max{ai} = b and min{ai} = a, then 

 

∑ ∑∑ ∑∑ ∑
= == == =

=≤=〉〈〉〈
r

k

q

j
jk

r

k

q

j
jk

r

k

q

j
jjkqq

k

k
k

k

k
k

k

k
kkrr

wBmbbwBmbwBmauauf
1 11 11 1

11 )()()(),,...,,(
11

 

 

∑ ∑∑ ∑ ∑ ∑
= == = = =

=≤=〉〈〉〈
r

k

q

j
jk

r

k

q

j

r

k

q

j
jkjjkqq

k

k
k

k

k

k

k
kkkrr

wBmaawBmbwBmauauf
1 11 1 1 1

11 )()()(),,...,,(
11

 

 

Since ∑ = =k

k k

q
j jw1 1 for each focal element and ∑ = =r

k kBm1 1)( , we get 

 

bauauf
rr qq =〉〈〉〈 ),,...,,(

11 11  

 

aauauf
rr qq =〉〈〉〈 ),,...,,(

11 11  

 

Therefore, 
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}max{),,...,,,...,,(}min{
1111 11 iqqqqi aauauaufa

rr
≤〉〈〉〈〉〈≤                     ■ 

 

THEOREM 4 (Idempotency). Assume f is the BS-IOWA operator, if aai =  ∀i 

∈ N, then 

 

aauauauf
rr qqqq =〉〈〉〈〉〈 ),,...,,,...,,(

1111 11                                              (13) 

 

Proof. Since  aai =  ∀i ∈ N, we have 

 

∑ ∑∑ ∑∑ ∑
= == == =

=≤=〉〈〉〈
r

k

q

j
jk

r

k

q

j
jk

r

k

q

j
jjkqq

k

k
k

k

k
k

k

k
kkrr

wBmaawBmbwBmauauf
1 11 11 1

11 )()()(),,...,,(
11

 

 

Since ∑ = =k

k k

q
j jw1 1 for each focal element and ∑ = =r

k kBm1 1)( , we get 

 

aauauauf
rr qqqq =〉〈〉〈〉〈 ),,...,,,...,,(

1111 11                                        ■ 

 

A further interesting feature is the distinction drawn between descending 

and ascending orders by using wj = w*n+1−j, where wj is the jth weight of the BS-

DIOWA (or BS-IOWA) operator and w*n+1−j the jth weight of the BS-AIOWA 

operator. Then, we obtain the BS-DIOWA and the BS-AIOWA operator. 

Obviously, these operators also fulfil the properties discussed in Theorems (1) - 

(4). 

 

If there is a tie in the reordering step of the BS-DIOWA or the BS-

AIOWA operator, we can follow the policy explained in Yager and Filev (1999) 

where the tied arguments are substituted by their arithmetic mean. Note also that 

it is possible to conduct the reordering of the arguments with words or 
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lexicographic orders that combine words with numbers in the aggregation 

(Zadeh, 1996). 

 

4.3. Families of BS-IOWA operators 

 

Following a similar methodology as that adopted for the OWA operator, 

we are able to develop different types of aggregation operators by choosing a 

different manifestation of the weighting vector in the BS-IOWA operator. Note 

that it is possible to obtain these results both with the BS-DIOWA or the BS-

AIOWA operators by using wj = w*n+1−j, where wj is the jth weight of the BS-

DIOWA (or BS-IOWA) operator and w*n+1−j the jth weight of the BS-AIOWA 

operator.  

 

As can be seen in Definition 8, each focal element uses a different 

weighting vector in the aggregation step with the IOWA operator. Therefore, it 

is possible to use different families of IOWA operators in the same BS-IOWA 

process. For example, assuming that we have three focal elements, we could use 

the maximum criteria for the first, the minimum criteria for the second and the 

average criteria for the third. For this reason, in order to conduct the analysis, we 

will consider different families of IOWA operators individually for each focal 

element. Note that the nomenclature used in this subsection is not the same as 

that adopted in earlier subsections. 

 

For example, it is possible to obtain the maximum, the minimum, the 

average, the Hurwicz criteria, the weighted average (WA) and the OWA 

operator. These families are obtained in accordance with Yager and Filev 

(1994). In other words, the maximum is obtained if wp = 1 and wj = 0, for all j ≠ 

p, and up = Maxi{ai}; the minimum, if wp = 1 and wj = 0, for all j ≠ p, and  up = 

Min i{ai}; the average criteria, when wj = 1/n, for all ai; the Hurwicz criteria, 
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when wp = α, wq = 1 - α, wj = 0, for all j ≠ p,q, and up = Maxi{ai}, uq = Mini{ai}; 

the weighted average, if ui > ui+1, for all i; and the OWA operator if the ordered 

position of ui is the same as that of bj such that bj is the jth largest of ai.  

 

Other families of aggregation operators could be used in the IOWA 

operator by using a different manifestation of the weighting vector. For 

example, when wp = 1 and wj = 0 for all j ≠ p we are using the step-IOWA 

operator (Yager, 1993). Note that if up = Maxi{ai}, the step-IOWA becomes the 

maximum and if up = Mini{ai}, the step-IOWA becomes the minimum. 

 

When wj = 1/m for k ≤ j ≤ k + m − 1 and wj = 0 for j > k + m and j < k, we 

are using the window-IOWA operator that is based on the window-OWA 

operator (Yager, 1993). Note that k and m must be positive integers such that k + 

m − 1 ≤ n. Also note that if m = k = 1, and the initial position of the highest ui is 

also the initial position of the highest ai, then, the window-IOWA becomes the 

maximum. If m = 1, k = n, and the initial position of the lowest ui is also the 

initial position of the lowest ai, then, the window-IOWA becomes the minimum. 

And if m = n and k = 1, the window-IOWA becomes the average criteria. 

 

If w1 = wn = 0, and for all others wj = 1/(n − 2), we are using the olympic-

IOWA operator that is based on the olympic-OWA (Yager, 1996b). Note that if 

n = 3 or n = 4, the olympic-IOWA becomes the IOWA-median and if m = n − 2 

and k = 2, the window-IOWA becomes the olympic-IOWA. Also note that the 

olympic-IOWA becomes the olympic average if wp = wq = 0, such that up = 

Maxi{ai} and uq = Mini{ai}, and for all others wj = 1/(n − 2).  

 

Another type of aggregation that could be used is the E-Z IOWA weights 

that it is based on the E-Z OWA weights (Yager, 2003b). In this case, we should 
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distinguish between two classes. In the first class, we assign wj = (1/k) for j = 1 

to k and wj = 0 for j > k, and in the second class, we assign wj = 0 for j = 1 to n − 

k and wj = (1/k) for j = n − k + 1 to n. Note that the E-Z IOWA weights becomes 

the E-Z OWA weights if the ordered position of ui is the same as that of the 

ordered position of bj such that bj is the jth largest of ai, from j = 1 to k for the 

first class, or  j = n − k + 1 to n for the second class. Note also for the first class 

that the maximum is obtained if k = 1 and b1 = Max{ai}, and the average criteria 

if k = n. In the second class, the minimum is obtained if k = 1 and bn = Min{ai}, 

and the average if k = n. 

 

It should also be noted that the median and the weighted median can be 

used as induced aggregation operators. For the IOWA-median, if n is odd we 

assign w(n + 1)/2 = 1 and wj = 0 for all others, and this affects the argument ai with 

the [(n + 1)/2]th largest ui. If n is even we assign for example, wn/2 = w(n/2) + 1 = 

0.5, and this affects the arguments with the (n/2)th and [(n/2) + 1]th largest ui. 

Note that if the ordered position of ui is the same than the ordered position of bj 

such that bj is the jth largest of ai, then, the IOWA-median is transformed in the 

OWA-median.  

 

For the weighted IOWA-median, we follow a similar procedure to that 

described by Yager (1994). We select the argument ai that has the kth largest 

inducing variable ui, such that the sum of the weights from 1 to k is equal or 

higher than 0.5 and the sum of the weights from 1 to k − 1 is less than 0.5. Note 

that if the ordered position of ui is the same than the ordered position of bj such 

that bj is the jth largest of ai, then, the weighted IOWA-median becomes the 

weighted OWA-median. 

 

A further type of IOWA aggregation is the S-IOWA operator based on the 

S-OWA operator (Yager and Filev, 1994). For this type, we have to distinguish 
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between three cases, the “orlike”, the “andlike” and the generalized S-IOWA 

operator. The “orlike” S-IOWA operator is obtained when wp = (1/n)(1 − α) + α, 

up = Max{ai}, and wj = (1/n)(1 − α) for all j ≠ p with α ∈ [0, 1]. Note that if α = 

0, we obtain the average and if α = 1, the maximum. The “andlike” S-IOWA 

operator is obtained when wq = (1/n)(1 − β) + β, uq = Min{ai}, and wj = (1/n)(1 − 

β) for all j ≠ q with β ∈ [0, 1]. In this case, if β = 0 we obtain the average and if 

β = 1, the minimum. Finally, the generalized S-IOWA operator is found when 

wp = (1/n)(1 − (α + β) + α, with up = Max{ai}; wq = (1/n)(1 − (α + β) + β, with 

uq = Min{ai}; and wj = (1/n)(1 − (α + β) for all j ≠ p,q where α, β ∈ [0, 1] and α 

+ β ≤ 1. Note that if α = 0, the generalized S-IOWA operator becomes the 

“andlike” S-IOWA operator and if β = 0, the “orlike” S-IOWA operator. 

 

Other families of IOWA operators that could be developed include those 

that depend on the aggregated objects. For example, we could develop the 

BADD-IOWA operator as follows. 

 

∑
=

=
n
j j

j
j

b

b
w

1
α

α

                                                                                   (14)

 

with α ∈ (−∞, ∞) and bj is the value ai of the OWA pair with the jth largest ui. 

Note that Σj wj = 1 and wj ∈ [0,1]. Note also that if α = 0, we obtain the average 

and if α = ∞, the maximum. Other families of IOWA operators that depend on 

the aggregated objects could be developed by using (1 − bj)
α, (1/bj)

α, etc., 

instead of bj
α. These families were developed for the OWA operator in Yager 

(1993). 
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A further useful method for obtaining the weighting vector is the functional 

method known as basic unit interval monotonic function (BUM) (Yager, 1996b). 

Let ƒ be a function ƒ: [0, 1] → [0, 1] such that ƒ(0) = ƒ(1) y ƒ(x) ≥ ƒ(y) for x > y. 

Using this BUM function we obtain the IOWA weights for j = 1 to n as: 
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Using this method, it is easy to see that Σj wj = 1 and wj ∈ [0,1]. 

 

A further type of IOWA operator that could be used in the aggregation is the 

centered-IOWA operator. Following the same methodology that Yager used for 

the OWA operator (Yager, 2007), we can define the centered-IOWA operator as 

an aggregation that is symmetric, strongly decaying and inclusive. It is 

symmetric if wj = wj+n−1. It is strongly decaying when i < j ≤ (n + 1)/2, then wi < 

wj and when i > j ≥ (n + 1)/2, then wi < wj. It is inclusive if wj > 0. Note that it is 

possible to consider a relaxation of the second condition by using wi ≤ wj instead 

of wi < wj. This situation is known as softly decaying centered-IOWA operator. 

An example of this particular situation is the average criteria. Another particular 

situation appears if we remove the third condition. This case is known as non-

inclusive centered-IOWA operator. An example of this case is the IOWA-

median. Note that the attitudinal character of the centered-IOWA is not equal to 

0.5 because it depends on the inducing variables.  

 

A special type of centered-IOWA operators are the Gaussian-IOWA weights. 

Note that it is based on the Gaussian-OWA weights developed by Xu in 

(2005b). In order to define the weighting vector, first we have to consider a 

Gaussian distribution η(µ, σ) where: 
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we define the IOWA weights as: 
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Note that Σj wj = 1 and wj ∈ [0,1]. 

 

Finally, if we assume that all the focal elements use the same weighting 

vector, then, we can refer to these families as the BS-maximum, the BS-

minimum, the BS-average, the BS-WA, the BS-step-IOWA operator, the BS-

window-IOWA, the BS-median-IOWA, the BS-olympic-IOWA, the BS-

centered-IOWA, the BS-Gaussian-IOWA, the BS-S-IOWA, the BS-EZ-IOWA, 

etc. 
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5. Induced OWG operators in decision making with Dempster-Shafer belief 

structures 

 

An alternative for decision making with D-S theory is made possible by using 

the IOWG operator in the aggregation step. The reason for using IOWG 

operators arises because there are situations in which it is better to reorder the 

arguments with a different mechanism rather than using that of their values. In 

this mechanism, we introduce an inducing variable for each argument from 

which we can develop the reordering step. Then, it is possible to aggregate with 

a different method to that used with the OWG operator (Merigó and Casanovas, 

2006). Note that in the 21st Century, it seems more useful to use the IOWA 

operator but mathematically it is also interesting to consider the geometric 

version, especially for future research related with decision making with 

preference relations. 

 

The procedure to follow when taking decisions with the IOWG operator is 

very similar to the previous method commented when using IOWA operators in 

the D-S belief structure. The difference is that in this case, the arguments are 

aggregated with the IOWG operator. Assuming the same variables as with the 

IOWA operator explained in Section 4.1, we could summarize the procedure 

with the following steps: 

 

Step 1: Calculate the payoff matrix. 

Step 2: Calculate the belief function m about the states of nature. 

Step 3: Calculate the attitudinal character of the decision maker by determi-

ning the values ui.  

Step 4: Calculate the collection of weights, w, to be used in the IOWG 

aggregation for each different cardinality of focal elements. Note that it is 
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possible to use different methods depending on the interests of the decision 

maker (Xu, 2005b). 

Step 5: Determine the payoff collection, Mik, if we select alternative Ai and the 

focal element Bk occurs, for all the values of i and k. Hence Mik = {Cij  | Sj ∈ Bk}. 

Step 6: Calculate the aggregated payoff, Vik = IOWG(Mik), using Eq. (4), for 

all the values of i and k. 

Step 7: For each alternative, calculate the generalized expected value, Ci, 

where:  

 

Ci =  ∑
=

r

k
kik BmV

1
)(                                                                                    (20) 

 

Step 8: Select the alternative with the largest Ci as the optimal. Note that in a 

situation of costs or similar, we should select the alternative with the lowest Ci. 

 

Analyzing the aggregation in Step 6 and Step 7, we can formulate the whole 

aggregation process in one equation as follows. We will call this the BS-IOWG 

operator. 

 

Definition 9. A BS-IOWG operator is defined by  
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where 
kj

w  is the weighting vector of the kth focal element such that ∑ = =n
j kjw1 1 

and 
kj

w ∈ [0,1], 
kj

b is the 
ki

a  value of the IOWG pair 〉〈
kk ii au ,  having the jkth 

largest 
ki

u , 
ki

u  is the order inducing variable, 
ki

a  is the argument variable and 

m(Bk) is the basic probability assignment. Note that qk refers to the cardinality of 
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each focal element and r is the total number of focal elements. Also note that the 

IOWG operator can only aggregate positive numbers. 

 

The BS-IOWG operator is commutative, monotonic, bounded and 

idempotent. Their demonstration of these properties is straightforward by 

looking to theorems (1) – (4) developed for the BS-IOWA operator. 

 

From a generalized perspective of the reordering step it is possible to 

distinguish between the DIOWG and the AIOWG operators. Their use in D-S 

framework is straightforward by using wj = w*n+1−j, where wj is the jth weight of 

the BS-DIOWG (or BS-IOWG) operator and w*n+1−j the jth weight of the BS-

AIOWG operator. The reason for using BS-AIOWG operators arises because it 

is sometimes better to use an ascending order in the inducing variable. For 

example, we could use it in situations where the lowest inducing variable is the 

best result and we want to start the reordering step from this result. Note that it 

is possible to use words in the inducing variables and if there is a tie in the 

reordering step of the BS-DIOWG or the BS-AIOWG operator, we should also 

follow the policy explained in Yager and Filev (1999).  

 

Adopting the same methodology than Section 4.3, we can develop a wide 

range of families of BS-IOWG operators. As each focal element uses a different 

weighting vector, the analysis should be conducted individually. Then we could 

analyze among others, the maximum, the minimum, the geometric mean (GM), 

the weighted geometric mean (WGM), the step-IOWG operator, the window-

IOWG, the IOWG median, the olympic-IOWG, the centered-IOWG, the S-

IOWG, etc. If we assume that all the focal elements use the same weighting 

vector, then, we can refer to these families as the BS-maximum, the BS-

minimum, the BS-GM, the BS-WGM, the BS-step-IOWG operator, the BS-
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window-IOWG, the BS-IOWG median, the BS-olympic-IOWG, the BS-

centered-IOWG, the BS-S-IOWG, etc. 

 

 

6. Illustrative example 

 

In the following, we present an illustrative example using the methodologies 

described above. We analyze a decision making problem with the D-S belief 

structure. We use different types of aggregation operators to solve the problem 

such as the arithmetic mean (AM), the WA, the OWA, the AOWA, the IOWA 

and the AIOWA operator. We also use different types of geometric aggregation 

operators such as the GM, the WGM, the OWG, the AOWG, the IOWG and the 

AIOWG operator. Note that in all cases we assume a situation in which the 

highest value is the best result. Then, for each situation, we select the alternative 

with the highest result. 

 

Step 1: Assume a decision maker has five possible investment opportunities 

and he wants to select the alternative that adapts best to his interests.  

 

1) A1 is a car company. 

2) A2 is a pharmaceutical company. 

3) A3 is a computer company. 

4) A4 is a chemical company. 

5) A5 is a TV company. 

 

The possible results, depending on the future state of nature, are represented 

in Table 1. Note that the results are income values. 
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Table 1. Payoff matrix 

 S1 S2 S3 S4 S5 S6 S7 S8 

A1 20 40 50 80 30 60 80 50 

A2 30 30 60 70 40 70 50 40 

A3 50 60 20 40 30 50 80 70 

A4 40 50 30 60 50 60 60 60 

A5 60 40 50 30 70 70 60 30 

 

 

The states of nature represent different economic situations affecting the 

companies. These situations are evaluated by the world growth rate: S1 = strong 

recession, S2 = weak recession, S3 = growth rate near 0, S4 = very low growth 

rate, S5 = low growth rate, S6 = medium growth rate, S7 = high growth rate, S8 = 

very high growth rate. 

 

Step 2: The decision maker has brought together a group of experts in order to 

solve the problem. After careful analysis, the experts have obtained some 

probabilistic information about the state of nature that will occur in the future. 

This information is represented by the following belief function m about the 

states of nature. 

 

Focal element 

B1 = {S1, S5, S6, S7} = 0.4 

B2 = {S1, S3, S8} = 0.3 

B3 = {S2, S3, S4} = 0.3 

 

Step 3: Assume the following attitudinal character for the decision maker 

when using induced aggregation operators, represented in Table 2.  
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Table 2. Inducing variables 

 S1 S2 S3 S4 S5 S6 S7 S8 

A1 25 16 24 18 20 13 19 14 

A2 18 34 22 12 24 16 20 26 

A3 13 21 28 22 19 25 16 26 

A4 20 24 14 31 27 25 19 18 

A5 25 16 23 30 15 21 18 26 

 

 

Step 4: Assume we have used one of the existing methods for determining the 

weights (Yager, 1993; Xu, 2005) and we have obtained the following results for 

the different number of arguments. 

 

Weighting vector 

W2 = (0.7, 0.3) 

W3 = (0.4, 0.4, 0.2) 

W4 = (0.3, 0.3, 0.2, 0.2) 

 

Step 5: Calculate the payoff collection, Mik, if we select alternative Ai and the 

focal element Bk occurs, for all the values of i and k. 

 

A1: M11 = 〈20, 30, 60, 80〉; M12 = 〈20, 50, 50〉; M13 = 〈40, 50, 80〉. 

A2: M21 = 〈30, 40, 70, 50〉; M22 = 〈30, 60, 40〉; M23 = 〈30, 60, 70〉. 

A3: M31 = 〈50, 30, 50, 80〉; M32 = 〈50, 20, 70〉; M33 = 〈60, 20, 40〉. 

A4: M41 = 〈40, 50, 60, 60〉; M42 = 〈40, 30, 60〉; M43 = 〈50, 30, 60〉. 

A5: M51 = 〈60, 70, 70, 60〉; M52 = 〈60, 50, 30〉; M53 = 〈40, 50, 30〉. 
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From the sixth step, we can distinguish between four different types of 

aggregation operators: the IOWA operator, the AIOWA operator, the IOWG 

operator and the AIOWG operator. 

 

Step 6: Calculate the aggregated payoff, Vik, using Eq. (3) for the IOWA 

operator and using Eq. (4) for the IOWG operator. The results are shown in 

Tables 3 and 4. 

 

Table 3. Aggregated payoff 

 AM WA OWA AOWA IOWA AIOWA 

V11 47.5 43 52 43 43 52 

V12 40 38 44 38 38 44 

V13 56.6 50 58 50 60 58 

V21 47.5 45 50 45 47 48 

V22 43.3 44 46 40 46 44 

V23 53.3 50 58 50 50 58 

V31 52.5 50 55 50 50 55 

V32 46.6 42 52 42 46 52 

V33 40 40 44 36 36 44 

V41 52.5 51 54 51 53 52 

V42 43.3 40 46 40 46 44 

V43 46.6 44 50 44 50 44 

V51 65 65 66 64 65 65 

V52 46.6 50 50 44 46 50 

V53 40 42 42 38 40 42 
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Table 4. Aggregated payoff for the geometric operators 

 GM WGM OWG AOWG IOWG AIOWG 

V11 41.19 37.12 45.70 37.12 37.12 45.70 

V12 36.84 34.65 41.62 34.65 34.65 41.62 

V13 50.13 46.89 55.55 46.89 57.70 55.18 

V21 45.27 42.91 47.75 42.91 45.15 45.38 

V22 41.60 41.92 44.41 38.66 44.41 41.92 

V23 50.13 46.89 55.55 46.89 46.89 55.55 

V31 49.49 47.12 51.97 47.12 47.12 51.97 

V32 41.21 37.06 47.62 37.06 39.65 47.62 

V33 36.34 35.65 40.95 32.87 32.87 40.95 

V41 51.80 50.30 53.34 50.30 52.38 51.22 

V42 41.60 38.66 44.41 38.66 44.41 41.92 

V43 44.81 42.27 48.55 42.27 48.55 42.27 

V51 64.80 64.80 65.81 63.81 64.80 64.80 

V52 44.81 48.55 48.55 42.27 43.84 48.55 

V53 39.14 41.28 41.28 37.27 38.98 41.28 

 

Step 7: For each alternative, calculate the generalized expected value, Ci, 

using Eq. (8) for the IOWA operator and Eq. (20) for the IOWG operator.  

 

Table 5. Generalized expected value 

 AM WA OWA AOWA IOWA AIOWA 

A1 48 43.6 51.4 43.6 46.6 51.4 

A2 48 46.2 51.2 45 47.6 49.8 

A3 47 44.6 50.8 43.4 44.6 50.8 

A4 48 45.6 50.4 45.6 50 47.2 

A5 52 53.6 54 50.2 51.8 53.6 
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Table 6. Generalized expected value for the geometric operators 

 GM WGM OWG AOWG IOWG AIOWG 

A1 42.56 39.31 47.43 39.31 42.55 47.32 

A2 45.62 43.80 49.08 42.82 45.45 47.39 

A3 43.06 40.66 47.35 39.82 40.60 47.35 

A4 46.64 44.39 49.22 44.39 48.84 45.74 

A5 51.10 52.86 53.27 49.39 50.76 52.86 

 

 

Step 8: Select the best alternative for each aggregation operator. As we can 

see, in this problem, the best alternative is A5. 

If we establish an order for the investments, a typical situation if we want to 

select more than one alternative, we can see that each aggregation gives us a 

different order. Note that  means preferred to. The results are shown in Table 

7. 

 

Table 7. Ordering of the investments 

 Ordering  Ordering 

AM A5A1=A2=A4A3 GM A5A4A2A3A1 

WA A5A2A4A3A1 WGA A5A4A2A3A1 

OWA A5A1A2A3A4 OWG A5A4A2A1A3 

AOWA A5A4A2A1A3 AOWG A5A4A2A3A1 

IOWA A5A4A2A1A3 IOWG A5A4A2A1A3 

AIOWA A5A1A3A2A4 AIOWG A5A2A3A1A4 

 

 

 

 



 33 

7. Conclusions 

 

In this paper, we have proposed the use of induced aggregation operators in 

decision making with D-S belief structure. First, we have reviewed some basic 

aggregation operators and we have forwarded a number of suggestions 

concerning certain new theoretical aspects, such as the distinction between 

ascending and descending orders and different families of induced aggregation 

operators. This analysis has been conducted for both the IOWA and the IOWG 

operators. We have studied the D-S belief structure and its application in 

decision making. We have outlined the process that should be followed when 

using induced aggregation operators in the D-S theory of evidence, and here 

again we have studied some of its main properties, including the distinction 

between ascending and descending orders and different families of induced 

aggregation operators. We have also examined the process that should be 

adopted with IOWG operators in decision making with D-S theory. Finally, an 

illustrative example has been provided in which we have reported the results 

obtained when using the OWA, the OWG, the IOWA and the IOWG operators 

in decision making with D-S belief structure. 
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