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Abstract: We study the induced aggregation operators. The analysis begins with a revision
of some basic concepts such as the induced ordered weighted averaging (IOWA) operator
and the induced ordered weighted geometric (IOWG) operator. We then analyze the
problem of decision making with Dempster-Shafer theory of evidence. We suggest the use
of induced aggregation operators in decision making with Dempster-Shafer theory. We
focus on the aggregation step and examine some of its main properties, including the
distinction between descending and ascending orders and different families of induced
operators. Finally, we present an illustrative example in which the results obtained using
different types of aggregation operators can be seen.

JEL Classification: C44, C49, D81, D89.
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Resumen: En este trabajo se estudian los operadores de agregacion inducidos como son el
induced ordered weighted averaging (IOWA) operator y el induced ordered weighted
geometric (IOWG) operator. También se analiza el proceso de toma de decisiones mediante
la estructura de credibilidad de Dempster-Shafer. La principal propuesta del trabajo es la
utilizacion de operadores de agregacién inducidos en la toma de decisiones mediante la
estructura de credibilidad de Dempster-Shafer. Se da especial atencion al proceso de
agregacion estudiando algunas de sus principales propiedades como son la distincion entre
ordenes ascendentes y descendentes, y el estudio de diferentes familias de operadores
inducidos. Finalmente, se desarrolla un ejemplo ilustrativo en donde se pueden observar los
diferentes resultados obtenidos segun el tipo de operador utilizado.
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1. Introduction

The Dempster-Shafer (D-S) theory of evidence waseldped by
Dempster (Dempster, 1967; 1968) and Shafer (Shatéi6) and has
subsequently been used in an astonishingly widgerasf applications (see,
among others, Yagest al, 1994; Srivastava and Mock, 2002). It provides a
unifying framework for representing uncertaintyiasan include situations of

risk and ignorance in the same formulation.

When using the D-S theory in decision making, teeiglon information
must first be aggregated. A very common aggregatn@thod is the ordered
weighted averaging (OWA) operator developed by Y4#688). Since it first
appeared, the OWA operator has been used in aramndge of applications (see,
among others, Calvet al, 2002; Yager and Kacprzyk, 1997). It provides a
parameterized family of aggregation operatorsiti@dtdes the arithmetic mean,
the maximum and the minimum as special cases (Ydf#88). Recently,
Chiclanaet al. (2000) have developed the ordered weighted geam@WG)
operator and it has subsequently been extensiveyysed by a number of
authors (see, among others, Herreral, 2003; Merigd and Casanovas, 2006;
Xu and Da, 2002). It combines the OWA operator Wit geometric mean in
the same aggregation thereby providing another npetexized family of
aggregation operators that include the maximumta@aninimum among others
(Chiclanaet al, 2000).

In 1999, Yager and Filev introduced an extensiothefOWA operator —
the induced ordered weighted averaging (IOWA) oera while, in 2003, Xu
and Da introduced a geometric version of the IOWperator, known as the
induced ordered weighted geometric (IOWG) oper&aorce their introduction,

they have been examined in a number of studies (hdn and S.M. Chen,



2003; Chiclanat al, 2004; Mitchell and Schaefer, 2000; Xu, 2005a; 20064,
Xu, 2006b; Xu, 2006c; Yager, 2002a; Yager, 2003agef, 2004a). The main
characteristic of the induced aggregation operasotlat the reordering step is
not conducted with the values of the arguments tmethe OWA operators. In
these cases, the reordering step is induced bysr&aanother mechanism so
that the order of the arguments depends upon theewvaf their associated

inducing variables.

Yager (1992a) developed a more general formuldtonlecision making
in the face of evidential knowledge by using the ®Wperator. This problem
has also been studied in (Merigé and Casanovas$,, Hiiygemanret al, 1996;
Yager, 1996a; Yager, 2002b; Yager, 2004b; Yage®42D In this paper, we
suggest the use of induced aggregation operatorsitirations of decision
making with D-S theory of evidence. The reasondming this is because there
are situations where we prefer to aggregate thahlas with an inducing order
instead of aggregating with the traditional OWA @ter. For example, such a
method is useful when the attitudinal charactertlod decision maker is
particularly complex or when there are a numbexérnal factors affecting the
decision analysis. We also propose using diffetgpes of orderings in the
aggregation of the D-S theory depending on theiBpsguation with which we
are dealing. We study these problems in detail twgdacting an extensive
analysis of the induced aggregation operators irclwlve introduce different
families of induced operators such as the step-IO@p&rator, the window-
IOWA operator, the olympic-IOWA operator, the E-QWA operator and the
median-IOWA operator, among others.

The remainder of this paper is organized as follolusSection 2, we
describe different types of aggregation operattmsSection 3, we briefly

describe the Dempster-Shafer theory of evidenc&eletion 4, we describe the



process for using induced aggregation operatoienision making with D-S
belief structures. In Section 5, we provide anstitative example of the new

approach. Finally, in Section 6 we summarize thearnanclusions of the paper.

2. Aggregation operators

In this Section, we briefly describe the basic aggtion operators that

are used in the paper.
2.1. OWA operator

The OWA operator, introduced by Yager (1988), pidesi a
parameterized family of aggregation operators ithdtide the arithmetic mean,

the maximum and the minimum.

Definition 1. An OWA operator of dimension is a mappind® WAR'—R that

has an associated weighting vedféof dimensiom such thaty'7_w; =1 andw,

[1[0,1], then:

OWA@y, 8...., 3) = _ﬁle b, (1)
=

whereb; is thejth largest of the.
From a generalized perspective of the reorderirep,stve have to

distinguish between the descending OWA (DOWA) ofmerand the ascending
OWA (AOWA) operator (Yager, 1992b). The weightstbése operators are



related byw; = w*,.14, wherew; is thejth weight of the DOWA (or OWA)
operator an@v*,.; 5 thejth weight of the AOWA operator.

2.2. OWG operator

The OWG operator was introduced in Chiclaal. (2000). It combines
the OWA operator and the geometric mean in the saggeegation. The OWG
operator provides a parameterized family that ibetu the minimum, the
maximum and the geometric mean. In the following, pvovide a definition of
the OWG operator as introduced by Xu and Da (200fre we can distinguish

between descending and ascending orderings.

Definition 2. An OWG operator of dimension is a mapping()WC3R+n—>R+

that has an associated weighting vedoof dimensionn such thaty?_ w; =1
andw; U [0,1], then:

n

OWGQay, &,..., &) = [1b;" (2)
j=1

whereb; is thejth largest of they, andR’ is the set of positive real numbers.
2.3. Induced OWA operator

The induced OWA (IOWA) operator was introduced iagér and Filev
(1999) and is an extension of the OWA operatodiffers in the fact that the

reordering step is not carried out with the valoéshe arguments;. In this

case, the reordering step is induced by anothehamesm represented asg



where the ordered position of the argumemtdepends upon the values of the

inducing variablesi;.

Definition 3. An IOWA operator of dimension is a mappingOWA R" - R

that has an associated weighting vedoof dimensionn such thaty?_ w; =1

andw; U [0,1], then:

IOWA((U,1), (Uz,8)..., (Un,@n) = iwj b; (3)
j=1

whereb; is theg; value of the OWA paifu;,a;) having theth largest;, u; is the

order inducing variable aral is the argument variable.

From a generalized perspective of the reorderirep,stve have to
distinguish between the descending IOWA (DIOWA) raper and the
ascending IOWA (AIOWA) operator. Note that thesdesings are based on the
inducing variable and their weighting vectors atated byw;, = w*,.14, where
w; is thejth weight of the DIOWA (or IOWA) operator and*,.;5 the jth
weight of the AIOWA operator. Note also that therséntsb; of the AIOWA
operator are ordered in an increasing way such dka{u},b) < ... <
(Max{u;}, b).

2.4. Induced OWG operator
The induced OWG (IOWG) operator was first introdiice Xu and Da

(2003) and is an extension of the OWG operatoinvblves combining the

IOWA operator with the geometric mean. Unlike ire tbWG operator, the



reordering step in the IOWG is not carried out with values of the arguments
a. In this case, the reordering step is inducednmtreer mechanism represented
by u;, where the ordered position of the argumentiepends upon the values of

the inducing variable.

Definition 4. An IOWG operator of dimensiamis a mappingOWG R" LR

that has an associated weighting vedtoof dimensionn such thaty?_ w; =1

andw; [ [0,1], then:

n

IOWG((u,ar), (Uz,8)...., (Un,an)) = []b;"™ (4)
j=1

whereb; is theg; value of the OWG paifu;,a;) having thgth largest;, u; is the

order inducing variable arg is the argument variable.

From a generalized perspective of the reorderiag, ste can distinguish
between the descending IOWG (DIOWG) operator amdakcending IOWG
(AIOWG) operator. Note that these orderings ar® dlased on the inducing
variable such that the DIOWG operator is orderedMax{u},b;) < ... <
(Min{ u}, by, and the AIOWG operator adin{u},b;) < ... £ (Max{u},b,).
Note also that the weighting vectors are relatedvoy w*,.,5, wherew; is the
jth weight of the DIOWG (or IOWG) operator and ., thejth weight of the
AIOWG operator.



3. The Dempster-Shafer theory of evidence

The D-S theory of evidence was introduced by Deerp€l967; 1968)
and Shafer (1976) and subsequently many new dawelois have been made
(for example, Yageet al, 1994; Srivastava and Mock, 2002). Formulations of
this type provide a unifying framework for repretieg uncertainty as it can
include cases of risk and ignorance as specialroaoces. Obviously, the case
of certainty is also included in this generalizatas it can be seen as a particular
situation of risk or ignorance. Note that the cafseertainty could also appear in
other particular situations of the D-S formulatigkpart from these traditional
cases, the D-S framework allows other forms of nmi@tion that a decision

maker might have about the states of nature tepesented.

Definition 5. A D-S belief structure defined on a spaceonsists of a collection
of n nonnull subsets df, B; forj = 1,...n, called focal elements and a mapping

m, called the basic probability assignment, defiaggn: 2° — [0, 1] such that:

(1) m(B)Ulo, 1].
(2) z]?:lm(sj)z 1.
(3) m(A)=0, 0AZB,.

As described above, the cases of risk and ignorameeincluded as
special cases of belief structure in the D-S fraor&wIn the case of risk, a
belief structure is known as a Bayesian beliefcstme if it consists of focal
elements such th&, = {x}, where each focal element is a singleton. Theis, |
evident that we are in a situation of decision mgkinder a risk environment as
m(B) = P; = Prob {}.



The case of ignorance is found when the beliefcaire consists in only
one focal elemenB, where m(B) essentially is the decision making under
ignorance environment, as this focal element caoseprall the states of nature.
Thus,m(B) = 1. Other special cases of belief structures sisckhe consonant

belief structure or the simple support function stredied in Shafer (1976).

Two important evidential functions associated wiitese belief structures
are the measures of plausibility and belief. In tblbowing, we provide a

definition of these two measures as developed layeBi(1976).

Definition 6. The plausibility measure Pl is defined as, PI-2[0, 1] such that:

Pid)y= > m(B)) (5)

AN BJ- z0
Definition 7. The belief measure Bel is defined as B&:2[0, 1] such that:

Bel@®) = BZ m(B; ) (6)

[ OA
Bel(A) represents the exact supporid@and PIA) represents the possible
support toA. With these two measures we can form the intevf/alupport toA
as [Bel®),PI(A)]. This interval can be seen as the lower and uppands of the
probability to whichA is supported such that Ba)(< Prob@) < PI(A). From
this we see that A} = Bel(A) for all A. Another interesting feature about these
two measures is that they are connected byABei(1 — PI4) or PIA) = 1 —
Bel(4), whered is the complement dk.

10



4. Induced OWA operators in decision making with Denpster-Shafer belief

structures

4.1. Decision making approach

The problem of decision making with D-S belief sttres has been
studied by various authors (Merigd and Casanov@86;2Engemanret al,
1996; Yager, 1996a; Yager, 2002b; Yager, 2004b;eY,ag004c). In 1992a,
Yager proposed a more generalized methodology img ulse OWA operator.

A new method for decision making with D-S beliefustures is possible
by using the IOWA operator in the aggregation sitegtead of the OWA
operator. The reason for using the IOWA operatothiese cases is that the
decision maker may, on occasions, have an attaidimaracter that differs from
the values of the arguments. Then, in order to eggge the arguments, he
prefers to use another mechanism in the reordestegp which is closer
accordance with his interests. Similar explanatimnaising the IOWA operator
in such circumstances might be offered, but thegpal idea is the possibility

of using different reordering methods in the aggtieo.

The procedure to follow for taking decisions witle ttOWA operator in
the D-S theory of evidence is similar to that usaith OWA operators, with the
difference that now the IOWA operator is used i #ggregation step. The

procedure can be summarized as follows.

Assume we have a decision problem in which we hawllection of
alternatives f\v, ..., A} with states of nature§, ..., §}. an is the payoff to the
decision maker if he selects alternatikeand the state of nature &. The

knowledge of the state of nature is captured ims$eof a belief structurm with

11



focal elementd,, ..., B and associated with each of these focal elemends i
weight m(B)). The objective is to select the alternative whgites the best
result to the decision maker. In order to do se, fibllowing steps should be

taken:

Stepl: Calculate the payoff matrix.

Step2: Calculate the belief functiam about the states of nature.

Step3: Calculate the attitudinal character of the denisnaker by determi-
ning the valuesi.. Note that in this case the measm®) is different from that
adopted by Yager (1988) and is dependent upon thehamism used in the

reordering step. That is:
n
a(W) = > w;e, (7)
j=1

whereg is thed; value of the OWG paiu;,d;) having thejth largesty;, u; is the
order inducing variable ardi= (n—j) / (n— 1).

Step 4: Calculate the collection of weights;, to be used in the IOWA
aggregation for each different cardinality of foedements. Note that it is
possible to use different methods depending onintexrests of the decision
maker (Xu, 2005b).

Step5: Determine the payoff collectioM, if we select alternativA; and the
focal elemenBy occurs, for all the values ofandk. HenceMy = {a, | S, U By}.

Step6: Calculate the aggregated paydff, = IOWA(My), using Eq. (3), for
all the values of andk.

Step7: For each alternative, calculate the generalegpgected valueC;,

where:

12



C= YVim(B,) (8)
k=1

Step8: Select the alternative with the larg€stas the optimal. Note that in a

situation of costs or similar, we should selectdahernative with the lowesi;.

From a generalized perspective of the reorderiag, ste can distinguish
between ascending and descending orders in the l@ygRegation. The reason
for drawing this distinction is the reordering detinducing variables, among
which the highest value is sometimes the first ltaauthe reordering step, but
on other occasions the first result is the loweslu®. This depends on the

mechanism used for the reordering of the arguments.

The procedure to follow if we use the AIOWA operatothe aggregation
step is the same than the procedure used for A&AIGr DIOWA operator with

the following differences.

In Step 3when calculating the inducing variables we shaadsider that
in these cases, the lowest inducing variable iditeeresult in the reordering of

the arguments.
In Step 4 when calculating the collection of weights, wewld consider
that the reordering will now be different so that might associate each weight

correctly with its corresponding position.

In Step 6 when calculating the aggregated payoff, we shasieV =
AIOWA(My), using Eq. (4), for all the values icandk.

13



4.2. Using IOWA operators in belief structures

Analyzing the aggregation ibteps 6and 7 of Section 4.1., we can
formulate the whole aggregation process in one temuaThen, the result
obtained is that the focal weights are aggregdtmegresults obtained by using
the IOWA operator. We will call this process the-BEBNVA operator and it can

be defined as follows.

Definition 8. A BS-IOWA operator is defined by

C= 3 mBw, by )
k=1j, =1

wherew; is the weighting vector of theh focal element such thati_,w;, =1
and w; 00 [0,1], b; is the a value of the IOWA paiKxu, ,a ) having thejth
largestuy; , u;, is the order inducing variable, is the argument variable and

m(By) is the basic probability assignment. Note thatefers to the cardinality of

each focal element amds the total number of focal elements.

The BS-IOWA operator is commutative, monotonic, mded and

idempotent. We can prove these properties withdh@wing theorems.

THEOREM 1 (Commutativity). Assunfas the BS-IOWA operator, then

F(uy, @), (Ug ,8g ) = f(<ul1 al )selUg s qr ) (10)

14



where ((Uy, 8y ),....(Uq 3, ) )is any permutation of(uy ,a, ),....(Uy .8, ) Jor

each focal elemerkt

Proof. Let

f(<U11,8.11>, < 0’ q1> qr qr >) zlzlm(Bk)ij ik and
=1jy =

f ((Uy, @y, )yee (U, Bgy Vaeeei(lhg, 18, ) = Z Z m(B,)w;, bj,

k=1j,=1

Since ((Uy, @y, ),.-.(Uq ,ag ) ) is a permutation of(uy ,ay ),....{Uy .3, ) Bor

each focal elemert we havebjk = b}k , and then

(U, 8y, )veen(Ug, +3g ) = F (UL, 85 D (U 125, ) .

THEOREM 2 (Monotonicity). Assumeis the BS-IOWA operator, if, = éik,

O, then

~

F Uy, ey, ) (Ug, 18, ) 2 T ((Uy, 8y, ), (Ug, »8g, ) (11)

Proof. Let

F((Uy, By, Drees (U B Drees(Ug, +8g, ) = zlzlm(Buw b,  and
_Jk_

15



F(CUy 8 )1ei(Ugy 1 8g ) (Ug, 5 8, )) = lelm(Bk)ij Ik
Zjs

Sinceaik > éik, i, it follows thatbjk > Bjk , and then
F((Uy, 18, )1 (Ug, 18 ) 2 F (U, 18y ) KU, 48, )
THEOREM 3 (Boundedness). Assuiins the BS-IOWA operator, then
min{a} < f ((Uy 8y ), {Ug  8g )re--r(Ug, + g ) S Maxfa;)

Proof. Let max{a} = b and minfg} = a, then

(U 8y llq 3 ) = 3 3 MBOW, by, <3 S mBw, b=b3" ¥ m(B,)w,

kzljk:l k:]‘jk:]‘ k:].jk:l

F(Uy 8y 00Uy 18 ) = 3 3 MBOW, b, < z z m(Bw, a= ay ¥ mBw,

k=1j, =1 k=1j,=1
SinceY %_ w: =1 for each focal element aid,_,m(B, ) =1, we get
K= k=1 M(By
f((uy a0, (Ug .84 )) =D

f(Uy 8 ),..(Ug ,8g ) =2

Therefore,

16
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min{a;} < f((uy, @y, ),... (Ug, »aq, ) < max{a;} u

1<uql1aql>1"'1 qr1

THEOREM 4 (Idempotency). Assunfigs the BS-IOWA operator, i& =a i
O N, then

f((Uy, 8 ), (Ug ,8g )r--(Ug, 18, ) =@ (13)

Proof. Sincea; =a Ui O N, we have

f({uy g ). KUg, 18 )) = Z Z m(B)w; b;, < Z Z m(B)w; a= aZ Z m(By)w;,

k—l]k—l ]k—l —1]k—1

Sincezqt_ w; =1 for each focal element ar)d,_, m(B, ) =1, we get

f(<u111a11> <U0a, 0a> < (o 1aqr >) a u

A further interesting feature is the distinctioradn between descending
and ascending orders by usiwg= w*,.1 4, wherew; is thejth weight of the BS-
DIOWA (or BS-IOWA) operator anev* .., thejth weight of the BS-AIOWA
operator. Then, we obtain the BS-DIOWA and the B&WA operator.

Obviously, these operators also fulfil the propeytiliscussed in Theorems (1) -

(4).

If there is a tie in the reordering step of the BI®WA or the BS-
AIOWA operator, we can follow the policy explainedYager and Filev (1999)
where the tied arguments are substituted by thigéhmaetic mean. Note also that

it is possible to conduct the reordering of theuamgnts with words or

17



lexicographic orders that combine words with nursber the aggregation
(Zadeh, 1996).

4.3. Families of BS-IOWA operators

Following a similar methodology as that adoptedtfer OWA operator,
we are able to develop different types of aggregatiperators by choosing a
different manifestation of the weighting vectortire BS-IOWA operator. Note
that it is possible to obtain these results botthwhe BS-DIOWA or the BS-
AIOWA operators by usingy, = w*,.14, wherew; is thejth weight of the BS-
DIOWA (or BS-IOWA) operator anev* ., thejth weight of the BS-AIOWA

operator.

As can be seen in Definition 8, each focal elemasegs a different
weighting vector in the aggregation step with t&A operator. Therefore, it
Is possible to use different families of IOWA opera in the same BS-IOWA
process. For example, assuming that we have tboaé élements, we could use
the maximum criteria for the first, the minimumteria for the second and the
average criteria for the third. For this reasomgriaier to conduct the analysis, we
will consider different families of IOWA operatomdividually for each focal
element. Note that the nomenclature used in tHisesttion is not the same as

that adopted in earlier subsections.

For example, it is possible to obtain the maximuhg minimum, the
average, the Hurwicz criteria, the weighted averédg®\) and the OWA
operator. These families are obtained in accordamitle Yager and Filev
(1994). In other words, the maximum is obtained,it= 1 andw; = 0, for allj #
p, andu, = Max{a}; the minimum, ifw, = 1 andw; = 0, for allj # p, and u, =

Mini{a}; the average criteria, whes = 1M, for all &; the Hurwicz criteria,

18



whenw, = a,wy =1 -a,w, = 0, for allj # p,q, andu, = Max{a}, u; = Min{ a;};
the weighted average, uf > ui,1, for alli; and the OWA operator if the ordered

position ofy; is the same as that lafsuch thab; is thejth largest of.

Other families of aggregation operators could bedus1 the IOWA
operator by using a different manifestation of tiweighting vector. For
example, whemw, = 1 andw; = O for allj # p we are using the step-IOWA
operator (Yager, 1993). Note thatuf = Max{a}, the step-IOWA becomes the

maximum and itu, = Min{ &}, the step-IOWA becomes the minimum.

Whenw; = Iimfork<j <k+m-1 andw, = 0 forj >k + mandj <k, we
are using the window-IOWA operator that is basedtlb@a window-OWA
operator (Yager, 1993). Note tHahndm must be positive integers such that
m— 1< n. Also note that iln =k = 1, and the initial position of the highegis
also the initial position of the higheat then, the window-IOWA becomes the
maximum. Ifm = 1,k = n, and the initial position of the lowest is also the
initial position of the lowesd;, then, the window-IOWA becomes the minimum.

And if m=nandk = 1, the window-IOWA becomes the average criteria.

If w, =w, =0, and for all others; = 1/(h — 2), we are using the olympic-
IOWA operator that is based on the olympic-OWA (¥gdL996b). Note that if
n = 3 orn = 4, the olympic-IOWA becomes the IOWA-median @nth=n - 2
andk = 2, the window-IOWA becomes the olympic-IOWA. Alsote that the
olympic-IOWA becomes the olympic averagewf = w, = 0, such that, =

Max{a} andug = Min{a}, and for all othersy = 1/(h - 2).

Another type of aggregation that could be usetiesB-Z IOWA weights
that it is based on the E-Z OWA weights (Yager,&§)0In this case, we should

19



distinguish between two classes. In the first ¢classassigw; = (1K) forj =1

to k andw; = 0 forj >k, and in the second class, we assigr O forj = 1 ton -

k andw; = (1K) forj =n -k + 1 ton. Note that the E-Z IOWA weights becomes
the E-Z OWA weights if the ordered position wfis the same as that of the
ordered position ob; such thab; is thejth largest ofg;, fromj = 1 tok for the
first class, orj =n -k + 1 ton for the second class. Note also for the firstxlas
that the maximum is obtainedkf= 1 andb, = Max{a;}, and the average criteria
if k=n. In the second class, the minimum is obtaindd=fl andb, = Min{a},

and the average kf=n.

It should also be noted that the median and thghed median can be
used as induced aggregation operators. For the [DWdian, ifn is odd we
assignw, + 12 = 1 andw; = O for all others, and this affects the argunsgmtith
the [( + 1)/2]th largesu;. If n is even we assign for exampi@,, = W) + 1 =
0.5, and this affects the arguments with th)th and [(/2) + 1]th largesu;.
Note that if the ordered position ofis the same than the ordered positiot;of
such that; is thejth largest ofy, then, the IOWA-median is transformed in the
OWA-median.

For the weighted IOWA-median, we follow a similaropedure to that
described by Yager (1994). We select the arguragetitat has théth largest
inducing variableu;, such that the sum of the weights from 1kt® equal or
higher than 0.5 and the sum of the weights from K-t 1 is less than 0.5. Note
that if the ordered position of is the same than the ordered positiof,cfuch
that b is thejth largest ofa;, then, the weighted IOWA-median becomes the
weighted OWA-median.

A further type of IOWA aggregation is the S-IOWAeayptor based on the
S-OWA operator (Yager and Filev, 1994). For thisetywe have to distinguish
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between three cases, the “orlike”, the “andliketl dhe generalized S-IOWA
operator. The “orlike” S-IOWA operator is obtainetienw, = (1h)(1 - a) + a,

U, = Max{a}, andw; = (1h)(1 - a) for allj # p with a O [0, 1]. Note that ifa =

0, we obtain the average andaf= 1, the maximum. The “andlike” S-IOWA
operator is obtained whew, = (1h)(1 - B + S, uy = Min{a}, andw; = (1h)(1 -

p) for allj # g with S0 [0, 1]. In this case, i = 0 we obtain the average and if
£ =1, the minimum. Finally, the generalized S-IOWperator is found when
W, = (Ih)(1 - (a + B + a, with u, = MaX{ a}; wy = (1h)(1 - (a + B) + B, with

Uq = Min{a}; andw; = (1h)(1 - (a + P for allj # p,g wherea, S0 [0, 1] anda

+ [ < 1. Note that ifa = 0, the generalized S-IOWA operator becomes the
“andlike” S-IOWA operator and i = 0, the “orlike” S-IOWA operator.

Other families of IOWA operators that could be deped include those
that depend on the aggregated objects. For examm@ecould develop the
BADD-IOWA operator as follows.

b¢
Wi = i J b¢¥
1=1%]

(14)
with a O (-, ) andb; is the values; of the OWA pair with thgth largestu.
Note that; w; = 1 andw; [ [0,1]. Note also that ifr = 0, we obtain the average
and if a = o0, the maximum. Other families of IOWA operatorsttdaepend on
the aggregated objects could be developed by uding b)? (1h)% etc.,

instead ofb,”. These families were developed for the OWA operatoYager
(1993).
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A further useful method for obtaining the weightiwgctor is the functional
method known as basic unit interval monotonic fiorc{BUM) (Yager, 1996b).
Let f be a functiory: [0, 1] - [0, 1] such thaf(0) =f(1) y f(X) = f(y) for x >y.
Using this BUM function we obtain the IOWA weiglits j = 1 ton as:

o] j-1
W = f(ﬁ)‘ f(ﬂ (15)

Using this method, it is easy to see that; = 1 andw; [ [0,1].

A further type of IOWA operator that could be usedhe aggregation is the
centered-IOWA operator. Following the same methogplthat Yager used for
the OWA operator (Yager, 2007), we can define #mtered-IOWA operator as
an aggregation that is symmetric, strongly decayargl inclusive. It is
symmetric ifw; = w., 4. It is strongly decaying when<j < (n + 1)/2, thenw; <
w; and when >j = (n + 1)/2, thenw; <w,. It is inclusive ifw; > 0. Note that it is
possible to consider a relaxation of the secondlition by usingw; < w; instead
of w; <w,. This situation is known as softly decaying ceetetOWA operator.
An example of this particular situation is the agg criteria. Another particular
situation appears if we remove the third conditidhis case is known as non-
inclusive centered-IOWA operator. An example ofstltiase is the IOWA-
median. Note that the attitudinal character ofdbetered-IOWA is not equal to

0.5 because it depends on the inducing variables.

A special type of centered-IOWA operators are tlaesSian-IOWA weights.
Note that it is based on the Gaussian-OWA weiglasetbped by Xu in
(2005b). In order to define the weighting vectorstfwe have to consider a

Gaussian distribution(y, o) where:

22



10 .
Op :\/_Z(J _:un)2
Nij=1
Assuming that:

: 1 —(j-un)?i202
:—e n n
U 20 o,

we define the IOWA weights as:

n o (i=tn)* 1207

= - : = — 5 5
2j=n(i)  yh_ e Utz

Wi

Note thatx; w, = 1 andw; [ [0,1].

(16)

(17)

(18)

(19)

Finally, if we assume that all the focal elemens® tuhe same weighting

vector, then, we can refer to these families as BSemaximum, the BS-
minimum, the BS-average, the BS-WA, the BS-step-FOWperator, the BS-
window-IOWA, the BS-median-IOWA, the BS-olympic-IQAY the BS-
centered-IOWA, the BS-Gaussian-IOWA, the BS-S-IOW#e BS-EZ-IOWA,

etc.
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5. Induced OWG operators in decision making with Depster-Shafer belief

structures

An alternative for decision making with D-S theasymade possible by using
the IOWG operator in the aggregation step. Theorea®r using IOWG
operators arises because there are situationsichwuthis better to reorder the
arguments with a different mechanism rather thanguthat of their values. In
this mechanism, we introduce an inducing varialde dach argument from
which we can develop the reordering step. Theis,pbssible to aggregate with
a different method to that used with the OWG omeré¥ierigé and Casanovas,
2006). Note that in the #1Century, it seems more useful to use the IOWA
operator but mathematically it is also interestiogconsider the geometric
version, especially for future research relatedhwatecision making with

preference relations.

The procedure to follow when taking decisions vthle IOWG operator is
very similar to the previous method commented wireing IOWA operators in
the D-S belief structure. The difference is thathis case, the arguments are
aggregated with the IOWG operator. Assuming theesaariables as with the
IOWA operator explained in Section 4.1, we couldnmarize the procedure

with the following steps:

Stepl: Calculate the payoff matrix.

Step2: Calculate the belief functiam about the states of nature.

Step3: Calculate the attitudinal character of the denisnaker by determi-
ning the valuesi.

Step 4. Calculate the collection of weights;, to be used in the IOWG

aggregation for each different cardinality of foedements. Note that it is
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possible to use different methods depending onintexests of the decision
maker (Xu, 2005b).

Step5: Determine the payoff collectioM, if we select alternativA; and the
focal elemenBy occurs, for all the values obindk. HenceMj, = {C; | § [ By}.

Step6: Calculate the aggregated payoff, = IOWG(My), using Eq. (4), for
all the values of andk.

Step7: For each alternative, calculate the generalegpected valueC;,

where:
r
Ci= kZlV.k m(B) (20)

Step8: Select the alternative with the larg€stas the optimal. Note that in a

situation of costs or similar, we should selectdhlernative with the lowesi..

Analyzing the aggregation iBtep 6andStep 7 we can formulate the whole
aggregation process in one equation as followswillecall this the BS-IOWG

operator.

Definition 9. A BS-IOWG operator is defined by

S Wik
Ci= X [] MBy)b; (21)
kzljkzl
wherew; is the weighting vector of thih focal element such thati_w;, =1
and w;, 00 [0,1], b; is the a, value of the IOWG paiku, ,a ) having thejith
largestuy; , u;, is the order inducing variable, is the argument variable and

m(By) is the basic probability assignment. Note thatefers to the cardinality of
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each focal element amds the total number of focal elements. Also nbi the

IOWG operator can only aggregate positive numbers.

The BS-IOWG operator is commutative, monotonic, rumd and
idempotent. Their demonstration of these propertgesstraightforward by

looking to theorems (1) — (4) developed for the IBSVA operator.

From a generalized perspective of the reorderirgp st is possible to
distinguish between the DIOWG and the AIOWG opertdheir use in D-S
framework is straightforward by usimvg = w*,.;j, wherew; is thejth weight of
the BS-DIOWG (or BS-IOWG) operator amd ., the jth weight of the BS-
AIOWG operator. The reason for using BS-AIOWG opans arises because it
IS sometimes better to use an ascending orderdnintiucing variable. For
example, we could use it in situations where theekt inducing variable is the
best result and we want to start the reordering Btam this result. Note that it
iIs possible to use words in the inducing varialzled if there is a tie in the
reordering step of the BS-DIOWG or the BS-AIOWG i@er, we should also
follow the policy explained in Yager and Filev ()9

Adopting the same methodology than Section 4.3,ca develop a wide
range of families of BS-IOWG operators. As eachaf@ement uses a different
weighting vector, the analysis should be conduatdividually. Then we could
analyze among others, the maximum, the minimumgtwmnetric mean (GM),
the weighted geometric mean (WGM), the step-IOWG@rator, the window-
IOWG, the IOWG median, the olympic-IOWG, the ceatktfOWG, the S-
IOWG, etc. If we assume that all the focal elemargs the same weighting
vector, then, we can refer to these families as BlSemaximum, the BS-
minimum, the BS-GM, the BS-WGM, the BS-step-IOWGergior, the BS-
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window-IOWG, the BS-IOWG median, the BS-olympic-I@VN the BS-
centered-IOWG, the BS-S-IOWG, etc.

6. lllustrative example

In the following, we present an illustrative exampising the methodologies
described above. We analyze a decision making @mohith the D-S belief
structure. We use different types of aggregatioeraiors to solve the problem
such as the arithmetic mean (AM), the WA, the OVvillg AOWA, the IOWA
and the AIOWA operator. We also use different typkgeometric aggregation
operators such as the GM, the WGM, the OWG, the Z)We IOWG and the
AIOWG operator. Note that in all cases we assunsfuamtion in which the
highest value is the best result. Then, for eatlason, we select the alternative

with the highest result.

Stepl: Assume a decision maker has five possible invesst opportunities

and he wants to select the alternative that adegstisto his interests.

1) A, is a car company.

2) A is a pharmaceutical company.
3) Az is a computer company.

4) A, is a chemical company.

5) Asis a TV company.

The possible results, depending on the future sthteature, are represented

in Table 1. Note that the results are income values
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Table 1. Payoff matrix

S S S S S S S S
A 20 40 50 80 30 60 80 50
A 30 30 60 70 40 70 50 40
Ag 50 60 20 40 30 50 80 70
A

As

40 50 30 60 50 60 60 60
60 40 50 30 70 70 60 30

The states of nature represent different econontiat®ons affecting the
companies. These situations are evaluated by thiel \mowth rateS, = strong
recessionS, = weak recessiorfs = growth rate near (& = very low growth
rate,S = low growth rates = medium growth rates; = high growth rate& =
very high growth rate.

Step2: The decision maker has brought together a gob@xperts in order to
solve the problem. After careful analysis, the etgpéave obtained some
probabilistic information about the state of natthrat will occur in the future.
This information is represented by the followindid&efunction m about the

states of nature.

Focal element
Bi={S,$ & $}1=04
B.={S, & $}=0.3
B:={$ & &} =0.3

Step3: Assume the following attitudinal character ftwe tdecision maker

when using induced aggregation operators, repredemtTable 2.
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Table 2. Inducing variables

S S S S S S S S
A 25 16 24 18 20 13 19 14
A 18 34 22 12 24 16 20 26
Az 13 21 28 22 19 25 16 26
A

As

20 24 14 31 27 25 19 18
25 16 23 30 15 21 18 26

Step4d: Assume we have used one of the existing metfoydsetermining the
weights (Yager, 1993; Xu, 2005) and we have obththe following results for

the different number of arguments.

Weighting vector

W, = (0.7, 0.3)
W;=(0.4,0.4,0.2)

W, =(0.3,0.3,0.2,0.2)

Step5: Calculate the payoff collectiolV)i,, if we select alternativé, and the

focal elemenBy occurs, for all the values ofandk.

As: My; =(20, 30, 60, 89 My, = (20, 50, 50; M, = (40, 50, 80.
A: Mp1 =(30, 40, 70, 50 My, = (30, 60, 40; M, = (30, 60, 70.
Ag: Ma1 = (50, 30, 50, 89 Mg, = (50, 20, 70; M3z = (60, 20, 40.
Au: My = (40, 50, 60, 69 M., = (40, 30, 60; M.z = (50, 30, 60.
As: Ms; = (60, 70, 70, 69 Ms, = (60, 50, 30; Ms; = (40, 50, 30.
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From the sixth step, we can distinguish betweernr fdifferent types of
aggregation operators: the IOWA operator, the AlOWperator, the IOWG

operator and the AIOWG operator.

Step6: Calculate the aggregated payodff,, using Eq. (3) for the IOWA

operator and using Eq. (4) for the IOWG operatdre Tesults are shown in

Tables 3 and 4.

Table 3. Aggregated payoff

AM WA OWA AOWA IOWA  AIOW
Vi1 47.5 43 52 43 43 52
Vio 40 38 44 38 38 44
Vi3 56.6 50 58 50 60 58
A 47.5 45 50 45 47 48
V22 43.3 44 46 40 46 44
Va3 53.3 50 58 50 50 58
Va3 52.5 50 55 50 50 55
V3 46.6 42 52 42 46 52
V33 40 40 44 36 36 a4
Va1 52.5 51 54 51 53 52
Va2 43.3 40 46 40 46 44
Vi3 46.6 44 50 a4 50 a4
V51 65 65 66 64 65 65
Vs, 46.6 50 50 44 46 50
Vs3 40 42 42 38 40 42

A
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Table 4. Aggregated payoff for the geometric operats

0 O O ~N N N OO N N OO0 N 0O o N o M

GM WGM  OWG AOWG IOWG AIOW
Vi1 41.19 37.12 45.70 37.12 37.12 45.7
V12 36.84 34.65 41.62 34.65 34.65 41.6
Vi3 50.13 46.89 55.55 46.89 57.70 55.1
Vo1 45.27 42.91 47.75 42.91 45.15 45.3
Vo 41.60 41.92 44.41 38.66 44.41 41.9
Va3 50.13 46.89 55.55 46.89 46.89 55.5
Vs 49.49 47.12 51.97 47.12 47.12 51.9
V) 41.21 37.06 47.62 37.06 39.65 47.6
Va3 36.34 35.65 40.95 32.87 32.87 40.9
Vau 51.80 50.30 53.34 50.30 52.38 51.2
V2 41.60 38.66 44.41 38.66 44.41 41.9
Vi3 44.81 42.27 48.55 42.27 48.55 42.2
Vs, 64.80 64.80 65.81 63.81 64.80 64.8
Vs, 44.81 48.55 48.55 42.27 43.84 48.5
Vs3 39.14 41.28 41.28 37.27 38.98 41.2

Step7: For each alternative, calculate the generalieegected valueC,,

using Eq

. (8) for the IOWA operator and Eq. (20)tfee IOWG operator.

Table 5. Generalized expected value

A

AM WA OWA AOWA IOWA  AIOW
Ay 48 43.6 51.4 43.6 46.6 51.4
A 48 46.2 51.2 45 47.6 49.8
Az 47 44.6 50.8 43.4 44.6 50.8
Ay 48 45.6 50.4 45.6 50 47.2
As 52 53.6 54 50.2 51.8 53.6
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Table 6. Generalized expected value for the geometroperators
GM WGM  OWG AOWG IOWG AIOW
A 42.56 39.31 47.43 39.31 42.55 47.3
A 45.62 43.80 49.08 42.82 45.45 47.3
Ag 43.06 40.66 47.35 39.82 40.60 47.3
A

As

46.64 44.39 49.22 44.39 48.84 45.1
51.10 52.86 53.27 49.39 50.76 52.8

o N O ©O N O

Step8: Select the best alternative for each aggregatmerator. As we can
see, in this problem, the best alternativAsis

If we establish an order for the investments, acipsituation if we want to
select more than one alternative, we can see et aggregation gives us a
different order. Note that meanspreferred to The results are shown in Table
1.

Table 7. Ordering of the investments

Ordering Ordering
AM At A=Ao=Ay A GM Ast At Aot AgtAy
WA As Aot At AG A WGA As tAst A A A
OWA At AL A P AGHA OWG AstAL AP A 1A
AOWA At AL A A A AOWG At AL A A A
IOWA At AL A A A IOWG At AL A AL A
AIOWA Ast A HAG AL A AIOWG AstA tAHAL PA,
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7. Conclusions

In this paper, we have proposed the use of indagggegation operators in
decision making with D-S belief structure. Firsg Wwave reviewed some basic
aggregation operators and we have forwarded a numbesuggestions
concerning certain new theoretical aspects, suchhasdistinction between
ascending and descending orders and different isoff induced aggregation
operators. This analysis has been conducted fadr thet  OWA and the IOWG
operators. We have studied the D-S belief structumd its application in
decision making. We have outlined the process shatlld be followed when
using induced aggregation operators in the D-Srtheb evidence, and here
again we have studied some of its main propertresuding the distinction
between ascending and descending orders and difféaenilies of induced
aggregation operators. We have also examined tbeegs that should be
adopted with IOWG operators in decision making vidds theory. Finally, an
illustrative example has been provided in which hese reported the results
obtained when using the OWA, the OWG, the IOWA #mel IOWG operators

in decision making with D-S belief structure.
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