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ABSTRACT
We present baryon acoustic oscillation (BAO) scale measurements determined from the clus-
tering of 1.2 million massive galaxies with redshifts 0.2 < z < 0.75 distributed over 9300 deg2,
as quantified by their redshift–space correlation function. In order to facilitate these measure-
ments, we define, describe, and motivate the selection function for galaxies in the final data
release (DR12) of the SDSS III Baryon Oscillation Spectroscopic Survey (BOSS). This in-
cludes the observational footprint, masks for image quality and Galactic extinction, and weights
to account for density relationships intrinsic to the imaging and spectroscopic portions of the
survey. We simulate the observed systematic trends in mock galaxy samples and demonstrate
that they impart no bias on BAO scale measurements and have a minor impact on the recovered
statistical uncertainty. We measure transverse and radial BAO distance measurements in 0.2
< z < 0.5, 0.5 < z < 0.75, and (overlapping) 0.4 < z < 0.6 redshift bins. In each redshift bin,
we obtain a precision that is 2.7 per cent or better on the radial distance and 1.6 per cent or
better on the transverse distance. The combination of the redshift bins represents 1.8 per cent
precision on the radial distance and 1.1 per cent precision on the transverse distance. This paper
is part of a set that analyses the final galaxy clustering data set from BOSS. The measurements
and likelihoods presented here are combined with others in Alam et al. to produce the final
cosmological constraints from BOSS.

Key words: cosmology: observations – large-scale structure of Universe.

1 IN T RO D U C T I O N

The Baryon Oscillation Spectroscopic Survey (BOSS) has built on
the legacy of previous wide-field surveys such as Two Degree Field
Galaxy Redshift Survey (2dFGRS; Colless et al. 2003) and the
Sloan Digital Sky Survey I-II (SDSS; York et al. 2000) to amass a
sample (Alam et al. 2015a; Reid et al. 2016) of more than 1 million
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spectroscopic redshifts of the galaxies with the greatest stellar mass
to z < 0.75. This final BOSS data set represents the premier large-
scale structure catalogue for use in measuring cosmologic distances
based on the baryon acoustic oscillation (BAO) feature and the rate
of structure growth via the signature of redshift–space distortions
(RSD).

Previous results have demonstrated that the current and previous
BOSS data sets produce precise and robust BAO and RSD mea-
surements (cf. Anderson et al. 2012, 2014a,b; Reid et al. 2012;
Chuang et al. 2013a; Kazin et al. 2013; Sánchez et al. 2013, 2014;
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Samushia et al. 2014; Cuesta et al. 2016; Gil-Marı́n et al. 2016a,b).
The results of Ross et al. (2012, 2014), Alam et al. (2015b) and
Osumi et al. (2015) have demonstrated that the BOSS results are
robust to observational systematic concerns and details of sample
selection related to galaxy evolution. This paper represents a final,
detailed, investigation of observational systematic concerns in the
BOSS sample. We detail how the angular selection functions of
the BOSS galaxy samples are defined and test for any systematic
uncertainty that is imparted into BAO measurements based on this
process. The work we present details how BOSS galaxy data can
be combined into one BOSS galaxy catalogue, and that robust BAO
distance and RSD growth measurements can be obtained from the
data set.

This work uses the ‘combined’ BOSS galaxy catalogue to de-
termine BAO scale distance measurements, making use of density
field ‘reconstruction’ (cf. Padmanabhan et al. 2012). Following Xu
et al. (2013), Anderson et al. (2014a,b), Ross, Percival & Man-
era (2015) and Cuesta et al. (2016), we use the monopole and
quadrupole of the correlation function to measure the expansion
rate, H(z), and the angular diameter distance, DA(z), at the red-
shift of BOSS galaxies. BAO measurements obtained using the
monopole and quadrupole of the power spectrum are presented in
Beutler et al. (2016a), while Vargas-Magaña et al. (2016) diagnoses
the level of theoretical systematic uncertainty in the BOSS BAO
measurements. Measurements of the rate of structure growth from
the RSD signal are presented in Beutler et al. (2016b), Grieb et al.
(2016), Sánchez et al. (2016a) and Satpathy et al. (2016). Alam
et al. (2016) combines the results of these seven (including this
work) results together into a single likelihood that can be used to
test cosmological models.

The paper is outlined as follows: in Section 2, we describe
how clustering measurements and their covariance are determined,
and how these measurements are used to determine the distance
to BOSS galaxies using the BAO feature; in Section 3, we de-
scribe how BOSS galaxies are selected, masked, and simulated.
In Section 4, we describe how weights that correct for observa-
tional systematic relationships with galaxy density are determined
and applied to clustering measurements. In Section 5, we present the
configuration-space clustering of BOSS galaxies, demonstrating the
effect of systematic weights, comparing the clustering of different
BOSS selections and showing that the clustering in the independent
North Galactic Cap (NGC) and South Galactic Cap (SGC) hemi-
spheres is consistent and that the separate BOSS selections can be
combined into one BOSS sample to be used for clustering measure-
ments. In Section 6, we show that the BOSS BAO measurements
are robust to observational systematics (both for data and mock
samples). In Section 7, we present the BAO measurements of the
BOSS combined sample; these measurements are used in Alam
et al. (2016), combined with the BAO distance measurements and
RSD growth measurements of Beutler et al. (2016a,b), Grieb et al.
(2016), Sánchez et al. (2016a), Satpathy et al. (2016) and Vargas-
Magaña et al. (2016) and using the methods described in Sánchez
et al. (2016b) to constrain cosmological models. In Section 8, we
compare our BAO results with those obtained from other BOSS
studies and make general recommendations for how to consider
any residual observation systematic uncertainty when using BOSS
clustering results.

Unless otherwise noted, we use a flat � cold dark matter (�CDM)
cosmology given by �m = 0.31, �bh2 = 0.0220, h = 0.676.
This is consistent with Planck Collaboration XIII (2016) and is
the same as used in the companion papers studying the BOSS
combined sample.

2 A NA LY S I S TO O L S

2.1 Clustering statistics

We work in configuration space. The procedure we use is the same
as in Anderson et al. (2014b), except that our fiducial bin-size is 5
h−1Mpc (as justified in Appendix A). We repeat some of the details
here. We determine the multipoles of the correlation function, ξ�(s),
by finding the redshift–space separation, s, of pairs of galaxies and
randoms, in units h−1Mpc assuming our fiducial cosmology, and
cosine of the angle of the pair to the line of sight, μ, and employing
the standard Landy & Szalay (1993) method

ξ (s, μ) = DD(s, μ) − 2DR(s, μ) + RR(s, μ)

RR(s, μ)
, (1)

where D represents the galaxy sample and R represents the uniform
random sample that simulates the selection function of the galax-
ies. DD(s, μ) thus represent the number of pairs of galaxies with
separation s and orientation μ.

When counting, each pair is summed as the multiplication of the
weights associated with the pair galaxy/random points. For galaxies,
the total weight corrects for systematic dependences in the imaging
and spectroscopic data (see Section 4) multiplied by a weight, wFKP,
that is meant to optimally weight the contribution of galaxies based
on their number density at different redshifts. The random points
are weighted only by wFKP. The wFKP weight is based on Feldman,
Kaiser & Peacock (1994) and defined as

wFKP = 1/(1 + n(z)P0). (2)

In this analysis (and other companion DR12 papers), we use
P0 = 104 h3 Mpc−3, while previous BOSS analyses have used P0 =
2 × 104 h3 Mpc−3. The choice of P0 = 104 h3 Mpc−3 is motivated
by the fact that this is close to the value of the BOSS power spec-
trum at k = 0.14h Mpc−1 and Font-Ribera et al. (2014) suggest this
scale is the effective scale to use for BOSS BAO measurements.

We calculate ξ (s, |μ|) in evenly spaced bins1 of width 5 h−1 Mpc
in s and 0.01 in |μ|. We then determine the first two even moments
of the redshift–space correlation function via

2ξ�(s)

2� + 1
=

100∑
i=1

0.01ξ (s, μi)L�(μi), (3)

where μi = 0.01i − 0.005 and L� is a Legendre polynomial of
order �.

We will also use data that has had the ‘reconstruction’ process
applied (Eisenstein et al. 2007b; Padmanabhan et al. 2012). In this
case, there is a shifted random field, denoted S, and the original
random field, and equation (1) becomes

ξ (s, μ) = DD(s, μ) − 2DS(s, μ) + SS(s, μ)

RR(s, μ)
. (4)

2.2 Likelihood analysis/parameter inference

We assume the likelihood distribution, L, of any parameter (or
vector of parameters), p, of interest is a multivariate Gaussian:

L(p) ∝ e−χ2(p)/2. (5)

1 The pair-counts are tabulated using a bin width of 1 h−1 Mpc and then
summed into 5 h−1 Mpc bins, allowing different choices for bin centres.
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The χ2 is given by the standard definition

χ2 = DC−1 DT , (6)

where C represents the covariance matrix of a data vector and D
is the difference between the data and model vectors, when model
parameter p is used. We assume flat priors on all model parameters,
unless otherwise noted.

In order to estimate covariance matrices, we use a large number
of mock galaxy samples (see Section 3.4), unless otherwise noted.
The noise from the finite number of mock realizations requires some
corrections to the χ2 values, the width of the likelihood distribution,
and the standard deviation of any parameter determined from the
same set of mocks used to define the covariance matrix. These
factors are defined in Hartlap, Simon & Schneider (2007), Dodelson
& Schneider (2013) and Percival et al. (2014) and we apply them in
the same way as in, e.g. Anderson et al. (2014b). We use 996 mocks
and thus the factors end up being only 3 per cent.

2.3 Fitting the BAO scale

The fundamental aim of BAO measurements is to measure the an-
gular diameter distance, DA(z) and the expansion rate, H(z). We do
so by measuring how different the BAO scale is in our clustering
measurements compared to its location in a template constructed us-
ing our fiducial cosmology. There are two effects that determine the
difference between the observed BAO position and that in the tem-
plate. The first is the difference between the BAO position in the
true intrinsic primordial power spectrum, and that in the model,
with the multiplicative shift depending on the ratio rd/r

fid
d , where rd

is the sound horizon at the drag epoch (and thus represents the ex-
pected location of the BAO feature in comoving distance units, due
to the physics of the early Universe). The second is the difference in
projection. The data is measured using a fiducial distance–redshift
relation, matching that of the template: if this is wrong we will see
a shift that depends on H(z) in the radial direction, and DA(z) in the
angular direction. The combination of these effects means that our
comparison of BAO positions measures:

α|| = (H (z)rd)fid

H (z)rd
, α⊥ = DA(z)rfid

d

Dfid
A (z)rd

. (7)

It is often convenient for the purposes of comparison to translate
these to

α = α
1/3
|| α

2/3
⊥ , 1 + ε =

(
α||
α⊥

)1/3

, (8)

here α is the BAO measurement expected from spherically averaged
clustering measurements and ε the significance of the BAO feature
introduced into the quadrupole by assuming a fiducial cosmology
that does not match the true cosmology.

The methodology we use to measure α||, α⊥ is based on that used
in Xu et al. (2013), Anderson et al. (2014b) and Ross et al. (2015),
but we employ improved modelling of the post-reconstruction
quadrupole based on the results of Seo et al. (2016), which are
similar to White (2015) and Cohn et al. (2016). We present the
relevant details here.

We generate a template ξ (s) using the linear power spectrum,
Plin(k), obtained from CAMB2 (Lewis & Bridle 2002) and a ‘no-
wiggle’ Pnw(k) obtained from the Eisenstein & Hu (1998) fitting

2 camb.info

formulae, both using our fiducial cosmology (except where other-
wise noted). We account for RSD and non-linear effects via

P (k, μ) = C2(k, μ, 
s)((Plin − Pnw)e−k2σ 2
v + Pnw), (9)

where

σ 2
v = (1 − μ2)
2

⊥/2 + μ2
2
||/2, (10)

C(k, μ, 
s) = 1 + μ2β(1 − S(k))

(1 + k2μ2
2
s /2)

, (11)

S(k) is the smoothing applied in reconstruction; S(k) = e−k2
2
r /2 and


r = 15 h−1 Mpc for the reconstruction applied to the BOSS DR12
sample. Finally, we fix β = 0.4 and 
s = 4 h−1 Mpc and use 
⊥
= 2.5 h−1 Mpc and 
|| = 4 h−1 Mpc for post-reconstruction results
and 
|| = 10 h−1 Mpc and 
⊥ = 6 h−1 Mpc pre-reconstruction. The
choices to the damping scales are similar to those of Beutler et al.
(2016a), Vargas-Magaña et al. (2016) and the values found in Seo
et al. (2016). We show in Appendix B that the specific choices have
little impact on our results. Note, the bias priors we define below
effectively allow the amplitude of ξ 2 to vary.

Given P(k, μ), we determine the multipole moments

P�(k) = 2� + 1

2

∫ 1

−1
P (k, μ)L�(μ)dμ, (12)

where L�(μ) are Legendre polynomials. These are transformed to
ξ� via

ξ�(s) = i�

2π2

∫
dkk2P�(k)j�(ks). (13)

We then use

ξ (s, μ) =
∑

�

ξ�(s)L�(μ) (14)

(summing to � = 4) and take averages over any given μ window to
create any particular template:

ξ (s, α⊥, α||)F,mod(s) =
∫ 1

0
dμF (μ′)ξ (s ′, μ′), (15)

where3 μ′ = μα||/
√

μ2α2
|| + (1 − μ2)α2

⊥ and

s ′ = s
√

μ2α2
|| + (1 − μ2)α2

⊥ and the specific F(μ′) are defined

below.
In practice, we fit for α⊥, α|| using ξ 0, ξ 2. To fit ξ 0, ξ 2,

we recognize ξ2 = 5
∫ 1

0 dμ
(
1.5μ2ξ (μ) − 0.5ξ (μ)

)
and, denoting

3
∫ 1

0 dμμ2ξ (μ) as ξμ2 (so here F(μ) = 3μ2), we fit to the data using
the model

ξ0,mod(s) = B0ξ0(s, α⊥, α||) + A0(s) (16)

ξ2,mod(s) = 5

2
(B2ξμ2(s, α⊥, α||) − B0ξ0(s, α⊥, α||)) + A2(s), (17)

where Ax(s) = ax, 1/s2 + ax, 2/s + ax, 3. In each case, the parameter
Bx essentially sets the size of the BAO feature in the template. We
apply a Gaussian prior of width log(Bx) = 0.4 around the best-fitting
B0 in the range 50 < s < 80 h−1 Mpc with Ax = 0. We have fixed
β = 0.4 in the fiducial template and the 1 − S(k) term in equation
(11) forces its effective value to zero at large scales (in the post-
reconstruction case). However, note that the greater the difference

3 This is essentially the Alcock & Paczynski (1979) effect on the BAO
feature.
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there is between B2 and B0, the greater the amplitude of ξ 2, mod will
be. Thus, B2 plays essentially the same role in our analysis as β has
in previous analyses (e.g. Anderson et al. 2014b).

Modelling ξ 0, 2 in the manner described above isolates the
anisotropic BAO scale information, while marginalizing over broad-
band shape and amplitude information. The pair of moments ξ 0, 2

represent an optimal and complete pair in the case where BAO scale
information is spherically distributed (Ross et al. 2015).

3 DATA

3.1 The BOSS DR12 galaxy sample

The SDSS-III (Eisenstein et al. 2011) BOSS (Dawson et al. 2013)
targeted galaxies for spectroscopy using SDSS imaging data, as
described in Reid et al. (2016). The SDSS-I, II, and III surveys
obtained wide-field CCD photometry (Gunn et al. 1998, 2006) in
five passbands (u, g, r, i, z; Fukugita et al. 1996), amassing a to-
tal footprint of 14 455 deg2. From this data, BOSS targeted and
subsequently observed spectra for 1.4 million galaxies (Alam et al.
2015a), using the BOSS spectrograph (Smee et al. 2013) and the
SDSS telescope (Gunn et al. 2006). Observations were performed
in a series of 15-min exposures and integrated until a fiducial mini-
mum signal-to-noise ratio, chosen to ensure a high-redshift success
rate, was reached. Redshifts were determined as described in Bolton
et al. (2012).

The full details of the BOSS galaxy samples are given in Reid
et al. (2016).4 Here, we summarize the most relevant details in order
to provide the background required to understand the analysis of
observational effects presented in Section 4.

The CMASS sample is designed to be approximately stellar mass
limited above z = 0.45. Such galaxies are selected from the SDSS
DR8 (Aihara et al. 2011) imaging via

17.5 < icmod < 19.9 (18)

rmod − imod < 2 (19)

d⊥ > 0.55 (20)

ifib2 < 21.5 (21)

icmod < 19.86 + 1.6(d⊥ − 0.8), (22)

where all magnitudes are corrected for Galactic extinction (via the
Schlegel, Finkbeiner & Davis 1998 dust maps), ifib2 is the i-band
magnitude within a 2 arcsec aperture, the subscript mod denotes
‘model’ magnitudes (Stoughton et al. 2002), the subscript cmod de-
notes ‘cmodel’ magnitudes (Abazajian et al. 2004), and

d⊥ = rmod − imod − (gmod − rmod)/8.0. (23)

For CMASS targets, stars are further separated from galaxies by
only keeping objects with

ipsf − imod > 0.2 + 0.2(20.0 − imod) (24)

zpsf − zmod > 9.125 − 0.46zmod (25)

unless the object also passes the LOWZ cuts.

4 Code to produce the BOSS catalogues, MKSAMPLE, is available from the
main SDSS web site http://www.sdss.org/surveys/boss.

Figure 1. The number density as a function of redshift for the three different
LOWZ selections, in the NGC. The LOWZE2 and LOWZE3 selections were
applied to early BOSS observations.

The LOWZ sample is selected based on the following

rcmod < 13.5 + c‖/0.3 (26)

|c⊥| < 0.2 (27)

16 < rcmod < 19.6 (28)

rpsf − rmod > 0.3 (29)

where

c‖ = 0.7(gmod − rmod) + 1.2(rmod − imod − 0.18) (30)

and

c⊥ = rmod − imod − (gmod − rmod)/4.0 − 0.18. (31)

As detailed in Reid et al. (2016), approximately 900 deg2 of the
LOWZ sample was targeted with more restrictive cuts than the nom-
inal LOWZ selection. This 900 deg2 area is divided into two separate
selections. Covering 130 deg2, the ‘LOWZE2’ selection applies the
CMASS i-band star/galaxy separation cut (equation 24) and had an
rcmod limit that was 0.1 mag brighter for both equation (26) (13.4)
and equation (28) (19.5). These bright limits reduce the density
of the sample by 16 per cent (as can be seen in Fig. 1). Covering
760 deg2, the ‘LOWZE3’ sample is the same as the LOWZE2 se-
lection, except that the z-band star/galaxy selection (equation 25) is
also applied and the bright limit is rcmod > 17. The z-band star/galaxy
separation cut reduces the density of the sample by an additional
39 per cent, in a manner that depends strongly on the size of the
PSF, as detailed in Section 4.2. This gives the LOWZE3 sample
approximately half the number density of the LOWZ sample.

Given that each sample is a subset of the nominal LOWZ sample,
we are able to apply the respective cuts to reproduce LOWZE2
and LOWZE3 samples over the full BOSS footprint. Thus, unless
explicitly stated otherwise, when studying each respective sample,
we will do so over the full BOSS NGC footprint in order to obtain
the best statistical understanding of the samples. Doing so allows
us to test the properties of these samples and thereby combine them
into one full BOSS galaxy sample. The number density as a function
of redshift is displayed in Fig. 1 for each of the LOWZ selections.
Compared to the nominal LOWZ selection, the reduction in number

MNRAS 464, 1168–1191 (2017)
Downloaded from https://academic.oup.com/mnras/article-abstract/464/1/1168/2280763
by Universitat de Barcelona. CRAI user
on 12 February 2018

http://www.sdss.org/surveys/boss


1172 A. J. Ross et al.

density is approximately constant as a function of redshift for the
LOWZE2, while for LOWZE3 the difference grows greater at lower
redshifts.

In addition to the colour cuts applied to targeting, we apply cuts
in redshift of 0.43 < z < 0.7 to CMASS and 0.15 < z < 0.43
to the LOWZ, LOWZE2, and LOWZE3 samples when measuring
their individual clustering signals. These samples are combined into
one full BOSS sample, applying no redshift cuts on the individual
samples. We do not expect the galaxies that are removed to have a
statistically significant effect on the trends observed, and thus we
consider the effect of this to be negligible.

3.2 Mask

The BOSS mask is described in detail in section 5.1 of Reid et al.
(2016). The most basic mask to be applied to BOSS is defined by
the coverage of the spectroscopic tiles, i.e. the survey footprint;
this is shown in fig. 1 of Alam et al. (2016). On top of the survey
footprint, a series of veto masks are applied. These include masks for
bright stars, bright objects (Rykoff et al. 2014), and non-photometric
conditions.

We define additional veto masks based on the seeing at the
time the imaging data was observed and the Galactic extinction.
Survey area is discarded where the i-band seeing, given in terms
of the full width at half-maximum of the point spread function
(‘PSF_FWHM’) is greater than 2 arcsec. This is due to the ifib2 se-
lection, as these magnitudes are convolved with 2 arcsec seeing and
are therefore ill-defined where the seeing is worse. We additionally
remove areas where the g- and r-band PSF_FWHM are greater than
2.3 arcsec and 2.1 arcsec; these values are roughly equivalent to the
i-band value of 2.0 arcsec, given the optics of the SDSS telescope.
These cuts on seeing remove 0.5 and 1.7 per cent of the area in
NGC and SGC footprints.

We cut areas where the Galactic extinction, as given by the
Schlegel et al. (1998) E(B − V) value, is greater than 0.15. A
negligible amount of area in the NGC (0.06 per cent) has worse
extinction than this. This cut removes 2.2 per cent of the area in the
SGC. We find a correlation between the projected density of LOWZ
galaxies and E(B − V) at high extinction values (see Fig. 5), and
thus cut at E(B − V) = 0.15 to remove this trend and make the data
quality more similar between the NGC and SGC.

3.3 Galactic hemisphere

As explained in Ross et al. (2011, 2012), we expect different number
densities for BOSS galaxies in the NGC and SGC, due to the fact
that Schlafly & Finkbeiner (2011) have shown there are measurable
offsets in the DR8 (Aihara et al. 2011) photometry between the
two regions. The final BOSS DR12 results are consistent with these
earlier studies; accounting for all weights, we find a 1.0 per cent
larger projected density of the CMASS sample (0.43 < z < 0.75)
in the SGC compared to the NGC. In the LOWZ sample (0.2 <

z < 0.43), the projected density is 7.6 per cent higher in the SGC
compared to the NGC. For this reason, the NGC and SGC are
treated to have separate selection functions, as has been the standard
practice throughout the lifetime of BOSS analyses.

Fig. 2 displays the number density of the CMASS and LOWZ
samples in the NGC and SGC. One can see that the LOWZ sam-
ple in the SGC has a greater density than the NGC by a nearly
constant factor. For the CMASS sample, the SGC distribution is
somewhat skewed compared to the NGC selection. The number
density is greater at the low-redshift end, due to the fact that the

Figure 2. The number density as a function of redshift for CMASS (solid
curves) and LOWZ (dashed curves) selections, in the NGC and SGC
(coloured ‘forest green’ and coloured ‘dark khaki’). The overall offset be-
tween densities in the two regions is due to calibration offsets in the imaging
data between the two regions.

offset in photometry effectively lowers d⊥ limit (equation 20) in
the SGC compared to the NGC. These differences in n(z) imply
that the galaxy populations will be slightly different in the different
hemispheres and should thus be considered when the results from
each hemisphere are combined.

3.4 Mock galaxy samples

We use two independent methods to create two samples of close to
1000 mock realizations designed to match BOSS galaxy samples.5

The two methods are ‘QPM’ (White, Tinker & McBride 2014) and
MultiDark PATCHY (MD-P; Kitaura, Yepes & Prada 2014; Kitaura
et al. 2016) and each has been tuned to match the footprint, redshift
distribution, and halo occupation distribution of BOSS samples. We
therefore expect the clustering of the mock samples to match the
BOSS measurements. We use both sets of these mock samples to
generate covariance matrices and to test methodology. Each uses
its own cosmology; the differences between these cosmologies aid
in assessing the robustness of our results.6 The cosmology used
for each mock and the BAO measurements, we expect to find for
them when analysing them using our fiducial cosmology are listed
in Table 1.

The tests we performed on the LOWZ and CMASS samples
were completed using the QPM mocks; this work was completed
(as a pre-requisite) prior to the definition of the BOSS combined
sample.7 This same work allowed the combined sample MD-P and
QPM mocks to be created. Kitaura et al. (2016) demonstrate that
the MD-P mocks are a better match to the combined sample, with
some improvement over QPM due to the treatment of the lightcone
(see Kitaura et al. 2016 for full details). Thus, in what follows we
exclusively use the QPM mocks in tests of the LOWZ and CMASS
samples, use the MD-P mocks as the primary sample for tests of the

5 996 mocks are MD-P used for the MD-P results and 1000 for QPM.
6 Both include no neutrino mass, rather than the minimal allowed mass
adopted for our fiducial cosmology, but as shown by Thepsuriya & Lewis
(2015), this is expected to have minimal impact on BAO analyses.
7 We have found no indications that any conclusions would be altered if the
tests are repeated with the final MD-P mocks.
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Table 1. Cosmology and expected values for BAO parameters for QPM and
MD-P mocks, given we have analysed them using our fiducial cosmology
and each set of mocks has their own cosmology. Each uses a flat geometry
and has a density of neutrinos �ν = 0. The exact values used for MD-P
are �m = 0.307 115 and h = 0.6777, which have been rounded to three
significant figures below.

QPM �m = 0.29 h = 0.7 �b h2 = 0.022 47 �ν = 0
redshift α|| α⊥ α ε

0.38 0.9808 0.9755 0.9773 0.0018
0.51 0.9840 0.9770 0.9793 0.0024
0.61 0.9861 0.9782 0.9808 0.0027
MD-P �m = 0.307 h = 0.678 �b h2 = 0.022 14 �ν = 0
redshift α|| α⊥ α ε

0.38 0.9999 0.9991 0.9993 0.0003
0.51 1.0003 0.9993 0.9996 0.0003
0.61 1.0006 0.9995 0.9999 0.0004

combined sample, and use the QPM mocks as a robustness check
on the combined sample results.

4 W E I G H T I N G G A L A X I E S BA S E D O N SU RV E Y
PROPERTIES

The methods used to account for various reasons for incompleteness
in observations of the BOSS spectroscopic sample are defined and
justified in Reid et al. (2016). These include close pair weights, wcp,
that are applied to account for fibre collisions and weights, wnoz,
that account for redshift failures. We include these weights as wz

= wcp + wnoz − 1 in all analyses, unless otherwise noted. In the
following subsections, we test the projected BOSS galaxy den-
sity against observational parameters that affect the imaging data,
and define weights to correct for systematic relationships, where
identified.

Our results require determining the uncertainty in the relation-
ships between galaxy density and observational parameters, often
for samples that are divided in ways that are not possible for our
mock samples. Thus, we require some manner of estimating uncer-
tainties that balances cosmic variance and shot-noise but does not
rely on the variance of mock realizations. To do so, we weight all
galaxy counts by the wFKP weights and treat the resulting counts like
Poisson statistics. Such a scheme balances shot-noise and cosmic
variance, at the scale used to define the FKP weights. For example,
if the FKP weight is 0.5 for all galaxies in the sample, the expected
variance in the number of galaxies is twice the number of galax-
ies (instead of the number of galaxies in the case where the FKP
weights are 1). The variance on the FKP-weighted sample would be
0.5N, while the variance in the pure Poisson case would be 0.25N
(as the variance of xN is x2N when N is drawn from a Poisson
distribution). In this example, the variance is twice as large as the
shot-noise contribution, because there are equal contributions from
cosmic variance and shot-noise. We have compared this scheme to
the variance of statistics obtained from the CMASS mock samples
and found good agreement. Applying this scheme allows uncertain-
ties to be estimated for samples that do not have matching suites of
mock catalogues.

4.1 Stellar density

The projected density of CMASS was found to depend on the local
stellar density in Ross et al. (2011). This finding was confirmed in
all subsequent BOSS data sets. We use SDSS DR8 stars with 17.5
< i < 19.9 to map the stellar density at HEALPIX (Gorski et al. 2005)

Figure 3. Projected BOSS galaxy density versus stellar density, measured
as the number of 17.5 < i < 19.9 stars in HEALPIX pixels with Nside=128. Top
panel: the relationships for CMASS and the three LOWZ selections. Middle
panel: the relationships for CMASS, split into bins of ifib2 magnitude. These
are the measurements used to define the stellar density weights applied to
clustering measurements. Bottom panel: the relationships for CMASS, split
by redshift, before (curves) and after (points with error bars) stellar density
weights are applied. The relationships before any weighting is applied are
slightly dependent on redshift, due to a weak correlation between ifib2 and
redshift. Weighting based on ifib2 (illustrated in the middle panel) removes
this dependence.

resolution Nside=128 (0.21 deg2 pixel−1). This is the same set of
stars used in Ross et al. (2011, 2012). The systematic dependence
with stellar density affects only the CMASS sample; as shown in the
top panel of Fig. 3, none of the LOWZ selections exhibit any trend;
this is as expected given it is a brighter selection than the CMASS
sample (see Tojeiro et al. 2014 for further details). Assuming a
diagonal covariance matrix, we find the χ2 of the null test of n/〈n〉
= 1 to be 9.6, 11.1, and 9.8 for the LOWZ, LOWZE2, and LOWZE3
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samples (to be compared to 10 measurement bins). Comparatively,
the χ2 for the CMASS sample is 211. We therefore do not include
any stellar density weights for any of the LOWZ samples.

In Ross et al. (2011, 2012), it was shown that the relationship
with stellar density also depends on the surface brightness of the
galaxy. The ifib2 magnitude of the galaxy is a convenient measure of
the surface brightness, as it represents the total flux within a given
aperture (convolved with the seeing). The middle panel of Fig. 3
shows the relationship between the CMASS number density and
the stellar density, divided into five ranges of ifib2 magnitudes (ifib2

< 20.3; 20.3 < ifib2 < 20.6; 20.6 < ifib2 < 20.9; 20.9 < ifib2 < 21.2;
21.2 < ifib2). In each bin, we find the best-fitting linear relationship
ngal = A(ifib2) + B(ifib2)nstar. The dashed lines display the best-fitting
linear relationship in each ifib2 bin; the χ2 of the fits range between 4
and 8, for 8 degrees of freedom. With increasing ifib2, the best-fitting
A and B are A(ifib2) = [0.959, 0.994, 1.038, 1.087, 1.120] and B(ifib2)
= [0.826, 0.149, −0.782, −1.83, −2.52] × 10−4.

The linear fits to the relationship between galaxy and stellar
density in each of the ifib2 bins are used to define weights to apply
to CMASS galaxies to correct for the systematic dependence on
stellar density. To obtain the expected relationship at any ifib2, we
interpolate between the results in the neighbouring ifib2 bins, i.e. to
find the expected relationship at ifib2 = 20.8, we interpolate between
the results in the 20.3 < ifib2 < 20.6 and 20.6 < ifib2 < 20.9 bins to
obtain the slope, B(ifib2), and intercept, A(ifib2), of the relationship.
The weight we apply to the galaxy is then

wstar(nstar, ifib2) = (B(ifib2)nstar + A(ifib2))−1 , (32)

i.e. we simply weight by the inverse of the expected systematic
relationship.

The surface brightness dependence of the stellar density relation-
ship must be accounted for in order to account for the redshift de-
pendence of the systematic effect. The bottom panel of Fig. 3 shows
the CMASS number density versus stellar density, after applying
wstar. In each redshift bin, the systematic relationship is removed.
After applying the systematic weights, the χ2 for the null test are
13.5, 8.4, and 11.2 (for 10 degrees of freedom), with increasing red-
shift; prior to applying the weights, they are 47, 117, and 65. The
impact of the stellar density weights on the measured clustering is
presented in Section 5.1.

4.2 Seeing

There is a relationship between the observed density of BOSS
CMASS galaxies and the local seeing due to the star galaxy separa-
tion cuts, as explained in Ross et al. (2011). Weights were previously
defined and applied to the DR10 and DR11 CMASS samples to re-
move this trend, and we repeat such a procedure for DR12, while
further investigating any relationship in the LOWZ samples.

The top panel of Fig. 4 displays the relationship between observed
projected density and seeing for different BOSS selections. For the
standard LOWZ selection and the LOWZE2 selection, no strong
relationship is observed; the χ2 values of the null tests are 16.2 and
14.2, respectively, for 10 degrees of freedom. However, for CMASS
and especially LOWZE3, clear relationships exist where the galaxy
density decreases as the seeing gets worse (the χ2 values of the null
tests are 225 and 877). For each sample, we will define systematic
weights to correct for these relationships, and we describe this
process throughout the rest of this section.

For CMASS, we define weights in a manner similar to that applied
in Anderson et al. (2014b). We find the relationship with seeing is
more severe in the SGC compared to the NGC, and we therefore

Figure 4. The relationship between observed density of BOSS galaxies
and i-band seeing. Top panel: the relationships for CMASS and the three
LOWZ selections. Middle panel: the relationships for CMASS NGC and
SGC. The dashed curves display the best-fitting relationship used to define
the weights that correct for the observed trends. The solid curve displays
the measured relationship for the combined NGC+SGC sample, after the
weights have been applied. Bottom panel: the relationships for the LOWZE3
sample, split into four bins by imod magnitude. These relationships are used
to define the weights applied the LOWZE3 sample.

determine the weights separately in each region.8 We find the best-
fitting parameters to the following model

ng = Asee

[
1 − erf

(
Si − Bsee

σsee

)]
, (33)

8 The difference in this dependence with seeing between the two regions
must be related to another variable that differs considerably between the two
regions, but a thorough investigation was unable to determine this variable.
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where Si denotes the i-band seeing. The middle panel of Fig. 4
displays the observed relationships for the data in each hemisphere
and the best-fitting model. For the NGC (SGC), the best-fitting
parameters are Asee = 0.5205(0.5344), Bsee = 2.844(2.267), and
σ see = 1.236(0.906). The χ2 of these best fit are 5.4 and 6.9 for
the NGC and SGC, to be compared to 7 degrees of freedom. The
seeing-dependent weights are simply given by the inverses of the
best-fitting relationships. The combined SGC+NGC relationship,
after applying the seeing-dependent weights, is displayed using a
solid black curve. The error bars are suppressed, but the χ2 of the
null test is 7.7 for 10 data points.

For LOWZE3, the inclusion of the z-band star/galaxy separation
cut introduces a strong relationship between the galaxy density and
the seeing. We find the effect is strongly magnitude dependent (we
do not find this to be the case for the dependence of the CMASS
sample with seeing). We therefore divide the sample by imod mag-
nitude (i- and z-band magnitudes are strongly correlated at these
redshifts and the SDSS i band is less prone to zero-point fluctua-
tions) and define weights in a manner analogous to how we defined
the CMASS stellar density weights as a function of ifib2. We divide
the LOWZE3 sample into four bins based on the galaxies’ imod mag-
nitude, imod < 17.5, 17.5 < imod < 18, 18 < imod < 18.5, and imod

> 18.5, and fit a linear relationship to each and then interpolate to
obtain the weight as a function of the local i-band seeing and the
galaxy’s imod magnitude. The measurement in these four magnitude
bins is displayed by the points with error bars in the bottom panel of
Fig. 4. The dashed curves display the best-fitting linear relationship
to each. We find the slope of the best fits, �, is well approximated
by

� = b + m(imod − 16)1/2, (34)

with b = 0.875 and m = −2.226. Thus, given that the mean seeing
over the footprint is 1.25, the relationship between i band seeing,
LOWZE3 density (nLE3), and imod is given by

nLE3(Si, imod) = 1 + (Si − 1.25)�(imod). (35)

We set any � < −2 to �min = −2 and take the inverse of equation
(35) in order to apply weights to the LOWZE3 sample, setting any
weights greater than 5 to 5.

The total systematic weight (e.g. wstar × wsee for CMASS) is
normalized such that the weights sum to the total number of galaxies
in the sample they are defined for. The impact of the seeing weights
we apply on the measured clustering of the CMASS and LOWZE3
samples is presented in Section 5.1.

4.3 Sky background, airmass and extinction

As for previous BOSS data releases, we test against three additional
potential systematic quantities, each of which affects the depth of
the imaging data: sky background, airmass, and Galactic extinction.
These are shown for the CMASS and LOWZ samples in Fig. 5.
For sky-background and airmass, the χ2 values of the null tests
range between 9 (for CMASS against sky background) and 18
(for LOWZ against airmass), to be compared to the 10 data points
in each case.

For Galactic extinction, the χ2 are somewhat larger than ex-
pected: 35 for the CMASS sample and 26 for LOWZ (compared
to 10 data points). However, these large χ2 are dominated by the
value at the lowest extinction, which is low by 3 per cent for both

Figure 5. The relationship between galaxy density observed density and
sky background (in nanomaggies per square arcsecond), Galactic extinction
[in E(B − V)], and airmass, for CMASS and LOWZ. The dashed lines display
the predicted relationship with Galactic extinction, based on the difference
between the extinction coefficients applied to BOSS imaging data and those
found in Schlafly & Finkbeiner (2011).

LOWZ and CMASS.9 Schlafly & Finkbeiner (2011) suggest some-
what different extinction coefficients than those used to target BOSS
galaxies. Such a change implies extinction-dependent shifts in the
colour of the BOSS selection and these shifts can be translated into
an expected change in target density as a function of extinction.
The expected trend is shown with dashed lines and agrees with
the overall trend observed for both LOWZ and CMASS. In terms
of χ2, the LOWZ value is 19 when using this prediction and the
CMASS value remains 35 [improvement at the extrema of the range
is countered by disagreement at E(B − V) ∼0.08]. This implies any
effect on the measured clustering found when correcting for this
predicted relationship would be marginal, and, indeed, we find no
significant changes in the measured clustering when applying and
extinction-dependent weights. We thus choose not to include any
weights to correct for these trends with Galactic extinction.

Overall, we do not find any clear trends, given the uncertainty, be-
tween the density of BOSS galaxies and sky background, Galactic
extinction, or airmass. Therefore, like in previous BOSS analyses,
we do not weight BOSS galaxies according to any of these quanti-
ties. In the tests that follow, it will become clear that the systematic
effects we correct for via weights (stellar density and seeing) would
have minimal impact on the final BOSS BAO and RSD results even
if they had not been corrected for. Attempts to correct for addi-
tional potential systematic effects of marginal significance are thus
ill-advised. However, each individual analysis will be affected dif-
ferently, and it would therefore be prudent for any future studies of
the clustering of BOSS galaxies (e.g. primordial non-Gaussianity;
Ross et al. 2013) at the largest scales to reconsider this choice.

5 B O S S G A L A X Y C L U S T E R I N G

In this section, we present the configuration-space clustering of
BOSS galaxies. We determine the relative importance of the sys-
tematic weights we apply, in terms of the impact on the measured
correlation functions. We then show BOSS clustering results when
the samples are divided by hemisphere (NGC and SGC) and by tar-
geting selection (LOWZ, LOWZE2, LOWZE3, and CMASS). We
conclude by showing the clustering of the combined BOSS sample,
split by redshift.

9 Masking the data at the lowest extinction values does not cause any sig-
nificant change in the clustering results.
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5.1 Effect of weights

The CMASS sample contains the most signal to noise of any par-
ticular BOSS selection has a significant percentage of unobserved
close-pairs and redshift failures (5.4 and 1.8 per cent), and uses
weights for both stellar density and seeing to correct for systematic
dependences in the observed number density. We test the impact
of these weights by comparing the clustering measured with the
weights applied to that without. For the monopole, these differ-
ences are displayed in the top panel of Fig. 6. In order to assess the
total potential impact of the weights, we find the total χ2 difference
between the clustering measured with and without the weights. The
relative importance of each weight is as one would expect visu-
ally: the χ2 are 13.1, 3.7, 2.1, and 0.1 for stellar density, close pair,
redshift failure, and seeing weights.

The importance of the weights is smaller for CMASS ξ 2 than
ξ 0, as one can see in the second to the top panel in Fig. 6. The
χ2 are 0.5, 2.5, 2.3, and 0.1 for stellar density, close pair, redshift
failure, and seeing weights. Unsurprisingly, the weights that affect
the radial distribution are most important for ξ 2, and the redshift
failure weights are slightly more important for ξ 2 than for ξ 0. For
both ξ 0 and ξ 2, the seeing weights have negligible impact. The χ2

difference is only 0.1 for both, implying that the greatest difference
it could cause in the determination of a model parameter is 0.3σ

(whereas for stellar density, it is potentially a 3.6σ effect).
For the nominal LOWZ sample, the only systematic weights

applied are for close pairs and redshift failures, and these represent
only 2.9 and 0.5 per cent of LOWZ targets. Similar to CMASS, the
close-pair weights increase the small-scale clustering amplitudes.
However, the effect is much smaller, compared to the uncertainty
on the measurements, and the χ2 are only 0.8 and 1.4 for ξ 0 and ξ 2.
For redshift failures, the χ2 are only 0.2 and 0.1 for ξ 0 and ξ 2.

For the LOWZE3 sample, selected over the full NGC footprint,
we defined a weight based on seeing, in order to reverse a strong
effect on the observed number density of the sample. The effect of
this weight on the measured clustering of the LOWZE3 selection
over the full NGC footprint is shown using circles in the bottom two
panel of Fig. 6 (of note, the size of the uncertainty band for LOWZE3
should be larger than for the displayed LOWZ uncertainty, due to
the number density being approximately half of LOWZ and the fact
that the SGC footprint is not used). It has the strongest effect of any
weight we apply.

While the effect of the seeing weights is strong for the LOWZE3
sample over the full NGC footprint, our final sample will only use
this selection over 755 deg2. Further, when these data are used, we
combine the LOWZ sample with CMASS and use data in the range
0.2 < z < 0.5. When we consider the impact of the weights on
the clustering of this combined sample (denoted ‘LOWZ comb’),
we find a χ2 difference of only 0.2 between the ξ 0, 2 measured
with and without the weights applied, this comparison is plotted
using triangles in the bottom two panels Fig. 6. The reason for the
sharp decrease in significance is two-fold: (1) the LOWZE3 sample
accounts for approximately 5 per cent of the statistical power of
the combined sample with 0.2 < z < 0.5 and (2) the effect of the
weights when restricting to only the 755 deg2 of unique LOWZE3
data is considerably smaller than over the full NGC (presumably
due to the particular pattern of seeing in this area). Thus, while
its effect is dramatic on the LOWZE3 sample within the full NGC
area, the effect of the weights on the combined sample is minor for
the combined sample that we use for BOSS science. Notably, the
inclusion of the LOWZE3 area allows us to include the CMASS data
occupying the same footprint with 0.2 < z < 0.5 into the combined

Figure 6. The change in the measured monopole and quadrupole of the
BOSS CMASS (top panels) and LOWZ (bottom panels) correlation func-
tions, when the given systematic weight is applied. ‘LOWZ comb’ refers
to the combination of the LOWZ, LOWZE2, and LOWZE3 selections. The
grey shaded region displays the 1σ uncertainty obtained from mock samples.
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sample, which increases the statistical power of the region to 8 per
cent of the total. Our tests suggest that even in the (catastrophic)
event that residual systematic effects in the LOWZE3 sample are
equal to those we have treated with weights for seeing, the most any
derived parameter could be biased is 0.45σ (and this is in the specific
case that the signal being searched for is exactly mimicked by
the systematic effect). The expected variation (assuming Gaussian
statistics) when increasing a sample from 92 per cent complete to
100 per cent is 0.4σ ; in this sense the expected gain is approximately
equal to the worst-case scenario for the inclusion of the LOWZE3
data. We thus include the 755 deg2 of unique LOWZE3 data in the
BOSS combined sample.

5.2 Hemisphere

As described in Section 3.3, the selection functions for the NGC and
SGC BOSS galaxy data are slightly different. Here, we compare the
clustering in the two regions. This comparison is shown for CMASS
in the top two panels of Fig. 7 for ξ 0 (top panel) and ξ 2 (second to top
panel). In the range 20 < s < 200 h−1, the χ2 obtained when testing
the NGC ξ 0 against the SGC ξ 0 (determined by summing the two
QPM covariance matrices) is 42 for the 36 data points. Restricting
to the range 50 < s < 150 h−1, the χ2 is 25 for 20 points. The
CMASS clustering in the two regions agrees to a similar extent as it
did for the DR9 data (Ross et al. 2012). The agreement is somewhat
worse for ξ 2, as we find a χ2 of 48 for 20 < s < 200 h−1 Mpc and
29 for 50 < s < 150 h−1 Mpc.

The comparison between NGC and SGC for the LOWZ sample
is shown in the bottom panels of Fig. 7. The agreement between the
ξ 0 is quite good; the χ2 is 28 for the 36 data points with 20 < s <

200 h−1 Mpc. For ξ 2, the agreement is worse; the χ2 is 50 for the
same 36 s bins. The discrepancy is dominated by large scales, as for
the 22 data points with s < 130 h−1 Mpc, the χ2 is 19, while for the
14 with s > 130 h−1 Mpc, the χ2 is 29. The difference is such that it
serendipitously cancels for the combined NGC+SGC sample. While
unusual, no effect studied in this paper has a significant impact on
the shape of the LOWZ quadrupole at s > 130 h−1 Mpc and we can
offer no explanation beyond a statistical fluctuation (which would
be at ∼2σ for χ2/dof=50/36). We note that scales s > 130 h−1 Mpc
have a negligible impact on RSD structure growth measurements
and only a small impact on BAO measurements (see Appendix B).

We do not find any strong discrepancies between the NGC and
SGC configuration-space clustering of BOSS galaxies at scales rel-
evant to BAO or RSD studies. We therefore combine the two hemi-
spheres in our standard analysis, but demonstrate in subsequent
sections that the results applied to each hemisphere individually are
consistent with the combined constraints and that the BAO results
are thus robust to any concerns about combining the NGC and SGC
results. Alam et al. (2016) show discrepancies between the two
hemispheres are more apparent at small scales when studying the
power spectrum. The differences are shown to be a consequence of
the colour offsets between the two regions, as discussed in Section
3.3. These differences are not apparent in the correlation function
analysis because they are isolated to s < 20 h−1 in configuration
space.

5.3 Targeting selection

Here, we compare the clustering in the nominal LOWZ selection to
the clustering obtained using the LOWZE2 selection (which is the
full LOWZ footprint plus the 131 deg2 area where the LOWZE2
selection was applied to targeting) and to the clustering obtained

Figure 7. The clustering of BOSS CMASS (top two panels) and LOWZ
(bottom two panels) galaxies, for the two contiguous regions within the SGC
and NGC hemispheres. The dotted lines denote the mean of the QPM mock
samples.
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Figure 8. The clustering of BOSS galaxies using the four different targeting
specifications. The CMASS and LOWZ samples occupy different redshift
regimes (see Fig. 2) and thus some difference in clustering amplitude is to
be expected. The dotted lines denote the mean of the QPM mock samples.

using the LOWZE3 selection (which is the full LOWZ area plus the
755 deg2 where the LOWZE3 selection was applied to targeting.)
We use the full area available, within the NGC, in order to obtain
the best statistics on the galaxies that comprise each selection.

We show this comparison in Fig. 8, where the CMASS cluster-
ing is also shown. The LOWZE2 selection covers the same area as
the LOWZ selection, with 131 deg2 more area and a lower number
density. We should thus expect consistent clustering measurements.
Its correlation function is displayed using a solid curve in Fig. 8.
For both ξ 0 and ξ 2, LOWZE2 appears consistent with the LOWZ
measurements, but with a slightly higher clustering amplitude. In-
deed, using the LOWZ covariance matrix, we find a χ2 of 23 for the
monopole and 19 for the quadrupole when testing the range 20 < s
< 200 (36 data points). Multiplying the LOWZ ξ 0 by 1.04 reduces
the χ2 to 20. An increase in clustering amplitude is expected, as the
LOWZE2 sample applies brighter limits to the selection compared
to the nominal LOWZ selection. Applying a factor to the quadrupole
does not significantly reduce the χ2. These χ2/dof are much less
than one, as expected for measurements that are highly correlated.

The LOWZE3 sample covers the same area as the LOWZ foot-
print, with an additional 755 deg2, a lower number density, and
large weights that account for variations in target density with see-
ing. As detailed in Section 3, its mean number density is just greater
than half that of the nominal LOWZ selection. The LOWZE3 cor-
relation functions are displayed using dashed curves in Fig. 8. The
measurements appear qualitatively similar to the LOWZ measure-
ments, especially for the quadrupole, but with a slightly greater
clustering amplitude for ξ 0. However, when repeating the test we

applied to the LOWZE2 sample, using the LOWZ covariance ma-
trix to evaluate a χ2 value for the difference between the LOWZ
and LOWZE3 samples, we find the χ2 is 83 for the monopole, when
multiplying the amplitudes by a factor of 1.10, in the range 20 <

s < 200 h−1 Mpc (36 data points), and that this χ2 is not signifi-
cantly better or worse for a particular range of scales (e.g. it is 31
for the 16 data points with s > 120 h−1 Mpc). Similar to LOWZE2,
we expect an increase in the clustering amplitude of the LOWZE3
sample compared to LOWZ, as the cuts applied to LOWZ to pro-
duce the LOWZE3 sample preferentially remove fainter galaxies.
The quadrupole gives somewhat better agreement, as the χ2 is 50
for the range 20 < s < 200 h−1 Mpc (applying a constant factor
does not significantly improve the χ2).

If we increase the diagonal elements of the LOWZ covariance
matrix by 10 per cent and repeat the test, we find the χ2 reduce to
36 for ξ 0 and 24 for ξ 2 (for the same 1.10 factor for ξ 0). Chang-
ing the covariance matrix in this manner represents the addition
of a pure shot-noise contribution to the covariance matrix that has
a variance which is 10 per cent of the LOWZ variance. This is
likely conservative, as the LOWZE3 number density is approxi-
mately half of the LOWZ number density. When using the value of
P0 = 104 h3 Mpc−3 adopted to define the FKP weights, a number
density of 3 × 10−4 h3 Mpc−3 for the LOWZ sample, and a number
density 1.5 × 10−4 h3 Mpc−3 for the LOWZE3 sample, we find
the expected increase in the variance is 56 per cent. We therefore
conclude that the clustering of the LOWZ and LOWZE3 samples
is consistent, when allowing for a 10 per cent increase in clustering
amplitude and the extra shot noise imparted by the lower LOWZE3
number density.

The clustering amplitude of the CMASS sample is clearly lower
than that of the LOWZ sample on scales s < 80 h−1 Mpc. Again,
using the covariance matrix of the LOWZ sample, we find the
χ2 between two measurements, scaling the CMASS result by a
constant factor. We find a minimum χ2 of 34 for a factor 1.12 for
the monopole and 41 for the quadrupole, applying a factor of 1.27.
This implies the shapes of the measured monopole and quadrupole
are consistent between the CMASS and LOWZ samples.

5.4 Combined BOSS sample

Finally, we present the clustering of the BOSS galaxy sample, i.e. the
combined sample of LOWZ, LOWZE2, LOWZE3, and CMASS,
applying all of the weights defined in the previous section. The
clustering amplitudes of the individual BOSS samples differ by
less than 20 per cent for the CMASS/LOWZ samples and less than
10 per cent for the individual LOWZ samples. The scales we are
interested in are less than 150 h−1 Mpc. Thus any cross-sample
pairs of galaxies will be a small percentage of the total entering
any particular measurement and we do not expect any significant
shift in the amplitude as a function of scale within the scales of
interest. Further, we have tested weighting the individual samples
such that their density field has the same amplitude in the regions
of overlap. We find this weighting has no significant impact on the
measured clustering, and we therefore simply add the catalogues
(both the galaxy and the random ones in the correct proportion)
to produce the combined sample. The clustering measurements for
the combined BOSS sample with 0.2 < z < 0.75, split into two
redshift bins at z = 0.5, are displayed in Fig. 9. One can see that
the clustering is similar in the two redshift regimes, with a slightly
greater clustering amplitude in the lower redshift sample.

The dotted curves in Fig. 9 display the mean of the PATCHY
mock samples, which are a better match to the BOSS combined
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Figure 9. The measured monopole and quadrupole of the BOSS galaxy
correlation function, split into two redshift shells. The dotted lines display
the mean of the MD-P samples with the same redshift selections.

sample properties than QPM (one of the biggest differences is the
treatment of the lightcone in PATCHY, see Kitaura et al. 2016 for full
details).10 The covariance between the s bins makes the statistical
match between the mean of the mocks and the measured clustering
better than might be guessed by eye. For the monopole and 0.2 < z <

0.5 it is 38 for the 32 measurement bins with 20 < s < 180 h−1 Mpc,
while for 0.5 < z < 0.75, it is 31 for the same range of scales. For
the quadrupole, it is 35 for 0.2 < z < 0.5 and 30 for 0.5 < z <

0.75. Allowing the mean of the mocks to be scaled by a constant
value, the χ2 decreases to 36 for the 0.2 < z < 0.5 monopole when
applying a factor of 0.98. No significant improvement is found for
the 0.5 < z < 0.75 monopole. For the quadrupole, the χ2 cannot
be significantly improved by applying any factor to the mean of the
0.2 < z < 0.5 mocks and is reduced to 27 when applying a factor
of 0.93 to the 0.5 < z < 0.75 mocks.

For the monopole, the clustering at large scales shows an apparent
excess, however it is of marginal statistical significance: for the 0.2
< z < 0.5 bin the χ2 is 20 for the 12 data points with s > 120 h−1 and
17 for the 20 points with s < 120 h−1, but for z > 0.5, the χ2/dof
is slightly smaller for s > 120 h−1 (10/12) than for s < 120 h−1

(22/20). While all of the data points are greater than the mean of
the mocks at large scales, the large degree of covariance between
the measurements makes this fact unremarkable. In Fourier space,
Beutler et al. (2016b) and Grieb et al. (2016) find no apparent excess
for k > 0.01h Mpc−1.

10 The QPM mocks are a good match.

6 ROBUSTNESS O F BAO MEASUREMENT S TO
O B S E RVAT I O NA L T R E AT M E N T

In this section, we measure the BAO scale for each of the BOSS
target samples, and test the robustness of the measurements to our
treatment of the selection function. We first test the effect of the
stellar density weights by simulating the stellar density systematic
in mock samples and then comparing the BAO results to those
without any simulation of the stellar density systematic. We then
test the BOSS BAO measurements by determining their dependence
on the application of the various weights and examining the results
we obtain for each Galactic hemisphere.

6.1 Tests on mocks

We test for the systematic impact the stellar density relationship has
on the measured BAO position by simulating the effect in mock
CMASS samples and thus determine an observational systematic
uncertainty on BOSS BAO measurements. We take the stellar den-
sity field observed by SDSS and assume the distribution of stars is
the same for each of the mocks. In order to simulate the systematic
effect of stellar density observed in the BOSS data, we also must
assign ifib2 magnitudes to each mock galaxy. We accomplish this
by taking the observed distribution of ifib2 magnitude as a function
of redshift and sampling from this for each mock galaxy redshift,
i.e. we estimate P(ifib2|z) based on the BOSS data and use this to
assign the ifib2 values to each mock galaxy. This allows us to anal-
yse the statistics of the distributions of BAO scale measurements
obtained from the following four cases that include different levels
of systematic contamination and correction.

(i) Fiducial mocks; BAO fits are presented for 200 of these, in
order to match the number used in case (ii).

(ii) Mocks that have been randomly subsampled in a manner
matching the observed stellar density systematic;11 the clustering
of these has the spurious large-scale power similar to the unweighted
data sample; BAO fits have been performed for 200 of these.

(iii) Mocks that first have the subsampling procedure applied in
case (ii) and then have stellar density weights calculated and used
for their clustering; the stellar density systematic is thus removed,
but the weights are calculated on a per-mock basis; BAO fits have
been performed for 600 of these.

(iv) Mocks that have been uniformly subsampled by 4 per cent to
have the same number density as those subsampled according to the
stellar density systematic; these are a more-fair comparison to cases
(ii) and (iii) than the fiducial mocks: BAO fits have been performed
for 600 of these.

Cases (iii) and (iv) are the most realistic and will be used to
determine any additional scatter from the weighting process. We
therefore concentrate on performing fits for these tests, while for
other tests we simply perform a number sufficient to detect any
significant issues.

We use the QPM CMASS NGC mocks and for all tests we use
the ξ 0, 2 covariance matrix determined from 1000 realizations of the
fiducial case (i). For these, we have assumed the same cosmology
as used to construct the QPM mocks (given in Table 1) both when
measuring ξ 0, 2 and in the BAO template. These choices match

11 E.g. if the density is expected to be 0.95 that of the nominal density,
each mock galaxy is tested and kept in the sample if a randomly generated
number between 0 and 1 is less than 0.95.
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Table 2. Statistics of anisotropic BAO fits on either 600 (‘Sub’ and ‘Sub Star, weighted’) or 200 (‘Fid.’ and ‘Sub Star, not weighted’) pre-reconstruction
NGC mocks with and without stellar density systematics. Numerals match the list in the text. For these, we have assumed the same cosmology as
used to construct the QPM mocks (given in Table 1). Thus, the expected α and ε values are 1 and 0. ‘Fid.’ denotes the case where the fiducial mock
samples have been used; ‘Sub Star, not weighted’ denotes the case where each mock was subsampled based on the stellar density relationship observed
in the data; ‘Sub’ refers to the case where the mocks have been randomly subsampled so that the number density is the same as the ‘sub Star, not
weighted’ case; ‘Sub Star, weighted’ denotes the case where the Star, not weighted mocks have stellar density weights assigned in a manner matching
the procedure applied to the data. S denotes standard deviation and σ the uncertainty recovered from a likelihood.

Case 〈α||〉 S|| 〈σ ||〉 〈α⊥〉 S⊥ 〈σ⊥〉 〈α〉 Sα 〈ε〉 Sε

600 mocks used:
(iii) Sub Star, weighted 1.0011 0.0534 0.0567 1.0045 0.0253 0.0266 1.0029 0.0181 −0.0013 0.0220
(iv) Sub 1.0016 0.0532 0.0564 1.0043 0.0247 0.0266 1.0029 0.0180 −0.0010 0.0217
200 mocks used:
(i) Fid. 1.0011 0.0510 0.0554 1.0053 0.0241 0.0259 1.0034 0.0165 −0.0015 0.0213
(ii) Sub Star, not weighted 1.0009 0.0520 0.0550 1.0055 0.0250 0.0257 1.0035 0.0171 −0.0016 0.0217

those of Cuesta et al. (2016). Thus, the expected α and ε values are
1 and 0.

The results of anisotropic BAO fits are shown in Table 2 (‘S’
denotes a standard deviation and σ an uncertainty recovered from
a likelihood). Compared to the cases with no stellar density sys-
tematic, introducing the stellar density systematic shifts the mean
recovered value of αx by at most 0.0005, equivalent to 0.01σ . This
suggests that any potential systematic bias due to stellar density is
negligibly small; i.e. if we applied no correction for stellar density
systematics, we would still recover un-biased BAO measurements.
All of the mean σ are very similar (for cases using the same set of
mocks), as one might expect given that the same covariance matrix
is used in all cases.

In order to assess whether the weighting process introduces any
additional scatter, we have compared the standard deviations recov-
ered from cases (iii) and (iv). For both α|| and α⊥, the standard devi-
ations increase very slightly when the mocks go through the weight-
ing process. We determine the systematic scatter as S2

sys = S2
iii − S2

iv

and estimate an uncertainty via a jackknife-like method; we omit
blocks of 20 mocks and recalculate Ssys. The uncertainty on S is
then σ 2

S = 29
30

∑
i(Ssys,i − Ssys,full)2, with i denoting the sample with

20 mock results removed. We find Ssys = 0.005 ± 0.005 for α|| and
Ssys = 0.005 ± 0.002 for α⊥. The increase in the variance is thus
significant for α⊥.

The variance on the recovered BAO positions is slightly larger
when the mocks have the stellar density systematic applied and
corrected for, compared to the case where a uniform subsampling
has been applied. This not surprising as the correction procedure
has essentially removed the clustering modes that align with stellar
density (cf. Elsner, Leistedt & Peiris 2016). The application of
the weights has a larger (relative) effect on the α⊥ measurements;
this is consistent with the fact that the weighting procedure should
largely remove transverse modes that correlate with the distribution
of stars in the Galaxy. The results from our mocks tests suggest that
uncertainties on α⊥ using the CMASS data will be underestimated
by 2 per cent (

√
0.0252 + 0.0052/0.025 − 1) and that uncertainties

on α|| by half a per cent (
√

0.052 + 0.0052/0.05 − 1). Based on the
mode-removal argument, we expect the percentages to stay constant
with signal to noise (e.g. for post-reconstruction results).12

As demonstrated in the appendix of Ross et al. (2012), the correc-
tion procedure we apply for observational systematics is expected

12 We have focused the mock tests on pre-reconstruction results due to the
computational demands of analysing the post-reconstruction samples.

Figure 10. The change in the mean measured monopole (top) and
quadrupole (bottom) of the correlation function of mock samples, when
comparing the fiducial case (without any simulation of observational sys-
tematics) to the case where the stellar density systematic has been simulated
(‘darkorchid’ diamonds) and when comparing the fiducial case to the case
where the stellar density systematic has been simulated and corrected for
(azure squares). The grey shaded region displays the 1σ uncertainty obtained
from mock samples.

to produce slightly biased clustering measurements.13 We test this
by comparing the mean ξ 0, 2 for each of the mock cases and we
plot the results in Fig. 10. We find the correction procedure pro-
duces a nearly indistinguishable change in the mean ξ 0, 2 when com-
pared to the fiducial case (squares); clearly any bias is negligible in

13 See Elsner et al. (2016) for analytic descriptions of similar effects in
spherical harmonic space.
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Table 3. Isotropic and anisotropic BAO fits on pre- and post-reconstruction CMASS data when different weights are applied. The
fiducial case is ‘all’ (without specification of hemisphere) and we are interested in the variations (or lack thereof) between the results
in different cases. The cases are as follows: ‘none’ denotes no systematic weights were applied; ‘cp’ denotes close pair weights were
applied; ‘zf’ denotes redshift failure weights were applied in addition to cp; ‘st’ denotes stellar density weights were applied in addition
to cp and zf weights; ‘all’ additionally includes the seeing weights, and thus all weights were applied. ‘C15’ denotes that the ξ0, 2

measurements using the reconstruction applied to Cuesta et al. (2016) were applied (whereas the rest of the cases used reconstruction
similar to that of Burden et al. 2014). All covariance matrices used were determined from the appropriate sample of 1000 QPM mocks.
The reconstruction applied to these mocks matches what was used in Cuesta et al. (2016).

Sample Weights α χ2/dof α|| α⊥ χ2/dof

Pre-reconstruction:
CMASS none 0.985 ± 0.013 26/15 0.965 ± 0.035 0.996 ± 0.020 42/30
CMASS cp 0.986 ± 0.012 23/15 0.966 ± 0.034 0.996 ± 0.020 41/30
CMASS zf 0.985 ± 0.012 30/15 0.972 ± 0.034 0.992 ± 0.020 47/30
CMASS st 0.987 ± 0.012 24/15 0.971 ± 0.034 0.996 ± 0.020 41/30
CMASS all 0.987 ± 0.012 24/15 0.970 ± 0.034 0.997 ± 0.021 40/30
CMASS NGC all 0.985 ± 0.013 19/15 0.965 ± 0.037 0.994 ± 0.026 41/30
CMASS SGC all 1.020 ± 0.028 27/15 1.020 ± 0.095 1.014 ± 0.057 38/30
LOWZ none 0.992 ± 0.026 18/15 – – –
LOWZ zf 0.993 ± 0.026 18/15 – – –
LOWZ all 0.993 ± 0.025 17/15 – – –
LOWZE3 NGC all 1.007 ± 0.025 38/15 – – –
LOWZE2 NGC all 1.010 ± 0.029 14/15 – – –
LOWZ NGC all 1.009 ± 0.029 18/15 – – –
LOWZ SGC all 0.949 ± 0.042 10/15 – – –
Post-reconstruction:
CMASS none 0.9843 ± 0.0093 16/15 0.962 ± 0.023 0.997 ± 0.014 30/30
CMASS cp 0.9850 ± 0.0083 27/15 0.961 ± 0.022 0.996 ± 0.013 43/30
CMASS zf 0.9856 ± 0.0087 33/15 0.962 ± 0.022 0.998 ± 0.013 63/30
CMASS st 0.9859 ± 0.0086 18/15 0.957 ± 0.021 1.001 ± 0.013 37/30
CMASS all 0.9832 ± 0.0085 19/15 0.952 ± 0.021 1.000 ± 0.013 46/30
CMASS C15 0.9849 ± 0.0092 14/15 0.949 ± 0.024 1.003 ± 0.014 30/30
CMASS NGC all 0.975 ± 0.010 15/15 0.942 ± 0.022 0.999 ± 0.016 39/30
CMASS SGC all 1.016 ± 0.020 15/15 1.005 ± 0.044 1.013 ± 0.029 50/30

comparison to the statistical uncertainty (denoted by the grey shaded
regions). In contrast, the mean effect of simulating the stellar density
systematic is of clear significance to ξ 0 but exhibits a difference that
is well within the statistical uncertainty for ξ 2 (see the diamonds
in Fig. 10). This is similar to the difference between the clustering
observed in the CMASS data with and without corrective weights
for the stellar density systematic (the triangles in the upper two
panels of Fig. 6).

The conclusion of this subsection is that, as best we can mea-
sure, observational systematics impart no bias on BOSS BAO mea-
surements. However, we do find that the known observational sys-
tematics slightly reduce the statistical power of the measurements,
implying our uncertainties on α⊥ are underestimated by 2 per cent
and those on α|| by 0.5 per cent. We apply these additional errors to
our final results as systematic uncertainties.

6.2 Robustness of BOSS data

The results of the previous Section (6.1) imply that the stel-
lar density systematic, the most dominant systematic (in terms
of greatest potential significance), has, at most, a minor effect
on the resulting BAO measurements. In this section, we apply
similar tests to the BOSS data and expand them to consider all
of the weights applied to BOSS galaxies that are meant to provide
the correct selection function. We also compare the results from
the NGC and SGC regions separately. All of the measurements
in this section use the covariance matrix constructed from 1000

QPM mocks. The results are summarized in Table 3 and we discuss
them below.

The pre-reconstruction CMASS results are shown in the top rows
of Table 3. We measure both isotropic and anisotropic BAO. Mov-
ing down by row, we add weights to the galaxy catalogue (the
n(z) is re-created for each case). The results are stable; the biggest
absolute difference is 0.007 in α|| between the cases where no
weights are applied and the case where close-pair and redshift-
failure weights are applied. The biggest difference in terms of
fraction of the uncertainty is 0.25σ in α⊥ between the cases the
close-pair and redshift failure weights have been applied and all
weights have been applied. These size changes are consistent with
the scatter expected due to statistical fluctuations. For example, the
level of scatter we find when applying stellar density weights in
the previous section is 0.2σ between the weighted and unweighted
data; i.e. the statistical results are consistent with the level to which
we expect the weights to alter the relative importance of each given
survey mode and thus cause small differences in the recovered
measurements. The isotropic NGC/SGC measurements differ by
1.1σ , and therefore are consistent to this level, given they repre-
sent independent volumes. The combined result is slightly closer
(by 0.004) to the NGC measurement than one would expect from
Gaussian likelihoods.

For LOWZ, pre-reconstruction, we only measure the isotropic
BAO scale, due to the relatively low signal to noise. Measure-
ments of the isotropic BAO scale use only the monopole, ξ 0. The
results are shown in the middle rows of Table 3. As expected,
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Table 4. Statistics of anisotropic BAO fits obtained from two sets 1000 mocks, for each of the combined sample redshift bins. ‘MD-P’
denotes the Multidark PATCHY mocks were used. S denotes standard deviation and σ the uncertainty recovered from a likelihood. �

represents the difference from the expected values (given in Table 1).

z bin �〈α||〉 S|| 〈σ ||〉 �〈α⊥〉 S⊥ 〈σ⊥〉 �〈α〉 Sα �〈ε〉 Sε 〈χ2〉/dof

Pre-reconstruction:
QPM

0.2 < z < 0.5 0.003 0.048 0.049 0.005 0.025 0.027 0.004 0.018 −0.001 0.024 29.4/30
0.4 < z < 0.6 0.001 0.045 0.045 0.007 0.023 0.025 0.005 0.015 −0.002 0.021 29.3/30
0.5 < z < 0.75 −0.002 0.042 0.043 0.007 0.023 0.025 0.004 0.015 −0.003 0.020 29.3/30

MD-P
0.2 < z < 0.5 0.001 0.057 0.057 0.008 0.031 0.032 0.005 0.021 −0.002 0.025 29.4/30
0.4 < z < 0.6 0.004 0.056 0.053 0.008 0.028 0.028 0.005 0.018 −0.001 0.025 29.3/30
0.5 < z < 0.75 −0.001 0.052 0.050 0.010 0.029 0.028 0.006 0.018 −0.004 0.024 29.3/30
Post-reconstruction:

QPM
0.2 < z < 0.5 0.002 0.030 0.031 0.003 0.017 0.017 0.0024 0.0113 −0.0003 0.0138 29.4/30
0.4 < z < 0.6 0.003 0.027 0.029 0.001 0.015 0.016 0.0016 0.0105 0.0005 0.0125 29.7/30
0.5 < z < 0.75 0.002 0.029 0.031 0.002 0.016 0.017 0.0013 0.0112 −0.0001 0.0130 29.7/30

MD-P
0.2 < z < 0.5 0.002 0.034 0.035 −0.001 0.019 0.020 0.0002 0.0128 0.0009 0.0152 29.3/30
0.4 < z < 0.6 0.004 0.031 0.032 0.001 0.017 0.017 0.0014 0.0114 0.0011 0.0140 29.3/30
0.5 < z < 0.75 0.000 0.031 0.033 0.002 0.018 0.019 0.0015 0.0118 −0.0008 0.0145 29.4/30

the application of close-pair or redshift failure weights has very
little impact on the measurements (at most 0.04σ ). The differ-
ence between the NGC and SGC measurements is 1σ , but in
the opposite direction as the difference found for CMASS. The
combined LOWZ measurement is closer to the NGC measure-
ment by 0.003 compared to what would be expected from Gaus-
sian statistics. We find that the BAO measurements obtained from
the LOWZE3 and LOWZE2 selections are very similar (within
0.1σ ) to what we find for the nominal LOWZ sample. This
agreement helps validate that the LOWZE3 and LOWZE2 sam-
ples are indeed faithful tracers of the BAO signal and that their
unique areas should be added to the nominal LOWZ footprint
in order to obtain the best BAO measurements using low-redshift
BOSS data.

Finally, we investigate the robustness of the post-reconstruction
results, shown in the bottom panels of Table 3. We focus on the
CMASS sample. The agreement remains quite good, but the differ-
ences are larger relative to the uncertainty than they were for the pre-
reconstruction results. The biggest difference is 0.5σ in α||, between
the case where close-pair and redshift failure weights are applied
and all weights are applied (with the change being shared equally
between the addition of the stellar density weights and the seeing
weights). A potential explanation is that there is more stochasticity
in the reconstruction process; the weighted galaxy field is first used
to determine the displacement field and then the weighted galaxy
and random positions are displaced. This increases the chance of
fluctuations in the resulting measurements. Given that the largest
fluctuation we find is 0.5σ out of 30 possible comparisons, we find
no evidence for concern.

There is a 1.8σ discrepancy between the post-reconstruction
CMASS isotropic BAO measurement in the NGC and SGC. Such
a discrepancy has been observed at similar significance in each
BOSS data release. When decomposed, the discrepancy is largest
in α||, where the difference is 1.3σ (it is only 0.4σ , and thus consis-
tent, for α⊥). Despite the slight tension, the results recovered when
combining the pair-counts of NGC and SGC samples match the
expectation for Gaussian likelihoods one obtains when taking the
weighted mean of the NGC and SGC results.

7 C OMBI NED SAMPLE BAO MEASUREMENTS

The previous subsection demonstrates that the BAO measurements
are consistent between the components of BOSS, splitting by tar-
geting algorithm, after correcting for effects due to technical issues
in BOSS observations. Here, we present BAO measurements de-
termined using the combined sample data, both for the mock and
data samples. We use both the QPM and MD-P mocks, and the
covariance matrix determined using them, to analyse this sample.
In addition to the 0.2 < z < 0.5 and 0.5 < z < 0.75 redshift bins, we
present results for a 0.4 < z < 0.6 redshift bin, which we expect to
be largely covariant with the two distinct redshift bins but to provide
additional information when assessing the robustness of our results.

7.1 Results from mock samples

Table 4 displays the results of our BAO fits to both sets of mock
correlation functions. For the mean values, we indicate the differ-
ence from the expected value, given the cosmology used for the
mocks and our fiducial cosmology. These expected values are given
in Table 1.

All of the results are biased relative to the uncertainty on the
ensembles of the 1000 mock realizations (one should divide the S
and σ numbers by

√
1000 to obtain the uncertainty on the aver-

age of results of 1000 mocks), but by a relatively small amount
when compared to the uncertainty expected for one realization. For
the pre-reconstruction results, some bias is expected due to mode-
coupling from non-linear structure formation (cf. Padmanabhan &
White 2009). The bias we find is greatest in α⊥, where it is 0.006
for QPM and 0.009 for MD-P (averaged across the three redshift
bins). These are 0.25σ and 0.31σ . For α||, the bias is only 0.001 on
average, making it �0.1σ . The biases are of the order predicted by
Padmanabhan & White (2009). Studies (e.g. Beutler et al. 2016b;
Sánchez et al. 2016a) that use the pre-reconstruction data to measure
fσ 8, α||, and α⊥ employ modelling that takes the predicted shifts into
account and are expected to obtain somewhat more accurate results
for the pre-reconstruction data. We use the pre-reconstruction re-
sults primarily as a basis for comparison to the post-reconstruction
results.
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Table 5. BAO fits on the BOSS combined sample data, using both the
MD-P and QPM covariance matrices.

z bin α|| α⊥ χ2/dof

Pre-reconstruction:
QPM

0.2 < z < 0.5 1.068 ± 0.035 0.982 ± 0.020 45/30
0.4 < z < 0.6 1.037 ± 0.038 1.014 ± 0.021 46/30
0.5 < z < 0.75 0.963 ± 0.035 0.999 ± 0.024 30/30

MD-P
0.2 < z < 0.5 1.051 ± 0.036 0.983 ± 0.022 37/30
0.4 < z < 0.6 1.024 ± 0.042 1.008 ± 0.022 42/30
0.5 < z < 0.75 0.953 ± 0.034 1.001 ± 0.024 28/30
Post-reconstruction:

QPM
0.2 < z < 0.5 1.024 ± 0.024 0.986 ± 0.013 48/30
0.4 < z < 0.6 0.989 ± 0.020 0.993 ± 0.012 27/30
0.5 < z < 0.75 0.962 ± 0.024 0.991 ± 0.015 33/30

MD-P
0.2 < z < 0.5 1.025 ± 0.027 0.988 ± 0.015 39/30
0.4 < z < 0.6 0.986 ± 0.024 0.994 ± 0.014 23/30
0.5 < z < 0.75 0.962 ± 0.023 0.991 ± 0.015 32/30

Post-reconstruction, as expected, the bias in α⊥ is decreased.
Considering the mean results across the redshift bins, for QPM, it
is 0.002 (i.e. σ/8) and for MD-P it is 0.001 (i.e. 0.06σ ). For α||, it
is 0.002 (i.e. ∼0.07σ ) for both sets of mocks. In terms of α/ε, the
biases are 0.16σ for the QPM α and 0.08σ for the MD-P α, while
for ε they are both �0.1σ . The biases vary with redshift bin to a
level that is significantly larger than the uncertainty on the ensemble
average; for example, in MD-P the difference in α between the low-
and high-redshift bins is 0.0014, while the expected 1σ deviation
is 0.0006; similarly the difference for ε is 0.0017 compared to an
expected 1σ deviation of 0.0007. For QPM, the differences are
smaller. In terms of the expected deviations, they are ∼2σ for α

and less than 1σ for ε (though it is 1.5σ comparing the 0.2 < z <

0.5 and 0.4 < z < 0.6 bins, which should be correlated). The biases
thus appear specific to redshift bin, implying they are either related
to the creation of the mocks and any redshift evolution they include
or choices in the reconstruction algorithms related to the expected
evolution of the density field. Overall, any bias in our measured
BAO parameters is less than 0.16σ (using the expected uncertainty
for a single realization) and should not impact our conclusions. See
Vargas-Magaña et al. (2016) for further study of related issues.

In general, the uncertainties recovered from the MD-P mocks
are larger than those of the QPM mocks. The differences in the
uncertainties are ∼ 10 per cent in α|| and are slightly larger
(< 13 per cent) in α⊥. The differences in the uncertainties are
thus at a similar level to the biases we find in the recovered BAO
parameters. These biases are absorbed by the theoretical system-
atic uncertainty budget derived in Vargas-Magaña et al. (2016) and
applied in Alam et al. (2016).

7.2 Results from data

Results for BAO fits on BOSS data, using both the QPM and the
MD-P covariance matrices, are displayed in Table 5. The results
are similar using the two covariance matrices, but there are notable
differences. In general, the uncertainties are smaller when the QPM
covariance matrices are used, matching the results on the mocks.
Correspondingly, the χ2 values are consistently higher for the QPM
mocks (in five of the six cases to compare). None of the six QPM
cases recover a χ2/dof that is less than 1, while this is the case for

Figure 11. The measured post-reconstruction ξ0 and ξ2 and correspond-
ing best-fitting BAO models for BOSS galaxies. These best-fitting models
encode the BAO distance measurements determined in this work and are
displayed for the range of scales that have been fit (50 < s < 150 h−1 Mpc).

two of the MD-P cases. Considering the total χ2 for the two indepen-
dent redshift bins, the χ2/dof for QPM is 75/60 pre-reconstruction
and 81/60 post-reconstruction. This can be compared to 65/60 and
71/60 for MD-P. This is suggestive that the MD-P covariance ma-
trix is doing the better job of characterizing the noise in the BOSS
combined sample ξ 0, 2 measurements.

Pre-reconstruction, the α|| results are consistently greater for the
QPM covariance matrix compared to the MD-P covariance matrix.
The difference varies between 0.017 and 0.010 and is a 0.5σ shift
in the most extreme case (the 0.2 < z < 0.5 redshift bin); given the
same data is used and only the covariance matrix is altered this is a
fairly large change. The differences are much smaller for α⊥, where
it is at most 0.006 (0.3σ ) in the 0.4 < z < 0.6 redshift bin.

Post-reconstruction, the BAO measurements are robust to the
choice of covariance matrix. The biggest difference is 0.003 (0.15σ )
in α|| for the data in the 0.4 < z < 0.6 redshift bin; the difference
in the uncertainty between the results in this bin is the same. The
level of agreement is consistent with the results found from the
mock realizations and suggests that the choice of covariance matrix
is not a major systematic uncertainty in our analysis. Given the
slightly larger uncertainties for the data using the MD-P covariance
matrix, we believe they represent the more conservative choice and
are what we use for our final results. We use the MD-P results in all
comparisons that follow unless otherwise noted.

Fig. 11 displays the measured post-reconstruction ξ 0, 2 and the
associated best-fitting BAO model, using the MD-P covariance ma-
trix. At each redshift, one can observe the strong BAO feature in the
monopole, which has been enhanced by the reconstruction process,
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Figure 12. The uncertainty in α|| compared to the uncertainty in α⊥ for
each MD-P mock realization (open ‘cadet blue’ circles) and the DR12
data (large goldenrod star). We have combined the data in the 0.2 < z <

0.5 and 0.5 < z < 0.75 redshift bins, assuming Gaussian likelihoods. The
DR12 uncertainties are on the low side, but are within the locus of points
representing the mock realizations.

compared to previous plots. For the quadrupole, reconstruction re-
moves most of the large-scale RSD effects and the overall amplitude
is thus decreased. BAO features appear in the quadrupole to the right
and left of the peak in the monopole. Such BAO features appear in
the quadrupole when α|| �= α⊥ (and thus do not present themselves
in the mocks as the two α parameters are expected to be nearly
equal in our mock analysis). The feature appears to the right in the
0.5 < z < 0.75 redshift bin, which yields a measurement of α|| that
is lower than α⊥; the reverse is true for the 0.2 < z < 0.5 bin. See
Alam et al. (2016) for further exploration and visualization of these
features in the same data.

The uncertainties we obtain are significantly smaller than the
mean uncertainties recovered from the mock realizations, by ∼
25 per cent in each redshift bin. This implies more pronounced
BAO features in the data than are present in the typical mock. In
order to determine how unusual this is, we combine the results from
the 0.2 < z < 0.5 and 0.5 < z < 0.75 redshift bins, as they are
independent and the expected α values are nearly identical. Fig. 12
displays the uncertainty in α⊥ (σ⊥) versus the uncertainty in α|| (σ ||)
recovered for each mock realization when combining the results of
the two redshift bins (blue circles) and the DR12 data (orange star).
One can see that the DR12 result is within the locus of points, but
at the lower edge. We can quantify the results further by comparing
the area of the 1σ confidence region in the data to the ensemble of
mocks. We find 45 mocks (∼5 per cent), when once more combining
the results of the 0.2 < z < 0.5 and 0.5 < z < 0.75 redshift bins, have
a smaller area contained in their 1σ confidence region than we find
for the data. Thus, we determine that we have been somewhat lucky
in the region of the Universe we have observed with BOSS, but not
grossly so. In this sense, these results are similar to those obtained
with the previous data set (Anderson et al. 2014b). To some degree,
the fact that we find better results than the majority of the mock
realizations is due to the fact that the grid-scales involved in the
creation of the mocks effectively increase the damping of the BAO
signal. This is discussed further in Beutler et al. (2016a).

In order to produce our final measurements, we combine results
across five choices of bin centre, each separated by 1 h−1 Mpc.
This is similar to what was done in Anderson et al. (2014b). How-
ever, given our fiducial bin size is now 5 h−1 Mpc (compared to

8 h−1 Mpc), the variance between the results in each bin centre is
smaller and to obtain the combined results we simply average the
likelihood surfaces for each bin centre (rather attempt to determine
the optimal combination with a slightly improved uncertainty, as
was done for the isotropic results in Anderson et al. 2014b).

The results for each bin centre choice are presented in Table 6.
The results from averaging each likelihood are labelled ‘combined’.
The difference between the combined results and the fiducial bin
centre choice (0 h−1 Mpc) is at most 0.004 in α⊥ (0.25σ ) for the
0.5 < z < 0.75 redshift bin.

We add an observational systematic uncertainty to the combined
result to obtain our final results, quoted as ‘combined+ sys’ in Ta-
ble 6. Our tests on the mock samples do not suggest any systematic
bias is imparted into the measurements due to observational sys-
tematic effects. However, we do find that the procedure we apply
to correct for a systematic dependence with stellar density removes
a small amount of the BAO information from the survey volume.
The mocks we used to determine the covariance used for our BAO
results do not include this small reduction in information. Thus, to
account for this we add to the results a systematic uncertainty. In
Section 6.1, the weighting process was found to impart a 2 per cent
dilation into the standard deviation on α⊥ and a 0.5 per cent dilation
on α||. We decompose these dilations into individual systematic un-
certainties, so that they can be combined with any other systematic
uncertainties. For the given dilations, these are 0.1σ stat for α|| and
0.2σ stat for α⊥ (e.g. solving 1.022σ 2

stat = σ 2
stat + σ 2

sys). This system-
atic uncertainty is added in a similar manner to all of the BAO
distance measurements that are used to obtain cosmological con-
straints in Alam et al. (2016). We emphasize that these systematic
uncertainties are purely observational; Alam et al. (2016) presents a
full accounting of potential systematic uncertainties affecting BOSS
BAO measurements, incorporating theoretical systematic uncertain-
ties (e.g. those relating to the methodology used for BAO fits and
to construct the covariance matrix) that are estimated in Vargas-
Magaña et al. (2016).

Our final measurements determine the radial distance scale to
than 2.7 per cent precision (or better) and the transverse distance
to 1.6 precision (or better) in each redshift bin. If we consider
the two independent redshift bins, we can add the inverse vari-
ance on each α parameter to determine an effective combined
precision. This yields 1.8 and 1.1 per cent for the radial and
transverse distance scales. These measurements are further im-
proved in Alam et al. (2016), where results from the middle red-
shift bin, power spectrum BAO, and full-shape measurements are
optimally combined.

Additional robustness checks are presented in Appendix B, where
we find no significant concerns.

8 D I SCUSSI ON

8.1 Comparison to other DR12 BAO measurements

The final output of this work is the BAO measurements using the
post-reconstruction, anisotropic correlation function measurements
of the BOSS DR12 galaxy sample in redshift bins 0.2 < z < 0.5,
0.4 < z < 0.6, and 0.5 < z < 0.75. Other studies have made similar
measurements using DR12 data. Cuesta et al. (2016) obtained BAO
measurements using the post-reconstruction anisotropic correlation
function of the DR12 CMASS and LOWZ samples. In our robust-
ness checks, we made the same measurements for the CMASS
sample. Accounting for the difference in the fiducial cosmologies
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Table 6. Post-reconstruction combined sample 2D BAO fits, obtained using the covariance matrix constructed from the MD-P mock catalogues. The
‘combined+sys’ results represent the likelihoods that are used in Alam et al. (2016) and are the average of the results listed as a function of bin-centre.

Sample Bin centre shift α|| α⊥ r χ2/dof α χ2/dof

0.2 < z < 0.5:
Post-recon Combined +sys 1.022 ± 0.027 ± 0.003 0.988 ± 0.015 ± 0.003 – –

Combined 1.022 ± 0.027 0.988 ± 0.015 −0.39 42/30
0 h−1 Mpc 1.025 ± 0.027 0.988 ± 0.015 −0.39 39/30 0.998 ± 0.010 25/15
1 h−1 Mpc 1.017 ± 0.027 0.992 ± 0.015 −0.39 35/30 1.000 ± 0.010 20/15
2 h−1 Mpc 1.022 ± 0.028 0.990 ± 0.015 −0.39 40/30 0.999 ± 0.010 19/15
3 h−1 Mpc 1.024 ± 0.028 0.985 ± 0.015 −0.40 51/30 1.000 ± 0.010 28/15
4 h−1 Mpc 1.023 ± 0.026 0.986 ± 0.015 −0.40 44/30 1.000 ± 0.010 26/15

Pre-recon 0 h−1 Mpc 1.051 ± 0.037 0.983 ± 0.022 −0.37 37/30 1.004 ± 0.015 18/15
0.4 < z < 0.6:
Post-recon Combined +sys 0.984 ± 0.023 ± 0.002 0.994 ± 0.014 ± 0.003 – –

Combined 0.984 ± 0.023 0.994 ± 0.014 −0.39 30/30
0 h−1 Mpc 0.986 ± 0.024 0.994 ± 0.014 −0.39 23/30 0.991 ± 0.009 16/15
1 h−1 Mpc 0.981 ± 0.022 0.996 ± 0.014 −0.39 22/30 0.992 ± 0.009 14/15
2 h−1 Mpc 0.981 ± 0.023 0.996 ± 0.015 −0.39 37/30 0.993 ± 0.009 19/15
3 h−1 Mpc 0.988 ± 0.023 0.994 ± 0.014 −0.39 38/30 0.993 ± 0.009 24/15
4 h−1 Mpc 0.987 ± 0.024 0.992 ± 0.014 −0.40 29/30 0.992 ± 0.009 18/15

Pre-recon 0 h−1 Mpc 1.024 ± 0.042 1.008 ± 0.022 −0.49 42/30 1.012 ± 0.015 22/15
0.5 < z < 0.75:
Post-recon Combined +sys 0.958 ± 0.023 ± 0.002 0.995 ± 0.016 ± 0.003 – –

Combined 0.958 ± 0.023 0.995 ± 0.016 −0.41 32/30
0 h−1 Mpc 0.962 ± 0.023 0.991 ± 0.015 −0.42 32/30 0.981 ± 0.010 14/15
1 h−1 Mpc 0.957 ± 0.023 0.999 ± 0.016 −0.42 26/30 0.982 ± 0.010 13/15
2 h−1 Mpc 0.957 ± 0.023 0.994 ± 0.016 −0.41 34/30 0.982 ± 0.010 18/15
3 h−1 Mpc 0.954 ± 0.024 0.996 ± 0.015 −0.41 40/30 0.983 ± 0.010 18/15
4 h−1 Mpc 0.957 ± 0.024 0.994 ± 0.015 −0.41 29/30 0.982 ± 0.010 14/15

Pre-recon 0 h−1 Mpc 0.953 ± 0.035 1.001 ± 0.024 −0.49 28/30 0.984 ± 0.015 14/15

assumed by each analysis, the differences between Cuesta et al.
(2016) and ours are 0.018 for α|| and −0.011 for α⊥. However,
once we adjust to use the same bin size (8 h−1 Mpc) as Cuesta et al.
(2016), the differences reduce to 0.011 for α|| and −0.004 for α⊥.
Each of these represent a difference of less than 0.5σ and are likely
due to small methodological differences in the BAO fitting. We find
smaller uncertainties on α|| (for both the data and the mocks) due
to these differences.

Both Beutler et al. (2016a) and Vargas-Magaña et al. (2016) ob-
tain BAO measurements for the same post-reconstruction data set
and redshift bins as we use. Beutler et al. (2016a) is a Fourier
space analysis. Analysing the same set of mocks, we find our
results are correlated with a factor 0.9 and that the differences
we obtain on the BOSS data are consistent with this high level
of correlation. Both recover nearly identical uncertainties on the
anisotropic BAO parameters, for both the data and the mock sam-
ples. Vargas-Magaña et al. (2016) uses the same configuration
space data as presented in this study, but apply slightly different
methodology to obtain their BAO measurements; they recover re-
sults that are consistent with ours. A more detailed comparison of
these results is presented in Alam et al. (2016), where consensus
sets of BOSS DR12 BAO and BOSS DR12 BAO + RSD mea-
surements, combined as described in Sánchez et al. (2016b), are
presented.

8.2 Comparison with �CDM

Our measurements of α|| and α⊥ can be translated into constraints on
DA(z)(rfid

d /rd) and H (z)(rd/r
fid
d ) and thereby test cosmological mod-

els. Here, we simply compare our measurements with the allowed
parameter space in �CDM as determined by Planck Collaboration

XIII (2016).14 This is shown in Fig. 13 for the 0.2 < z < 0.5 and 0.5
< z < 0.75 redshift bins. Our low-redshift result is fully consistent
with the Planck �CDM prediction. Our high-redshift result is in
slight tension, as the 1σ contours just barely overlap; this is mostly
driven by the H(z) measurement. This is similar to what was found in
Anderson et al. (2014b) for the DR11 CMASS data; the agreement
is slightly better in Beutler et al. (2016a) and significantly better
(to the level there is no tension) when these two post-reconstruction
results are optimally combined with pre-reconstruction full-shape
results in Alam et al. (2016). Our results for the 0.4 < z < 0.6
redshift slice (not plotted) are consistent with the Planck �CDM
prediction, as one would predict based on the mean of the 0.2 < z
< 0.5 and 0.5 < z < 0.75 results. The full cosmological context of
our measurements, when combined with other BOSS DR12 results,
is explored in detail in Alam et al. (2016).

9 SU M M A RY

In this work, we have

(i) described and motivated the construction of the selection func-
tion for BOSS galaxies;

(ii) shown how the treatment of the selection function affects the
measured clustering;

(iii) shown that the individual BOSS target samples can be triv-
ially combined into one BOSS sample, allowing arbitrary splitting
in redshift;

14 Specifically, the results from the ‘base_plikHM_TT_lowTEB_lensing’
chains.
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Figure 13. The allowed 1σ and 2σ regions (black ellipses) in the Hub-
ble parameter, H, and the angular diameter distance, DA, determined from
our post-reconstruction anisotropic BAO scale measurements using BOSS
galaxies with 0.2 < z < 0.5 (top panel) and with 0.5 < z < 0.75 (bottom
panel). The coloured points represent the 2σ allowed region when assuming
a flat �CDM cosmology and the Planck 2015 results, with different colours
representing the value of H at z = 0 (as indicated by the colour bar on the
right).

(iv) demonstrated that BOSS BAO measurements are robust to
the treatment of the selection function and the details of how the
BOSS samples are combined and

(v) measured the BAO scale transverse to and along the line of
sight from the BOSS galaxy correlation function in two independent
redshift slices, 0.2 < z < 0.5 and 0.5 < z < 0.75, and one overlapping
redshift slice 0.4 < z < 0.6.

The results of our work on the selection function are included in
the BOSS galaxy catalogues described in Reid et al. (2016). The
results of our BAO scale measurements are used in Alam et al.
(2016), where they are combined with other BOSS DR12 results
and used to evaluate cosmological models.

The main, non-standard, components to the BOSS selection func-
tion are the weights that we apply to account for fluctuations in the
angular selection function. The angular selection function has been
demonstrated to depend on the stellar density and the seeing condi-
tions of the BOSS imaging data that targets are selected from. The
weights we have defined correct for these variations in the selection
function.

We have assessed the impact of these weights by comparing
the clustering of BOSS samples with and without the weights.

The stellar density weights have by far the greatest impact. The
impact can be quantified by determining the χ2 difference be-
tween the two measurements (using a model that assumes the
difference is zero); for the stellar density weights it was 13.1,
implying the possibility of parameter estimation being biased by
3.6σ when not accounting for the effect of stellar density on
the angular selection function. However, we find both for mocks
and for the data that BAO measurements are robust to whether
or not any weights are included to account for the fluctuations
in the selection function. We conclude that our treatment of the
BOSS selection function imparts no bias into the resulting BAO
measurements.

We note that our conclusions on the lack of any bias are specific
to BAO measurements. We recommend that any other kind of mea-
surement conduct a similar analysis as presented here, in order to
assess any potential of systematic bias. At the least, we suggest that
any configuration space analysis includes a constant term with a free
amplitude to be marginalized over (like there is in the BAO model).
An analysis demonstrating the robustness of structure growth mea-
surements determined by modelling RSD under such treatment is
presented in Appendix D. Our analysis does not attempt to assess
the size of possible fluctuations due to calibration uncertainties, like
discussed in Huterer, Cunha & Fang (2013), which would need to be
accounted for in any analysis where broad-band large-scale power
is important (e.g. primordial non-Gaussianity).

While the location of the measured BAO position is robust to
the treatment of the selection function, our treatment does add a
small degree of statistical uncertainty that is not accounted for
in our covariance matrices. The reason is that our methods es-
sentially null clustering modes that are aligned with fluctuations
in stellar density. A small fraction of these modes contain BAO
information. We find that when approximating our procedure for
correcting for the stellar density systematic, the standard deviation
of mock samples increases by 2 per cent for the transverse BAO
measurement and 0.5 per cent for the radial BAO measurement. In
terms of the statistical uncertainty, these are 0.14σ stat and 0.07σ stat,
respectively.

Fundamentally, the robustness of BAO measurements is due to
the fact that the BAO are a localized feature in configuration space
and it is difficult for any observational feature to have such a
localized effect, especially when angular and radial components
are combined. Indeed, it was noted in the review of Weinberg
et al. (2013) that this nature of BAO studies makes it an es-
pecially robust probe of the expansion history of the Universe.
The work we have presented shows this to be true in detail. Our
results suggest this will remain fact for the next generation of
BAO experiments.
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Figure A1. Statistics of 2D BAO fits on 1000 QPM CMASS post-
reconstruction mocks, as a function of the bin size. Red diamonds show
results for α⊥ and blue circles show the results for α||. The bias of the mean
alpha, multiplied by 10, is shown with solid lines; one can see it is never
greater than 0.1σ . The standard deviation of the mock results is shown with
dotted lines (and open symbols) and the mean likelihood error with dashed
lines.

A P P E N D I X A : C H O O S I N G A B I N SI Z E A N D
R A N G E O F SC A L E S

In this appendix, we motivate the choices for the bin-size and range
of scales used to obtain our BAO measurements. We thus present
the results of BAO constraints obtained from the post-reconstruction
CMASS sample as a function of the bin-size and the range of scales
used in the analysis. All statistics are derived from the mean and
variance of fits to α||, α⊥ obtained from the QPM mocks. See
Vargas-Magaña et al. (2016) for a more detailed study on similar
tests.

We have tested the BAO constraints obtained from the post-
reconstruction CMASS sample as a function of bin-size (holding
the fitting range fixed to 50 < s < 150). This is a repeat of the
tests done in Percival et al. (2014); naively, the results would only
improve as the bin-size is decreased, but this decrease increases the
size of the data vector and thus the noise in the inverse covariance
matrix. The results are summarized by Fig. A1. One can see that
the trends are not strong, so any choice of bin size in the range
4–8 h−1 Mpc would be reasonable. The tests on the mocks suggest
the correlations between results from different bin sizes are ∼0.95
for both α⊥ and α||. Based on these results, we choose to use a bin
size of 5 h−1 Mpc. Such a bin choice requires combining across less
bin centres than was the case for BOSS DR11 analyses, which used
a bin size of 8 h−1 Mpc (Anderson et al. 2014b).

Similarly, we have tested the minimum and maximum scale used
in the BAO fits. The results are summarized in Fig. A2. These results
motivate our choice of using the range 50 < s < 150 h−1 Mpc. At
scales s < 50 h−1 Mpc, we do not recover unbiased measurements
of α||. This is due to our ability to model the post-reconstruction
quadrupole at such scales. A minimum scale r > 70 h−1 Mpc causes
a decrease in the statistical power of the measurements. Likewise, a
maximum scale r < 150 h−1 increases both the statistical uncertainty
and the bias of the results.

APPENDIX B: ROBUSTNESS TESTS ON
C O M B I N E D SA M P L E

Here, we report the results of a number of robustness checks on the
BAO fits to the BOSS combined sample data. Table B1 presents

Figure A2. Statistics of 2D BAO fits on 1000 QPM CMASS post-
reconstruction mocks, as a function of the minimum (top) and maximum
(bottom) scale used. Red diamonds show results for α⊥ and blue circles
show the results for α||. The bias of the mean alpha, multiplied by 10, is
shown with solid lines. The standard deviation of the mock results is shown
with dotted lines (and open symbols) and the mean likelihood error with
dashed lines.

measurements for different bin sizes. The variation between the
results is small and consistent with that found in the mock samples
in the previous section. We have also tested changing the range of
scales that are fit within the region, increasing the minimum and
maximum scale each by 20 h−1 Mpc individually, as the mock tests
suggest our results should be equally valid under this change; indeed
we find no significant change.

Table B1 also presents tests where we have changed the way nui-
sance parameters are treated. We test allowing each of the bias terms
to be completely free (i.e. with no prior on B�; denoted by ‘B� free’)
and find no significant changes in the results. We have also tested
removing the polynomial terms from the fits (denoted by ‘A� = 0’);
the motivation of these polynomial terms is to isolate the BAO fea-
ture and ensure broad-band effects, such as incomplete modelling of
the post-reconstruction quadrupole and observational systematics,
do not affect the recovered results. Even without these terms, the
results in the table show that we recover nearly the same results.
The biggest change is in the 0.5 < z < 0.75 redshift bin, where
not including the polynomial terms shifts the results by ∼0.3σ for
both α||, ⊥ values (in opposite directions). Thus, despite their (well-
motivated) inclusion, the polynomial terms have only a minor effect
on the recovered results.
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Table B1. Post-reconstruction combined sample 2D BAO fits as a function
of bin-size, choice of fitting range, choices for nuisance parameters, and
Galactic hemisphere.

Test α|| α⊥ χ2/dof

0.2 < z < 0.5:
Bin size:
3 h−1 Mpc 1.022 ± 0.028 0.987 ± 0.015 51/54
4 h−1 Mpc 1.026 ± 0.029 0.985 ± 0.015 55/38
5 h−1 Mpc 1.025 ± 0.027 0.988 ± 0.015 39/30
6 h−1 Mpc 1.020 ± 0.028 0.988 ± 0.015 34/24
7 h−1 Mpc 1.026 ± 0.028 0.985 ± 0.015 26/18
8 h−1 Mpc 1.027 ± 0.028 0.982 ± 0.015 28/16
10 h−1 Mpc 1.027 ± 0.029 0.986 ± 0.016 14/10
s > 70 h−1 Mpc 1.023 ± 0.026 0.990 ± 0.014 32/26
s < 170 h−1 Mpc 1.027 ± 0.027 0.987 ± 0.015 44/34
A0 = 0 1.029 ± 0.028 0.986 ± 0.015 46/33
A2 = 0 1.021 ± 0.028 0.991 ± 0.015 43/33
A� = 0 1.023 ± 0.028 0.990 ± 0.015 50/36
B0 free 1.025 ± 0.027 0.988 ± 0.015 39/30
B2 free 1.025 ± 0.027 0.988 ± 0.015 39/30
NGC 1.035 ± 0.031 0.997 ± 0.016 36/30
SGC 0.999 ± 0.043 0.942 ± 0.034 38/30
0.4 < z < 0.6:
Bin size:
3 h−1 Mpc 0.991 ± 0.024 0.995 ± 0.014 54/54
4 h−1 Mpc 0.991 ± 0.024 0.991 ± 0.014 38/38
5 h−1 Mpc 0.986 ± 0.024 0.994 ± 0.014 23/30
6 h−1 Mpc 0.984 ± 0.023 0.995 ± 0.014 23/24
7 h−1 Mpc 0.985 ± 0.023 0.992 ± 0.013 16/18
8 h−1 Mpc 0.989 ± 0.024 0.993 ± 0.013 13/16
10 h−1 Mpc 0.982 ± 0.024 0.995 ± 0.014 8/10
s > 70 h−1 Mpc 0.985 ± 0.022 0.994 ± 0.013 17/26
s < 170 h−1 Mpc 0.984 ± 0.025 0.995 ± 0.014 37/34
A0 = 0 0.986 ± 0.026 0.993 ± 0.015 30/33
A2 = 0 0.982 ± 0.024 0.996 ± 0.014 25/33
A� = 0 0.982 ± 0.025 0.995 ± 0.015 31/36
B0 free 0.986 ± 0.024 0.994 ± 0.014 23/30
B2 free 0.986 ± 0.024 0.994 ± 0.014 22/30
NGC 0.972 ± 0.028 0.995 ± 0.016 21/30
SGC 1.025 ± 0.057 0.990 ± 0.036 30/30
0.5 < z < 0.75:
Bin size:
3 h−1 Mpc 0.962 ± 0.023 0.993 ± 0.015 55/54
4 h−1 Mpc 0.957 ± 0.023 0.995 ± 0.015 37/38
5 h−1 Mpc 0.962 ± 0.023 0.991 ± 0.015 32/30
6 h−1 Mpc 0.961 ± 0.023 0.995 ± 0.016 25/24
7 h−1 Mpc 0.963 ± 0.025 0.990 ± 0.015 13/18
8 h−1 Mpc 0.955 ± 0.023 0.995 ± 0.015 16/16
10 h−1 Mpc 0.963 ± 0.023 0.989 ± 0.015 12/10
s > 70 h−1 Mpc 0.964 ± 0.022 0.990 ± 0.014 23/26
s < 170 h−1 Mpc 0.963 ± 0.023 0.989 ± 0.015 41/34
A0 = 0 0.963 ± 0.027 0.992 ± 0.017 43/33
A2 = 0 0.955 ± 0.022 0.994 ± 0.015 35/33
A� = 0 0.954 ± 0.025 0.996 ± 0.017 49/36
B0 free 0.962 ± 0.024 0.991 ± 0.015 31/30
B2 free 0.962 ± 0.023 0.990 ± 0.015 31/30
NGC 0.944 ± 0.025 0.986 ± 0.017 31/30
SGC 1.020 ± 0.048 1.010 ± 0.035 32/30

The results presented in Table B1 are for where we individu-
ally fit the BAO scale in the NGC and SGC. In the 0.2 < z <

0.5 redshift bin, the differences are greatest in terms of the mea-
surement of α, where the discrepancy is ∼1.5σ . A similar differ-
ence is found in the high-redshift bin, except that the difference
is in the opposite direction. These results are therefore consis-

Table B2. Post-reconstruction combined sample 2D BAO fits, varying the
choice of damping parameters that enter the template.

Test α|| α⊥ χ2/dof

0.2 < z < 0.5:
Fiducial 1.025 ± 0.027 0.988 ± 0.015 39/30

⊥ = 0 1.026 ± 0.027 0.987 ± 0.014 39/30

⊥ = 5.0 h−1 Mpc 1.024 ± 0.027 0.991 ± 0.016 42/30

|| = 0 1.024 ± 0.026 0.988 ± 0.015 39/30

|| = 8.0 h−1 Mpc 1.029 ± 0.028 0.988 ± 0.015 42/30

s = 0 1.024 ± 0.027 0.988 ± 0.015 39/30

s = 8.0 h−1 Mpc 1.035 ± 0.030 0.988 ± 0.015 44/30
0.4 < z < 0.6:
Fiducial 0.986 ± 0.024 0.994 ± 0.014 23/30

⊥ = 0 0.986 ± 0.023 0.994 ± 0.014 21/30

⊥ = 5.0 h−1 Mpc 0.985 ± 0.024 0.995 ± 0.016 27/30

|| = 0 0.985 ± 0.022 0.995 ± 0.014 21/30

|| = 8.0 h−1 Mpc 0.991 ± 0.027 0.992 ± 0.014 27/30

s = 0 0.987 ± 0.024 0.992 ± 0.014 28/30

s = 8.0 h−1 Mpc 0.994 ± 0.029 0.994 ± 0.014 24/30
0.5 < z < 0.75:
Fiducial 0.962 ± 0.023 0.991 ± 0.015 32/30

⊥ = 0 0.962 ± 0.023 0.990 ± 0.015 31/30

⊥ = 5.0 h−1 Mpc 0.962 ± 0.024 0.991 ± 0.017 35/30

|| = 0 0.960 ± 0.022 0.992 ± 0.015 30/30

|| = 8.0 h−1 Mpc 0.968 ± 0.027 0.988 ± 0.015 36/30

s = 0 0.963 ± 0.024 0.990 ± 0.015 32/30

s = 8.0 h−1 Mpc 0.971 ± 0.029 0.987 ± 0.015 38/30

tent with those presented for the CMASS and LOWZ samples
in Section 6.2.

Table B2 presents tests where we have significantly altered the
fiducial damping scales in the template. We have either set the
damping scale to 0 or doubled its size. Setting the damping scale
to zero alters the results by at most 0.13σ (α⊥ in the 0.4 < z < 0.6
bin) and the changes are otherwise <0.1σ . Doubling the damping
scale for 
|| or 
s has a larger effect, mainly on α||. The most
extreme change is 0.33σ , when doubling 
s in the 0.2 < z <

0.5 redshift bin. The size of the change in the other redshift bins
is similar; increasing 
s results in an increase in α||. The same
is true for increasing 
||, though changes are smaller (<0.2σ ).
The changes are generally coupled with small decreases in α⊥,
implying that in terms of α, ε, the changes would be observed in
ε. These results are consistent with those of Vargas-Magaña et al.
(2015, 2016), where template choices are studied in detail using
mock galaxy catalogues and the results of which set systematic
uncertainty applied to the results in Alam et al. (2016). Notably,
none of the results that cause more than a 0.1σ shift in the best-
fitting BAO position are preferred in terms of the minimum χ2

of the fit.

A P P E N D I X C : IN F O R M AT I O N D I S T R I BU T I O N
W I T H R E S P E C T TO T H E L I N E O F S I G H T

In the spherically symmetric case, with no RSD, information is
expected to be divided equally as a function of the cosine of the
angle to the line of sight, μ. In Ross et al. (2015), it was found that
the BAO information in the BOSS DR11 mock samples was nearly
constant as a function of μ. A speculative argument explaining this
fact is that any boost in information along the line of sight due
to linear RSD is cancelled by non-linear RSD and finger of God
(FoG) effects. Here, we test the distribution of BAO information
in the MD-P mocks, compared to the DR12 data. We do this by
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Figure C1. The mean BAO uncertainty as a function of μ for post-
reconstruction MD-P mocks (solid lines/open symbols) compared to the
results for the BOSS galaxy data (dashed lines/filled symbols).

dividing the data into five bins by μ (or ‘wedges’; Kazin, Sánchez
& Blanton 2012), with �μ = 0.2.

In each μ bin, we apply the same BAO model described in Section
2.3, but with the template determined via integration over the partic-
ular μ range. The results for both the data and the mean results from
the mocks are presented in Fig. C1. For the mocks, the mean uncer-
tainty is approximately constant with μ, except in the μ > 0.8 bin,
where it is about 20 per cent greater than the μ bin with the lowest
uncertainty. This is a bigger difference than was found in Ross et al.
(2015), where differences were at most 15 per cent and the uncer-
tainties were the same in the low and high μ bins. It is possible the
differences are due to differences between the MD-P mocks and the
PTHalos (Manera et al. 2013) mocks used in the Ross et al. (2015)
analysis. Regardless, the fundamental result that the uncertainty is
approximately constant with μ remains. We find no clear trend in
the uncertainty on the data. This is not overly surprising, as it is a
single realization.

Finally, we have looked at the measured BAO position as a func-
tion of μ. These measurements can be compared a prediction based

on α(μ) =
√

μ2α2
|| + (1 − μ2)α2

⊥ and our measurements of α||, α⊥.

Fig. C2 shows this comparison. The curves are consistent with the
measured points, as one would expect.

APPENDIX D : ROBUSTNESS O F BOSS
S T RU C T U R E G ROW T H M E A S U R E M E N T S TO
O B S E RVATI O NA L TR E AT M E N T

This work has focused on BAO scale measurements and their
robustness to observational systematics. A key component of
BOSS analysis has been to measure the rate of structure growth,
f ≡ dlnD/dlna, where a is the scale factor and D is the linear
growth factor. Measurements of the clustering of galaxies are able
to measure the parameter combination f(z)σ 8(z), α‖, α⊥ (cf. Reid
et al. 2012; Samushia et al. 2014). Here, we investigate the extent
to which the f(z)σ 8(z) measurements are affected by observational
systematic uncertainties.

We focus on the stellar density systematic, as this has the most
significant effect on the clustering of BOSS galaxies. We use the
mean correlation functions of the four sets of 200 mock cata-
logues with varying simulation/treatment of the BOSS stellar den-
sity systematic, as described in Section 6.1. We apply Markov Chain

Figure C2. The measured BAO scale as a function of μ, measured from the
post-reconstruction BOSS galaxy correlation function, in μ bins of thickness
0.2. The solid lines represent the prediction based on the α||, α⊥ measured
from ξ0, ξ2.

Monte Carlos (MCMC) analysis using the two-dimensional dewig-
gle model (Eisenstein, Seo & White 2007a) to measure {f(z)σ 8(z),
α‖, α⊥, α, ε} from the mean correlation functions. The model we
use for RSD tests is similar to the one for BAO tests (i.e. equa-
tions 14 and 15) but there is some difference in detail. While the

⊥ and 
‖ are fixed for the BAO model, we compute them from
non-linear perturbation theory following Crocce & Scoccimarro
(2006), Eisenstein et al. (2007a) and Matsubara (2008). We model
the systematics on monopole with a polynomial A0(s) = a2/s2 +
a1/s + a0 but we do not apply the same for the quadrupole since
the quadrupole measurements at large scales are insensitive to the
observational systematics as shown in Fig. 6. This methodology has
been applied to DR11 CMASS data analysis to obtain the measure-
ments of RSD + BAO (Chuang et al. 2016a), fit in the range 40 < s
< 180 h−1 Mpc.

We also test the ‘Gaussian streaming model’ described in Reid &
White (2011); this model has been applied to multiple BOSS analy-
ses (cf. Reid et al. 2012; Samushia et al. 2014) and is fully described
in these references. In this study, we consider relatively large scales
(i.e. 40 < s < 180 h−1 Mpc), which we do not expect to be affected
by any FoG effects, so we do not include any parameter for this (as
have previous analyses). Thus, only one nuisance parameter is in-
cluded in our analysis: b1L = b − 1, the first-order Lagrangian host
halo bias in real space. Further details of the model, its numerical
implementation, and its accuracy can be found in Reid & White
(2011).

The results of the tests are shown in Table D1 and we find that
they are insensitive to the treatment of stellar density systematics.
Note that since we aim to test the impact from the stellar density
systematics, the most important quantity is the differences between
the four results (rather than any difference from the true value
expected for the cosmology of the mocks). One can observe that
the fluctuations are at a level that is <0.1σ , and that this is true
for both types of modelling. The cases where the stellar density
systematic is present (corrected for or not), exhibit slight (≤0.1σ ),
but coherent shifts in fσ 8 (an increase), α|| (a decrease), and ε (a
decrease). Given the small size of the shifts, we do not believe they
are of concern for BOSS DR12 analysis. However, revisiting this
issue for future surveys that will have greater statistical precision is
of clear importance.
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Table D1. Measurements of {f(z)σ 8(z), α‖, α⊥, α, ε} from the mean correlation functions of the same four sets mock catalogues BAO results are
presented for in Table 2. We use 200 mock catalogues from each set. In the top four rows, we have applied MCMC analysis using the fast model
described in Chuang et al. (2016b). In the bottom four rows, we use a ‘Gaussian streaming model’ like that of Reid & White (2011). One can see that
the measurements are insensitive to the systematic treatment.

‘Fast model’:
case f(z)σ 8(z) α‖ α⊥ α ε

(i) Fid. 0.507 ± 0.067 0.995 ± 0.045 1.005 ± 0.021 1.001 ± 0.015 −0.004 ± 0.019
(ii) Sub Star, not weighted 0.511 ± 0.066 0.992 ± 0.044 1.008 ± 0.021 1.002 ± 0.016 −0.005 ± 0.018
(iii) Sub Star, weighted 0.510 ± 0.066 0.992 ± 0.043 1.006 ± 0.021 1.001 ± 0.015 −0.005 ± 0.019
(iv) Sub 0.506 ± 0.067 0.995 ± 0.044 1.006 ± 0.022 1.002 ± 0.015 −0.004 ± 0.019
‘Gaussian streaming model’:
case f(z)σ 8(z) α‖ α⊥ α ε

(i) Fid. 0.489 ± 0.065 0.996 ± 0.044 1.001 ± 0.022 0.999 ± 0.016 −0.002 ± 0.019
(ii) Sub Star, not weighted 0.499 ± 0.064 0.992 ± 0.041 1.005 ± 0.022 1.000 ± 0.016 −0.004 ± 0.017
(iii) Sub Star, weighted 0.492 ± 0.066 0.992 ± 0.045 1.003 ± 0.021 0.999 ± 0.015 −0.004 ± 0.020
(iv) Sub 0.488 ± 0.071 0.994 ± 0.045 1.004 ± 0.022 1.000 ± 0.015 −0.003 ± 0.020

1Center for Cosmology and AstroParticle Physics, The Ohio State Univer-
sity, Columbus, OH 43210, USA
2Institute of Cosmology & Gravitation, Dennis Sciama Building, University
of Portsmouth, Portsmouth PO1 3FX, UK
3Lawrence Berkeley National Lab, 1 Cyclotron Rd, Berkeley, CA 94720,
USA
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