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Abstract:It is very well known that the first succesful valuation of a stock
option was done by solving a deterministic partial differential equation (PDE)
of the parabolic type with some complementary conditions specific for the op-
tion. In this approach, the randomness in the option value process is eliminated
through a no-arbitrage argument. An alternative approach is to construct a
replicating portfolio for the option. From this viewpoint the payoff function
for the option is a random process which, under a new probabilistic measure,
turns out to be of a special type, a martingale. Accordingly, the value of the
replicating portfolio (equivalently, of the option) is calculated as an expectation,
with respect to this new measure, of the discounted value of the payoff func-
tion. Since the expectation is, by definition, an integral, its calculation can be
made simpler by resorting to powerful methods already available in the theory
of analytic functions. In this paper we use precisely two of those techniques to
find the well-known value of a European call.

Keywords: European call, Laplace transform, Fourier transform, Generalized
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Resum: La primera valoracié, generalment acceptada, d’una opcié sobre una
accio es feu solucionant una equacié diferencial, en derivades parcials, determin-
ista, del tipus parabolic introduint algunes condicions de contorn especifiques
de l'opcié. En aquest plantejament, la aleatorietat inherent en la valoracié de
I’opcié s’elimina introduint ’hipotesi d’inexisténcia de possibilitats d’arbitratge.
Un plantejament alternatiu és construir una cartera que repliqui els resultats
de l'opcié. Des d’aquest punt de vista la funci 6 de pagament per 1'opcié es un
procés aleatori que, sota una nova mesura de probabilitat, converteix el procés en
una martingala. El valor de la cartera replicant, equivalent al valor de ’opcid, es
calcula com a esperanga del valor descomptat dels pagaments, respecte aquesta
nova mesura. Com que l'esperanga matematica és, per definicié, una integral,
el seu calcul es pot fer de forma més simple utilitzant métodes procedents de
la teoria de funcions anali tiques. En aquest article s’utilitzen dues d’aquestes

técniques per trobar el valor d’una call europea.



1 Introduction

The valuation of a stock option in the classic case of the Black-Scholes model
involves the calculation of a suitably defined expectation. This expectation is,
in disguise, the integral of the function of a random variable £ with respect to
the distribution function of £&. In the case of the European call the resulting
integral can be solved by standard methods. However, the theory of functions of
a complex variable provides us with an assortment of techniques that can prove
very useful in the solution of integrals. In general, because contour integration
is equivalent to calculating residues, integration in the complex plane can be
reduced to the much simpler task of differentiation. And not even that, provided
one has at hand a good table of integral transforms. In the first of our approaches
to the valuation of a European call we employ the Laplace transform with respect
to one of the parameters of the integrand. Needless to say, this stands in contrast
to the common but inaccurate belief that transformations of this type are done
only with respect to "variables”, in the ordinary sense After integration in the
complex plane we revert to the original parameter to obtain the desired solution.
In the second approach, we rely again on an indirect method of integration
found in the theory of the Fourier transform, namely, on the Parseval formula.
Besides the Introduction, there are three more sections in this paper. Section
2 deals briefly with the standard or classic solution. This section was written
mainly to provide some context and for comparison purposes. Section 3 provides
the solution employing the Laplace transform. Section 4, the last, contains the

solution found by means of the Parseval formula.

2 The Classic Solution

In the Black-Scholes model, the value at time ¢ of an option is given by the



following expectation with respect to the risk-neutral measure:
Vi=E{e T Ih|F . (1)

Here r is the riskless interest rate, T is the expiration time of the option and
h is the random process (driven by a Brownian process W) which defines the
option. F; is supposed to model the flow of relevant information and is called
the filtration. (The financial and technical underpinnings of the Black-Scholes
model can be found in almost any modern book on the mathematics of finance.
See, e.g., [5]). It is further assumed that under the real world measure the stock
S; follows a geometric Brownian motion with drift parameter p and volatility

0. Since for a European call with strike price K
h= f(ST) = max(ST — K, 0) = (ST — K)+,

then, omitting the details, after making the substitution 7 = T" — ¢, one can

write (1) thus
V; —F {er'r (Ste(r702/2)'r+aW.,. . K) } (2)
+

This expectation is simple enough to be found directly. Traditionally it is
calculated as follows: Since W, is a normal random variable of mean zero and

variance 7, (2) can be written in the form
Vo= B{e (St i) (3
+

where Z is a standard normal with density ¢,(z) = e=2"/2 /v/2m. Calling the
function under the expectation g(z), then by a standard result of probability

theory,

vi- [ " 42y (2)d-

—0o0

For later use we will write the solution of the above integral. It is

5,0 <log% reh 02/2>T> ke (k)g% oo il 2”) S

®(-) being the cdf of a standard normal random variable.




3 The Laplace Transform

We will make (3) our starting point. After factoring out the constant K, this

expression can obviously be written as

V, = E {Ke—rT (elog S—I}'+(r—02/2)7+0\/?Z _ 1) }
+

= B{Ke (X -1), }, (5)

where X = log 5= + (r — 0/2)7 + 0/7Z is a normal random variable (recall
that Z ~ N(0,1)) with density function, say, fx(-), and mean py and variance

0% given by

px = lg 4 (r—o’/2)7

o% = o’r. (6)

Since (e” — 1), # 0 only for x > 0 (when e” > 1) then, from (5) we obtain

v, - / Ke ™ (¢® — 1), fx(x)de
/OO Ke '™ ( x 1) 1 —(x—ﬂx)z/QU%(d (7)
= e e’ — e T.
0 V2mox

We will now exploit the fact that % > 0. Setting
y=0% (8)

in the last integral above we obtain
1
e
V2m\/y

We now take the Laplace transform! of (9) with respect to y according to the

v, = / Ke '™ (¢* — 1) @)/ g ()
0

formula (see[3] and [4] for the transform pairs used here)
y Ve /W) =\ [rp=1/2¢=V® Re a >0, Re p >0,
with a = 2(z—px)?. The transformed integral, 1775, after simplifications becomes

~ K >
V,= ——p1/2 *TT+MX\/2P/ 1) e V2P
t ﬂp e ; (e e x

'If the Laplace transform of f(y) is F(p) then we write f(y) = F(p) =
Jo e f(y)dy.




Note that, unlike the integral in (9), the above integral can be computed easily,

the result being

oK (L s
" (ﬁ(\/f?—l/\/?) p) | )

To revert back to the original function V; we use the transform pairs

—b\/p
hb+hy o b+2hy, . e b
e erf c = — b>0
( 2y ) VD(\/P+ h)
1
erfc(i) = —e2%P Rea>0,Rep>0

Vi
on both summands on the right hand side of (10) with h = —1/v/2, b = —/2ux
and @ = —py/v/2. Here erfc(-) stands for the complementary error function.

Using (8) in the result and simplifying yields

Sy MXJ’_U%() K _ ( Hx )
V.= ZLeorfe | — — e "erfc| — . 11
f 5 er c( Joox 5 e Terfc Joox (11)

That this is the same as solution (4) can be seen by using (6) and the fact that

®(z) = L erfe(—z/V2).

4 The Parseval Formula

On account of (5) and (6) we can write

w = E {Ke*" (etxtoxz 1)+}
= Kefw/ (erxtoxz — 1) 0(z + 'g—X)¢Z(z)dz, (12)
— 00 X

where 6(-) is Heaviside’s unit step function and ¢, (-) is the density function of
the standard normal random variable Z. According to Parseval’s formula (see
[1]), if the functions f(z) and g(z) have, respectively, F(s) and G(s) as their
Fourier transforms?, then

1

o oo

/_OO f(2)g9(z)dz F(s)G*(s)ds, (13)

2If the Fourier transform of f(x) is F(s) then we write f(z) = F(s) =
ffooo e f(z)dx.




where the asterisk stands for complex conjugation. To compute the integral in
(12) with the help of the above formula, we will regard the integrand appearing
there as the product of the functions f(z) = e#xt9x% — 1 and ¢(z) = 0(z +
ﬁ—f{)qﬁz (z). The function f(z) does not possess an ordinary Fourier transform.

However, in the sense of distributions (see [2]) we have
elxtoxz 1 = 2x[elx (s —iox) — 6(s)],

0(+) being Dirac’s delta function. As regards the function g(z), rather simple

and direct calculations involving the definition of Fourier transform lead to

0z + X0, (2) = e 20 (EX i),

X
ox ox
where as before ®(-) is the cdf of a standard normal rv. Substitution of these
two transforms in the right hand side of ( 13) and simplification of the constant
factor imply that (12) is
Vi =Ke "7 /00 [e*x6(s —iox) — 5(8)]6_52/2¢(Z—§ —is)ds.

By virtue of the fundamental property of the ¢ -function, it readily follows that

V, = Ke '™ {euerUi/?q)(“_X tox)— (I)(“_X)}
ox ox

Using (6) this can be easily given the form as in (4).
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