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ABSTRACT

Blazars are variable emitters across all wavelengths over a wide range of timescales, from months down to minutes.
It is therefore essential to observe blazars simultaneously at different wavelengths, especially in the X-ray and
gamma-ray bands, where the broadband spectral energy distributions usually peak. In this work, we report on three
“target-of-opportunity” observations of Mrk 421, one of the brightest TeV blazars, triggered by a strong flaring
event at TeV energies in 2014. These observations feature long, continuous, and simultaneous exposures with
XMM-Newton (covering the X-ray and optical/ultraviolet bands) and VERITAS (covering the TeV gamma-ray
band), along with contemporaneous observations from other gamma-ray facilities (MAGIC and Fermi-Large Area
Telescope) and a number of radio and optical facilities. Although neither rapid flares nor significant X-ray/TeV
correlation are detected, these observations reveal subtle changes in the X-ray spectrum of the source over the
course of a few days. We search the simultaneous X-ray and TeV data for spectral hysteresis patterns and time
delays, which could provide insight into the emission mechanisms and the source properties (e.g., the radius of the
emitting region, the strength of the magnetic field, and related timescales). The observed broadband spectra are
consistent with a one-zone synchrotron self-Compton model. We find that the power spectral density distribution at
4×10−4 Hz from the X-ray data can be described by a power-law model with an index value between 1.2 and
1.8, and do not find evidence for a steepening of the power spectral index (often associated with a characteristic
length scale) compared to the previously reported values at lower frequencies.

Key words: BL Lacertae objects: individual (Markarian 421) – galaxies: active – gamma rays: general – radiation
mechanisms: non-thermal

1. INTRODUCTION

Relativistic outflows in the form of bipolar jets are an
important means of carrying energy away from many accreting
compact objects in astrophysics. Such objects range from X-ray
binaries of a few solar masses, to the bright central regions with
black holes of millions of solar masses in some galaxies,
known as active galactic nuclei (AGNs). Blazars, an extreme
sub-class of the AGN family, are oriented such that one of the
relativistic jets is pointed almost directly at the observer,
resulting in a bright, point-like source (e.g., Padovani &
Giommi 1995).
The spectral energy distribution (SED) of blazars typically

exhibits two peaks in the νFν representation (e.g., Fossati et al.
1998). The lower-energy peak in the SED of blazars is
commonly associated with synchrotron radiation from

56 Also at the Department of Physics of Kyoto University, Japan.
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and Department of Physics and Department of Astronomy, University of
Maryland, College Park, MD 20742, USA.
59 Also at University of Trieste.
60 Now at Ecole polytechnique fédérale de Lausanne (EPFL), Lausanne,
Switzerland.
61 Now at Max-Planck-Institut für Kernphysik, P.O. Box 103980, D-69029
Heidelberg, Germany.
62 Also at Japanese MAGIC Consortium.
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Bologna.
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relativistic electrons/positrons (electrons hereafter) in the jet.
The higher-energy peak could be the result of inverse-Compton
scattering from the same electrons (in leptonic models, e.g.,
Marscher & Gear 1985; Maraschi et al. 1992; Böttcher &
Dermer 1998), or of radiation from hadronic processes, e.g., π0

decay (e.g., Sahu et al. 2013), photopion processes (e.g.,
Mannheim et al. 1991; Dimitrakoudis et al. 2014), or proton
synchrotron emission (e.g., Aharonian 2000). Current instru-
ments are usually unable to measure the broadband SED with
the necessary energy coverage and time resolution (e.g.,
Böttcher et al. 2013), therefore variability plays a crucial role
in distinguishing between these models (e.g., Mastichiadis
et al. 2013).

Blazars are variable emitters across all wavelengths over a
wide range of timescales. On long timescales (days to months),
radio observations with high angular resolution have suggested
a connection between knots with distinct polarization angles
and outbursts of radio flux, sometimes with an optical and/or
gamma-ray counterpart (e.g., Rani et al. 2015). Correlated
multiwavelength (MWL) variability studies are important for
investigating the particles and magnetic field in the jets, as well
as their spatial structure (e.g., Błażejowski et al. 2005;
Katarzyński et al. 2005; Arlen et al. 2013). For example, in
synchrotron self-Compton (SSC) models for high-frequency-
peaked BL Lac objects (HBLs), X-ray and very-high-energy
(VHE; 100 GeV–100 TeV) fluxes are highly correlated and
most strongly variable when the electron injection rate changes.
A general correlation between the X-ray and TeV fluxes on
longer timescales has been observed with no systematic lags.
However, Fossati et al. (2008) found “an intriguing hint” that
the correlation between X-ray and TeV fluxes may be different
for variability with different timescales. Specifically, the data
suggest a roughly quadratic dependence of the VHE flux on the
X-ray flux for timescales of hours, but a less steep, close to
linear relationship, for timescales of days (e.g., Fossati et al.
2008; Aleksić et al. 2015b; Baloković et al. 2016).

On shorter timescales, blazar variability has been observed in
both X-ray and gamma-ray bands (e.g., Gaidos et al. 1996; Cui
2004; Pryal et al. 2015). Especially interesting are the fast TeV
flares with doubling times as short as a few minutes, the
production mechanisms of which are even less well understood
than the variability on longer timescales. One major obstacle to
understanding such flares lies in the practical challenge in
organizing simultaneous MWL observations on short time-
scales. First, it is difficult, if not impossible, to predict when a
blazar will flare, due to the stochastic nature of its emission.
Second, it takes time to coordinate target-of-opportunity (ToO)
observations with X-ray satellites and ground-based telescopes
in response to a spontaneous flaring event. Third, most of the
current X-ray satellites have relatively short orbital periods, and

are frequently interrupted by Earth occultation and the South
Atlantic Anomaly passage, while observations from ground-
based Cherenkov telescopes may be affected by the weather, or
precluded by daylight. These gaps in the observations increase
the chances of missing a fast flare and introduce bias into
timing analyses (e.g., cross-correlation and power spectrum).
The XMM-Newton satellite has a long orbital period (48 hr),
capable of providing observations of >10 hr with no exposure
gaps. It is therefore uniquely well-suited for monitoring and
studying sub-hour variability, and is chosen as the primary
X-ray instrument in this work. It is also worth noting that fast
automated analyses of multi-wavelength data from TeV
gamma-ray blazars are done regularly, providing the potential
to deploy ToO observations at short notice if a strong flare is
detected from a blazar.
Spectral hysteresis and energy-dependent time lags observed

in blazars have also provided unique insights into the different
timescales associated with particle acceleration and energy loss
(e.g., Kirk et al. 1998; Böttcher & Chiang 2002), which can
then be used to test different blazar models. However, such
studies have been limited to X-ray observations, as a large
number of photons are needed to provide a constraining result
(e.g., Takahashi et al. 1996; Kataoka et al. 2000; Cui 2004;
Falcone et al. 2004). The increased sensitivity of the current
generation of Cherenkov telescopes, such us VERITAS and
MAGIC, has motivated the search of fast TeV gamma-ray
variability and hysteresis of blazars in this work.
Within the framework of a 6 month long multi-instrument

campaign, the MAGIC telescopes observed on 2014 April 25 a
VHE gamma-ray flux reaching eight times the flux above
300 GeV of the Crab Nebula (Crab units, C. U.) from the TeV
blazar Mrk 421 (e.g., Punch et al. 1992), which is about 16
times brighter than usual. This triggered a joint ToO program
by XMM-Newton, VERITAS, and MAGIC. Three, approxi-
mately 4 hr long, continuous and simultaneous observations in
both X-ray and TeV gamma-ray bands were carried out on
2014 April 29, May 1, and May 3. This was the third time in
eight years that Mrk421 triggered the joint ToO program.
Compared to the last two triggers in 2006 and 2008 (Acciari
et al. 2011), the source flux observed by VERITAS was
significantly higher at 1–2.5 C. U. in 2014. In this work, we
focus on the simultaneous VERITAS–XMM-Newton data
obtained from the ToO observations in 2014 (listed in Table 1),
and complement this study with other contemporaneous MWL
observations (including those of MAGIC) of Mrk421. The
details of the large flare observed with MAGIC on 2014 April
25 will be reported elsewhere.

2. OBSERVATIONS AND DATA ANALYSIS

2.1. VERITAS and MAGIC

VERITAS is an array of four 12 m ground-based imaging
atmospheric Cherenkov telescopes in southern Arizona, each
equipped with a camera consisting of 499 photomultiplier tubes
(PMTs) (Holder 2011). It is sensitive to gamma-rays in the
energy range from ∼100 GeV to ∼30 TeV with an energy
resolution of ∼15%, and covers a 3°.5 field-of-view with an
angular resolution (68% containment) of ∼0°.1. It is capable of
making a detection at a statistical significance of five standard
deviations (5σ) of a point source of 1% C. U. in ∼25 hr. The
systematic uncertainty on the energy calibration is estimated at

Table 1
Summary of the Simultaneous ToO Observations of Mrk 421 in 2014

UTC Date MJD VERITAS XMM-EPN

2014 Apr 29 56776 03:19-08:02 04:24-08:00
2014 May 01 56778 03:24-06:10 03:46-07:53
2014 May 03 56780 03:31-06:05 03:35-07:42

Note. Columns 1 and 2 are the UTC and MJD dates of the observations,
respectively. Columns 3 and 4 are the start and end time of the VERITAS and
XMM-Newton observations, respectively.
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20%, and that on the spectral index is estimated at 0.2
(Madhavan 2013).

VERITAS has been monitoring Mrk421 regularly for
approximately 20 hr every year, as part of several long-term
MWL monitoring campaigns (e.g., Acciari et al. 2011; Aleksić
et al. 2015b). The general strategy is to take a 30 minute
exposure on every third night when the source is visible, with
coordinated, simultaneous X-ray observations (usually with the
X-Ray Telescope (XRT) on board the Swift satellite). In
contrast, the three long and simultaneous observations with
XMM-Newton and VERITAS on 2014 April 29, May 1, and
May 3 are specific attempts to catch rapid flares on top of
elevated flux states simultaneously in the X-ray and TeV bands.

Due to high atmospheric dust conditions at the VERITAS
site on May 1, only data from the ToO observations on April 29
and May 3 have been used. The VERITAS observations on
these two nights were taken in “wobble” mode (Fomin et al.
1994) with the source offset 0°.5 from the center of the field-of-
view. The zenith angles of the observations were between 10°
and 40°. After deadtime correction, the total exposure time
from these observations is 6.14 hr. The data were analyzed
using the data analysis procedures described in Cogan (2008).
Standard gamma-ray selection cuts, previously optimized for
sources with a power-law spectrum of a photon index 2.5, were
applied to reject cosmic-ray (CR) background events. The
reflected-region background model (Berge et al. 2007) was
used to estimate the number of CR background events that
passed the cuts, and a generalized method from Li & Ma
(1983) was used for the calculation of statistical significance.
The VERITAS results are shown in Table 2.

To parameterize the curvature in the VERITAS-measured
TeV spectra, a power-law model with an exponential cutoff has
been used to fit the daily spectra:

dN

dE
K

E

E
e . 1

0

E
Ecutoff=

a-
-

⎛
⎝⎜

⎞
⎠⎟ ( )

However, we used a power-law model in the hysteresis study in
Section 3.3, as it adequately describes each 10 minute
integrated spectrum without the cutoff energy as an extra
degree of freedom.

The Major Atmospheric Gamma-ray Imaging Cherenkov
(MAGIC) telescope system consists of two 17 m telescopes,
located at the Observatory Roque de los Muchachos, on the
Canary Island of La Palma (28.8 N, 17.8W, 2200 m a.s.l.).
Stereoscopic observations provide a sensitivity of detecting a
point source at ∼0.7% C. U. above 220 GeV in 50 hr of
observation, and allow measurement of photons in the energy
range from 50 GeV to above 50 TeV. The night-to-night
systematic uncertainty in the VHE flux measurement by
MAGIC is estimated to be of the order of 11% (Aleksić
et al. 2016).

Mrk421 was observed by MAGIC for six nights from 2014
April 28 to May 4, as part of a longer MWL observational

campaign. The source was observed in “wobble” mode, with
0°.4 offset with respect to the nominal source position (Fomin
et al. 1994). After discarding data observed in poor weather
conditions, the total analyzed data amounted to 3.3 hr of
observations, with exposures per observation ranging from 14
to 38 minutes, and zenith angles spanning from 9° to 42°.
The MAGIC data were analyzed using the standard MAGIC

analysis and reconstruction software(Zanin et al. 2013). The
integral flux was computed above 560 GeV, the same as the
energy threshold found in the VERITAS long-term light curve,
in order to use all the observations including those at large
zenith angles. The source gamma-ray flux varied between 1.3
and 2.2 C. U. above 560 GeV for different days in this period,
with no significant intra-night variability. This flux value is 3–5
times larger than the typical VHE flux of Mrk421 (Acciari
et al. 2014; Aleksić et al. 2015a). These observations are not
simultaneous with the XMM-Newton observations. The source
is known to change spectral index with flux level (Krennrich
et al. 2002), and hence we computed the photon flux above
560 GeV using the measured spectral shape above 400 GeV,
which ranged from 2.8 to 3.3.

2.2. Fermi-Large Area Telescope (LAT)

Fermi-LAT is a pair-conversion high-energy (HE) gamma-
ray telescope covering an energy range from about 20MeV to
more than 300 GeV (Atwood et al. 2009). It has a large field-
of-view of 2.4sr that covers the full sky every 3hr in the
nominal survey mode. Thus, Fermi-LAT provides long-term
sampling of the entire sky. However, it has a small effective
area of ∼8000 cm2 for >1 GeV, which is usually not sufficient
to resolve variability on timescales of hours or less.
We analyzed the Fermi-LAT Pass 8 data in the week of the

VERITAS observations and produced daily averaged spectra
and a daily binned light curve. We selected events of class
source and type front+back with an energy between 0.1 and
300 GeV in a 10° region of interest (RoI) centered at the
location of Mrk421, and removed events with a zenith angle
>90°. The data were processed using the publicly available
Fermi-LAT science tools (v10r0p5) with instrument response
functions (P8R2_SOURCE_V6). A model with the contribu-
tions of all sources within the RoI with a test statistic value
greater than 3, a list of 3FGL sources within a source region of
a radius of 20° from Mrk421, and the contribution of the
Galactic (using file gll_iem_v06.fit) and isotropic (using
file iso_P8R2_SOURCE_V6_v06.txt) diffuse emission
was used. This model was fitted to LAT Pass 8 data between
2014 April 1 and June 1 using an unbinned likelihood analysis
(gtlike). The test-statistic maps were examined to ensure no
unmodeled transient sources were present in the RoI during the
period analyzed. All other best-fit parameters in the model were
then fixed, except the spectral normalization and the power-law
index of Mrk421, in order to perform a spectral and temporal
maximum likelihood analysis.

Table 2
Summary of VERITAS Observations of Mrk 421 (the Analysis Details are given in Section 3)

Date Exposure Significance Non Noff α Gamma-ray Rate Background Rate
(minutes) σ photons min−1 CRs min−1

2014 Apr 29 237.4 97.4 2481 538 0.1 10.2±0.2 0.21
2014 May 01 146.4 K K K K K K
2014 May 03 131.0 74.3 1443 315 0.1 10.8±0.3 0.22
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2.3. XMM-Newton and Swift-XRT

The XMM-Newton satellite carries the European Photon
Imaging Camera (EPIC) pn X-ray CCD camera (Strüder et al.
2001), including two metal-oxide-silicon (MOS) cameras and a
pn camera. The reflection grating spectrometers (RGS) with
high-energy resolution are installed in front of the MOS
detector. The incoming X-ray flux is divided into two portions
for the MOS and RGS detectors. The EPIC-pn (EPN) detector
receives the unobstructed beam and is capable of observing
with very high time resolution. The Optical/ultraviolet (UV)
Monitor (OM) onboard the XMM-Newton satellite provides the
capability to cover a 17′×17′ square region between 170 and
650 nm (Mason et al. 2001). The OM is equipped with six
broad-band filters (U, B, V, UVW1, UVM2, and UVW2).

Three ToO observations were taken simultaneously with the
VERITAS observations on 2014 April 29, May1, and May3.
To fully utilize the high time resolution capability of XMM-
Newton in both the X-ray and optical/UV bands, all three ToO
observations of Mrk 421 were taken in EPN timing mode and
OM fast mode. MOS and RGS were also operated during the
observations, but the data were not used due to the relatively
low timing resolution and the lack of X-ray spectral lines from
the source. The EPN camera covers a spectral range of
approximately 0.5–10 keV and, with the UVM2 filter, the OM
covers the range of about 200–270 nm.

XMM-Newton EPN and OM data were analyzed using
Statistical Analysis System (SAS) software version 13.5
(Gabriel et al. 2004). An X-ray loading correction and a rate-
dependent pulse height amplitude (RDPHA) correction were
performed using the SAS tool epchain. We ran the SAS task
epproc to produce the RDPHA results, which applies
calibrations using known spectral lines and is likely more
accurate than the alternative charge transfer inefficiency
corrections.65 Note that even after the RDPHA corrections,
residual absorption features (not associated with the source) can
still be present in the spectrum (see e.g., Pintore et al. 2014). To
account for the source and the residual spectral features, the
X-ray spectra were fitted using XSPEC version 12.8.1 with a
model including a power law, a photoelectric absorption
component representing the Galactic neutral hydrogen absorp-
tion, an absorption edge component, and two Gaussian
components. The last three components are only associated
with the instrument. They account for the oxygen K line at
∼0.54 keV, the silicon K line at ∼1.84 keV, and the gold M
line at ∼2.2 keV, respectively. The model can be expressed as
follows:
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where nH is the column density of neutral hydrogen; KPL and
KG i, are the normalization factor for the power-law component
and the ith Gaussian component, respectively; Ec, E i0, , and σi

are the threshold energy of the absorption edge, the center and
the standard deviation of the ith Gaussian component,
respectively; D is the absorption depth at the threshold energy
Ec; and α is the photon index of the power-law component in
the model. The edge component at ∼0.5 keV is replaced by a
Gaussian component (the 0th component in Table 4) for data
taken on May 3 since the latter provides a better fit. We fix the
column density of Galactic neutral hydrogen to
NH≈1.9×1020 cm−2, which was measured by the Leiden/
Argentine/Bonn (LAB) survey toward the direction of
Mrk421 (Kalberla et al. 2005). It is worth noting that the
best-fit power-law index hardly changes when we set NH free.
The count rate measured by the EPN camera with a thin filter

can be converted to flux using energy conversion factors
(ECFs, in units of 1011 cts cm2 erg−1), which depend on the
filter, the photon index α, the Galactic nH absorption, and the
energy range (Mateos et al. 2009). The flux f, in units
of erg cm−2 s−1, can be obtained by f=rate/ECF, where rate
has the units of cts s−1. A similar flux conversion factor is used
for the OM UVM2 filter to convert each count at 2310Å to flux
density 2.20×1015 erg cm−2 s−1Å−1. A 2% systematic
uncertainty error was added to the OM light curve.
The long-term Swift-XRT light curve is produced using an

online analysis tool The Swift-XRT data products generator66

(Evans et al. 2009). This tool is publicly available and can be
used to produce Swift-XRT spectra, light curves, and images
for a point source. A light curve of Mrk421 was made from all
Swift-XRT observations available from 2005 March 1 to 2014
April 30, integrated between 0.3 and 10 keV, with a fixed bin
width of 50 s. We cut the first 150s of each WT observation,
during which it is possible that the satellite could still be
settling, thus causing non-source-related deflections in the light
curve.

2.4. Steward Observatory

Regular optical observations of a sample of gamma-ray-
bright blazars, including Mrk421, have been carried out at
Steward Observatory since the launch of the Fermi satellite
(Smith et al. 2009), and these data are publicly accessible.67 For
the 2014 April–May MWL observing campaign, the SPOL
optical, dual-beam spectropolarimeter (Schmidt et al. 1992b)
was used at the Steward Observatory 1.54 m Kuiper Telescope
on Mt. Bigelow, Arizona from April 25 to May 4 UTC. When
the weather permitted, the usual observing frequency of one
observation per night for Mrk421 was increased to four per
night after April 26 so that any rapid changes in linear
polarization and optical flux could be better tracked. The
spectropolarimeter was configured with a 600 l/mm diffraction
grating that yields a dispersion of 4Å pixel−1, spectral
coverage from 4000 to 7550Å, and resolution of ∼16Å. The
CCD detector is a thinned, anti-reflection coated 1200×800
STA device with a quantum efficiency of about 0.9 from 5000
to 7000Å. All polarization observations of Mrk421 were
made with a 3″×50″ slit oriented so that its long (spatial)
dimension is east–west on the sky and the CCD was binned by
two pixels (∼0 9) in the spatial direction. An observation of
Mrk421 typically consists of a 30 s exposure at all 16 positions
of the λ/2-wave plate, properly sorted into four images with

65 See http://xmm2.esac.esa.int/docs/documents/CAL-SRN-0312-1-4.pdf.

66 http://www.swift.ac.uk/user_objects/
67 http://james.as.arizona.edu/~psmith/Fermi/
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each image containing the two orthogonal polarized beams
created by a Wollaston prism in the optical path. Extraction of
the sky-subtracted spectra of Mrk421 is done using a 3″×9″
aperture for all polarization observations to keep the contrib-
ution of the unpolarized starlight from its host galaxy as
constant as possible for all measurements. Medians in the
wavelength range of 5000–7000Å are taken of the resulting
spectra of the linear Stokes parameters q and u and used to
calculate the observed degree of polarization (P) and the
position angle of the polarization on the sky (χ). The
instrumental polarization of SPOL has been consistently
measured to be =0.1% and is ignored. Likewise, Galactic
interstellar polarization is negligible in the direction of
Mrk421 based on the amount of reddening estimated in this
line of sight (Av∼0.042; Schlafly & Finkbeiner 2011). Given
the lack of significant instrumental and Galactic interstellar
polarization, the uncertainties in the measurements made by
SPOL are dominated by photon statistics and typically
σp<0.1% when the spectropolarimetry is binned by 2000Å.
The polarization position angle was calibrated during the
campaign by observing the polarization standard stars Hiltner
960 and VI Cyg #12 (Schmidt et al. 1992a).

Optical flux monitoring of Mrk421 during this period was
accomplished using SPOL with a 7 6×50″ slit when
conditions were clear. As with the spectropolarimetry, the slit
is oriented east–west on the sky and although the larger slit
admits more host galaxy starlight, it minimizes slit losses as a
function of wavelength. Differential photometry with “Star 1”
(Villata et al. 1998) was used to calibrate the V-band magnitude
of Mrk421 within a spectral extraction aperture of 7 6×9″.
Generally, a single 30 s exposure at a set wave plate position is
obtained for both the blazar and the comparison star. A
standard Johnson V filter bandpass transmission curve is
multiplied to the extracted spectra and the instrumental fluxes
for the objects are compared to derive the brightness of
Mrk421. This measurement is typically performed twice per
visit to Mrk421 to check the consistency of the photometry.
The dominant source of uncertainty for the flux measurements
is the precision of the V-band calibration of the comparison star
(0.02 mag). The flux contribution of the host galaxy in the R-
band for a rectangular aperture of 7 6×9″ centered at the
Mrk421 was estimated using the measurements in Nilsson
et al. (2007), and converted to V-band using an E galaxy
template of age 11 Gyr at a redshift of 0.031 that gives a V−R
of 0.686 (Fukugita et al. 1995).

2.5. OVRO and CARMA

Contemporaneous observations of Mrk421 were taken with
the Owens Valley Radio Observatory (OVRO) at 15GHz
(Richards et al. 2011) and the Combined Array for Research in
Millimeter-Wave Astronomy (CARMA) at 95GHz (Bock
et al. 2006).

The OVRO 40m telescope is equipped with a cryogenic,
low-noise high electron mobility transistor amplifier with a
15.0GHz center frequency and 3GHz bandwidth. The two
off-axis sky beams are Dicke-switched with the source
alternating between the two beams, in order to remove
atmospheric and ground contamination. The receiver gain is
calibrated using a temperature-stable diode noise source. The
systematic uncertainty in the flux density scale is estimated to
be approximately 5%, and is not included in the error bars.

More details of the reduction and calibration procedure can be
found in Richards et al. (2011).
The CARMA observations of Mrk421 were made using the

eight 3.5 m telescopes of the array with a central frequency of
95 GHz and a bandwidth of 7.5 GHz. The amplitude and phase
gain were self-calibrated on Mrk 421. The absolute flux was
calibrated from a temporally nearby observation of the planets
Mars, Neptune, or Uranus, or the quasar 3C 273. The absolute
systematic uncertainty is estimated to be approximately 10%,
and is not included in the error bars.

3. RESULTS

3.1. Light Curves

Figures 1–3 show simultaneous light curves in VHE, X-ray,
and UV bands. The VERITAS light curves are binned in
10 minute intervals, and shown with the integrated flux above
the highest-energy threshold among all observations taken on
the corresponding night: 560 GeV on April 29 (315 GeV for
the first ∼3.5 hr) and 225 GeV on May 3. The higher-energy
threshold on April 29 is a result of the larger zenith angle at
which the source was observed (∼48° during the last 30 minute
exposure of the night), which consequently leads to more
distant shower maxima from the telescope. The X-ray light
curves in the middle panels show the count rates measured by
XMM-EPN between 0.5 and 10 keV, binned in 50s intervals.
The bottom panels show UV light curves constructed from the
XMM-OM count rate using the UVM2 filter in both Image and
Fast modes.
The average VERITAS integral fluxes above 0.4 TeV are

(1.27±0.03)×10−6 photons m−2 s−1 on April29 and
(1.10±0.04)×10−6 photons m−2 s−1 on May3. As shown
in Table 3, a constant fit to the X-ray light curves yields large
reduced χ2 values (corresponding p-values <1×10−5, thus
rejecting the hypothesis of constant flux), implying the
presence of intra-night variability. The corresponding p-values
in the VHE band, of 0.003 and 0.07, imply marginally

Figure 1. XMM-Newton and VERITAS light curves of Mrk 421 from 2014
April 29 simultaneous ToO observations. Top panel: VERITAS flux light
curves, integrated above the highest energy threshold of all runs on that night in
10 minute bins. Middle panel: XMM-EPN count rates between 0.5 and 10 keV
in 50 s bins. Bottom panel: The black points are XMM-OM fast mode optical
count rates between 200 and 300 nm in 50 s intervals, and the red points are
OM image mode count rates binned by exposure.
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significant intra-night variabilities in the VERITAS light curves
>315 GeV on April 29 and >225 GeV on May 3.

Another quantity that describes the relative amount of
variability is the fractional variability amplitude. Following the
descriptions in Vaughan et al. (2003) and Poutanen et al.
(2008), the fractional variability Fvar and its error Fvars are

Figure 2. XMM-Newton light curves of Mrk 421 from 2014 May 1 ToO
observations. Top panel: XMM-EPN count rates between 0.5 and 10 keV in
50 s bins. Bottom panel: The black points are XMM-OM fast mode optical
count rates between 200 and 300 nm in 50 s bins, and the red points are OM
image mode count rates binned by exposure. Note that VERITAS data on May
1 are not shown because the data were taken under poor weather conditions.

Figure 3. XMM-Newton and VERITAS light curves of Mrk 421 from 2014
May 3 simultaneous ToO observations. Top panel: VERITAS flux light curves,
integrated above the highest energy threshold of all runs on that night in
10 minute bins. Middle panel: XMM-EPN count rates between 0.5 and 10 keV
in 50 s bins. Bottom panel: The black points are XMM-OM fast mode optical
count rates between 200 and 300 nm in 50 s bins, and the red points are OM
image mode count rates binned by exposure.

Table 3
Reduced χ2 Values for a Constant Fit to the Light Curves and the

Corresponding p-values for VERITAS Light Curves

Date VERITAS XMM-EPN XMM-OM

red
2c p-value red

2c red
2c

2014 Apr 29 2.1 (>315 GeV) 0.003 11.1 0.9
1.2 (>560 GeV) 0.2

2014 May 01 K K 48.0 0.9
2014 May 03 1.6 0.07 7.0 0.9

Figure 4. Fractional variability of VHE and X-ray light curves of Mrk 421
from the three simultaneous ToO observations in 2014. Open squares are
calculated from VERITAS light curves with 600 s time bins and ∼15 ks
duration on the two nights under good weather conditions, and open diamonds
are from XMM-EPN light curves with 50 s time bins and ∼15 ks duration. The
results from three energy intervals (0.5–1 keV, 1–3 keV, and 3–10 keV) in the
X-ray band are shown. Navy points represent the measurements on April 29,
blue points for May 1, cyan ones for May 3, and gray ones for the duration of
one week. The gray open square is from the VERITAS one-week flux
measurements, and the gray cross is from the MAGIC one-week flux
measurements. Both VHE fluxes are above 560 GeV with a 30 minute bin
width. The gray diamonds are calculated from the XRT light curve with a 50 s
bin width and a one-week duration, and the gray filled circles are from the
Steward Observatory light curve sampled at intervals of a few hours with one-
week duration.

Figure 5. MWL light curves between April 28 and May 4. See the text for
details of the light curve in each panel.
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err
2sá ñ is the mean squared error of these flux measurements, and

Fá ñ is the mean flux.
The fractional variability results from the simultaneous

XMM-Newton and VERITAS data, as well as from con-
temporaneous MWL data, are shown in Figure 4. The VHE
fractional variability has been computed using the flux light
curves integrated above 315 GeV for data from the first 3.5 hr
on April 29, and above 225 GeV on May 3. The VERITAS
fractional variability is ∼13%±3% on April 29, and
∼8%±5% on May 3.

The fractional variability of the X-ray flux is low, but
significantly above zero in all three energy intervals 0.5–1 keV,
1–3 keV, and 3–10 keV. Comparing these three X-ray energy
intervals, a higher fractional variability is observed at higher
frequencies on April 29 (navy open diamonds) and on May 3
(cyan open diamonds), in agreement with previous results (e.g.,

Błażejowski et al. 2005). This may be explained as the
manifestation of a different synchrotron-cooling time at
different energies, tcool∝E−1/2. In the slow-cooling regime
(the cooling time tcool is longer than the dynamic timescale R/
c), the cooling time is shorter for higher-energy particles,
leading to a faster variability in radiation at higher energies.
Therefore, more variation at higher energies is observed
compared to lower energies on the same timescales, which
directly leads to a higher fractional variability for higher-energy
emissions. However, the same trend is less obvious on May 1
(blue open diamonds), when only X-ray data are available.
Contemporaneous MWL observations often provide valu-

able information about the activity of the source, e.g., abrupt
changes in the radio and optical polarizations would reveal the
emergence of a compact region that may be connected to a
flaring event (see e.g., Arlen et al. 2013). MWL light curves of
Mrk421 from MJD 56775 to 56781are shown in Figure 5. The
TeV light curve, measured by MAGIC above 560 GeV on each
night before the XMM-Newton observations, is shown in blue
in the top panel. The fractional variabilities of the VHE flux for
a one-week duration with a 30 minute bin width are measured
by both VERITAS and MAGIC are shown as the gray open
square and the gray cross in Figure 4, respectively. Only
statistical uncertainties are taken into account in the calculation
of the VHE fractional variability. As mentioned in Section 2.1,
the night-to-night systematic uncertainty in the VHE flux
measurements from MAGIC in estimated to be ∼11%, the
primary contribution to which is the fluctuation of the
atmospheric transmission (see Aleksić et al. 2016 for further
details). We follow a similar approach and estimate the
systematic uncertainty in the VHE flux measured by VERITAS
with 10 minute intervals to be less than ∼10% using
observations of the Crab Nebula under similar conditions as
the observations of Mrk421 in this work. Adding a 10%
systematic uncertainty in quadrature to the statistical uncer-
tainty of the VERITAS-measured VHE flux reduces its one-
week Fvar value from 24.2%±2.5% to 21.9%±3.6%, and
the Fvar value on April 29 from ∼13%±3% to ∼8%±5%,
and the Fvar value ∼8%±5% on May 3 should be considered
as an upper limit.
The daily Fermi-LAT light curve (shown in the second

panel) does not suggest any significant variability, although
there might be a slight drop in GeV flux after May 1. X-ray
count rates from the Swift-XRT are also shown, together with
those measured by XMM-EPN in the third panel. The Swift-
XRT results fill the gaps between the three XMM-Newton
observations, and also show significant variability, illustrated
by the fractional variability of ∼20% computed from XRT data
between April28 and May4, shown as the gray diamond in
Figure 4. Note that fractional variabilities of ∼20% to ∼40% in
the X-ray and ∼30% in VHE during typical non-flaring states
were found by Aleksić et al. (2015a), and much higher values,
of ∼40% to >60% in both X-ray and VHE during flaring states
were found by Błażejowski et al. (2005) and J. Aleksić et al.
(2016, in preparation). It is worth noting that fractional
variability depends on the bin width, the sampling frequency,
and the duration of the light curve (see the discussion section),
which makes it more difficult to compare the Fvar values
measured using different light curves.
The optical photometric variability of Mrk421 from April

25 to May 4 is mild (see the fourth panel of Figure 5). Mrk421
varied from 12.8 to 12.9 in V band, with the maximum optical

Figure 6. TeV photon flux vs. X-ray energy flux from the simultaneous
observations on 2014 April 29 (shown in navy) and May 3 (shown in cyan).
The VHE fluxes are measured by VERITAS integrated above 560 GeV (top
panel) and 315 GeV (bottom panel); X-ray energy flux values are converted
from the XMM-EPN count rates using ECFs based on the best-fit photon index
and neutral hydrogen density of each night. Both X-ray and TeV data are
binned in 10 minute intervals.
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flux observed on MJD 56775. Over a 24 hr period, the object
showed a maximum ΔV∼0.1 mag and intra-night variability
was generally <0.05 mag. During this period, Mrk421 was
close to the middle of the range of optical brightness it has
shown since 2008 (V∼11.9–13.6). The source does not
exhibit strong variability in the UV band, nor at 15GHz or 95
GHz (see the fourth and fifth panels of Figure 5).

In contrast to the flux variations, the optical polarization of
Mrk 421 showed more pronounced variability during the dates
shown. The observed polarization fraction P peaked at MJD
56779 (4%–5%) with minima of P∼ 2% two days preceding and
one day after the polarization maximum (see the sixth panel of
Figure 5). The polarization peak reaches only about half of the
highest polarization levels observed for this object (10%–13%)
since 2008. From 2008 to 2015, the Steward Observatory blazar
data archive identified several periods when the polarization of
Mrk421 is <1%. Like many blazars, the full range of values for
the polarization position angle is exhibited by Mrk421 over a
timescale of several years. During the dates shown, the
polarization angle χ varied between 20° and 55° with rotations
of nearly 20° observed in a day (see the bottom panel of
Figure 5). Intra-night variations as large as ∼10° were observed
on timescales as short as two hours. During the epoch of the
campaign, χ is roughly orthogonal to the position angle of the
43GHz VLBI jet (∼−35°),68 implying that the magnetic field
within the region emitting the polarized optical continuum is
more-or-less aligned with the jet.

3.2. Cross-band Flux Correlation

We plot the VHE flux against X-ray count rate in Figure 6.
There is no significant evidence for correlation. The Pearson
correlation coefficient between X-ray flux and TeV gamma-ray
flux >560 GeV is 0.48 (the 90% confidence interval is
0.24–0.67), and that between X-ray flux and TeV gamma-ray
flux >315 GeV is 0.60 (the 90% confidence interval is
0.35–0.76). The values of the correlation coefficients only
suggest a moderate positive correlation, without considering
the uncertainties on the measurements. Therefore, we focus on
the flux correlations between three X-ray bands, and between
two TeV gamma-ray bands, respectively.

3.2.1. Hard/Soft X-Ray Correlation

We further divide XMM-EPN X-ray light curves into three
energy bands, 0.5–1 keV, 1–3 keV, and 3–10 keV (as shown in
the left panels in Figures 7–9). Z-transformed discrete
correlation functions (ZDCFs) between these soft- and hard-
X-ray light curves are calculated using a publicly available
code, ZDCF v2.2 developed by Alexander (2013), as shown
in the right panels in Figures 7, 8, and 9. At least 11 pairs of
light curve points in each time delay bin are required to
calculate the ZDCF, zero lag is not omitted, and 1000 Monte
Carlo runs were used to estimate the measurement error, in
addition to the error calculated in the z-space. From the ZDCFs,
the corresponding time lags are calculated using PLIKE v4.0
also developed by Alexander (2013). No significant evidence is

Figure 7. Left panel: light curves of Mrk421 observed with XMM-Newton-EPN on 2014 April29. Count rates binned in 50s time intervals in three energy bands,
0.5–1 keV, 1–3 keV, and 3–10 keV, are shown from top to bottom panel, respectively. Right panel: the ZDCF between these three X-ray bands. Positive lag values
indicate “hard lag.”

68 https://www.bu.edu/blazars/VLBAproject.html
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found for any leads or lags between the soft-X-ray band relative
to the hard-X-ray band.

3.2.2. Gamma-ray Intraband Correlation

The cross-correlations between light curves of blazars at TeV
energies are particularly interesting, not only because they can
provide insight to the particle acceleration and radiation, but
also due to their potential to test Lorentz-invariance violation,
which is a manifestation of an energy-dependent speed of light
at the Planck scale predicted by foamy structures of spacetime
in certain quantum theories (e.g., Aharonian et al. 2008;
MAGIC Collaboration et al. 2008; Zitzer for the VERITAS
Collaboration 2013).

In a similar fashion as done for the X-ray data (as described
in Section 3.2.1), we divide the gamma-ray light curves into
two bands, and compute ZDCFs and time lags as shown in
Figure 10. The chosen bands are 315–560 GeV and 560 GeV–
30 TeV on April 29, and 225–560 GeV and 560 GeV–30 TeV
on May 3, so that the event rates are comparable in the higher-
and lower-energy bins. ZDCFs are calculated using light curves
binned by 10 minutes and 4 minutes, respectively. The 1-σ
confidence interval of the time lag of maximum likelihood is
calculated between −2000s and 2000s using plike_v4.0.

To understand the ZDCFs produced by random noise, we
simulate flicker-noise (whose power spectral density (PSD)
distribution is proportional to 1/f ) and Gaussian white noise
with 10 minute bin width and similar duration as the data. The
95% confidence regions calculated from ZDCF values between
200 pairs of simulated light curves are plotted in Figure 10,

along with ZDCFs calculated from 10 minute binned VER-
ITAS light curves above and below 560 GeV. No evidence for
time leads or lags is present in the gamma-ray data; however,
given the lack of a strong detection of variability, this lack of
evidence for any leads/lags is not surprising since the
sensitivity to such leads and lags is dependent on the amplitude
of the detected variability in these data.

3.3. Hardness Flux Correlation and Spectral Hysteresis

Besides the possibility of time lags at different energies, the
spectral evolution during blazar flares is also informative. A
general trend, that the spectrum is harder when the flux is
higher, has been observed in blazars in both the X-ray and
gamma-ray bands (e.g., Fossati et al. 2008; Acciari et al. 2011).
Several possibilities can lead to such a trend if the spectrum is
being measured at the HE end of the synchrotron and inverse-
Compton SED peaks. For example, this could result from an
increase in the maximum electron energy, or a hardening in the
electron energy distribution. If, however, the X-ray and
gamma-ray observations are sampling the emission near the
two peaks of the SED, this “harder-when-brighter” effect could
also be the result of an increase of the SED peak frequency,
which could arise from an increase in magnetic field strength or
Doppler factor.
As well as the “harder-when-brighter” trend in the hardness-

flux relation, competition between the acceleration and cooling
timescales can lead to spectral hysteresis, since the spectral
hardness differs on the rising and falling edges of flares (e.g.,
Kirk et al. 1998; Li & Kusunose 2000; Sato et al. 2008). If one

Figure 8. Left panel: light curves of Mrk421 observed with XMM-Newton-EPN on 2014 May1. Count rates binned in 50s time intervals in three energy bands,
0.5–1 keV, 1–3 keV, and 3–10 keV, are shown from top to bottom panel, respectively. Right panel: the ZDCF between these three X-ray bands. Positive lag values
indicate “hard lag.”
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plots the hardness–flux relation so that the spectrum is harder in
the positive y-axis direction, and the flux is higher in the
positive x-axis direction, the spectral hysteresis can be seen as a
“loop” pattern. Since the spectral hysteresis is driven by the
same timescales that determine the time lags at different
energies, the direction of the hysteresis loop should be
consistent with the sign of the time lag. Specifically, a “hard
lag” should correspond to counter-clockwise hysteresis loops
(see Section 3.2.1), while a “soft lag” will lead to clockwise
hysteresis loops. Therefore, the hardness–flux plot offers an
alternative view of the timescales in the system, and can be
compared with the time-lag studies presented in the previous
section.

The nightly XMM-Newton-EPN X-ray spectra are fitted
using a power-law model with absorption from neutral
hydrogen, as well as instrumental features from oxygen,
silicon, and gold, following the description in Section 2.3.
The results are shown in Figure 11 and Table 4. Note that the
equivalent width EWi of each Gaussian component is shown
instead of the standard deviation σi, because σi is small
compared to the energy-bin size of the X-ray spectrum and
therefore not well-constrained by the fit.

We then divide each of the XMM-Newton and VERITAS
observations of Mrk421 on the two nights with good
atmospheric conditions into simultaneous 10 minute intervals,
and perform spectral fitting for each interval, using an
absorbed-power-law model for the X-ray data, and a power-
law model for the gamma-ray data. We note that although the
X-ray spectral fit is significantly improved by introducing the

extra instrumental features, the spectral indices α remain
unchanged within the uncertainty. Therefore we are confident
that the hardness ratios and the spectral indices derived for each
10 minute interval are robust, and are not severely affected by
the instrumental features.
We identify several time intervals with a rise and a

subsequent fall of flux in the X-ray light curves, and plot
photon index and hardness ratio against flux (or count rate) for
these bumps (see Figures 12 and 13). Black arrows indicate the
order of time for each point. Measurements taken at different
times are also color coded to guide the eye. A “harder-when-
brighter” effect can be identified on some individual X-ray
branches, (e.g., the blue and green points in the top right panel
in Figure 12). The observed “soft lag” on May3 indicates a
harder spectrum when flux rises, and a softer spectrum when
flux falls, corresponding to a clockwise loop (in orange) in the
top right panel of the spectral hysteresis plot in Figure 13.
Similarly, for the “hard lag” scenario on April29, a counter-
clockwise loop is predicted and observed, as shown in
Figure 12. It is interesting to note that the time lag and loop
direction changes for flares separated by a few days, in spite of
similar flux levels.
The same analysis has been carried out for VHE data, and

similar plots are shown. The uncertainties in VHE flux,
hardness ratio, index, and hence hysteresis direction, are large,
and do not allow us to draw any firm conclusions. We note that
although the VHE spectrum of Mrk421 is likely curved, a
power-law model describes the data reasonably well for each
10 minute interval (the average reduced χ2 value is ∼1.05).

Figure 9. Left panel: light curves of Mrk421 observed with XMM-Newton-EPN on 2014 May3. Count rates binned in 50 s time intervals in three energy bands,
0.5–1 keV, 1–3 keV, and 3–10 keV, are shown from top to bottom panel, respectively. Right panel: the ZDCF between these three X-ray bands. Positive lag values
indicate “hard lag.”
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The hardness ratio pattern offers a more crude but less
model-dependent estimation of the same signature. However,
the hardness–flux diagram of the VERITAS observations also
has large uncertainties. At the flux level of roughly 1–2 C. U.,
such spectral hysteresis studies with the current generation of
ground-based gamma-ray instruments is difficult. This offers a
reference for the future in defining flux level trigger criteria for
ToO observations, aiming for similar goals.

3.4. Power Spectral Density

The PSD can be estimated from a periodogram, which is
defined as the squared modulus of the Fourier transform of a
time series
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We apply Leahy normalization to the periodogram to get the
PSD, so that Poisson noise produces a constant power at an
amplitude of 2.

The top panels of Figure 14 show PSDs calculated from the
X-ray light curves of Mrk 421, measured by XMM-Newton-

EPN on 2014 April 29, May 1, and May 3, respectively. The
light curves are first binned by 50 s intervals, then divided into
two equal-length segments, each of 128 bins. A raw power
spectrum is calculated for each segment, and averaged over
both segments. Then the power spectrum is rebinned
geometrically with a step factor of 1.2 (i.e., a bin edge in
frequency is the previous bin edge multiplied by a factor of
1.2). To estimate the error of the PSD in each bin, the standard
deviation from all PSD points in the bin is used when it
contains more than five points, otherwise the theoretical
standard deviation of an exponential distribution is used. The
PSDs cover a frequency range of 4×10−4 to 10−2 Hz. At
higher frequency, the shape of the PSDs becomes flatter due to
Poisson noise, which is shown as the flat line with a power of
two under the Leahy normalization. However, we note that the
PSD is well above the Poisson noise level up to ∼10−3Hz on
all three days, which corresponds to timescales of under an
hour. On May 1, the variability is still present, reaching
∼2–3×10−3 Hz, which is shorter than 10 minutes.
We then simulate 1000 light curves at each of the indices

ranging from 0.5 to 2.5 in steps of 0.1 following Timmer &
Koenig (1995), and compare the data and the simulations to
compute success fractions (SuFs) as an estimation of the
power-law index α following the method described by Uttley
et al. (2002). The results are plotted in the bottom panels of
Figure 14. The SuF peaks at the PSD indices of ∼1.5–1.8 on
April 29 with a peak value of ∼0.5, ∼1.3–1.6 on May1 with a
peak value of ∼0.8, and ∼1.2–1.6 on May3 with a peak value
of ∼0.7. These values represent the indices of the PSD better
than the simple power-law fit to the PSD, as SuFs are less
biased by the spectral leakage which is present in both the data
and the simulations. The range of PSD indices is consistent
with previous studies of the same source at lower frequencies,
e.g., a PSD index of 1.35–1.85 was found for frequency range
∼10−8

–2×10−6 Hz (Isobe et al. 2015). However, a break at
frequency of ∼9.5×10−6 Hz was found in the X-ray PSD of
Mrk 421 by Kataoka et al. (2001), and the PSD index above
this frequency was determined to be 2.14. Surprisingly, we do
not find evidence of such a steep PSD at 4×10−4 Hz.

3.5. Broadband SEDs

The SED of simultaneous VERITAS and XMM-Newton
data, as well as contemporaneous MWL data, is shown in
Figure 15. Daily averaged HE (∼30MeV–100 GeV) gamma-
ray spectra are constructed from Fermi-LAT data between
100MeV and 300 GeV, and butterfly regions of 95%
confidence level are shown. Note that the uncertainty is large
because of the scarcity of HE photons in the one-day window.
Optical spectra from the Steward Observatory between 400 and
750 nm on May3, radio data from CARMA at 95GHz taken
on both nights, and from OVRO at 15GHz on other nights
within the week are also shown.
The X-ray and VHE spectra are located at the falling slopes

of the lower- and higher-energy spectral peaks, respectively.
The synchrotron peak is between the UV measurement at
∼1015 Hz and the soft end of the X-ray spectrum at ∼1017 Hz.
Although the Fermi-LAT spectrum is not very constraining, the
HE spectral peak appears to be just below ∼100 GeV, as
suggested by the TeV spectrum.
We use a static SSC model described in Krawczynski et al.

(2002) to study the observed SEDs. The set of parameters used
to generate the solid blue and red curves as shown in Figure 15

Figure 10. VERITAS ZDCFs between light curves integrated below and above
560 GeV of Mrk 421 on 2014 April29 and May3. The 95% confidence region
from flicker noise and white noise simulations are shown as red dashed lines
and green dotted lines, respectively.
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Figure 11. X-ray spectra of Mrk 421 measured by XMM-Newton-EPN from the three simultaneous ToO observations in 2014. The spectra are fitted with a power-law
plus absorption model accounting for the source, and multiple instrumental features (see the text and Table 4 for details).

Table 4
XMM-Newton-EPN Spectral Fit Results and ECFs using the Absorbed-power-law Model Plus Three Instrumental Features Described in Equation (2)

Parameter Unit Value on 56776 Value on 56778 Value on 56780

Ec keV 0.540±0.003 0.530±0.003 K
D L 0.118±0.005 0.146±0.009 K
E0,0 keV K K 0.48±0.04

EW0 keV K K <0.11
KG,0 10−3 K K 0.022±0.015

nH 1020 cm−2 1.9 1.9 1.9
α L 2.649±0.002 2.817±0.004 2.450±0.002
KPL L 0.2714±0.0004 0.1711±0.0004 0.2251±0.0002
E0,1 keV 1.88±0.02 1.88±0.02 1.87±0.03

EW1 eV 4±2 4±3 2±2
KG,1 10−4 2.2±0.4 1.1±0.4 0.9±0.5

E0,2 keV 2.26±0.01 2.25±0.01 2.26±0.01

EW2 eV 26±3 19±3 19±7
KG,2 10−4 8.1±0.4 3.3±0.4 5.9±0.6

Reduced χ2 L 1.6 1.3 2.3

Note. Note that the fits are insensitive to the width σi of the Gaussian component, therefore the equivalent width (EW) values are shown instead. The instrumental
feature around 0.5 keV is fitted as an edge component on MJD 56776 and 56778, but as a Gaussian component on 56780.

13

The Astrophysical Journal, 834:2 (18pp), 2017 January 1 Abeysekara et al.



are listed in Table 5. The static one-zone SSC model is roughly
consistent with the data. The synchrotron peak frequency given
by the model is νsyn∼4×1016 Hz, while the inverse-
Compton peak lies at νSSC∼5×1025 Hz. Using the peak
frequencies and the observed spectral indices below and above
the synchrotron peak, we can follow Equation (16) given by
Tavecchio et al. (1998) assuming the system is in the Klein–
Nishina (KN) regime and estimate the strength of the magnetic
field to be
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where 1 cos 20.31d b q= G - »-[ ( )] is the Doppler factor
(Γ and θ taken from the SED modeling results on May 3),
α1∼0.5 and α2∼1.5 are the observed spectral indices below
and above the synchrotron peak. We also calculate the Doppler
factor limits for the KN and Thomson regimes to be ∼13 and
∼29, respectively, following Equations (13) and (17) in
Tavecchio et al. (1998). The Doppler factor value of 20.3
obtained from the SSC model is in between the two limits,

therefore the gamma-ray emission is in the Thomson-to-KN
transition regime.
From April 29 to May 3, the change in SED might be

described by an increase in the radius of the emitting region R,
along with an increase in the maximum energy Emax, a slight
decrease in break energy Ebreak of the electron distribution, a
harder electron spectrum (smaller p2) after the break energy,
and a slight increase in the Doppler factor (see Table 5). Note
that a slight increase in magnetic field strength can have a
similar effect as the increase in the Doppler factor. If these
parameters indeed describe the evolution of the SED, it is
consistent with the results of an expansion of the emitting
region. The direct result of such an expansion is an increase in
the dynamic timescale tdyn = R/c. Moreover, this will lead to a
higher maximum energy of the electrons Emax, since the
maximum possible gyro-radius has increased. Also, the
synchrotron cooling break, which occurs at the electron energy
that satisfies tsyn = tdyn, decreases since tsyn∝γ−1, where γ is
the Lorentz factor of the electron.
Under the simple SSC model, the hypothesis of an increase

in the maximum energy Emax would be consistent with a
counter-clockwise spectral hysteresis pattern on April 29 and a
clockwise pattern on May 3. The former is predicted when the
system is observed near the maximum particle energy (see e.g.,
Kirk et al. 1998), in which case the increasing acceleration
timescale with higher particle energy results in the higher-

Figure 12. Spectral hysteresis of Mrk 421 on 2014 April 29. The top and bottom rows show results from X-ray and TeV observations, respectively. In each row, the
left plot shows a light curve segment that contains a bump in flux, the middle plot shows the relationship between flux (counts) and best-fit photon index, and the right
plot shows the relationship between flux (counts) and the hardness ratio. Each point of flux, HR, and index measurement is from a 10 minute interval. The hardness
ratio for X-ray is the ratio between the count rates in 1–10 keV and 0.5–1 keV; and for VHE between 560 GeV–30 TeV and 315–560 GeV. Black arrows and different
colors are used to guide the eye as time progresses.
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energy photons lagging behind the lower-energy ones.
Consequently, this leads to a softer spectrum when flux rises
because lower-energy photons are emitted faster, and a counter-
clockwise spectral hysteresis pattern. If the maximum electron
energy Emax is lower on April 29, the observed X-ray
frequency (fixed at 0.5–10 keV) is closer to the maximum
frequency, therefore the change in flux propagates from low to
high frequencies and a counter-clockwise spectral hysteresis
pattern should be observed. On the other hand, on May 3, as
Emax increases, the observed X-ray frequency covers a
relatively lower portion of the entire particle spectrum,
therefore the change in flux propagates from high to low
energies and a “soft lag” may be observed.

4. DISCUSSION

A detailed blazar variability study on sub-hour timescales
using simultaneous and continuous VHE and X-ray observa-
tions has been presented in this work. Although it is
challenging to carry out studies on such short timescales, they
have the potential to constrain blazar models. Several different
analyses in time and energy space are carried out, providing
results that can cross-check each other. Although the VHE flux
level and dynamic range in this work are not sufficient to
provide a conclusive picture of the emission mechanisms, the

methods used are important for similar observations if the
source is at higher flux levels and/or more variable.
At the flux level of roughly ∼2C.U., Mrk421 shows <20%

fractional variability in VHE gamma-ray flux on sub-hour to
hour timescales, which seems low compared to previous
studies on longer timescales at even lower fluxes. However,
this is expected as the PSD of the variability follows a 1/fα

style power law, leading to a lower variability power at higher
frequencies (i.e., on shorter timescales) given that the value of
α ranges from ∼1.2 to ∼1.8. For example, if a PSD of 1/f1.5

holds from ∼1.65×10−6 Hz (1 week) to 0.01Hz (50 s), the
fractional variability from timescales of 7 days down to 1 day
would be ∼12 times higher than that from timescales probed in
the XMM-Newton observations in this work. However, rare
incidences of fast and strong variability in both X-ray and VHE
have been observed before, e.g., variability with an amplitude
of ∼15% and on timescales of 20 minutes was reported by
Błażejowski et al. (2005). Such fast flares could be the
manifestation of 1/fα noise or individual local events caused
by a different process. A steepening of the X-ray power
spectral index to α∼2.14 at 9.5×10−6 Hz for Mrk421
was reported by Kataoka et al. (2001). Such break features in
the PSD of AGNs potentially carry information about the
emission mechanism or characteristic timescales of the system.
However, we do not find evidence of a much steeper PSD at

Figure 13. Spectral hysteresis of Mrk 421 on 2014 May 3. The top and bottom rows show results from X-ray and TeV observations, respectively. In each row, the left
plot shows a light curve segment that contains a bump in flux, the middle plot shows the relationship between flux (counts) and best-fit photon index, and the right plot
shows the relationship between flux (counts) and the hardness ratio. Each point of flux, HR, and index measurement is from a 10 minute interval. The hardness ratio
for X-ray is the ratio between the count rates in 1–10 keV and 0.5–1 keV; and for VHE between 560 GeV–30 TeV and 225–560 GeV. Black arrows and different
colors are used to guide the eye as time progresses.
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4×10−4 Hz, compared with previous studies of the same
source at lower frequencies.

Several important timescales in blazars—the cooling time
tcool, acceleration time tacc, dynamic timescale tdyn, and

injection timescale tinj—control many of the observable
quantities, including the energy-dependent trends in their
variability. For example, if the cooling timescale controls the
flare timescale (the slow-cooling regime), a shorter decay
timescale and greater fractional variability will be observed at
higher energies, and a “soft-lag” and clockwise spectral
hysteresis loop will be seen(e.g., Kirk et al. 1998). “Soft-
lag” has been commonly observed in blazars in the X-ray band
(e.g., Falcone et al. 2004), although “hard-lag” has also been
reported (e.g., Sato et al. 2008). Spectral hysteresis has also
been observed from blazars, mostly from HBLs in the X-ray
band (e.g., Cui 2004), as well as from a few flat-spectrum radio
quasars in the HE gamma-ray band (e.g., Nandikotkur
et al. 2007).
Within this work we attempt to measure spectral hysteresis

patterns, as well as leads/lags between higher- and lower-
energy bands, within both X-ray and VHE gamma-ray regimes,
using the simultaneous ToO observations of Mrk 421 in these
two bands in 2014. However, the lack of significant detection
of time lags using two cross-correlation methods suggests that,
at the observed flux level (roughly between 1 and 2 C. U.) and
fractional variability amplitude (15%), the current ground-
based gamma-ray instruments are still not sensitive enough for
such studies. Future gamma-ray observations with current
instruments at higher flux levels or with greater dynamic range,
e.g., during a flare similar to the 10 C.U. TeV gamma-ray flare
from Mrk 421 that lasted for ∼1 hr (Gaidos et al. 1996), or with
more sensitive instruments, e.g., the Cherenkov Telescope

Figure 14. The PSD distributions (top row) and success fraction results (bottom row) of Mrk421 calculated from the XMM-Newton-EPN observations in 2014. The
power spectra are averaged over two segments of light curves each with 128 bins, and then rebinned geometrically in frequency space with a step factor 1.2. The PSDs
are Leahy normalized, and the flat lines indicate the power of Poisson noise. The success fraction (SuF) results are calculated from comparisons between data and
simulated light curves assuming an underlying PSD that follows a power-law distribution, the index of which goes from 0.5 to 2.5 in 0.05 steps. The highest
frequencies (>2×10−3 Hz, >7×10−3 Hz, and >3×10−3 Hz on April 29, May 1, and May 3, respectively) are excluded when calculating the SuF to get rid of the
bias caused by white noise. A total of 1000 simulated light curves are generated at each index.

Figure 15. Broadband SED of Mrk 421 on 2014 April 29 (shown in blue) and
May 3 (shown in red). From higher frequencies to lower ones, filled circles
show VERITAS data, butterfly regions show Fermi-LAT data averaged over
one day, round dots and triangles show XMM-Newton-EPN and OM data,
respectively, small dots show Steward Observatory data (only on May 3, with
host galaxy subtracted), and squares show CARMA and OVRO data. See text
for details of the measurements and the SSC models shown. The results from
previous observations are also shown for comparison: the gray, green, and
magenta dashed lines correspond to models used for high, medium, and low
flux as described in Błażejowski et al. (2005).
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Array, are needed to reach statistically significant conclusions
about the sub-hour TeV variability of blazars.
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Parameters Used for the SSC Model in Figure 15
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