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    Abstract  

 
The main objective of this study is to present a two-step approach 

to generate estimates of economic growth based on agents’ 

expectations from tendency surveys. First, we design a genetic 

programming experiment to derive mathematical functional forms 

that approximate the target variable by combining survey data on 

expectations about different economic variables. We use 

evolutionary algorithms to estimate a symbolic regression that 

links survey-based expectations to a quantitative variable used as 

a yardstick (economic growth). In a second step, this set of 

empirically-generated proxies of economic growth are linearly 

combined to track the evolution of GDP. To evaluate the 

forecasting performance of the generated estimates of GDP, we 

use them to assess the impact of the 2008 financial crisis on the 

accuracy of agents' expectations about the evolution of the 

economic activity in 28 countries of the OECD. While in most 

economies we find an improvement in the capacity of agents' to 

anticipate the evolution of GDP after the crisis, predictive 

accuracy worsens in relation to the period prior to the crisis. The 

most accurate GDP forecasts are obtained for Sweden, Austria 

and Finland. 
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1. Introduction 

 

Evolutionary computation can be regarded as a subfield of artificial intelligence and soft 

computing centred around a family of algorithms for global optimization inspired by 

biological evolution, as they adopt principles of the theory of natural selection to problem 

solving (Fogel, 2006). These algorithms are known as evolutionary algorithms (EAs). 

Evolutionary computation is increasingly used in economic research (Acosta-González 

and Fernández-Rodríguez, 2014; Claveria et al. 2018a,b; Ramos-Herrera and Acosta-

González, 2017). 

There are different types of EAs. The most commonly used EA in optimization 

problems is the genetic algorithm (GA) developed by Holland (1975). A generalization 

of GAs that expresses the solution in the form of computer programs was proposed by 

Cramer (1985) and is known as genetic programming (GP). This more general 

representation scheme allows the model structure to vary during the evolution. Whereas 

GAs code potential solutions by means of fixed length binary string representations, GP 

uses tree-structured, variable length representations suitable for non-linear empricial 

modelling. 

Empirical modelling is based on the development of mathematical models from 

experimental data, which implies finding both the structure and the parameters of the 

model simultaneously. Koza (1992) proposed a novel approach to empirical modelling 

based on symbolic regression (SR) via GP. This modelling technique is based on the 

specification of any regression model (linear regression, radial basis functions, support 

vector machines, kriging, etc.) and then searching the space of mathematical expressions 

that best fit a given dataset. This search process is usually characterised by a trade-off 

between accuracy and simplicity. Koza (1992) proposed using GP to find the best single 

computer program that solves a given SR problem. This approach is especially useful to 

find patterns in large data sets, where little or no information is known about the system. 

In this study we implement a SR via GP approach to find the relationship between a 

wide range of expectational variables and economic growth. We follow a two-step 

methodology proposed by Claveria et al. (2016b, 2017a) to derive mathematical 

functional forms that optimally combine survey variables to best fit the actual evolution 

of the economic activity in 28 countries of the OECD. We make use of survey 

expectations from the World Economic Survey (WES) carried out by the CESIfo Institute 

for Economic Research. 
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Expectations about the state of the economy are a key factor in economic modelling. 

Agents’ expectations are collected through tendency surveys. Business and consumer 

tendency surveys ask respondents whether they expect a variable to rise, to remain 

constant, or to fall. The relationship between quantitative data and agents’ expectations 

was first formalised by Anderson (1952) and Theil (1952), who regressed the actual 

average percentage change of an aggregate variable on the percentage of respondents 

expecting a variable to rise and to fall. The theoretical framework designed for the 

quantification of these percentages was initially based on the existence of an interval 

around zero within which respondents perceive that there are no significant changes in 

the variable. Thus, they answer that they expect a certain variable to go up (or down) to 

the extent that the mean of their subjective probability distribution lies beyond a threshold 

level, known as the limit of the indifference interval. Carlson and Parkin (1975) developed 

this approach by using a normal distribution, and by assuming unbiasedness over the 

sample period to estimate the difference limen. This approach was latter extended by 

Pesaran (1984, 1985), who allowed the model for an asymmetrical relationship between 

the actual average percentage change and the agents’ changes in periods of growth. 

By matching individual responses with realisations, several authors have further 

explored this relationship at the micro level (Białowolski, 2016; Lui et al., 2011a, 2011b; 

Mitchell et al., 2002, 2005a, 2005b; Mokinski et al., 2015). Müller (2010) proposed a 

variant of the Carlson-Parkin method with asymmetric and time invariant thresholds. 

Breitung and Schmeling (2013) found that the introduction of asymmetric and time-

varying thresholds was key in order to improve the forecast accuracy of quantified survey 

expectations, while the individual heterogeneity across forecasters played a minor role. 

Using household-level data from the University of Michigan, Lahiri and Zhao (2015) 

found strong evidence against the threshold constancy, symmetry, homogeneity, and 

overall unbiasedness assumptions of the Carlos-Parkin method. 

Experimental expectations generated by Monte Carlo simulations have also been used 

to delve into the relationship between individual expectations and their quantitative 

equivalent. Common (1985) generated simulated expectations to test the rational 

expectations hypothesis. Simulation experiments have also been used to assess the 

forecasting performance of different quantification methods of survey expectations. By 

means of individual computer-generated expectations, Claveria (2010) compared the 

forecasting performance of the main quantification methods, while Löffler (1999) and 

Terai (2009) estimated the measurement error introduced by the Carlson-Parkin method. 
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The link between survey expectations and quantitative data at the aggregate level has 

been widely investigated (Abberger, 2007; Batchelor and Dua, 1998, 1992; Bergström, 

1995; Berk, 1999; Bovi, 2013; Bruestle and Crain, 2015, Bruno, 2014; Claveria et al., 

2007; Claveria et al., 2016a, 2017b; Dees and Brinca, 2013; Driver and Urga, 2004; Graff, 

2010; Hansson et al., 2005; Jean-Baptiste, 2012; Kauppi et al., 1996; Leduc and Sill, 

2013; Lee, 1994; Lehmann and Wohlrabe, 2017; Mittnik and Zadrozny, 2005; Nardo, 

2003; Nolte and Pohlmeier, 2007; Pesaran and Weale, 2006; Qiao et al., 2009, Rahiala 

and Teräsvirta, 1993; Robinzonov et al., 2012; Smith and McAleer, 1995; Sorić et al., 

2013; Vermeulen, 2014; Wilms et al., 2016). Since survey data are approximations of 

unobservable expectations, they inevitably entail a measurement error. As a result, in spite 

of the great body of research in this field, there is no consensus in the literature about the 

usefulness of the information content of survey expectations. 

On the one hand, Klein and Özmucur (2010) analysed the role of survey expectations 

in 26 European countries, and found that they improved the forecasting performance of 

autoregressive time series models. In a similar sense, Schmeling and Schrimpf (2011) 

found that survey-based measures of expected inflation were significant predictors of 

future aggregate stock returns in France, Germany, Italy, the UK, the US and Japan, both 

in-sample and out-of-sample. Making use of survey expectations of 12 European 

countries, Ghonghadze and Lux (2012) obtained a superior out-of-sample forecasting 

performance with a canonical opinion dynamics model than with univariate time series 

models. Jonsson and Österholm (2012) analysed the inflation expectations formation 

process in Sweden using survey expectations, obtaining a poor forecasting performance 

that could be partly attributable to a mismeasurement of expectations. However, 

Österholm (2014) found that survey-based expectations improved the out-of-sample 

forecasting performance of GDP growth predictions in Sweden. 

Martinsen et al. (2014) constructed factor models based on disaggregate survey data 

to forecast inflation, unemployment and GDP in Norway. The authors obtained the most 

accurate results for GDP growth. Girardi (2014) found that survey expectations contained 

relevant information about business cycle developments in the Euro Area (EA), especially 

around periods of extreme cyclical swings. Guizzardi and Stacchini (2015) showed that 

the inclusion of business survey indicators in time series models increased the forecasting 

accuracy of the baseline models. In a recent study, Altug and Çakmakli (2016) generated 

inflation forecasts by combining data on survey expectations with the inflation target set 

by central banks, finding the former to increase the predictive power of the models.  

http://scholar.google.es/citations?user=ICWc5CwAAAAJ&hl=es&oi=sra
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Although these studies use a wide range of econometric techniques, none of them 

assesses the relationship between both official quantitative data and qualitative survey 

expectations by means of evolutionary methods. In this research we design a SR 

experiment and use evolutionary computation to find the optimal combinations of survey 

expectations that best fit the actual evolution of year-on-year growth rates of GDP. In a 

recent study, Lahiri and Zhao (2015) found a significant improvement in agents’ 

expectations accuracy during periods of uncertainty. This finding has also led us to assess 

the impact of the 2008 financial crisis on agents’ ability to forecast the evolution of 

economic activity. Hence, we use the estimates of GDP in 28 OECD economies and 

compare them to a baseline model by means of the mean absolute scaled error (MASE) 

proposed by Hyndman and Koehler (2006). 

The rest of the paper is organized as follows. The next section reviews the existing 

literature and describes the methodological approach and the experimental set up. In 

Section 3 we describe the data and present the empirical results. Finally, Section 4 

provides some concluding remarks. 

 

 

2. Methodology 

 

GP is a soft computing search technique for problem-solving. GP’s tree-structured 

programs are evolved by means of genetic operators for model approximation. In this 

study we design a SR experiment in order to derive a set of functional forms that link 

survey expectations to economic growth. This data-driven regression approach assumes 

no a priori model. Using EAs that apply Darwinian principles that imitate aspects of 

biological evolution, such as the principle of survival and reproduction of the fittest, an 

initial population of computer programs are bred through generations to find a set of 

analytical functions that best fit the data. 

Koza (1992) proposed using GP for implementing SR. In his seminal paper, Koza 

(1995) applied GP to assess the non-linear “exchange equation”, finding the empirical 

relationships between the price level, and gross national product, money supply, and the 

velocity of money. The versatility of this empirical modelling approach has attracted 

researchers from different areas (Álvarez-Díaz et al., 2009; Barmpalexis et al., 2011; Cai 

et al., 2006; Can and Heavey, 2011; Ceperic et al., 2014; Sarradj and Geyer, 2014; Wu et 

al., 2008; Yao and Lin, 2009). 
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Most of the applications of evolutionary computing to economics have been in finance 

(Goldberg, 1989). For a review of the applications of GAs for financial forecasting see 

Drake and Marks (2002). Acosta-González et al. (2012) used a GA to select the best 

econometric model for explaining the 2008 financial crisis, and found that the main 

determinant was the percentage of bank claims on private sector over deposits in the year 

2006. By means of a computational search methodology based on GAs, Acosta-González 

and Fernández-Rodríguez (2014) selected the optimal financial ratios employed in a logit 

model to forecast bankruptcy in the Spanish building industry using annual public 

accounting information. Álvarez-Díaz and Álvarez (2005) used GP to forecast exchange 

rates of the yen and the pound to the US dollar. Based upon its performance in eight stock 

markets and eight foreign exchange markets during three consecutive test periods, Chen 

et al. (2008) thoroughly analysed the application of GP to financial trading, shedding 

some light on how GP performance could be connected to the trending and cyclical 

properties of financial data. Huang et al. (2015) presented a novel methodology for pairs 

trading using GAs. 

Larkin and Ryan (2008) applied GP to nowcast stock prices using ordinal news 

sentiment data generated in real time by classifying financial news into positive, negative 

and neutral. The authors found that GP effectively predicted large intraday price jumps 

on the Standard & Poor 500 return index (S&P 500) up to an hour before they occurred 

without using current market prices information. Sheta et al. (2015) modelled the S&P 

500 using multi-gene SR. Multi-gene SR is a special variation of the classic GP 

algorithms where each symbolic model is represented by a number of GP trees weighted 

by a linear combination. The method was used to evolve linear combinations of non-

linear functions of 27 input variables, obtaining robust results when tracking the S&P 500 

index in a weekly basis. Ramos-Herrera and Acosta-González (2017) evaluated the 

factors explaining exchange rate stability in 17 economies of the European Union (EU) 

making use of GAs. Among the higher impact factors, the authors found that variables 

measuring competiveness, including agents’ expectations, clearly stood out due to their 

repeated presence in the different models. Vasilakis et al. (2013) presented a GP-based 

technique to predict returns in the trading of the euro/dollar exchange rate based on 

historical data and assessed its forecasting performance relative to four different 

approaches, obtaining the highest trading performance with the proposed method. Wilson 

and Banzhaf (2009) compared a developmental co-evolutionary GP approach to standard 

linear GP for interday stock prices prediction. 
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Applications of evolutionary computation in economics are more recent and scarce. 

See Chen and Kuo (2002) for a classification of the literature on the application of 

evolutionary computation to economics and finance. By means of GAs, Acosta-González 

et al. (2014) selected the best econometric model for explaining the determinants of the 

size of the shadow economy using data from 38 economies. The authors found that the 

main determinants of the shadow economy were: taxes on capital gains of individuals, 

corporate taxes on income, profits and capital gains, domestic credit, bank secrecy, ethnic 

fractionalization, urban population, globalization, corruption and the socialist legal origin 

of country. Chen et al. (2010) introduced GP in a vector error correction model for 

macroeconomic forecasting. By means of SR via Pareto GP, Kotanchek et al. (2010) 

provided some insight into GDP forecasting. Duda and Szydło (2011) applied an 

improved version of GP known as gene expression programming (GEP) (Ferreria, 2011) 

to develop a set of economic forecasting models.  

Kapetanios et al. (2016) assessed the forecasting performance of GAs and two other 

heuristic optimisation algorithms to forecast quarterly GDP growth and monthly inflation 

in the EA based on a large set of 195 monthly indicators. The authors found that variable 

selection based on heuristic optimisation outperformed variable reduction methods 

(principal components, partial least squares, and Bayesian shrinkage regression). See 

Milutinović et al. (2017) and Petković (2015) for alternative heuristic optimisation 

strategies. Klúčik (2012) used SR via GP in the estimation of total exports and imports to 

Slovakia. Krömer et al. (2013) presented an an application of GP to the evolution of fuzzy 

rules based on the concept of extended Boolean queries. In their approach, fuzzy rules are 

used as symbolic classifiers learned from data and used to label data records and to predict 

the value of an output variable. The authors used GP to find fuzzy rules labelling faulty 

products in a steel processing plant. Kronberger et al. (2011) made use of SR to identify 

variable interactions between 33 economic indicators in order to estimate the evolution 

of prices in the US. In a recent study, Marković et al. (2017) assessed the role of ten 

science and technology factors as inputs for GDP growth prediction in 28 EU countries. 

The authors compared the predictive accuracy of GP and other soft computing methods 

to that of extreme learning machines (ELMs) (Huang et al., 2006), and obtained the 

highest accuracy with ELMs were initially proposed as learning algorithms for single-

hidden layer feedforward neural networks characterised by fast training time. Yang et al. 

(2015) applied a data-driven approach based on SR to predict oil production in the US, 

using data from the 48 lower states since 1859. 
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Among recent developments in evolutionary computation, Zelinka (2005) introduced 

analytical programming, and showed its ability to synthesize suitable solutions 

(programs) in SR. Maschek (2010) developed a two-level learning (or self-adaptation) 

mechanism and evaluated how it affected an economic application of GAs. Vladislavleva 

et al. (2010) evaluated different ways of improving SR by incorporating weights into the 

fitness function. Waltman et al. (2011) examined to what extent the use of binary 

encoding strategies influence the results produced by GAs. Peng et al. (2014) proposed 

an improved GEP algorithm especially suitable for dealing with SR problems. Gandomi 

and Roke (2015) compared the forecasting performance of ANN models to that of GEP 

techniques. See Dabhi and Chaudhary (2015) and Poli et al. (2010) for a review of the 

main issues related to GP. 

GP allows to find patterns in large data sets. This feature is particularly indicated 

when little or no information is known about the system. While in evolutionary 

programming (Fogel, 1966) the structure of the program to be evolved remains fixed, GP 

simultaneously evolves the structure and the parameters of the models. In this study we 

use GP to formalise the interactions between a set of indicators of survey expectations 

that best fit the evolution of economic activity. As there is an arbitrary functional 

relationship between this set of survey variables (Table 1), we link all of them to the actual 

percentage growth rate of GDP by means of a SR model: 

 

 ititititititititititititit xxxxxxxxxxxxfy 12,11,10,9,8,7,6,5,4,3,2,1  (1) 

 

where 
itit xx 12,,1   are the different survey variables, and 

ity  is a scalar referring to the 

year-on-year growth rate of quarterly GDP for country i  at time t . We divide the set of 

survey variables into three types: judgements about the present economic situation

 ititit xxx 3,2,1 , perceptions about the present economic situation compared to last year 

 ititit xxx 6,5,4 , and expectations for the next six months about the economic situation 

 ititit xxx 9,8,7  and the foreign trade volume  ititit xxx 12,11,10 . See Table 1. 
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Table 1. Explanatory variables (WES expectational indicators) 

Judgements Overall economy 
itx1  

Present Capital expenditures itx2  

Economic situation Private consumption itx3  

Perceptions Overall economy itx4  

Compared to last year Capital expenditures itx5  

Economic situation Private consumption itx6  

Expectations Overall economy itx7  

For the next 6 months Capital expenditures itx8  

Economic situation Private consumption itx9  

Foreign trade volume Volume of exports itx10  

 Volume of imports itx11  

 Trade balance 
itx12  

 

By means of GP we evolve the resulting symbolic mathematical expressions until a 

stopping criterion is reached, be it a predetermined value of the fitness function or a given 

number of generations. We want to note that there is a trade-off between fitness and 

complexity. To deal with the growth in the complexity of the SR function we introduce a 

term that penalizes the functions that exceed a given number of terms. In this study we 

have chosen a maximum number of 150 generations as as stopping criterion. In Table 2 

we summarize the steps for implementing GP. 

 

Table 2. GP implementation – Steps 

1. Creation of an initial population of programs 1,000 

2. Evaluation of fitness for each program Root mean square error (RMSE) 

3. Selection of a reproduction strategy Tournament method (size 3) 

4. Application of genetic operators Mutation probability 0.1 

5. Determination of constants Automatically generated 

6. Creation of a new population Max. generations 150 

 

(1) Creation of an initial population of programs – First, in order to start the process 

we create an initial population of 1000 programs. 

(2) Evaluation of fitness for each program – An error metric is calculated for each 

member of the population. We use the Root Mean Square Error (RMSE) as a fitness 

function. 

(3) Selection of a reproduction strategy – From the existing strategies for the selection 

of parents for replacement, which are the programs used to create offspring programs, we 
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use the tournament method so as to guarantee diversity in the population. This method is 

based on the selection of the fittest individual in each tournament among a group of 

individuals chosen at random from the population. One of the main advantages over other 

alternative methods is that the selection pressure can be easily adjusted and it is code-

efficient. 

(4) Application of genetic operators – Genetic operators (crossover and mutation) are 

applied to the parents selected on the basis of the fitness function. Crossover consists on 

the recombination of randomly chosen parts of parents, while mutation on randomly 

altering a part of a parent.  

(5) Determination of constants – We include the automatic generation of constants 

provided by the GA. This set of constants is optimised after a number of generations to 

avoid the search path to deviate from the optimum. 

(6) Creation of a new population – Generation after generation, the fitness of the 

population increases, as steps three and four are repeated until the creation of a new 

population when a required minimal fitness is achieved. In this experiment we have 

chosen a maximum number of 150 generations as a stopping criterion. 

The output of this process is a set with the best individual functions from all 

generations. In this study we have used the open source Distributed Evolutionary 

Algorithms Package (DEAP) framework implemented in Python (Fortin et al. 2012; Gong 

et al. 2015). 

 

 

3. Results 

 

In this section we present the results of the experiment. The SR has been estimated using 

survey data from the CESIfo WES for 28 countries of the OECD, and GDP data retrieved 

from the OECD web (https://data.oecd.org/gdp/quarterly-gdp.htm#indicator-chart). The 

sample period goes from the second quarter of 2000 to the first quarter of 2014. The WES 

is carried out by the CESIfo Institute for Economic Research. The questionnaire asks 

respondents whether they expect their country’s general economic situation to get better, 

worse, or to remain unchanged. 

Qualitative responses are transformed by means of a grading procedure consisting in 

giving a rank of 9 to positive replies, of 5 to indifferent replies, and of 1 to negative replies 

(CESifo World Economic Survey, 2011). Survey results are published as aggregated data 

https://data.oecd.org/gdp/quarterly-gdp.htm#indicator-chart
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by country, weighting the results according to the country’s share of trade worldwide. See 

Henzel and Wollmershäuser (2005), Stangl (2007, 2008), and Hutson et al. (2014) for a 

detailed analysis of WES data. The Ifo makes use of these data to construct the Economic 

Climate Index (ECI). The ECI is an aggregate indicator obtained as the arithmetic mean 

of assessments of the general economic situation and the expectations for the economic 

situation in the next six months. The trend in the ECI tends to correlate closely with the 

actual business-cycle trend measured in annual growth rates of real GDP (Garnitz et al., 

2015). In Table 3 we present a descriptive analysis of the ECI for the 28 economies 

analysed in this study. 

 

Table 3. Descriptive statistics – ECI (2000:Q2– 2014:Q1) 

Country Mean 
Standard 

Deviation 

Variation 

Coefficient (%) 
Skewness Kurtosis 

Austria 5.30 1.07 20.2 -0.03 0.36 

Belgium 5.14 1.09 21.1 -0.24 0.15 

Bulgaria 5.45 1.09 19.9 -0.17 -0.22 

Croatia 4.41 1.11 25.1 -0.21 -0.71 

Czechia 5.75 1.11 19.3 -0.13 -0.89 

Denmark 5.73 1.14 20.0 -0.09 -1.02 

Estonia 6.05 1.33 21.9 -1.22 1.46 

Finland 5.94 1.22 20.5 -0.49 -0.59 

France 4.70 1.10 23.4 0.04 -0.07 

Germany 5.49 1.09 19.9 -0.03 -0.93 

Greece 4.56 1.57 34.5 0.67 0.25 

Hungary 4.83 1.11 23.0 0.46 0.41 

Ireland 5.34 1.77 33.2 -0.36 -0.64 

Italy 4.44 0.93 21.0 -0.09 -0.61 

Japan 4.57 1.38 30.1 -0.19 -0.87 

Latvia 5.48 1.33 24.3 -0.79 -0.12 

Lithuania 6.15 1.40 22.7 -1.38 2.07 

Netherlands 5.33 1.12 21.0 0.26 -0.30 

Norway 6.71 0.99 14.7 -1.20 0.97 

Poland 5.67 1.23 21.6 -0.25 -1.10 

Portugal 3.84 1.22 31.7 -0.17 -0.50 

Romania 4.85 1.38 28.4 -0.46 -0.71 

Slovakia 5.76 1.14 19.9 -0.36 -0.57 

Slovenia 5.25 1.24 23.6 -0.60 -0.35 

Spain 4.39 1.34 30.4 -0.35 -1.01 

Sweden 5.71 1.28 22.3 -0.58 -0.07 

UK 4.99 1.13 22.6 -0.77 0.74 

US 5.25 0.94 17.8 -0.53 0.26 
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After 150 generations, and using as a selection criterion the capacity of the elements 

of the population to track the dependent variables (year-on-year growth rates of quarterly 

GDP for each country), we have selected the top 20 functions returned by the GP 

algorithm (Table 4). 

 

Table 4. SR-generated indicators (building blocks) 

Log(
itx4 ) 

Log(
itx5 ) 

Log(
itx12 ) 

Log(
itx10 ) 

itx2 /
itx5  

itx3 /
itx6  

itx1 /
itx7  

itx12 /
itx11  

(
itx10 /

itx11 ) – 
itx12  

Log(Max(
itx10 /

itx3 ,
itx10 /

itx1 ,
itx10 /

itx2 )) 

Log((
itx1 +

itx3 )/2) 

Log((
itx4 +

itx5 +
itx6 )/3) 

Log((
itx7 +

itx8 +
itx9 )/3) 

 

The GP-generated functions in Table 4 can be regarded as building blocks, which are 

then introduced as regressors of GDP growth so as to obtain the coefficients used to 

generate the optimal linear combination to estimate the evolution of economic growth. In 

order to assess the accuracy of the forecasts of GDP, we first compare the evolution of 

the obtained estimations of economic growth to that of the ECI. Fig. 1 compares the 

evolution of the GR-based estimates to that of the year-on-year growth rates of GDP and 

the ECI. We can observe that the estimates seem to correlate closely with the actual 

oscillations of GDP. In most economies agents’ expectations seem to advance turning 

points, especially regarding the 2008 financial crisis. The severity of the crisis varies 

across countries, being Estonia, Latvia, and Lithuania the economies showing the highest 

percentages of decrease in the activity. At the opposite end, Norway and Poland show the 

lowest decline in terms of GDP growth, being the countries in which the GR-generated 

forecasts from agents’ expectations more clearly overestimate the extent of the crisis. 

 

  



 

12 

 

 

Fig. 1a. Evolution of year-on-year GDP growth rates vs. survey-based economic indicators 

(2000:Q2-2014:Q1) 
Austria Belgium 

  
Bulgaria Croatia 

  
Czech Republic Denmark 

 
 

 

1. Note: The black dotted line represents the year-on-year growth rate of GDP in each country. The grey line represents the 

evolution of the scaled ECI (secondary axis). The black line represents the evolution of the proposed indicator. 
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Fig. 1b. Evolution of year-on-year GDP growth rates vs. survey-based economic indicators 
Estonia Finland 

  
France Germany 

  
Greece Hungary 

  
Ireland Italy 

 
 

 

2. Note: See Note of Fig. 1a. 
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Fig. 1c. Evolution of year-on-year GDP growth rates vs. survey-based economic indicators 
Japan Latvia 

  
Lithuania Netherlands 

  
Norway Poland 

  
Portugal Romania 

 
 

 

3. Note: See Note of Fig. 1a. 
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Fig. 1d. Evolution of year-on-year GDP growth rates vs. survey-based economic indicators 
Slovak Republic Slovenia 

  
Spain Sweden 

 
 

 

United Kingdom United States 

 
 

 

4. Note: See Note of Fig. 1a.. 

 

 

After the graphical analysis, we evaluate the in-sample forecasting performance of 

the quantified expectations by comparing them to a benchmark model in order to compute 

the MASE. This measure of forecast accuracy was developed by Hyndman and Koehler 

(2006), who proposed scaling the forecast errors by the in-sample mean absolute error 
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(MAE) obtained with a random walk. As official data are published with a delay of more 

than a quarter with respect to survey data, we use two-step ahead naïve forecasts as a 

baseline. The MASE statistic presents several advantages over other forecast accuracy 

measures. First, it is independent of the scale of the data. Second, it does not suffer from 

some of the problems presented by other relative measures of forecast accuracy such as 

the relative MAE. Finally, it is easy to interpret: values larger than one are indicative that 

the GP-based forecasts are worse than the average prediction computed in-sample with 

the baseline model. 

If we denote the forecast error obtained by means of GP as 
ttt YYe ˆ , the scale error 

is defined as: 








n

i
ii

t
t

YY
n

e
q

3
2

1

1
  (2) 

Hence, the MASE is obtained as the mean of 
tq ,  tqmeanMASE  . 

With the aim of assessing the potential influence of the 2008 financial crisis on the 

forecasting accuracy of GP-generated estimates of GDP, we re-compute the MASE 

differentiating between the pre-crisis subperiod (2000-2007), the crisis (2007-2010), and 

the post-crisis subperiod (Table 5). 

The results in Table 5 show that the most remarkable improvement of the survey-

based estimates relative to the benchmark model are obtained in Sweden, Austria, and 

Finland, as opposed to Croatia and Lithuania. When splitting the results in sub-periods, 

we find that the accuracy of the estimates of GDP significantly worsens during the crisis 

in most countries, with the exception of Austria, Czechia, France, Ireland, Portugal, the 

UK and the US. When comparing the accuracy of agents’ expectations between the post-

crisis and the pre-crisis years, we obtain mixed results. This mixed evidence is in line 

with previous research. While Lahiri and Zhao (2015) found a significant improvement 

in agents’ expectations accuracy during periods of uncertainty and Łyziak and 

Mackiewicz-Łyziak (2014) showed that the 2008 financial crisis period led to a decrease 

in expectational errors in transition economies, Erjavec et al. (2015) found that 

consumers' expectational bias regarding inflation in Croatia diminished in times of lower 

price volatility. 

  

http://www.tandfonline.com/author/%C5%81yziak%2C+T
http://www.tandfonline.com/author/Mackiewicz-%C5%81yziak%2C+J
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Table 5. Forecast accuracy by country (in-sample) 

Country MASE Pre-crisis Crisis Post-crisis 

Austria 0.652 0.660 0.489 0.835 

Belgium 0.837 0.701 0.879 1.067 

Bulgaria 1.060 1.032 1.354 0.757 

Croatia 3.590 3.273 4.931 2.596 

Czechia 0.991 1.124 0.736 1.029 

Denmark 1.250 1.074 1.509 1.298 

Estonia 1.068 0.933 1.550 0.758 

Finland 0.682 0.368 1.091 0.831 

France 0.904 0.906 0.567 1.315 

Germany 0.737 0.542 0.725 1.156 

Greece 1.068 0.997 1.146 1.120 

Hungary 0.913 0.869 1.092 0.782 

Ireland 0.821 0.959 0.641 0.757 

Italy 0.837 0.645 1.180 0.813 

Japan 0.825 0.799 0.926 0.753 

Latvia 1.230 1.338 1.548 0.617 

Lithuania 2.221 1.885 2.668 2.371 

Netherlands 0.829 0.676 0.958 0.988 

Norway 1.321 1.024 1.622 1.570 

Poland 1.130 0.885 1.604 1.056 

Portugal 0.845 0.808 0.773 1.011 

Romania 1.065 1.093 1.231 0.802 

Slovakia 1.019 0.815 1.773 0.513 

Slovenia 0.741 0.693 1.063 0.443 

Spain 1.389 1.562 1.564 0.814 

Sweden 0.586 0.422 0.876 0.572 

UK 0.880 1.197 0.688 0.457 

US 1.054 1.241 0.693 1.109 

Notes: * MASE stands for the Mean Absolute Scaled Error. In this study we 

propose scaling the errors by the in-sample MAE obtained with the Naïve method 

for two-step ahead forecasts (as official data are published with a delay of more than 

a quarter with respect to survey data). Values larger than one (in bold) indicate worse 

predictions than the average forecast computed in-sample with the Naïve method. 
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4. Concluding remarks and future work 

 

Evolutionary computation is increasingly being used for economic applications. In this 

study we implement GP to find the most fitted mathematical functional forms linking 

survey expectations to economic growth. By linearly combining the output of this GP-

generated set of models, we estimate the evolution of GDP in 28 OECD economies. The 

proposed approach demonstrates the potential of survey expectations for economic 

forecasting and circumvents the issue of quantifying qualitative expectations on the 

direction of change. Thus, this data-driven method for modelling survey-based agents’ 

expectations avoids making assumptions about the subjective probability distribution of 

respondents. 

SR via GP allows selecting the fittest models of interaction between agents' 

expectations and the official quantitative series they refer to. As a result, the evolution of 

the GP-generated forecasts correlates closely with the actual oscillations of the economic 

activity and with other official economic indicators such as the ECI. This result suggests 

that this empirical approach to model survey expectations on the direction of change may 

provide gains in forecast accuracy. 

We have also analysed the impact of the 2008 financial crisis on the accuracy of 

agents’ expectations by assessing the capacity of GP-generated estimates of GDP to 

anticipate future economic growth. We have found that the crisis period has led to a 

deterioration in the forecasting performance of agents’ expectations in most economies. 

Despite the versatility of the proposed GP approach for modelling survey-based 

expectations to estimate economic growth, some aspects have been left for further 

research. We have not evaluated to what extent the forecasting performance of GP 

predictions could have been improved by increasing the maximum number of 

generations. There is also the question of whether the implementation of improved 

adaptive algorithms, such as Ferreira’s gene expression programming or Zelinka’s 

analytical programming, may improve the forecasting performance of computationally 

generated economic forecasts. Finally, another issue left for future research is the use of 

GP-based expectations to assess empirically observed economic relationships such as the 

Phillips curve, or to test the rational expectations hypothesis. 
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