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bDepartment of Econometrics, Riskcenter-IREA, University of Barcelona, Spain

Abstract

Fuzzy measures, also known as non-additive measures, monotonic games, and capac-
ities, have been used in many contexts. For example, they have been applied in eco-
nomics, risk analysis, computer science in computer vision and machine learning and,
in general, in mathematics.

However, when looking at applications, one of the problems that still needs to be
solved is how the measure should be defined in an easy and intuitive way. When the
reference set is finite, a few families of measures have been established, e.g. distorted
probabilities, k-additive and decomposable measures. But, when the reference set is
infinite, the only family is distorted probabilities.

In this paper we give a definition for m-dimensional distorted probabilities in the
case that the reference set is not finite, and we study some properties of this family.
We also give a definition for the hierarchically decomposable m-dimensional distorted
probability that relates to another family of measures defined for the finite case.

Keywords: Fuzzy measure, Non-additive measures, m-dimensional distorted
probabilities

1. Introduction

Distorted probabilities modify the shape of the distribution of a random variable.
So, they provide a suitable framework to input information on the parts of the domain
that, for some reason, seem to be more relevant than others. This is especially inter-
esting in areas like risk management, where the main focus is on the extremes of the
distribution rather than on the central part. Similarly, in business analytics, one may be
willing to analyze profits and losses, but would rather be more worried about losses, or
negative outcomes, than profits or positive gains. In fact, the distortion function must
somehow reflect the concept of ”importance” or ”relevance”, whereas the original dis-
tribution is nothing more than reflecting the random behaviour.

The distorted probability is a convolution of a probability distribution and a dis-
tortion function that produces a measure which combines the stochastic nature in each
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part of the domain of the distribution with the weight (or relative importance) of each
region in the domain.

Many have contributed to this field [15, 17]. In the insurance field, Denneberg [2]
(1989 and 1990) was a pioneer in addressing the fact that large economic losses are
more important than small ones. He suggested that this simple idea can easily be
implemented by looking at the distribution function in a different perspective by means
of a distortion.

We aim at developing a theory for m-dimensional distorted probabilities using the
results from the discrete case and fuzzy measures. In our examples we address two dif-
ferent ideas. Firstly, we simply show that distortions can operate on multidimensional
regions, as opposed to intervals in the one dimensional case. Secondly, we show that
the m-dimensional case can be used to cope with situations where a measure cannot
be generated by a single one-dimensional distorted probability. It is known that in the
discrete case fuzzy measures representable as one-dimensional distorted probabilities
are a small fraction of the total. See, e.g., [8, 6] for details on how this is computed.

Our construction presumes that defining probability distributions on regions on
continuous domains is easy, but that defining fuzzy measures on such continuous do-
mains is not. So, an implicit goal is to use these distributions to define fuzzy measures
by means of the distortion function, as we do in the discrete case. Observe that one can
find a few ways of defining probability distributions on continuous domains. There are,
among others, the multivariate normal distribution, multivariate t-distribution, spheri-
cal and elliptical distributions. Some distributions based on the Choquet integral have
been even introduced [11].

In this paper, we also propose a definition for hierarchically decomposable m-
dimensional distorted probabilities. This type of measures can be seen as a natural
generalization of m-dimensional distorted probabilities and of hierarchically decom-
posable fuzzy measures. This latter type of measures were previously defined in a
discrete setting in [10].

The paper is organized as follows. Section 2 presents notation and definitions.
Section 3 provides the definition of distorted probabilities on random vectors, and in-
troduces the new families of measures. Some properties of these new measures are
analyzed. Section 4 shows some examples of splitting probability reference sets and
Section 5 concludes.

2. Preliminaries

In this section we review some basic definitions on fuzzy measures and integrals.
For more detailed description of the theory behind them the reader is referred to [3, 5,
12, 14].

Definition 1. Let X be a finite reference set. A set function µ : Xn → [0,1] is a fuzzy
measure if it satisfies the following axioms:

(i) µ( /0) = 0, µ(X) = 1 (boundary conditions)
(ii) A⊆ B implies µ(A)≤ µ(B) for A,B⊆ X (monotonicity)
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These functions are also known with the names capacities, non-additive measures,
and monotonic games.

Similar definitions exist when X is not finite. Then, we consider a measurable space
(X ,X ) and A,B ∈X . For example, it can be considered the measurable space (R,B)
where R is the real line and B is a Borel σ -algebra. The axiom of continuity is often
also required to the fuzzy measure, particularly when X is not finite [9, 16].

Definition 2. Let µ be a fuzzy measure on a measurable space (X ,A ). The fuzzy mea-
sure µ is continuous if it satisfies the following axiom. If An ∈A and An is monotone,
then limn→∞µ(An) = µ(limn→∞An).

The definition of fuzzy measures generalizes additive measures (and probabilities),
both in the case of finite and not finite X .

Fuzzy measures are used in combination with the fuzzy integrals (e.g., the Choquet
and Sugeno integrals [3, 9]). Their definition follows.

Definition 3. Let X be a reference set, let (X ,A ) be a measurable space, let µ be a
fuzzy measure on (X ,A ), and let f be a measurable function f : X → [0,1]; then, the
Choquet integral of f with respect to µ is defined by

Cµ( f ) :=
∫

∞

0
µ f (r)dr,

where µ f (r) := µ({x| f (x)> r}).

Definition 4. Let X be a reference set, let (X ,A ) be a measurable space, let µ be a
fuzzy measure on (X ,A ), and let f be a measurable function f : X → [0,1]; then, the
Sugeno integral of f with respect to µ is defined by

Sµ( f ) := sup
r∈[0,1]

[r∧µ f (r)],

where µ f (r) := µ({x| f (x)> r}) and ∧ stands for the minimum.

The Choquet integral of an additive measure results into the Lebesgue integral.
Accordingly, the Choquet integral of a function f with respect to a fuzzy measure can
be seen as a kind of generalization of the expectation of f .

For finite X , the definition of a fuzzy measure requires that we assign to each
A ⊆ X a value satisfying the constraints above. This means that we need to consider
2|X |−2 values (taking into account boundary conditions). A few families of measures
have been proposed in the literature. Some examples are k-additive measures [4], ⊥-
decomposable fuzzy measures, Sugeno λ -measures [9] and hierarchically decompos-
able fuzzy measures [10]. These families have been introduced to simplify the burden
of supplying the 2|X |−2 values that are required.

2.1. Distorted probabilities
A distorted probability can be seen as a fuzzy measure on a set X . A distorted

probability is defined in terms of a probability distribution and a distortion function of
this probability distribution. Its definition follows.
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Definition 5. A fuzzy measure µ on a reference set X is a distorted probability if it can
be expressed in terms of a non-decreasing function g : [0,1]→ [0,1] and a probability
P as µ = g◦P. That is, µ(A) = g(P(A)) for all A⊆ X.

Decision makers are often interested in some parts of the domain. For instance,
when looking at risk, we would rather weight the extremes much more than the other
cases. This is the reason why distorted probabilities appear at the heart of disciplines
such as risk management.

In the case of a discrete X , when |X | = 2 all measures are distorted probabilities,
but for |X | = 5 the number of measures representable as distorted probabilities be-
comes rather small. In order to solve this inconvenience, [8] introduced m-dimensional
distorted probabilities. The definition follows.

Definition 6. [8] Let X be a discrete reference set, let {X1,X2, · · · ,Xm} be a partition
of X and let (Xi,Xi) be measurable spaces (i = 1, · · · ,m), then we say that µ is an
at most m dimensional distorted probability if there exists a function f on [0,1]m and
probability Pi on (Xi,Xi) such that:

µ(A) = f (P1(A∩X1),P2(A∩X2), · · · ,Pm(A∩Xm)) (1)

[8] studies some properties. One of them is that for any fuzzy measure µ there ex-
ists a dimension d such that µ can be represented as a d-dimensional distorted proba-
bility. This implies that all fuzzy measures can be expressed as d-dimensional distorted
probabilities.

2.2. Hierarchically decomposable fuzzy measures

The hierarchically decomposable fuzzy measure is a type of measure introduced for
discrete domains in [10], in which the measure of the singletons is combined by means
of t-conorms [7] in a hierarchical way. To do so, we first need to define a hierarchy of
the elements in X . We do so below.

Definition 7. H is a hierarchy of elements X if and only if the following conditions are
fulfilled:

(i) All the elements in X belong to the hierarchy, and the corresponding nodes are
the leaves of the hierarchy:
For all x in X, {x} ∈ H.

(ii) There is only one root in the hierarchy, and it is denoted by root. A node is the
root if it is not included in any other node:
if root ∈ H, then there is no other node m ∈ H such that root is m.

(iii) All nodes belong to one and only one node, except for the root:
if n ∈ H and n 6= root, then there exists a single m ∈ H such that n is m.

(iv) All nodes that contain only one element are singletons:
if |h|= 1, then there exists x ∈ X such that h = {x} for all h ∈ H.

(v) All non-singletons are defined in terms of nodes that are in the tree:
if |h| 6= 1, then, for all hi ∈ h, hi ∈ H.
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Given a hierarchy of elements, it is assigned to each leaf in the hierarchy a real
value in the unit interval, and, for each node that is not a leaf, a t-conorm. This is called
labeled hierarchy and its definition is given below. Additionally, we need to know for
each node h in the hierarchy H which are the elements that this node encompasses.
This is given by the function extension EXT (h) defined as follows.

Definition 8. Let H be a hierarchy according to Definition 7 and let h be a node in H;
then, the extension of h in H is defined as:

EXT (h) :=
{

h if |h|= 1
∪hi∈hEXT (hi) if |h| 6= 1.

Definition 9. Let H be a hierarchy according to Definition 7; then, a labeled hierarchy
L for H is a tuple L =< H,⊥,m >, where ⊥ is a function that maps each node n ∈ H
that is not a leaf into a t-conorm, and m is a function that maps each singleton into a
value of the unit interval. For simplicity, we will express ⊥(h) by ⊥h.

With all these elements, we can now define the hierarchically decomposable fuzzy
measures.

Definition 10. Let L =< H,⊥,m > be a labeled hierarchy according to Definition 9,
let EXT be the function in Definition 8; then, the corresponding Hierarchically ⊥-
Decomposable Fuzzy Measure (HDFM for short) of a set B is defined as µ(B) =
µroot(B), where µA for a node A = {a1, ...,an} is defined recursively as

µA(B) =

 0 if |B|= 0
m(B) if |B|= 1
⊥A(µa1(B1), ...,µan(Bn)) if |B|> 1.

Here, Bi = B∩EXT (ai) for all ai in A.

When µ(X) = 1, Definition 10 leads to a fuzzy measure.

3. Distorted probabilities on random vectors and new families of measures

In this section we consider vectors of random variables and extend the concept of
distorted probabilities to dimensions higher than one. If we consider only one single
random variable, the partition boils down to splitting the domain in disjoint intervals.

Before extending m-dimensional distorted probabilities to random vectors on con-
tinuous domains, let us look at some graphical presentation. Definitions are given on
vectors of two variables but the definition can be modified straightforwardly to any
n-dimensional random vector with n > 2. We have different regions in the domain
(regions can have arbitrary shape), each one with its probability distribution, and a
function to combine the probability measures when we have sets on different regions.

Figure 1 shows two general examples of a two-dimensional random vector domain
in which it is displayed a circle representing a set A that is a part of a measurable space
A . Partitions are shown in the two graphs of the figure and they are delimited by solid
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A

Figure 1: Representation of two different m-dimensional distorted probabilities in a two dimensional space.

borders. On the left hand side, partitions are exemplified as finite, whereas on the right
hand side, we have plotted unbounded partitions. Probability distributions are defined
on the plane for each region of the two random variables (which are not necessarily
independent) and the distortion function is then implemented on the intersection of
circle A with each of the partitions. In both graphs, A intersects with three different
regions.

Definition 11. Let Y1,Y2 be two random variables and X = (Y1,Y2) be a vector of ran-
dom variables (a random vector) with some joint probability distribution. Let {X1, X2,
· · · , Xm} be a partition of X in the sense that Xi is composed of two random variables
defined on a partition of the domain of X, and (Xi,Xi) be measurable spaces, then we
say that µ is an at most m dimensional distorted probability if there exists a function f
on [0,1]m and probabilities Pi on (Xi,Xi) such that:

µ(A) = f (P1(A∩X1),P2(A∩X2), · · · ,Pm(A∩Xm)). (2)

Note that m refers to the number of partition regions.
Regions of Xi can be closed or open, finite (see Figure 1 (left)) or infinite (see

Figure 1 (right)), and each region have a probability distribution Pi. That is, we can
compute for all A∈Xi the probability P(A). The function f combines the probabilities
of Pi(A∩Xi) in each region Xi. In Figure 1, the shaded circle corresponds to A, and it is
clearly observed that this region intersects with three partition regions. On the left, the
three regions are finite and on the right, they are infinite. Then the distorted probability
of each part of the circle is implemented through f .

Taking into account the properties of fuzzy measures we can prove some properties
on the function f involved in m-dimensional distorted probabilities. As it can be seen
from the results below, we do not make any assumption on the properties of f but we
derive them from the properties of non-additive measures. In other words, we prove in
this paper a characterization of the function f . In this way, Definition 11 is the most
general one as it has no constraints on f .

Proposition 12. Let {X1,X2, · · · ,Xm} be a partition of X and let (Xi,Xi) be measur-
able spaces. Let µ be a m-dimensional distorted probability generated by P1, . . . ,Pm
and f . Then, we can prove the following properties for the function f :
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• Unanimity in zero. I.e., f (0, . . . ,0) = 0.

• Unanimity in one. I.e., f (1, . . . ,1) = 1.

Proof. Unanimity in zero follows from the fact that µ( /0) = 0, and the fact that Pi( /0) =
0 for all i. Unanimity in one follows from the fact that µ(X) = 1 and that Pi(Xi) = 1
for all Xi. �

Proposition 13. Let {X1,X2, · · · ,Xm} be a partition of X and let (Xi,Xi) be measur-
able spaces. Let µ be a m-dimensional distorted probability on X using these measur-
able spaces and generated by P1, . . . ,Pm and f . Then, if the density function pi of Pi is
continuous, f is monotonic.

Proof. Recall that f is monotonic when a ≤ b implies f (a) ≤ f (b) for a,b vectors of
[0,1]m.

First note that for any ai,bi such that 0 ≤ ai < bi ≤ 1 we have that, there are sets
Ai ∈Xi with probability ai = P(Ai) and Ci ∈Xi such that Ai ∩Ci = /0 and P(Ci) =
ci = bi − ai. This is so because we have assumed that the density functions pi are
continuous.

Then, A = ∪Ai and C = ∪iCi. Then, C∩A = /0. It is thus clear that A ⊆ A∪C
implies µ(A)≤ µ(A∪C). Therefore, the following is also true.

µ(A) = f (a1, . . . ,am)

= f (P1(A∩X1),P2(A∩X2), · · · ,Pm(A∩Xm))

≤ f (P1(A∪C∩X1),P2(A∪C∩X2), · · · ,Pm(A∪C∩Xm))

= f (P1(A∩X1)+P1(C∩X1),P2(A∩X2)+P2(C∩X2), · · · ,Pm(A∩Xm)+Pm(C∩Xm))

= f (a1 + c1, . . . ,am + cm)

= f (b1, . . . ,bm)

= µ(A∪C)

(3)

Therefore, the proposition is proven. �
We have required in this proposition that density functions are continuous. Note

that, when density functions are not continuous, we can select a value ai for which
there is a set Ai such that ai = P(A∩Xi) and a value bi such that ai ≤ bi, and then the
function f assigns f (ai)> f (bi). Observe that such non-monotonic function will lead
to a fuzzy measure.

A function satisfying unanimity in zero, in one and monotonicity is an aggregation
operator in the sense of [1, 5]. t-Norms, t-conorms, uninorms, copulas, means and
aggregation operators in the sense of [12] satisfy these properties.

The reversal can be also proved. That is, if f is monotonic and satisfying unanimity
in zero and one, then a partition X = {X1, . . . ,Xm} and probabilities P1, . . . ,Pm on the
parts of X lead to a m-dimensional distorted probability.
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Proposition 14. Let {X1,X2, · · · ,Xm} be a partition of X and let (Xi,Xi) be measur-
able spaces, let f be a monotonic function satisfying unanimity in zero and one. Then,

µ(A) = f (P1(A∩X1),P2(A∩X2), · · · ,Pm(A∩Xm)) (4)

is a m-dimensional distorted probability.

Proof. By construction µ( /0) = f (0,0, . . . ,0) = 0 and µ(X) = f (1,1, . . . ,1). Then,
µ(A)≤ µ(B) when A⊆ B follows from monotonicity of f . �

Propositions 12, 13, and 14 imply that unanimity in zero and one, and monotonicity
are necessary and sufficient conditions for a function f to generate a m-dimensional
distorted probability.

We can also prove the proposition below which establishes what type of function
f ensures that the measure is additive. The proposition concludes that the only type of
function that is suitable is a weighted mean.

Proposition 15. A m-dimensional distorted probability is additive if and only if

f (a1,a2, . . . ,an) = ∑αiai

with α such that αi ≥ 0 and ∑αi = 1. That is, f is a weighted mean.

Proof. Our approach is similar to the one of the proof of Proposition 13. Let us con-
sider two pairs of disjoint sets Ai ∈Xi with probability ai = P(Ai) and Ci ∈Xi with
probability ci = P(Ci) such that Ai∩Ci = /0. Note that A = ∪Ai and C = ∪Ci. Then,

P(A∪B) = P(A)+P(C)

and therefore,

f (a1 + c1, . . . ,an + cn) = f (a1, . . . ,an)+ f (c1, . . . ,cn).

This functional equation has been studied in the literature. See, e.g., Proposition 3.4
in [12]. The solution of this functional equation is

f (a1, . . . ,an) = ∑αiai

with αi arbitrary. The condition that f (1,1, . . . ,1) = 1 implies that

f (1,1, . . . ,1) = ∑αi1 = ∑αi = 1

and monotonicity implies that αi ≥ 0.
Therefore, the proposition is proven. �
Given three functions f1, f2, and f3 such that they satisfy unanimity in zero and

one, and monotonicity, it is easy to see that the function f defined by

f (a1, . . . ,an) = f1( f2(a1, . . . ,ar), f3(ar+1, . . . ,an))

satisfies also unanimity in zero and one, and monotonicity. This property is known for
aggregation operators. See, e.g., [1, 5, 12].
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Using this property, we can consider a hierarchical structure for f by means of
functions fs. Such measure will be thus defined by the partition {X1,X2, · · · ,Xm} on
X , the measurable spaces (Xi,Xi), and a hierarchical structure of f on the partition on
X . This type of measure will be a m-dimensional distorted probability by definition.
The following example presents a specific case of a five-dimensional distorted fuzzy
measure.

Example 1. Let {X1,X2,X3,X4,X5} be a partition on X, let (Xi,Xi) be measurable
spaces, let f1, f2, f3, and f4 be monotonic functions satisfying unanimity in zero and
one. Then, the measure µ defined by

µ(A) = f4( f2( f1(P(A∩X1),P(A∩X2)),P(A∩X3)), f3(P(A∩X4),P(A∩X5)))

is a 5-dimensional distorted fuzzy measure.

This example shows that a measure of this type is a natural extension of hierarchi-
cally decomposable fuzzy measures (see Definition 10). Note that t-conorms, which
were used to define hierarchically decomposable fuzzy measures in Definition 10, are
monotonic functions satisfying unanimity in zero and one.

We call a measure of this type a hierarchically decomposable m-dimensional dis-
torted probability. A formal definition of this type of measure will follow the structure
of Definition 10. We do not include it here for the sake of conciseness.

4. Application of m-dimensional distorted probabilities

In this section we discuss a few examples of m-dimensional distorted probabilities.
We begin with an example to illustrate a case in which the measure can be represented
by a 2-dimensional distorted probability but not by the traditional (one dimensional)
distorted probability.

Example 2. Let A,B,C be three disjoint subsets of X. Let us consider the case that
µ(A)< µ(B) but that µ(A∪C)> µ(B∪C). For example, let µ(A) = 0.1, µ(B) = 0.5,
µ(C) = 0.2, µ(A∪C) = 0.8, and µ(B∪C) = 0.6.

This situation can not be expressed with distorted probabilities. Note that as a
distorted probability is such that µ = f ◦P, µ(A) < µ(B) implies P(A) < P(B) and
µ(A∪C) > µ(B∪C) implies P(A∪C) = P(A) + P(C) > P(B∪C) = P(B) + P(C)
which implies P(A)> P(B).

We can represent a measure of this type with a 2-dimensional distorted probability.
Let X1 and X2 define a partition of X. Let (X1,X1) and (X2,X2) be measurable spaces
such that A∈X1, B∈X2 and also C ∈X1. Then, to build the 2-dimensional distorted
probability we need to define P1 on X1, P2 on X2 and f .

Let us assume that we already have a probability distribution P on X. Then, let us
define P1(A) = P(A|X1) for all A ∈X1 and P2(A) = P(A|X2) for all A ∈X2. Then, let
a = P1(A), b = P2(B), and c = P1(C). Now, we can define f as follows: f (0,0) = 0,
f (0,b) = 0.5, f (a,0) = 0.1, f (a,b) = µ(A∪B), f (c,0) = 0.2, f (c,b) = 0.6, f (a+
c,0) = 0.8 and f (a+ c,b) = µ(A∪B∪C).

The definitions given for P1, P2 and f permit us to define the two-dimensional dis-
torted probability µ in terms of f , P1 and P2.
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In this example we have supposed that P was already known. If this is not the
case, any arbitrary P1 and P2 could be used in this case as there are no other constraints
than µ(A) = 0.1, µ(B) = 0.5, µ(C) = 0.2, µ(A∪C) = 0.8, and µ(B∪C) = 0.6. Recall,
however, that f : [0,1]2→ [0,1] and that f needs to satisfy unanimity in zero, unanimity
in one and monotonicity according to Propositions 12 and 13.

We can use this structure in situations as in the following example.

Example 3. Let X = R. Let x0 be an element of X. Let X1 = {x|x < x0} and X2 =
{x|x≥ x0}. Given P1 and P2 probability distributions on X1 and X2 and given a function
f , we can define a 2-dimensional distorted probability using Equation (2).

Let us consider a measure that is highly superadditive in one region (say X1) but
with low values for small sets. E.g., as in Example 2 (µ(A) = 0.1, µ(C) = 0.2 but
µ(A∪C) = 0.8), but at the same time there are other regions (say X2) where the mea-
sure is large (e.g., µ(B) = 0.5). In this case, if adding a region of X2 to a region
X1 increases the measure only moderately, we may have a condition as in Example 2
µ(B∪C)< µ(A∪C). In this case, a distorted probability cannot be used and we need
a 2-dimensional distorted probability (as the one in Example 2).

We introduce now an example of the application of this type of measures to finan-
cial markets. We show that situations described in the previous two cases, may reflect
the attitudes of investors in the financial markets.

Example 4. Let us assume that X is a random variable associated with profits and
losses. So, its domain is equal to R, where profits take positive values and losses cor-
respond to negative values. The decision-maker considers the partition X = {X1,X2}
where X1 ∈ (−∞,k] and X2 ∈ (k,+∞) with probability distributions P1 and P2 respec-
tively, where k is a positive constant. The idea is that k reflects a maximum level of
gains that an investor would consider the upper limit in a normal context.

Let A,B,C be three disjoint subsets of X associated with very large losses (A),
moderate profits (B) (i.e., positive values smaller than k) and high profits (C), so A⊆X1,
B⊆ X1 and C ⊆ X2.

Let us consider the case of a conservative investor. Having some knowledge on
the market, the investor would think that C is less plausible than B. So, he weights
large profits lower than moderate profits, µ(C) < µ(B), simply because he thinks the
latter occurs more often than the former. However, his opinion varies when considering
also the possibility of large losses. In that case, he thinks that µ(A∪B) < µ(A∪C).
Indeed, he thinks that when large losses occur there is more volatility in the market
and therefore large profits are also more plausible than just moderate profits. This is
the reason he weights the extreme scenario A∪C more than the asymmetric case A∪B.
Let us consider a = P1(A), b = P2(B), and c = P2(C), then:

µ(B) = f (0,b)> f (0,c) = µ(C)

µ(A∪B) = f (a,b)< f (a,c) = µ(A∪C).

So, the plausibility measure of the investor can be obtained as a result of a two-
dimensional distortion measure rather than as a one-dimensional one.
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Let us assume that the annual financial results of the business line X follow a nor-
mal distribution with mean m = 0.15 and variance, σ2 = 0.30. In this example, k is
equal to 0.30. Let A,B,C be three disjoint subsets of X such that A ⊆ X1, B ⊆ X1
and C ⊆ X3, representing large losses, moderate profits and high profits. In particular
A ∈ (−∞,−0.30] and B ∈ [0.10,0.15] and C ∈ [0.60,∞). In this case, P1(A) = 0.07,
P1(B) = 0.07 and P2(C) = 0.07. A conservative manager thinks that moderate profits
occur 25% more often than than moderate profits, µ(C)< µ(B). However, his opinion
varies when considering also the possibility of large losses. In that case, he thinks that
µ(A∪C) is 25% more often than µ(A∪B):

µ(B) = f (0,b) = 0.0875 > 0.07 = f (0,c) = µ(C)

µ(A∪B) = f (a,b) = 0.14 < 0.175 = f (a,c) = µ(A∪C).

Our last example is simply a case where two-dimensional distortions arise naturally.

Example 5. Let the random vector X = (Y1,Y2) consists of two random variables Y1
and Y2 which are associated with the annual financial results of two business lines,
whose domain is R2. The business analyst that only uses one-dimensional concepts
would think that losses may have a bad impact on the firm, whereas profits always
have a good impact. However, in the two-dimensional scenario, one can imagine that
the worst case is a conjunction of the two business lines having losses, or even when
the profits on one line cannot compensate the losses of the other. So, one should weight
the region of the sum of the two random variables being negative as having much more
importance than when they are both positive, or even when one line is negative but can
be compensated by the other. One would establish the following three regions in the
domain:

• All lines are profitable

X1 = {Y11,Y21} ∈ [0,+∞)2

• The sum is profitable, but one line is negative

X2 = {Y12,Y22} ∈ {(y1,y2)|− y2 < y1 < 0}∪{(y1,y2)|− y1 < y2 < 0}

• The sum is not profitable

X3 = {Y13,Y23} ∈ {(y1,y2)|y1 + y2 < 0}.

In this case the 3-dimensional distortion probability is quite natural and could re-
flect different attitudes of the management in each region of the partition. So, more
weight could be given to the third case, when trying to reflect the importance of having
an aggregate business that is not profitable.

Let us assume that we know the probability distribution P on X. Then, let us de-
fine P1(D) = P(D|X1) for all D ∈X1, P2(D) = P(D|X2) for all D ∈X2 and P3(D) =
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P(D|X3) for all D ∈X3. Let A,B,C be three disjoint subsets of X such that A ⊆ X1,
B⊆ X2 and C ⊆ X3. Let consider the case that P1(A) = P2(B) = P3(C). A conservative
manager would have a risk averse attitude giving more weight to the third case than
the other two scenarios, as follows:

µ(A) = f (a,0,0)< f (0,0,c) = µ(C)

µ(B) = f (0,b,0)< f (0,0,c) = µ(C)

where a = P1(A), b = P2(B), c = P3(C). However, a risk neutral agent would weight
the three subsets with the same importance,

µ(A) = f (a,0,0) = µ(B) = f (0,b,0) = µ(C) = f (0,0,c).

Finally, a decision-maker with risk appetite would consider more plausible the first
subset and would give more weight to this scenario than the others,

µ(A) = f (a,0,0)> f (0,b,0) = µ(B)

µ(A) = f (a,0,0)> f (0,0,c) = µ(C).

Now, we will consider the concrete numerical example that was designed in Ex-
ample 4. Let us assume that an additional business line is considered with mean and
variance equal to 0.1. In this case, the annual financial results of the two business
lines X follow a bivariate normal distribution with mean vector m = (0.15,0.10) and
covariance matrix,

Σ =

[
0.3 −0.05
−0.05 0.1

]
.

Let A,B,C be three disjoint subsets of X such that A⊂ X1, B⊂ X2 and C ⊂ X3. We
consider the case that

• All lines are profitable

A = {Y11,Y21} ∈ [0.21,+∞)2

• The sum is profitable, but one line is negative

B = {Y12,Y22} ∈ {(y1,y2)|y1 <−0.21,y2 > 0.24}

• The sum is not profitable

C = {Y13,Y23} ∈ {(y1,y2)|y1 <−0.21,y2 < 0.2}.

In this case, P1(A) = 0.12, P2(B) = 0.12 and P3(C) = 0.12.
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We consider the case of a conservative manager. He would have a risk averse
attitude giving lower weight to the first case than the second scenario. He decided to
increase the probability of the second scenario by 20%.

µ(A) = f (a,0,0) = 0.12 < 0.14 = f (0,b,0) = µ(B)

The manager knows that P(A∪C)= 0.24 and P(B∪C)= 0.24. However, he expects
a highly volatile market in next future. Consequently, his decision is to increase P(A∪
C) by 20%.

µ(A∪C) = f (a,0,c) = 0.29 > 0.24 = f (0,b,c) = µ(B∪C)

A risk neutral agent would weight the three subsets with the same importance,
approximately

µ(A) = µ(B) = µ(C) = 0.12.

Finally, a decision-maker with risk appetite would consider more plausible the first
subset and would increase the likelihood of scenario by 20%, so

µ(A) = 0.14 > 0.12 = µ(B)

µ(A) = 0.14 > 0.12 = µ(C).

5. Conclusions

In this paper we have introduced m-dimensional distorted probabilities on random
vectors for continuous domains. We have given some results to characterize their con-
struction and provided some examples. We have also related them to hierarchically
decomposable fuzzy measures, and defined hierarchically decomposable fuzzy mea-
sures on continuous domains, as a subtype of m-dimensional distorted probabilities.
Our definition is based on our previous definition for finite domains. Nevertheless,
note that our characterization of the function f is only applicable to the continuous
case. Otherwise, the domain and the range of f are finite.

The application of fuzzy measures to real problems needs families of measures that
are easy to define. To this end, a large number of families exist on discrete domains but
this is not the case for continuous ones. Distorted probabilities are probably the only
such family.

In this work we have contributed with two families that naturally extend distorted
probabilities and make the use of fuzzy measures easier. These results apply to fuzzy
measures defined to pairs of (or in general, to the product of t) random variables.
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As stated in the introduction the usefulness of our approach is partially based on
the understanding that there are already parametric distributions on continuous domains
and, therefore, they can be used to define fuzzy measures.

Future work includes further results on these types of m-dimensional distorted
probability measures, the definition of other families of transformed-probability mea-
sures, and the extension to functions related to probability distributions such as the
cumulative distribution function, the survival function or the characteristic function.
We also aim at development of software to compute efficiently the Choquet integral of
functions with respect to these families of measures, in the line of [13].
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