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Abstract Within the class of zero-monotonic and grand coalition superadditive4

cooperative games with transferable utility, the convexity of a game is character-5

ized by the coincidence of its core and the steady bargaining set. As a consequence6

it is proved that convexity can also be characterized by the coincidence of the core7

of a game and the modified Zhou bargaining set à la Shimomura.8
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2 Josep Maria Izquierdo, Carles Rafels

1 Introduction10

Cooperative game theory analyzes how to distribute profits arising from the coop-11

eration of a group of agents by proposing solutions that may consist on a unique12

allocation of those profits (payoff vector) or on a group of them meeting some13

stability conditions (set-solution). The core of a game v, C(N, v), is the most nat-14

ural set-solution concept but it might be empty. The bargaining sets (Davis and15

Maschler (1963, 1967), Mas-Colell (1989), Zhou (1994) and others) based on ob-16

jections and counter-objections to payoff proposals offer an alternative solution to17

the emptiness of the core, at a cost to be rather complex to compute. For this18

reason, it has been interesting to define non-empty subsolutions of the bargaining19

sets that were more simply to describe and check, that fulfill some stability con-20

ditions and that were related to the core of the game whenever it is non-empty.21

In this way, the first subsolutions we can find in the literature are the notion of22

quasi-core, introduced by Shapley and Shubik (1966), and the concept of kernel23

of a game (Davis and Maschler, 1965). Years after, Shimomura (1997) introduces24

the steady bargaining set of a game v, SB(N, v), and a small modification of the25

Shapley and Shubik quasi-core concept. The steady bargaining set of a game in-26

cludes its core and it is a subsolution of two well-known variants of bargaining27

sets, also introduced by Shimomura (1997): the modified Mas-Colell bargaining28

set,MB∗(N, v), and the modified Zhou bargaining set, Z∗(N,v). The relationship29

among these solutions is as follows:30

C(N, v) ⊆ SB(N,v) ⊆ Z∗(N, v) ⊆MB∗(N, v). (1)

A sufficient condition that guarantees the non-emptiness of the steady bar-31

gaining set and the modified Zhou bargaining set of a game is its grand coalition32
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The core and the steady bargaining set for convex games 3

superadditivity, while grand coalition zero-monotonicity also suffices to check the33

non-emptiness of the modified Mas-Colell bargaining set.34

Convex or supermodular coalitional games were introduced by Shapley (1971).35

They are an important subclass of games and they model cooperative situations36

where the marginal contribution of a player to a coalition increases as the coalition37

becomes larger (the so called snowballing effect). Convex games satisfy impor-38

tant properties from a game theoretical point of view and they have been useful39

to analyze and capture many economic situations both in cooperative and non-40

cooperative frameworks.41

Einy and Wettstein (1996) opened the question of characterizing the convexity42

of a game by comparing its bargaining sets with the core, with special reference43

to the stable bargaining set introduced by Greenberg (1992). Within the domain44

of zero-monotonic games, Izquierdo and Rafels (2012) give a first answer to that45

question by means of the coincidence of the core of a game and its modified Mas-46

Colell bargaining set.47

In this paper we focus on enriching the convexity characterization results.48

Within the domain of zero-monotonic and grand coalition superadditive games,49

the first characterization requires the coincidence of the the core of a game and its50

steady bargaining set (Theorem 1). The elaborate proof of our new characterization51

of the convexity of a game follows a two-step argument: first (see Proposition 1) ,52

we show the characterization within a subclass of almost-convex games (introduced53

by Núñez and Rafels, 1998); second, in Theorem 1, we tackle the general case.54

Finally, by the inclusion relationship given in (1), we also obtain as a corollary55

of this theorem an additional new characterization of convex games in term of the56

coincidence of the modified Zhou bargaining set and the core of the game (Corol-57
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4 Josep Maria Izquierdo, Carles Rafels

lary 1). We expect this work might serve to both obtain new equivalence theorems58

and to reanalyze the different convexity notions given for the non-transferable59

utility case.60

2 Notations61

Let N = {1, 2, . . . , n} be a set of players. For any coalition S ⊆ N , |S| denotes62

the number of players in S. A cooperative game with player set N is a function63

v : 2N → R assigning to each coalition S ⊆ N a real number v(S) such that64

v(∅) = 0. The function v is called the characteristic function of the game and v(S)65

is the worth of the coalition S. This number is interpreted as what the coalition66

can obtain on its own. Let GN be the class of games with player set N . Given a67

nonempty coalition S ⊆ N , we denote by (S, vS) the subgame of (N, v) related to68

coalition S (i.e. vS (R) = v (R) for all R ⊆ S).69

A game v ∈ GN is monotonic if v(S) ≤ v(T ), for any S ⊆ T ⊆ N . It is zero-70

monotonic if for all S ⊆ T ⊆ N we have v(S)+
∑

i∈T\S v({i}) ≤ v(T ) and it is grand71

coalition zero-monotonic if for all S ⊆ N we have v(S) +
∑

i∈N\S v({i}) ≤ v(N).72

A game v ∈ GN is superadditive if for all S, T ⊆ N with S ∩ T = ∅ it holds73

v(S) + v(T ) ≤ v(S ∪ T ), and it is grand coalition superadditive if for all partition P74

of N , P = {S1, S2, . . . , Sm}, it holds that
∑m

j=1 v(Sj) ≤ v(N).75

A game v ∈ GN is convex if, for all i ∈ N ,76

v(S ∪ {i})− v(S) ≤ v(T ∪ {i}) − v(T ), (2)

for all S ⊆ T ⊆ N \ {i}. An equivalent definition of convexity states that, for all77

S,T ⊆ N ,78

v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ). (3)
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The core and the steady bargaining set for convex games 5

Finally, it is almost convex (Núñez and Rafels, 1998) if for all S ⊆ N , S 6= N the79

corresponding subgame (S, vS) is convex.80

Let RN stand for the space of real-valued vectors x = (xi)i∈N where xi is81

interpreted as the payoff to player i ∈ N , xS is the restriction of x to the members82

of S ⊆ N and x(S) denotes
∑

i∈S xi, with the convention x(∅) = 0. Given x and y83

two vectors in RN , we write x ≥ y to mean that xi ≥ yi, for all i ∈ N .84

The set of preimputations of a game v ∈ GN is defined by I∗(N, v) = {x ∈85

RN |x(N) = v(N)}. Its set of imputations is defined by I(N, v) = {x ∈ RN |x(N) =86

v(N) and xi ≥ v({i}), for all i ∈ N} and its core is defined by C(N, v) = {x ∈87

RN |x(N) = v(N) and x(S) ≥ v(S) for all S ⊆ N}. A game with a non-empty88

core is called a balanced game. Let BN ⊆ GN be the subclass of balanced games89

with player set N .90

Given a game v, a preimputation x ∈ I∗(N, v) and a pair of players i and j,

i 6= j, we define

s
v
ij(x) = max{v(S)− x(S) | S ⊆ N, i ∈ S but j 6∈ S}.

We say that player i outweigths player j at x if svij(x) > svji(x). The prekernel

of the game v, PK(N, v), is the subset of preimputations such that no player

outweights any other player at x. This is

PK(N, v) = {x ∈ I
∗(N, v) | for all i, j ∈ N, i 6= j, s

v
ij(x) = s

v
ji(x)}.

For any game , the prekernel is always non-empty.91

The kernel was introduced by Davis and Maschler (1965). It is based on the idea92

of outweighting, but restricting the domain of feasible allocations to imputations.93

A more general concept was analyzed by Schmeidler (1969) allowing to consider94
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6 Josep Maria Izquierdo, Carles Rafels

arbitrary payoff domains; in particular we are interested in those satisfying Y =95

Y (ℓ, u) = {x ∈ I∗(N, v) | ℓi ≤ xi ≤ ui, for all i ∈ N}, where ℓ = (ℓi)i∈N and96

u = (ui)i∈N , are the respective vectors of lower and upper bounds for the payoffs97

of players within Y with ℓ ≤ u. Notice that Y (ℓ, u) 6= ∅ when ℓ(N) ≤ v(N) ≤ u(N).98

Following Kikuta (1997), a payoff vector x belongs to the kernel of v relative to a99

nonempty box, K(N, v, Y (ℓ, u)), when for all pair of distinct players i and j it holds100

that: if svij(x) > svji(x), then either xi = ui or xj = ℓj . Being Y (ℓ, u) a non-empty101

set it follows that K(N, v, Y (ℓ, u)) 6= ∅ (see Schmeidler (1969)).102

Shimomura (1997) considers modifications of both the Mas-Colell bargaining103

set (Mas-Colell, 1989) and Zhou bargaining set (Zhou, 1994). As usual the bargain-104

ing set is defined by means of an interaction of objections and counterobjections.105

Let x ∈ RN . An objection to x is a pair (S, y), ∅ 6= S ⊆ N and y ∈ RS with106

y(S) = v(S) such that yi > xi, for all i ∈ S. A counterobjection to (S, y) in the sense107

of Mas-Colell (à la Shimomura) is a pair (T, z), z ∈ RT with z(T ) = v(T ) such that108

zi > yi, for all i ∈ T ∩S, and zi > xi for all i ∈ T \S. A counterobjection to (S, y) in109

the sense of Zhou (à la Shimomura) is a pair (T, z), where T \ S 6= ∅, S \ T 6= ∅,110

T ∩ S 6= ∅, and z ∈ RT with z(T ) = v(T ) such that zi > yi, for all i ∈ T ∩ S, and111

zi > xi for all i ∈ T \ S. Notice the bargaining process represents strictly improve-112

ments (strictly higher payoffs) for all players involved in the objections and the113

counterobjections.114

Definition 1 The Mas-Colell bargaining set (à la Shimomura) is defined as

MB∗(N, v) =















x ∈ I(N,v)

∣

∣

∣

∣

∣

∣

∣

∣

for each objection to x,

there is a Mas-Colell’s counterobjection















.
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The core and the steady bargaining set for convex games 7

Definition 2 The Zhou bargaining set (à la Shimomura) is defined as

Z∗(N, v) =















x ∈ I(N,v)

∣

∣

∣

∣

∣

∣

∣

∣

for each objection to x,

there is a Zhou’s counterobjection















.

If no confusion arises we will refer to them simply as the Mas-Colell bargaining set115

and the Zhou bargaining set. By definition, these sets only consist on imputations116

(individually rational payoff vectors) and always includes the core. Shimomura117

(1997) states that a sufficient condition that guarantees the Mas-Colell bargaining118

set to be nonempty is grand coalition zero-monotonicity, while it is grand coalition119

superadditivity that ensures the non-emptiness of the Zhou bargaining set.120

Shimomura also defines a subset of the Zhou bargaining set ( the steady bar-121

gaining set, SB(N, v)) by means of a dominant relationship between coalitions. He122

claims that the steady bargaining set can be rewritten as follows.123

Definition 3 Let v ∈ GN be a game. An imputation x ∈ I(N,v) is in the steady124

bargaining set SB(N, v) if for all coalition S ⊆ N with strictly positive excess125

v(S)− x(S) > 0, there exists M ⊆ N , such that S \M 6= ∅, M \S 6= ∅, S ∩M 6= ∅126

and v(M)− x(M) ≥ v(S)− x(S).127

For any game v, it can be easily proved the inclusions C(N, v) ⊆ SB(N, v) ⊆128

Z∗(N,v) ⊆MB∗(N, v); let us remark that these inclusions might be strict, even for129

superadditive games1. On the other hand, Izquierdo and Rafels (2012) show that130

1 Let N = {1, 2, 3, 4} be the set of players and v(N) = 2, v({1, 2, 3}) = v({1, 2, 4}) =

v({1, 3, 4}) = v({2, 3, 4}) = 1, v({1, 3}) = v({1, 4}) = v({2, 3}) = 1 and v(S) = 0, other-

wise. Notice that the core of this game is non-emtpy. The payoff vector x = ( 1
2
, 1 1

2
, 0, 0) ∈

MB∗(N, v), but x 6∈ Z∗(N, v). Moreover, the payoff vector x′ = ( 1
2
, 1, 1

4
, 1
4
) ∈ Z∗(N, v), but

x′ 6∈ C(N, v). With respect to the steady bargaining set notice x′ = ( 1
2
, 1, 1

4
, 1
4
) ∈ SB(N, v),

but x′ 6∈ C(N, v). The Example 2 (with a = 1) in Shimomura (1997) provides an example of a
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8 Josep Maria Izquierdo, Carles Rafels

the core of a convex game v and its Mas-Colell bargaining set (à la Shimomura))131

do coincide, and thus, C(N, v) = SB(N, v) = Z∗(N, v) =MB∗(N, v).132

Let v ∈ BN be a balanced game and θ = (i1, i2, . . . , in) be an ordering of players

in N . We denote by ΘN the set of all orderings in N . A marginal worth vector of

the game v relative to θ, mθ(v), is defined as

mθ
i1
(v) = v({i1}) and

mθ
ik
(v) = v({i1, . . . ik})− v({i1, . . . ik−1}), for all k = 2, . . . , n.

It is well-known (Shapley (1971), Ichiishi (1981)) that a game is convex if and only133

the marginal worth vectors of the game are all core elements.134

v is convex ⇔ m
θ(v) ∈ C(N, v), for all θ ∈ ΘN . (4)

We say that vector x ∈ RN lexicographically precedes vector y ∈ RN with respect135

to θ = (i1, i2, . . . , in) ∈ ΘN , x ≺θ
ℓ y, if there exists k ∈ {1, 2, . . . , n} such that136

xir = yir for all r = 1, . . . , k − 1 and xik < yik . The lexmin solution over the core137

of a balanced game v ∈ BN relative to θ ∈ ΘN is defined as the (unique) payoff138

vector ℓθ(v) ∈ C(N, v) that lexicographically precedes w.r.t. to θ any other vector139

in the core of the game v, i.e. ℓθ(v) ≺θ
ℓ x for all x ∈ C(N, v). Let us remark that if140

a game v is convex then ℓθ(v) = mθ(v), for each ordering θ ∈ ΘN .141

3 Characterization results142

In this section we provide two new characterizations of the convexity of a game.143

The first one compares the steady bargaining set of the game with its core.144

To this aim, we first analyze the particular case of almost convex games (games145

superadditive game where the steady bargaining set is strictly included in the Zhou bargaining

set.
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The core and the steady bargaining set for convex games 9

where all proper subgames are convex), since the argument used in the proof of146

the general case does not apply.147

The second characterization is a direct consequence of the first one, and focuses148

on the coincidence of the Zhou bargaining set with the core.149

Proposition 1 Let (N, v) be a grand coalition superadditive and almost convex game.150

Then, the following statements are equivalent:151

1. v is convex.152

2. SB(N, v) = C(N, v).153

Proof 1.→ 2.) From Izquierdo and Rafels (2012) it follows that, for any convex154

game v, C(N, v) = MB∗(N, v). Hence, since C(N, v) ⊆ SB(N, v) ⊆ MB∗(v), we155

conclude C(N, v) = SB(N, v).156

2.→ 1.) As the game v is grand coalition superadditive, the steady bargaining157

set is nonempty, i.e. SB(N, v) 6= ∅ (Shimomura, 1997), and thus (by hypothesis),158

SB(N,v) = C(N, v) 6= ∅. Therefore, the game is balanced. At this point, the proof159

is done for the two-person case, n = 2, since any two-person balanced game is160

convex. Hence, from now on let us assume n ≥ 3. Suppose to the contrary that the161

game is not convex. Since the game is almost convex but not convex, this means162

there exists a pair of players, say player 1 and player 2 such that163

v(N)− v(N \ {1}) < v(N \ {2})− v(N \ {1, 2}). (5)

From Núñez and Rafels (1998) we know there is an extreme point x ∈ C(N, v) of164

the core of the game v such that2165

x1 = v(N)− v(N \ {1}) and x2 = v(N)− v(N \ {2}). (6)

2 These authors prove that particular payoff vectors constructed based upon orderings of

players θ = (i1, i2, . . . , in) (the reduced marginal worth vector rmθ(v)) are the extreme core
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10 Josep Maria Izquierdo, Carles Rafels

By (5) and (6) it holds that

x1 = v(N)− v(N \ {1}) < v(N \ {2})− v(N \ {1, 2})

= v(N)− (v(N)− v(N \ {2}))− v(N \ {1, 2})

= v(N)− x2 − v(N \ {1, 2}) = x(N \ {2})− v(N \ {1, 2}).

We conclude, x(N \ {1, 2}) > v(N \ {1, 2}). Hence, let us remark now that the166

vector x restricted to N \ {1, 2}, xN\{1,2}, can be viewed as an aspiration of the167

subgame3 (N \{1, 2}, vN\{1,2}). Since this subgame is convex and any convex game168

has a large core4 (Sharkey 1982), there exists z ∈ C(N \ {1, 2}, vN\{1,2}) such that169

xN\{1,2} ≥ z. Moreover, since x(N \ {1, 2}) > v(N \ {1, 2}) = z(N \ {1, 2}) there170

exists a player in N \ {1, 2}, say player 3 such that x3 > z3. This implies that171

x(S) > z(S) ≥ v(S), for all S ⊆ N \ {1, 2} and 3 ∈ S. (7)

Next define the vector x′ ∈ RN as follows:

x
′
1 = x1 +

ε

2
; x

′
2 = x2 +

ε

2
; x

′
3 = x3 − ε and x

′
k = xk for all k ∈ N \ {1, 2, 3},

where 0 < ε < min
3∈S⊆N\{1,2}

{x(S)− v(S)}.172

By the definition of ε the vector x′ is an imputation of the game v, but it is173

not a core element of (N, v) since x′1 > x1 = v(N)−v(N \{1}) and so x′(N \{1}) <174

v(N \ {1}). However, for any coalition S ⊆ N such that v(S)− x′(S) > 0 it is easy175

to check that:176

elements of an almost convex balanced game. In particular, if θ = (1, 2, . . . , n), we have

rmθ
1(v) = v(N)−v(N \{1}) and rmθ

2(v) = min{v(N \{1})−v(N \{1, 2}), v(N)−v(N \{2})} =

v(N) − v(N \ {2}), where the last equality follows from (5).

3 An aspiration of a game (N, v) is a vector x′ ∈ RN satisfying all cores inequalities, i.e.

x′(S) ≥ v(S), for all S ⊆ N .

4 A game has a large core if any aspiration x′ of the game can be represented by a core

allocation x, i.e. there exists x ∈ C(N, v) : xi ≤ x′
i
, for all i ∈ N .
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The core and the steady bargaining set for convex games 11

(a) player 3 ∈ S;177

(b) either player 1 ∈ S or 2 ∈ S, but not both;178

(c) v(S)− x′(S) ≤ ε
2 ; and179

(d) v(N \ {1})− x′(N \ {1}) = v(N \ {2})− x′(N \ {2}) = ε
2 .180

Taking these remarks into account, let S ⊆ N be an arbitrary coalition with181

positive excess at x′, i.e. v(S)−x′(S) > 0. We next show that there exists a coalition182

M ⊆ N such thatM∩S 6= ∅, S\M 6= ∅,M\S 6= ∅ and v(M)−x′(M) ≥ v(S)−x′(S),183

and so that x′ is in the steady bargaining set of (N, v). We consider two cases:184

A: If player 1 ∈ S, take M = N \{1}. Notice that, by (c) and (d), v(M)−x′(M) =185

ε
2 ≥ v(S)− x′(S). Moreover, by (a), player 3 ∈M ∩S, player 1 ∈ S \M and, by186

(b), player 2 ∈M \ S.187

B: If player 2 ∈ S, take M = N \ {2} and using an analogous reasoning we get188

that v(M)− x′(M) = ε
2 ≥ v(S)− x′(S) with player 3 ∈M ∩S, player 2 ∈ S \M189

and player 1 ∈M \ S.190

We conclude the allocation x′ is not a core element of the game v but belongs

to its steady bargaining set, i.e. x ∈ SB(N, v), which contradicts our hypothesis.

Hence, the game v must be convex. ⊓⊔

The above characterization result can be now extended to a larger class of191

cooperative games. The thread of the proof of this result relies on the fact that for192

a convex game all marginal worth vectors are core elements and coincide with the193

corresponding lexmin solution relative to the different orderings. As a consequence,194

if a game is not convex there is at least one marginal worth vector that differs from195

the corresponding lexmin solution; based upon this, we will construct a particular196

vector not in the core but in the steady bargaining set. That is, we shall prove that197
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12 Josep Maria Izquierdo, Carles Rafels

if a game is not convex the steady bargaining set of the game strictly includes its198

core. The proof of this result is constructive in the sense that, for any non-convex199

game satisfying conditions of Theorem 1, we built an allocation that turns out to200

be in the steady bargaining set of the game, but not in its core.201

Theorem 1 Let (N, v) be a zero-monotonic and grand coalition superadditive game.202

Then, the following statements are equivalent:203

1. v is convex.204

2. SB(N, v) = C(N, v).205

Proof 1.→ 2.) By convexity of the game v, it holds C(N, v) =MB∗(N,v) and thus,206

by (1), we conclude C(N, v) = SB(N, v).207

2.→ 1.) As the game v is grand coalition superadditive, the steady bargaining208

set is nonempty, i.e. SB(N, v) 6= ∅ (Shimomura, 1997), and thus (by hypothesis),209

SB(N,v) = C(N, v) 6= ∅. Therefore, the game is balanced and the lexmin solution210

ℓθ(v) is well-defined for all θ ∈ ΘN . Let us suppose now that the game is not convex.211

Then, by (4), there must exist at least one ordering θ = (i1, i2, . . . , in) ∈ ΘN such212

that ℓθ(v) 6= mθ(v). Now, if we pairwise compare the lexmin vector ℓθ(v) and the213

marginal worth vector mθ(v) corresponding to all orderings we can determine a214

unique index t∗ ∈ {1, . . . , n} satisfying that:215

(i) ℓθjk (v) = mθ
jk
(v), for all θ = (j1, j2, . . . , jn) ∈ ΘN and k = 1, . . . , t∗ − 1;

(ii) there exists θ∗ = (i1, i2, . . . , in) ∈ ΘN such that ℓθ
∗

it∗
(v) 6= mθ∗

it∗
(v).

(8)

Item (i) indicates that, for all ordering, the payoff of players occupying the first216

t∗− 1 positions coincide for both the lexmin vector and the marginal worth vector217

(notice that this condition does not impose any restriction when t∗ = 1); item218
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The core and the steady bargaining set for convex games 13

(ii) states the existence of an ordering where the corresponding lexmin vector and219

marginal worth vector differ for the first time at position t∗.220

Notice that, by Proposition 1, we may assume that (N, v) is not an almost221

convex game and thus t∗ 6= n. Moreover, as ℓθ
∗

(v) is a core element, it can be222

checked in condition (ii) that223

ℓ
θ∗

it∗
(v) > m

θ∗

it∗
(v). (9)

To prove it, in other case and by (8), ℓθ
∗

it∗
(v) < mθ∗

it∗
(v) = v({i1, . . . , it∗}) −224

v({i1, . . . , it∗−1}) = v({i1, . . . , it∗}) − mθ∗(v)({i1, . . . , it∗−1}) = v({i1, . . . , it∗}) −225

ℓθ
∗

(v)({i1, . . . , it∗−1}), which involves a contradiction since ℓθ
∗

(v) ∈ C(N, v). Fi-226

nally, we can also deduce from the above condition (i) that,227

for all S ⊆ N with |S| < t
∗
, the subgame (S, vS) is convex. (10)

Now, define

Sθ∗(v) = {M ⊆ N |M 6= N, it∗ ∈M and ℓ
θ∗(v)(M) = v(M)},

where θ∗ = (i1, i2, . . . , in) is given in (ii) of (8).228

We claim Sθ∗(v) 6= ∅. Otherwise, ℓθ
∗

(v)(M) > v(M), for all M ⊆ N , M 6= N ,229

and it∗ ∈ M . Taking this into account we might define the allocation x ∈ RN as230

xit∗ = ℓθ
∗

it∗
(v) − ε1, xit∗+1

= ℓθ
∗

it∗+1
(v) + ε1 and xik = ℓθ

∗

ik
(v), else, where 0 < ε1 <231

min
M N,it∗∈M

{ℓθ
∗

(v)(M)− v(M)}, and prove that x ∈ C(N, v). However, this would232

contradict ℓθ
∗

(v) to be the lexmin solution relative to θ∗ over the core of the game233

v.234

Let us denote by Sθ∗

min(v) the set of minimal coalitions with respect to the235

inclusion in the ordered set (Sθ∗(v),⊆) and by T ∗ the first t∗ agents of the ordering236
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14 Josep Maria Izquierdo, Carles Rafels

θ∗ = (i1, . . . , in) given in (8) , i.e. T ∗ = {i1, . . . , it∗}. Notice that237

ℓ
θ∗(v)(T ∗) > v(T ∗), (11)

where the strict inequality follows from (8) and (9), since ℓθ
∗

(v)(T ∗) = ℓθ
∗

(v)(T ∗ \238

{it∗}) + ℓθ
∗

it∗
(v) = mθ∗(v)(T ∗ \ {it∗}) + ℓθ

∗

it∗
(v) > mθ∗(v)(T ∗) = v(T ∗).239

Next, it can be shown that the set Sθ∗

min(v) contains at least two coalitions.240

This result is stated in Claim 1 but the rather technical proof is consigned into241

the Appendix.242

Claim 1 |Sθ∗

min(v)| ≥ 2.243

Taking into account this claim, define α ∈ RN as244

αi =















ℓθ
∗

i (v)− ε if i = it∗

ℓθ
∗

i (v) if i ∈ N, i 6= it∗

where

0 < ε < min

M⊆N

ℓθ
∗

(v)(M)>v(M)

{ℓθ
∗

(v)(M)− v(M)}.

Notice that the parameter ε is well defined since (11) holds. Moreover, we have245

that α(N) < v(N).246

Take Iθ
∗

=
⋂

M∈Sθ∗

min(v)

M and notice that, by definition, it∗ ∈ Iθ
∗

(and thus247

Iθ
∗

6= ∅), M \ Iθ
∗

6= ∅ for all M ∈ Sθ∗

min(v), and N \ Iθ
∗

6= ∅ where the last two248

assertions follow from Claim 1.249
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The core and the steady bargaining set for convex games 15

Then define the game (N \ Iθ
∗

, ω) as follows:

ω(∅) = 0,

ω(R) = max

R′⊆R

Q⊆Iθ∗

{v(R′ ∪Q)− α(R′ ∪Q)} for all ∅ 6= R ⊆ N \ Iθ
∗

.

Let us remark that ω(R) ∈ {0, ε}, for all R ⊆ N \ Iθ
∗

, and ω(N \ Iθ
∗

) = ε. To check250

this we first claim that, given M ⊆ N , we have251

v(M)− α(M) =































0 if M = ∅

ε if M ∈ Sθ∗(v) or M = N

≤ 0 otherwise.

(12)

Indeed, if M = ∅, v(∅) − α(∅) = 0; if M ∈ Sθ∗(v) or M = N then v(M) =252

ℓθ
∗

(v)(M) and v(M) − α(M) = v(M) − ℓθ
∗

(v)(M) + ε = ε; finally, if M 6∈ Sθ∗(v)253

and M 6= N,∅ then either it∗ 6∈M or v(M) < ℓθ
∗

(v)(M): if it∗ 6∈ M , then v(M)−254

α(M) = v(M) − ℓθ
∗

(v)(M) ≤ 0, and if it∗ ∈ M but v(M) < ℓθ
∗

(v)(M), then255

v(M)− α(M) = v(M)− ℓθ
∗

(v)(M) + ε < 0, where the last strict inequality follows256

from the definition of ε.257

Taking (12) into account, and since for all R ⊆ N \ Iθ
∗

, ω(R) is the maximum258

of differences v(M) − α(M), where M ⊆ R ∪ Iθ
∗

, it follows that ω(R) ∈ {0, ε}. To259

see ω(N \ Iθ
∗

) = ε just take R′ = N \ Iθ
∗

and Q = Iθ
∗

in its definition.260

Now take an element δ ∈ RN\Iθ∗

in the prekernel of the game (N \Iθ
∗

, ω), that

is δ ∈ PK(N \ Iθ
∗

, ω). By the monotonicity of the game (N \ Iθ
∗

, ω) and Theorem
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16 Josep Maria Izquierdo, Carles Rafels

5.6.1 in Peleg and Südholter (2007) it follows5 that

(a) δi ≥ 0, for all i ∈ N \ Iθ
∗

. (13)

(b) δi = 0, for all i ∈ N \
⋃

M∈Sθ∗

min(v)

M. (14)

To see (b), let i ∈ N \
⋃

M∈Sθ∗

min(v)

M and let R ⊆ N \ Iθ
∗

with i ∈ R. Let us check

that ω(R) − ω(R \ {i}) = 0. If ω(R) = 0, by the monotonicity of the game ω,

we are done. If ω(R) = ε, we know by (12) that ω(R) = v(M) − α(M), for some

coalitionM ∈ Sθ∗(v) or ω(R) = v(N)−α(N). In case ω(R) = v(M)−α(M) for some

M ∈ Sθ∗(v), we can take, in fact, M ∈ Sθ∗

min(v); in case ω(R) = v(N)−α(N), then

R = N \ Iθ
∗

and for any M ∈ Sθ∗

min(v) we have that ε = w(N \ Iθ
∗

) ≥ w(M \ Iθ
∗

) ≥

v(M)− α(M) = ε, where the first inequality follows from the monotonicity of the

game and the last equality by (12). Thus we conclude that, in any of both cases,

ω(R) = v(M)−α(M) withM ∈ Sθ∗

min(v). Now, since by hypothesis of case (b) player

i does not belong to any minimal coalition in Sθ∗

min(v), it followsM ⊆ (R\{i})∪Iθ
∗

and then we conclude that

ε ≥ ω(R \ {i}) = max

R′⊆R\{i}

Q⊆Iθ∗

{v(R′ ∪Q)− α(R′ ∪Q)} ≥ v(M)− α(M) = ε,

and we are done.261

Next define the vector x ∈ RN as follows:

xi =















αi + δi if i ∈ N \ Iθ
∗

αi if i ∈ Iθ
∗

.

5 We are using the fact that for any δ ∈ PK(N \ Iθ
∗

, ω) and for any i ∈ N \ Iθ
∗

,

min
R⊆N\Iθ

∗
:i∈R

{ω(R) − ω(R \ {i})} ≤ δi ≤ max
R⊆N\Iθ

∗
:i∈R

{ω(R) − ω(R \ {i})}.
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The core and the steady bargaining set for convex games 17

The vector x is efficient, x(N) = v(N), and individually rational in the original262

game (N, v), i.e. xi ≥ v({i}), for all i ∈ N . Only the case i = it∗ deserves some263

attention. Indeed, by (9), we have ℓθ
∗

it∗
(v) > mθ∗

it∗
(v) ≥ v({it∗}), where the last264

inequality comes by zero-monotonicity of the game (N, v). Therefore, xit∗ = αit∗ =265

ℓθ
∗

it∗
− ε ≥ v({it∗}). Thus, x is an imputation of the game (N, v).266

However, let us argue that x 6∈ C(N, v). As δ(N \ Iθ
∗

) = ε > 0, there must exist267

i ∈ N \ Iθ
∗

such that δi > 0. Moreover, there also must exist M ∈ Sθ∗

min(v) such268

that i 6∈ M (otherwise i ∈ Iθ
∗

). Hence, δ(M \ Iθ
∗

) < ε and thus v(M) − x(M) =269

v(M)− ℓθ
∗

(v)(M)+ε− δ(M \Iθ
∗

) > v(M)− ℓθ
∗

(v)(M) = 0, where the last equality270

comes from M ∈ Sθ∗

min(v). Hence, we obtain that v(M)−x(M) > 0 and we conclude271

x 6∈ C(N, v).272

At this point, it is also important to notice that273

for any M ⊆ N with v(M)− x(M) > 0, we have M ∈ Sθ∗(v). (15)

To see this, if M 6∈ Sθ∗(v) then, by (12), v(M)−α(M) ≤ 0. Hence, v(M)−x(M) =274

v(M)− α(M)− δ(M \ Iθ
∗

) ≤ 0, which involves a contradiction.275

We finally check that x is in the steady bargaining set of the game v. To this276

aim take S ⊆ N such that v(S) − x(S) > 0. We shall prove there exists M ⊆ N277

such that M \ S 6= ∅, S \M 6= ∅, S ∩M 6= ∅ and v(M)− x(M) ≥ v(S)− x(S).278

First, recall that S ∈ Sθ∗(v) (see (15)). Now, let S′ ∈ Sθ∗

min(v) with S′ ⊆ S such279

that280

v(S′)− x(S′) ≥ v(P )− x(P ), for all P ∈ Sθ∗

min(v) with P ⊆ S. (16)

Since v(S)− x(S) = v(S)− α(S)− δ(S \ Iθ
∗

) = v(S)− ℓθ
∗

(v)(S) + ε− δ(S \ Iθ
∗

) =281

ε− δ(S \ Iθ
∗

) > 0, we have δ(S \ Iθ
∗

) < ε. Therefore, there must exist j ∈ N \ Iθ
∗

,282
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18 Josep Maria Izquierdo, Carles Rafels

j 6∈ S with δj > 0. On the other hand, by Claim 1, let us select an arbitrary player283

i ∈ S′ \ Iθ
∗

; notice that i 6= j since j 6∈ S′ because S′ ⊆ S.284

Then, from (12) it follows that285

0 < v(S)− x(S) = v(S)− α(S)− δ(S \ Iθ
∗

) = ε− δ(S \ Iθ
∗

)

= v(S′)− α(S′)− δ(S \ Iθ
∗

)

≤ v(S′)− α(S′)− δ(S′ \ Iθ
∗

) = v(S′)− x(S′).

(17)

That is, the excess of coalition S ⊆ N at x is smaller than the excess of coalition286

S′ ⊆ S at x. Taking this fact into account we also have287

0 < v(S)− x(S) ≤ v(S′)− x(S′) = v(S′)− α(S′)− δ(S′ \ Iθ
∗

)

≤ ω(S′ \ Iθ
∗

)− δ(S′ \ Iθ
∗

)

≤ sωij(δ) = sωji(δ) = ω(R)− δ(R),

(18)

for some R ⊆ N \ Iθ
∗

such that j ∈ R but i 6∈ R. Finally,288

ω(R)− δ(R) = v(R′ ∪Q)− α(R′ ∪Q)− δ(R)

≤ v(R′ ∪Q)− α(R′ ∪Q)− δ(R′) = v(R′ ∪Q)− x(R′ ∪Q),

(19)

for some R′ ⊆ R and Q ⊆ Iθ
∗

. The coalition M = R′ ∪ Q is precisely the one we289

next use to prove that x is in the steady bargaining set of v. Notice that i 6∈ M290

since i 6∈ R ∪ Iθ
∗

.291

First, from (18) and (19), we can deduce that v(S) − x(S) ≤ v(M) − x(M).292

Furthermore, since v(M)− x(M) > 0 and v(S)− x(S) > 0, by (15), it follows that293

Iθ
∗

⊆ M ∩ S which implies M ∩ S 6= ∅. Moreover, i ∈ S \M since i ∈ S′ ⊆ S and294

i 6∈ R′ (since i 6∈ R) and i 6∈ Q ( since i 6∈ Iθ
∗

) .295

Finally, if j ∈ M then j ∈ M \ S and thus M \ S 6= ∅. If j 6∈ M , we still claim296

that M \S 6= ∅. To check it, let us suppose on the contrary that M ⊆ S and j 6∈M .297

Taking into account that δj > 0, j ∈ R and j 6∈M the non-strict inequality in (19)298
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The core and the steady bargaining set for convex games 19

becomes strict; that is ω(R)− δ(R) < v(M)−x(M) and thus, by (18) and (19), we299

obtain300

0 < v(S′)− x(S′) < v(M)− x(M). (20)

By (15), there exists M ′ ⊆M where M ′ ∈ Sθ∗

min(v). Therefore,301

v(M)−x(M) = ε−δ(M \Iθ
∗

) ≤ v(M ′)−α(M ′)−δ(M ′\Iθ
∗

) = v(M ′)−x(M ′). (21)

By (20) and (21) we conclude that v(S′) − x(S′) < v(M ′) − x(M ′) being M ′ ∈

Sθ∗

min(v) and M ′ ⊆ M ⊆ S. However, this contradicts (16) and we conclude that

M \ S 6= ∅. This last result proves that x is not in the core of v but in its steady

bargaining set, and the proof of this implication ends. ⊓⊔

As far as we know the conditions of zero-monotonicity and gran coalition su-302

peradditivity cannot be dropped from Theorem 1 out.303

Concerning the zero-monotonicity condition, next example proves its necessity.304

Let (N, v) be a four-player game where N = {1, 2,3, 4} and v(S) = 1, if |S| = 1,305

v(S) = 2, if |S| = 2 or |S| = 3 and v(N) = 4. It is easy to see that (N, v) is neither306

convex nor zero-monotonic, but C(N, v) = SB(N,v) = {(1,1, 1, 1)}.307

Grand coalition superadditivity is needed to guarantee that the steady bar-308

gaining set is nonempty. It remains an open question whether zero-monotonicity309

implies the nonemptiness of the steady bargaining set.310

As a consequence of Theorem 1 and the characterization result of Izquierdo311

and Rafels (2012) we get the following corollary.312

Corollary 1 Let v ∈ GN be a zero-monotonic and grand coalitional superadditive313

game. Then, the following statements are equivalent:314

1. Z∗(N, v) = C(N, v).315

2. v is a convex game.316

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65



20 Josep Maria Izquierdo, Carles Rafels

4 Conclusions317

Bargaining sets face the problem of distributing profits focusing on the negotiation318

(objections and counterobjections) between agents. Besides this, there are concepts319

of bargaining sets (e.g. Davis and Maschler (1963, 1967) or Shubik (1984)) that put320

the stress on the player who leads the objection. For these bargaining sets, there are321

examples of non-convex cooperative games for whom the core and the bargaining322

set do coincide (for instance, this is the case of average monotonic cooperative games323

(Izquierdo and Rafels, 2001), or assignment games (for the proof of this coincidence324

see Solymosi(2008)).325

In Izquierdo and Rafels (2012), it has been already shown that a modification326

of the Mas-Colell bargaining set (Shimomura 1997) has been useful to character-327

ize the convexitiy of a game This notion of bargaining set considers objections328

and counterobjections as proposals made by a group rather than an action led329

by an specific player. It is also important to remark that agents receive strictly330

better rewards in objections and counterobjections. Following this idea of group331

proposals and strictly positive incentives, we have proved in this paper that the332

modified Zhou bargaining set also characterizes convex games within the class of333

zero-monotonic and grand coalition superadditive games. The difference between334

both bargaining sets relies on the qualification of coalitions than might counter-335

object: while in the Mas-Colell version there are no restrictions on which are the336

coalitions T that are allowed to react to an objection made by a coalition S, the337

Zhou’s framework requires some conditions. First, there must be at least one player338

belonging to both coalitions; if not, S ∩ T = ∅, and the counterobjection might339

be interpreted as a different objection rather than a proper counter-objection.340
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The core and the steady bargaining set for convex games 21

Second, at least one player involved in the objection must not be involved in the341

counterobjection; if not, S ⊆ T , and the counterobjection might be interpreted342

as a reinforcement to the objection. Finally, the counterobjecting coalition must343

involved at least an agent not taking part in the objection; if not, T ⊆ S, but this344

fact might suggest that the original objection should be revised but not rejected.345

From the point of view of characterizing convex games, our result reveals that it346

is not so important if we just consider one, two, three or none of the above re-347

quirements for the counterobjecting coalitions. Objections and counter-objections348

made as a group and strictly positive incentives are the important keys to reach349

these results.350
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Appendix391

Proof of Claim 1.392

Let us recall that the claim is under the hypothesis C(N, v) = SB(N, v). Next,393

assume |Sθ∗

min(v)| = 1, say Sθ∗

min(v) = {S∗}, where θ∗ = (i1, i2, . . . , in). Then, we394
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The core and the steady bargaining set for convex games 23

shall prove that there exists x ∈ SB(N, v) but x 6∈ C(N, v), which contradicts the395

hypothesis of the coincidence of the core and the steady bargaining set. Along the396

proof of this claim we will analyze and prove several subclaims.397

Subclaim 1.1 The coalition S∗ is included in T ∗ = {i1, . . . , it∗}.398

Proof Let us suppose that there exists it′ ∈ S∗ with t′ ∈ {t∗+1, t∗+2, . . . , n}. Then,

define the vector x ∈ RN as xit∗ = ℓθ
∗

it∗
(v)− ε2, xit′ = ℓθ

∗

it′
(v)+ ε2 and xik = ℓθ

∗

ik
(v),

else, where

0 < ε2 < min

it∗∈M⊆N

ℓθ
∗

(v)(M)>v(M)

{ℓθ
∗

(v)(M)− v(M)}.

By (11), the parameter ε2 is well-defined. To end the proof, we show that x ∈

C(N, v) contradicting ℓθ
∗

(v) to be the lexmin core vector of v relative to θ∗. To see

this point, it is straightforward that x(N) = v(N). Moreover, if M ⊆ N , M 6= N ,

and it∗ 6∈ M then x(M) ≥ ℓθ
∗

(v)(M) ≥ v(M). If it∗ ∈ M and ℓθ
∗

(v)(M) > v(M),

then x(M) ≥ ℓθ
∗

(v)(M)− ε2 > ℓθ
∗

(v)(M)− (ℓθ
∗

(v)(M)− v(M)) = v(M). Finally, if

it∗ ∈M and ℓθ
∗

(v)(M) = v(M) thenM ∈ Sθ(v), and S∗ ⊆M since there is a unique

minimal coalition in Sθ∗(v). Thus it′ ∈M . Hence, x(M) = ℓθ
∗

(v)(M) ≥ v(M) and

x ∈ C(N, v), ending the proof of this subclaim. ⊓⊔

Subclaim 1.2 The number of players in T ∗ = {i1, . . . , it∗} is at least three, i.e. t∗ ≥399

3.400

Proof It is clear that if t∗ = 1 then T ∗ = {i1} and the unique minimal coalition

in Sθ∗(v) must be S∗ = {i1}. Then, by (9), ℓθ
∗

i1
(v) > mθ∗

i1
(v) = v({i1}) which

contradicts S∗ ∈ Sθ∗(v). Moreover if t∗ = 2 then T ∗ = {i1, i2}, ℓ
θ∗

i1
(v) = mθ∗

i1
(v) =

v({i1}) by (8), and ℓθ
∗

i2
(v) > mθ∗

i2
(v) = v({i1, i2})−v({i1}) ≥ v({i2}), where the last
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24 Josep Maria Izquierdo, Carles Rafels

inequality comes from zero-monotonicity. From this we deduce ℓθ
∗

i1
(v) + ℓθ

∗

i2
(v) >

v({i1, i2}), which contradicts the fact that the unique minimal coalition in Sθ∗(v)

must be a subset of T ∗ (see Subclaim 1.1.). ⊓⊔

Let us recall (see (10)) that any subgame (R, vR), with R ⊆ T ∗, R 6= T ∗, is a

convex game. Therefore, the maximal marginal contribution of player it∗ ∈ N to

any subcoalition6 Q  T ∗ \{it∗} is attained at a coalition containing t∗−2 players;

that is, without loss of generality

max
Q T∗\{it∗}

{v(Q ∪ {it∗})− v(Q)} = v({i1, i2, . . . , it∗−2, it∗})− v({i1, i2, . . . , it∗−2}).

Subclaim 1.3 ℓθ
∗

it∗
(v) = v({i1, i2, . . . , it∗−2, it∗})− v({i1, i2, . . . , it∗−2}).401

Proof First, by (8), if ℓθ
∗

it∗
(v) < v({i1, i2, . . . , it∗−2, it∗}) − v({i1, i2, . . . , it∗−2}) =

v({i1, i2, . . . , it∗−2, it∗})− ℓθ
∗

(v)({i1, i2, . . . , it∗−2}), then

ℓ
θ∗(v)({i1, i2, . . . , it∗−2, it∗}) < v({i1, i2, . . . , it∗−2, it∗}),

which contradicts ℓθ
∗

(v) ∈ C(N, v).402

On the other hand, if ℓθ
∗

it∗
(v) > v({i1, i2, . . . , it∗−2, it∗}) − v({i1, i2, . . . , it∗−2}),

then, since ℓθ
∗

(v) ∈ C(N, v),

ℓθ
∗

it∗
(v) > v({i1, i2, . . . , it∗−2, it∗})− v({i1, i2, . . . , it∗−2})

= max
Q T∗\{it∗}

{v(Q ∪ {it∗})− v(Q)} ≥ max
Q T∗\{it∗}

{v(Q ∪ {it∗})− ℓ
θ∗(v)(Q)}.

Thus, ℓθ
∗

(v)(Q ∪ {it∗}) > v(Q ∪ {it∗}), for all Q  {i1, i2, . . . , it∗−1}. However

adding this result to ( 11) we reach a contradiction with Subclaim 1.1. ⊓⊔

Next, let us define

J
θ∗ = {i ∈ T

∗ = {i1, i2, . . . , it∗} | ℓ
θ∗(v)(T ∗ \ {i}) = v(T ∗ \ {i})}.

6 The symbol  between two coalitions S  T means S ⊆ T and S 6= T .
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The core and the steady bargaining set for convex games 25

Notice that, by (8) (i), ℓθ
∗

(v)(T ∗ \ {it∗}) = mθ∗(v)(T ∗ \ {it∗}) = v(T ∗ \ {it∗}) and403

so it∗ ∈ Jθ∗ . Furthermore, by Subclaim 1.3 it follows that it∗−1 ∈ Jθ∗ and thus404

{it∗−1, it∗} ⊆ Jθ∗ . Therefore,405

|Jθ∗ | ≥ 2. (22)

Finally, by zero-monotonicity of the game v, it holds406

ℓ
θ∗

i (v) > v({i}), for all i ∈ J
θ∗
. (23)

To check this last point, notice that, by zero-monotonicity of v, if ℓθ
∗

i (v) = v({i})407

then ℓθ
∗

(v)(T ∗) = ℓθ
∗

i (v) + ℓθ
∗

(v)(T ∗ \ {i}) = v({i}) + v(T ∗ \ {i}) ≤ v(T ∗) which408

contradicts (11). Next, let us prove the following subclaim.409

Subclaim 1.4 For all S ⊆ T ∗ such that ℓθ
∗

(v)(S) = v(S), then Jθ∗ \ S 6= ∅.410

Proof Since it∗ ∈ Jθ∗ , the result is trivial if it∗ 6∈ S. If it∗ ∈ S, let κ ∈ {1, . . . , t∗−1}411

such that iκ 6∈ S and iκ+1, iκ+2, . . . , it∗ ∈ S. Notice that the index κ is well-defined412

since, by (11), we have S 6= T ∗. We next prove that iκ ∈ Jθ∗ \ S. To see this, first413

notice that414

v(T ∗ \ {iκ}) ≤ ℓθ
∗

(v)(T ∗ \ {iκ}) = ℓθ
∗

(v)(T ∗ \ (S ∪ {iκ})) + ℓθ
∗

(v)(S)

= mθ∗(v)(T ∗ \ (S ∪ {iκ})) + ℓθ
∗

(v)(S).

(24)

Notice that T ∗ \ (S ∪ {iκ}) ⊆ {i1, i2, . . . , i κ−1} and thus we describe T ∗ \ (S ∪

{iκ}) = {ir1 , ir2 , . . . , irm}, where r1 < r2 < · · · < rm < κ. Moreover, and for all

irj ∈ T ∗ \ (S ∪ {iκ}), let us denote by P θ∗

irj
= {i1, i2 , . . . , i(rj)−1} ⊆ N the set of

predecessors of player irj relative to the ordering

θ
∗ = (i1, i2, . . . , ir1 , . . . , ir2 , . . . , irj , . . . , iκ, iκ+1, . . . , in).
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26 Josep Maria Izquierdo, Carles Rafels

Then, we have

mθ∗(v)(T ∗ \ (S ∪ {iκ})) =
m
∑

j=1

m
θ∗

rj (v) =
m
∑

j=1

[v(P θ∗

irj
∪ {irj})− v(P θ∗

irj
)]

≤

m−1
∑

j=1

[v((P θ∗

irm
\ {irj , irj+1 , . . . , irm−1}) ∪ {irj })− v(P θ∗

irm
\ {irj , irj+1 , . . . , irm−1})]

+v(P θ∗

irm
∪ {irm})− v(P θ∗

irm
)

= v(P θ∗

irm
∪ {irm})− v(P θ∗

irm
\ {ir1 , ir2 , . . . , irm−1})

≤ v(P θ∗

irm
∪ {it∗} ∪ {irm})− v((P θ∗

irm
∪ {it∗}) \ {ir1 , ir2 , . . . , irm−1})

≤ v(T ∗ \ {iκ})− v(T ∗ \ {ir1 , ir2 , . . . , irm , iκ})

= v(T ∗ \ {iκ})− v(S),

where the first inequality follows from (2), the convexity of the subgame

(T ∗ \ {iκ}, vT∗\{iκ}) and the fact that, for all j = 1, . . . , m− 1, we have

P
θ∗

irj
⊆ P

θ∗

irm
\ {irj , irj+1 , . . . , irm−1},

the second inequality follows from the convexity of the subgame (T ∗\{iκ}, vT∗\{iκ}),415

and the third one by taking in (3) M = P θ∗

irm
∪ {it∗} ∪ {irm} and M ′ = T ∗ \416

{ir1 , ir2 , . . . , irm , iκ}. Therefore, we obtain that mθ∗(v)(T ∗ \ (S ∪ {iκ})) ≤ v(T ∗ \417

{iκ})− v(S). Using this inequality in (24) we obtain418

v(T ∗ \ {iκ}) ≤ ℓθ
∗

(v)(T ∗ \ {iκ}) ≤ mθ∗(v)(T ∗ \ (S ∪ {iκ})) + ℓθ
∗

(v)(S)

≤ v(T ∗ \ {iκ})− v(S) + ℓθ
∗

(v)(S) = v(T ∗ \ {iκ}).

Therefore, we conclude that v(T ∗ \ {iκ}) = ℓθ
∗

(v)(T ∗ \ {iκ}) which implies

iκ ∈ Jθ∗ \ S, as we want to prove. ⊓⊔

Once we have proved the above subclaims, let us define the vector β ∈ RN as419

βi =















ℓθ
∗

i (v)− ε3 if i ∈ Jθ∗

ℓθ
∗

i (v) if i ∈ N \ Jθ∗ ,
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The core and the steady bargaining set for convex games 27

where

0 < n · ε3 < min

M ⊆ N

ℓθ
∗

(v)(M) > v(M)

{ℓθ
∗

(v)(M)− v(M)}.

By (23),420

βi ≥ v({i}), for all i ∈ J
θ∗
. (25)

Hence, define the game (N \ T ∗, ω) as follows:421

ω(∅) = 0

ω(R) = max
Q⊆T∗

{v(R ∪Q)− β(R ∪Q)}, for all ∅ 6= R ⊆ N \ T ∗.

Let us remark that ω(R) ≤ |Jθ∗ | · ε3, for any ∅ 6= R ⊆ N \ T ∗. To check it,422

simply notice that ω(R) = v(R ∪ Q∗) − β(R ∪ Q∗) for some Q∗ ⊆ T ∗, and thus423

ω(R) = v(R ∪Q∗)− β(R ∪Q∗) = v(R ∪Q∗)− ℓθ
∗

(R ∪Q∗) + |Q∗ ∩ Jθ∗ | · ε3 ≤ |Q
∗ ∩424

Jθ∗ |·ε3 ≤ |J
θ∗ |·ε3. Moreover, for the case R = N \T ∗ we have ω(N \T ∗) = |Jθ∗ |·ε3,425

just by taking Q = T ∗ in its definition.426

Next, define the subset Y of vectors in RN\T∗ as follows:

Y = {α ∈ RN\T∗ | αi ≥ 0, for all i ∈ N \T ∗ and α(N \T ∗) = ω(N\T ∗) = |Jθ∗ |·ε3}.

Notice that Y is a non-empty and compact subset of the preimputation set I∗(N \427

T ∗, ω), and thus, by Schmeidler (1969), the kernel7 of the game (N \T ∗, ω) relative428

to Y is non-empty, i.e. K(N \ T ∗, ω, Y ) 6= ∅.429

7 Notice that the set Y is a non-empty box since it can be rewritten as

Y = {α ∈ RN\T∗ | 0 ≤ αi ≤ |J
θ
∗

| · ε3, for all i ∈ N \ T ∗, and α(N \ T ∗) = |Jθ
∗

| · ε3}.

.
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28 Josep Maria Izquierdo, Carles Rafels

Hence, select an element δ in the kernel of the game (N \ T ∗, ω) relative to Y ,430

i.e. δ ∈ K(N \ T ∗, ω, Y ), and define the vector x ∈ RN as follows:431

xi =































βi + δi = ℓθ
∗

i (v) + δi if i ∈ N \ T ∗

βi = ℓθ
∗

i (v) if i ∈ T ∗ \ Jθ∗

βi = ℓθ
∗

i (v)− ε3 if i ∈ Jθ∗ .

The vector x is an imputation of the game (N,v): clearly, x is efficient, x(N) =432

v(N); moreover, by definition of ε3 and (23), we have xi = ℓθ
∗

i (v) − ε3 ≥ v({i}),433

for all i ∈ Jθ∗ , xi = ℓθ
∗

i (v) ≥ v({i}), for all i ∈ T ∗ \ Jθ∗ and, since δi ≥ 0,434

xi = βi + δi = ℓθ
∗

i (v) + δi ≥ v({i}), for all i ∈ N \ T ∗.435

However, it is not in the core of the game (N,v) since x(T ∗\{it∗}) = ℓθ
∗

(v)(T ∗\436

{it∗})− (|Jθ∗ | − 1)ε3 = v(T ∗ \ {it∗})− (|Jθ∗ | − 1)ε3 < v(T ∗ \ {it∗}).437

We finally check that x is in the steady bargaining set of the game (N, v). To438

this aim take S ⊆ N such that v(S)−x(S) > 0. Notice that, since x ∈ I(N,v), then439

|S| ≥ 2. Furthermore, it holds that440

S ∩ J
θ∗ 6= ∅, (26)

since otherwise S ∩ Jθ∗ = ∅ and we would have

v(S)− x(S) = v(S)− β(S)− δ(S ∩ (N \ T ∗)) ≤ v(S)− β(S)

= v(S)− ℓθ
∗

(v)(S) ≤ 0,

reaching a contradiction with v(S) − x(S) > 0. Next, we shall prove there exists441

M ⊆ N such that M \S 6= ∅, S\M 6= ∅, S∩M 6= ∅ and v(M)−x(M) ≥ v(S)−x(S).442

We distinguish two cases.443

A: S ⊆ T ∗ = {i1, . . . , it∗}. By the way we have defined ε3, and being S ⊆ T ∗, let us

first see that ℓθ
∗

(v)(S) = v(S). To check it, let us suppose that ℓθ
∗

(v)(S) > v(S),
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The core and the steady bargaining set for convex games 29

then v(S)−x(S) = v(S)−ℓθ
∗

(v)(S)+ |S∩Jθ∗ | ·ε3 ≤ v(S)−ℓθ
∗

(v)(S)+n ·ε3 < 0,

which contradicts the hypothesis v(S)−x(S) > 0. Moreover, by (26), S∩Jθ∗ 6=

∅, and, by Subclaim 1.4, Jθ∗ \S 6= ∅. Let j ∈ Jθ∗ \ S and i ∈ Jθ∗ ∩S and take

M = T ∗ \ {i}. Notice that j ∈M \ S, i ∈ S \M and, since |S| ≥ 2, M ∩ S 6= ∅.

Furthermore, since i ∈ Jθ∗ we have ℓθ
∗

(v)(M) = v(M), and thus

v(M)− x(M) = v(M)− ℓθ
∗

(v)(M) + (|Jθ∗ | − 1) · ε3

= v(S)− ℓθ
∗

(v)(S) + (|Jθ∗ | − 1) · ε3 ≥ v(S)− x(S),

where the inequality follows since j ∈ Jθ∗ \ S.444

B: S∩(N \T ∗) 6= ∅. First let us remark that S∩(N \T ∗) 6= N \T ∗, or equivalently445

N \ (T ∗ ∪ S) 6= ∅; this holds since, otherwise, S ∩ (N \ T ∗) = N \ T ∗ and446

v(S)− x(S) = v(S)− β(S)− δ(N \ T ∗) = v(S)− β(S)− ω(N \ T ∗)

= v(S)− β(S)− |Jθ∗ | · ε3

= v(S)− ℓθ
∗

(v)(S) + |S ∩ Jθ∗ | · ε3 − |J
θ∗ | · ε3 ≤ 0,

(27)

reaching a contradiction.447

Hence, let i ∈ S ∩ (N \ T ∗) and select j ∈ (N \ T ∗) \ S = N \ (T ∗ ∪ S) such that448

s
ω
ji(δ) ≥ s

ω
ij(δ). (28)

Let us prove that such a player j exists. To check it, suppose that, given an

arbitrary k ∈ (N \ T ∗) \ S, we would have sωki(δ) < sωik(δ). Since δ ∈ K(N \

T ∗, ω, Y ) then we would have that either δk = 0 or δi = |J
θ∗ | ·ε3. However, δi =

|Jθ∗ | · ε3 is not possible since, by a similar reasoning as in (27), we would reach

a contradiction with v(S)− x(S) > 0. Therefore, we obtain that δk = 0. Since

k was chosen arbitrarily, we would conclude that δk = 0 for all k ∈ (N \ T ∗) \S
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30 Josep Maria Izquierdo, Carles Rafels

and thus

|Jθ∗ | · ε3 = ω(N \ T ∗) = δ(N \ T ∗) = δ((N \ T ∗) ∩ S).

But then,

v(S)− x(S) = v(S)− β(S)− δ(S ∩ (N \ T ∗))

= v(S)− ℓθ
∗

(v)(S) + |S ∩ Jθ∗ | · ε3 − |J
θ∗ | · ε3 ≤ v(S)− ℓθ

∗

(v)(S) ≤ 0,

getting a contradiction with v(S)− x(S) > 0.449

Now, by definition and taking agents i and j as in (28), we have

s
ω
ji(δ) = ω(R∗)−δ(R∗) = v(R∗∪Q∗)−β(R∗∪Q∗)−δ(R∗) = v(R∗∪Q∗)−x(R∗∪Q∗),

for some R∗ ⊆ N \ T ∗, with j ∈ R∗ but i 6∈ R∗, and some Q∗ ⊆ T ∗. Hence, by450

(28), it follows that451

v(R∗ ∪Q∗)− x(R∗ ∪Q∗) = sωji(δ) ≥ sωij(δ)

≥ ω(S ∩ (N \ T ∗))− δ(S ∩ (N \ T ∗))

≥ v(S)− x(S) > 0.

(29)

Notice that i ∈ S\(R∗∪Q∗) and j ∈ (R∗∪Q∗)\S. Furthermore, if S∩(R∗∪Q∗) 6=452

∅, then takeM = R∗∪Q∗ and we are done. Otherwise, in case S∩(R∗∪Q∗) = ∅453

we have, by (26), (R∗ ∪Q∗) ∩ Jθ∗ 6= ∅.454

Hence, since we are supposing S ∩ (R∗ ∪ Q∗) = ∅, (R∗ ∪ Q∗) ∩ Jθ∗ 6= ∅ and455

S ∩ Jθ∗ 6= ∅ (see (26)), we conclude that456

S ∩ J
θ∗  J

θ∗
. (30)

Therefore,

v(S)− x(S) = v(S)− β(S)− δ(S ∩ (N \ T ∗))

= v(S)− ℓθ
∗

(v)(S) + |S ∩ Jθ∗ | · ε3 − δ(S ∩ (N \ T ∗))

≤ v(S)− ℓθ
∗

(v)(S) + |S ∩ Jθ∗ | · ε3

≤ (|Jθ∗ | − 1) · ε3.

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65



The core and the steady bargaining set for convex games 31

Hence, it easily follows that457

v(S)− x(S) ≤ (|Jθ∗ | − 1) · ε3 = v(T ∗ \ {k})− x(T ∗ \ {k}) (31)

for all k ∈ Jθ∗ . Finally, by (26) and the fact that Jθ∗ ⊆ T ∗, we have S∩T ∗ 6= ∅.458

At this point we distinguish two cases:459

– B.1 If |S ∩ T ∗| = 1, i.e. S ∩ T ∗ = {i′}, then take M = T ∗ \ {k} where460

k ∈ Jθ∗ \ S (such a player exists since |Jθ∗ | ≥ 2, see (22)). In this subcase,461

i′ ∈ M ∩ S, M \ S 6= ∅, since by Subclaim 1.2, t∗ ≥ 3, and S \M 6= ∅, by462

the hypothesis of case B.463

– B.2 If |S∩T ∗| ≥ 2, then take M = T ∗ \{k} where k ∈ Jθ∗ ∩S (such a player464

exists by (26)). In this subcase, M ∩ S 6= ∅ since |S ∩ T ∗| ≥ 2 , M \ S 6= ∅465

since, by (30), S ∩ Jθ∗  Jθ∗ , and S \M 6= ∅, by the hypothesis of case B.466

In both cases B.1 and B.2, M = T ∗ \ {k}, for some k ∈ Jθ∗ . Thus, by (31), we467

are done.468

From both cases A and B, we have shown that x 6∈ C(N, v), but x ∈ SB(N, v),

getting a contradiction with the hypothesis C(N, v) = SB(N, v). ⊓⊔
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