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Abstract. In this paper we deal with the identification of dependencies between time series
of equity returns. Marginal distribution functions are assumed to be known, and a bivariate
chi-square test of fit is applied in a fully parametric copula approach. Several families of copulas
are fitted and compared with Spanish stock market data. The results show that the t-copula
generally outperforms other dependence structures, and highlight the difficulty in adjusting a
significant number of bivariate data series.
Keywords: Copulas, Daily equity returns, Bivariate chi-square statistic, Risk Management.

Resum. En aquest article tractem amb la identificació de dependències entre series temporal
de rendiments d’accions. Les distribucions marginals se suposen conegudes, i un test ji-quadrat
bivariant s’aplica dins d’un enfocament totalment paramètric. Diverses famı́lies de còpules són
ajustades i comparades amb dades de la Bolsa espanyola. Els resultats mostren que la t-còpula
generalment supera altres estructures de dependència, i destaca la dificultat d’ajustar un nombre
significant de sèries temporals bivariants.



1 Introduction

The distribution of daily equity returns is still a major problem in financial modelling. Kurtosis
and asymmetry are usually reported for the individual returns, whereas recent literature has
also highlighted the impact of the dependence between financial variables in the total risk of the
portfolio, see e.g., Longin & Solnik [21] and Ang & Chen [1].

Embrechts, McNeil & Straumann [8], proposed the application of copula functions in order
to model the multivariate distribution of returns. With a copula approach, the modelling of
asset returns can be split in two steps:

1. Modelling the marginal distributions.
2. Modelling the dependence structure between marginal distributions.

This approach introduces a wide flexibility in the modelling of equity returns since several
dependency structures can be generated via copula functions. Such a parameterization enables
to model asymmetric dependence structures with joint fat tails.

For simplicity reasons, in most applications the distribution of equity returns is assumed to
be a multivariate Gaussian distribution. This assumption generally leads to an underestimation
of the portfolio’s risk which can be avoided with alternative hypothesis with respect to the form
of the multivariate risk distribution. Models of hedging, asset pricing and portfolio selection
could also be improved with a better knowledge of the joint distribution of returns.

There are two important issues when trying to describe empirical data with a copula function.
First, copula parameters must be estimated. Secondly, the best fitting copula must be chosen
among the copulas available. In this context, some authors have applied statistical tests to
copula specifications. In Junker & May [18] a bivariate χ2 test is applied. However, as pointed
out by Klugman & Parsa [19], the critical values of the test are not valid since they consider
empirical distributions for the margins. Malavergne & Sornette [22] and Breymann, Dias &
Embrechts [2] also deal with the testing of copula specifications. Semiparametric approaches
have been proposed in Fermanian [10] and Chen, Fan & Patton [3], where tests based on the
kernel smoothing approach are developed. In Genest et al. [12] various goodness of fit tests
are proposed, but they are restricted to the arquimedean case. A recent paper similar in spirit
to ours is that of Hürlimann [15], who presents some copula fitting results for bivariate daily
cumulative returns between a market index and stocks. However, his analysis is restricted to
the class of arquimedean copulas and different marginal distributions are considered.

In this paper we present some testing results in a fully parametric copula approach. We
apply a bivariate chi-square test against some copula specifications, with marginal distributions
parametrically specified. Marginal distributions are allowed to exhibit skewness and kurtosis
since this kind of behaviour has been detected in the analyzed data. The chi-square test also
enables us to select the best fitting copula for each pair of time series and to compute the number
of pairs for which a copula model cannot be rejected.

The remainder of the paper is as follows. Section 2 briefly recalls some concepts about copu-
las. Section 3 describes the estimation methodology, whereas the chi-square testing procedure
is explained in Section 4. Section 5 presents the empirical results obtained on the bivariate
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testing of different copula functions. Data from the Spanish stock market has been used for the
analysis. Section 6 summarizes and concludes the paper.

2 Characterization of copulas

In this section we briefly recall some well known results on copula functions. A full treatment
of copulas and their properties can be found in Joe [17] and Nelsen [25].

A copula function is a multivariate distribution function defined on the unit cube [0, 1]d,
with uniformly distributed margins. Indeed, a function C : [0, 1]d → [0, 1] is a d -dimensional
copula if it satisfies the following properties:

1. For all ui ∈ [0, 1] , C (1, ..., 1, ui, 1, ..., 1) = ui.

2. For all u ∈ [0, 1]d , C (u1, .., ud) = 0 if at least one coordinate ui equals zero.

3. C is grounded and d-increasing, i.e., the C -measure of every box whose vertices lie in [0, 1]d

is non-negative.

The importance of the copula function relies on the fact that it captures the dependence
structure of a multivariate distribution as we will see next.

Let X = (X1, ..., Xd) ∈ Rd be a random vector with multivariate distribution

F (x1, ..., xd) = P (X1 ≤ x1, ..., Xd ≤ xd) , x = (x1, ..., xd) ∈ Rd

and continuous margins
Fn (xn) = P (Xn ≤ xn) , xn ∈ R.

According to Sklar’s theorem [28], there exists a unique copula C : [0, 1]d → [0, 1] of F such that
for all x in Rd,

F (x1, ..., xd) = P (X1 ≤ x1, ..., Xd ≤ xd)

= C (F1 (x1) , ..., Fd (xd)) .

In general, the copula is affected by some parameters called “copula parameters”, which are
represented by the vector θ = (θ1, ..., θk)

′ ∈ Rk. The transformations Xn → Fn (xn) used in
the above representation are usually referred to as the probability-integral transformations (to
uniformity) and form a standard tool in simulation methodology.

A fundamental conclusion of Sklar’s theorem is that in multivariate continuous distribution
functions the dependence structure and the margins can be separated, and the dependence
structure can be represented by a copula. In a financial context, this key property allows us to
fit the marginal distribution of each series of equity returns separately in a first step, and to
model the dependence structure between different equity returns in a second step.

An important property of copulas is that they are invariant under strictly increasing trans-
formations of the variables. Let X = (X1, ..., Xd) be a vector of continuous random variables
with copula C. If g1, ..., gd : R → R are strictly increasing on the range of X1, ..., Xd, then
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(g1 (X1) , ..., gd (Xd)) has copula C. This property implies that the dependence structure be-
tween the variables is captured by the copula, regardless of the margins.

Three fundamental functions related to copulas are

M (u1, ..., ud) = min (u1, ..., ud) ,

Π (u1, ..., ud) = u1 · · · ud,

W (u1, ..., ud) = max (u1 + ...+ ud − d+ 1, 0) .

These functions derive form the Fréchet-Hoeffding bounds, and as a consequence of Sklar’s
theorem, it can be proved that for any copula C (u1, ..., ud) ,

W (u1, ..., ud) ≤ C (u1, ..., ud) ≤M (u1, ..., ud) ,

i.e., any copula is constrained between the Fréchet-Hoeffding bounds.
The function M (u1, ..., ud) is called the Comonotonic copula and represents perfect positive

dependence between the variables, whereas the Π (u1, ..., ud) function is called the Product cop-
ula and represents independence between the variables. Unlike the two previously mentioned
functions, W (u1, ..., ud) is not a copula for d ≥ 3, although is the best possible lower bound
for d-copulas. For d = 2, W (u1, ..., ud) is called the Countermonotonic copula, and represents
perfect negative dependence between the variables.

Throughout the paper we shall consider several one-parameter and two-parameter copulas
to model bivariate daily equity returns. We now introduce the families of copulas that will be
employed in our empirical study. We use the notation C (u, v; θ), θ ∈ Θ to denote the bivariate
parametric families of copulas.

Normal copula. The most important copula in financial literature is the Normal copula. Let Φ
be the N(0, 1) cumulative distribution function with correlation ρ. The bivariate Normal copula
is defined by

C (u, v; ρ) =
∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π
√

1− ρ2
exp

(
−s

2 − 2ρst+ t2

2 (1− ρ2)

)
dsdt,

with −1 ≤ ρ ≤ 1.

T -copula. Another important copula in finance is the t-copula. It belongs to the same class of
copulas as the Normal copula (elliptical copulas), and add joint fat tails to the Normal copula.
It has been recommended by several authors as Mashal & Zeevi [23] and Breymann, Dias &
Embrechts [2].
Let tυ denote the univariate Student’s t cumulative distribution function with υ degrees of
freedom. The bivariate t-copula with υ degrees of freedom and correlation ρ is given by

C (u, v; ρ, υ) =
∫ t−1

υ (u)

−∞

∫ t−1
υ (v)

−∞

1

2π
√

1− ρ2

(
1 +

s2 − 2ρst+ t2

υ (1− ρ2)

)− (υ+2)
2

dsdt,

with −1 ≤ ρ ≤ 1, ν > 2.
Note that the Normal copula is a limiting case of the t-copula when υ →∞. For a detailed
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discussion on the t-copula consult Demarta & McNeil [6].

Another class of copulas, the arquimedean copulas, are also used in this paper. Unlike the
copulas presented so far, arquimedean copulas are not derived from multivariate distributions
using Sklar’s theorem. The bivariate arquimedean copulas are generated by

C (u, v) = ϕ[−1] (ϕ (u) + ϕ (v)) , (1)

where ϕ : [0, 1] → [0,∞] is a continuous and strictly decreasing convex function with ϕ (1) = 0,
and ϕ[−1] is the pseudo-inverse of ϕ, defined as

ϕ[−1] (t) =

{
ϕ(−1) (t) , 0 ≤ t ≤ ϕ (0)

0, ϕ (0) ≤ t ≤ ∞.

The function ϕ is called the generator of the copula.
From now onwards we reference the families of arquimedean copulas with numbers for the

sake of a subsequent empirical application, giving more references when possible. Fundamental
sources are Nelsen [25] for one-parameter families of copulas, and Joe [17] for two-parameter
families of copulas. From these sources we have selected the most appropriate copulas for
modelling equity returns.

Arq. family 1. This family is known as Frank family, and it is probably the one-parameter
arquimedean family of copulas most employed in finance. The Frank family is defined as

C (u, v;α) = − 1
α

ln
(

1 +
(exp (−αu)− 1) (exp (−αv)− 1)

exp (−α)− 1

)
, α ∈ R\ {0} .

Arq. family 2. This copula can be found in Nelsen [25] as family number 13, and it is given
by

C (u, v;α) = exp
(
1− ((1− lnu)α + (1− ln v)α − 1)

1
α

)
, α ∈ (0,∞) .

Arq. family 3. This copula can be found in Nelsen [25] as family number 17, and it is given
by

C (u, v;α) =

(
1 +

(
(1 + u)−α − 1

) (
(1 + v)−α − 1

)
2−α − 1

)− 1
α

− 1, α ∈ R\ {0} .

Arq. family 4. This two-parameter family of copulas is also known as the Clayton-Gumbel
family, and it is referenced in Joe [17] as family BB1.

C (u, v;α, δ) =
(

1 +
[(
u−α − 1

)δ +
(
v−α − 1

)δ] 1
δ

)− 1
α

, α > 0, δ ≥ 1.

Arq. family 5. This family can be found in Joe [17] as family BB3, and it is defined as

C (u, v;α, δ) = exp
(
−
[
δ−1 ln (exp (δ (− lnu)α) + exp (δ (− ln v)α)− 1)

] 1
α

)
,

with α ≥ 1, δ > 0,
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Arq. family 6. This family is referenced in Joe [17] as family BB7. It is also used in Patton [26]
with the name of Joe-Clayton copula, and it is given by

C (u, v;α, δ) = 1−
(

1−
[
(1− (1− u1)

α)−δ + (1− (1− v)α)−δ − 1
]− 1

δ

) 1
α

,

with α ≥ 1, δ > 0.

We also introduce a new family of bivariate two-parameter copulas. From ϕ (t) = ((1− ln t)α − 1)δ,
and by applying the definition of bivariate arquimedean copula, we can obtain a new family of
copulas that satisfies all conditions required for a function to be a copula. The generator is
obtained as a transformation of the generator in arquimedean family 2. The same procedure
is applied in Junker & May [18] for the Frank copula generator. This method will be useful to
analyze the effect of adding a new parameter into a pre-existing one-parameter copula.
Arq. family 7. This new family of aquimedean copulas is given by

C (u, v;α, δ) = exp

(
1−

[(
((1− lnu)α − 1)δ + ((1− ln v)α − 1)δ

) 1
δ + 1

] 1
α

)
,

with α ≥ 1, δ > 0.

The fitting of the nine families of copulas presented in this section will be compared for the
empirical results. In the next two sections, the estimation of the copula parameters and the
testing procedure will be detailed.

3 Copula calibration

The first step in order to calibrate the copula is to transform the data using the probability-
integral transformation. It can be done in different ways. A nonparametric approach can be
followed by computing the empirical cdf for the margins. In that case, the nth marginal cdf is
estimated by

F̂n (x) =
1

T + 1

T∑
t=1

1{Xtn≤x}, n = 1, ..., d

where Xtn is the t component of the nth data vector and T is the size of the random sample.
Note that the T + 1 term is needed to avoid points in the boundary of the unit cube, which
would cause the impossibility of estimate the copula parameters by maximum likelihood.

Another possibility is to find a parametric distribution which fits the univariate marginal
data. This method requires an appropriate distribution for each margin. For the case of equity
returns, the distribution of the margins is usually assumed to be Gaussian. However, this
generalization often leads to an incorrect specification of the parametric distribution, due to the
evidence of heavy tails and skewness showed by the returns. A general approach to estimate the
parameters of the margins is the method of maximum likelihood. Given the sample {Xt}T

t=1 we
set the log-likelihood function to be

L(γ;x) =
T∑

t=1

ln f(xt; γ).
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The maximum likelihood estimator is then the value of γ ∈ Θ maximizing L (γ;x), i.e.,

γ̂ML = arg maxL (γ;x) ,

where γ̂ML has the property of asymptotic normality (Davidson & Mackinnon [5]). For large
samples, and under certain regularity conditions, it can be shown that

√
T (γ̂ − γ)′ d−→ N

(
0, I−1 (θ)

)
,

where I−1 (θ) is the inverse of the information matrix whose ij -th element satisfies

Iij (γ) = E

[
− 1
n

∂

∂γi∂γj
L (γ;x)

]
.

It is important that the selected marginal distribution allows for skewness and excess kurtosis,
specially when dealing with high-frequency data. A correct selection of the margins is even
more important than a correct selection of the copula. Several functional forms of univariate
distributions suitable for modelling equity returns can be found in the appendix. Note that in
some distributions skewness has been introduced in the way of Fernández & Steel [11].

Once the margins have been transformed, they are embedded into the copula in order to
estimate the copula parameters. Given a random sample X = (Xt1, Xt2, . . . , Xtd)

T
t=1 , it is

common to calibrate the copula parameters by the method of maximum likelihood. Assuming
known margins, this approach implies the maximization of the function

Lc (θ) =
T∑

t=1

ln c (F1 (xt1; γ̂1) , . . . , Fd (xtd; γ̂d) ; θ) ,

where c (u1, ..., ud) is the copula density, which can be obtained from

c (u1, ..., ud) =
∂C (u1, . . . , ud)
∂u1 . . . ∂ud

.

The two-step procedure explained above is known as inference functions for the margins
(IFM) and exploits the basic idea of copulas, i.e., the separation between the margins and the
dependence structure. More details about this method are studied in McLeish & Small [24] and
Xu [30]. Let ψ̂ =

(
γ̂1, . . . , γ̂d, θ̂

)
be the row vector of parameters estimated by IFM. The IFM

method also verifies the property of asymptotic normality, which results (Joe [17])

√
T
(
ψ̂ − ψ

)′ d−→ N (0, V )

where V = D−1
g Mg

(
D−1

g

)′, with g (ψ) = (∂γ1L1, . . . , ∂γd
Ld, ∂θLc), Dg = E[∂g′ (ψ) /∂ψ] and

Mg = E[g (ψ)′ g (ψ)].
When the empirical distributions of the margins are used, the two-step procedure is called

canonical maximum likelihood method or CML. This method is similar to IFM, except on the
fact that the copula can be calibrated without specifying the margins. Once the data has been
transformed into uniform variates ût = (ûtt1, ..., ûtd)

T
t=1 using the empirical distribution, the
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estimation of the copula parameters implies the maximization of the function

L (θ) =
T∑

i=1

ln c (ût1, ..., ûtd; θ) .

Alternatively, the parameters of the margins and the parameters of the copula can be jointly
estimated. The likelihood would result

L (θ) =
T∑

t=1

ln c (F1 (xt1; γ1) , . . . , Fd (xtd; γd) ; θ) +
T∑

t=1

d∑
n=1

ln fn (xtn; γn)

However, this method could be high time-consuming in case of high dimensional distributions.

4 Testing procedure

In empirical applications, it is common to calibrate several copulas and to compare the results
obtained with one or more selection criteria. Different criteria have been proposed in the litera-
ture in order to select the best fitting copula, e.g., the AIC or by computing distances between
each considered copula and the empirical copula (Durrleman et al. [7]). However, those criteria
are not sufficient to accept a copula as representative enough. Since we are interested in compare
both elliptical and arquimeden copulas, and the aim of the paper is to validate different copula
specifications, we use a standard bivariate chi-square goodness of fit (GOF) test. The aim is to
test the null hypothesis

H0 : C (u, v) = C (u, v; θ) for a θ ∈ Θ,

i.e., the unknown copula C (u, v) is a member of the parametric family, against the alternative
hypothesis

HA : C (u, v) 6= C (u, v; θ) for a θ ∈ Θ,

i.e., the unknown copula C (u, v) is not a member of the parametric family.
We assume that observations are independent and identically distributed. Otherwise, the

chi-square test would not hold. This assumption is also made in Mashal & Zeevi [23], Malavergne
& Sornette [22] and implicitly in Hürlimann [15].

As we have seen in previous sections, there are different possibilities for modelling the uni-
variate marginal distributions. When a semiparametric approach is applied, transforming the
data with the empirical distribution function, the standard chi-square test won’t work . The
semiparametric approach has been studied in Fermanian [10] and Chen, Fan & Patton [3]. On
the other hand, if known margins are assumed using parametric models for the individual mar-
gins, the standard chi-square test will hold. However, each marginal distribution model must
be accepted, which requires some previous estimation and validation procedures.

In the sequel, let Aij =
[

i−1
r , i

r

]
×
[

j−1
s , j

s

]
⊂ [0, 1]2 , i = 1, ...r and j = 1, ..., s, be bins

of [0, 1]2, i.e., the y axis is divided into r equidistant parts and the x axis is divided into s

equidistant parts. Let Oij be the observed frequency for bin Aij , and let

Eij

(
θ̂
)

= npij

(
θ̂
)
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be the expected frequency for Aij , where

pij

(
θ̂
)

=
∫ ∫

Aij

dC
(
u, v; θ̂

)
.

The chi-square statistic is

χ2
(
θ̂
)

=
r∑

i=1

s∑
j=1

(
Oij − Eij

(
θ̂
))2

Eij

(
θ̂
) ,

where θ̂ is the vector of parameters estimated.
The test statistic follows, approximately, a chi-square distribution with (rs− 1− d) degrees

of freedom, where rs is the number of non-empty bins and d is the number of estimated para-
meters. The critical value will be the (1− α) quantile of the χ2

rs−1−d distribution, being the H0

rejected if χ2
(
θ̂
)
> χ2

(α,rs−1−d).

Note that for the chi-square approximation to be valid, the expected frequency should be at
least 5. Otherwise, the data must be regrouped so that Eij

(
θ̂
)
> 5 ∀i, j.

5 Numerical Results

In this section we consider daily equity returns for 16 companies of the Spanish stock market
from 1/2/1997 to 11/11/20041. The time period practically covers a whole economic cycle. The
selected companies are “large caps” within the Spanish stock market, which ensures that the
analysis is not affected by liquidity problems. A significant dependence between equity returns
is expected by the effect of cross participations, investment strategies as index tracking and the
simple fact that some companies belong to the same economic sector.

Our analysis is restricted to the bivariate case. An accurate bivariate distribution of returns
is specially important in order to compute prices of exotic options (Cherubini & Luciano [4])
and risk measures (Junker & May [18]). Although we have selected “large caps”, similar analysis
could be extended, e.g., to indices (Hu [16]), exchange rates (Patton [27]) or “small caps”.

Let S = (St1, St2, ..., Std)
T
t=0 be the time-series of adjusted equity prices. The returns are

defined as
Xtn = ln

(
Stn

St−1n

)
, n = 1, 2, ..., d, t = 1, ..., T,

where d represents the number of equities, T the number of trading days, and being the vector
Xt = (Xt1, ..., Xtd) the corresponding to the t’th day.

The data yields 1968 observations of daily returns for each equity. Generally, the data
exhibits positive skewness and excess kurtosis, which provokes the “fat tails” effect, rejecting
the usually assumption of normal distribution of returns. Prior to the calibration and selection
of the copula models it seems essential to test the data for independence. A standard procedure,
based on Kendall’s tau, requires to compute the statistic ξT = 3

√
T |τT |/2. The null hypothesis

of independence should be rejected if ξT > Φ−1(0.975) = 1.96, where τT is Kendall’s tau statistic
1The 16 equities selected are: Abertis, Acciona, Acerinox, ACS, Aguas de Barcelona, Altadis, Banco Popular,

Bankinter, BBVA, Corp. Alba, Endesa, FCC, NH Hoteles, Repsol, Santander, and Telefónica.
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and T the sample size, which must be large enough. When computing the statistic with our
data, ξT ranges from 5.2533 to 66.5432, which implies that the null hypothesis of independence
is clearly rejected for every data pair. If the null hypothesis of independence was accepted,
the product copula could be a good model to represent the dependence structure between the
variables. In any case, as some families of copulas include the product copula as special case2,
the acceptance of the null hypothesis would not deeply affect our analysis. More detailed tests
of independence related to copulas can be found in Genest & Rémillard [13].

The testing methodology proceeds as follows:

1. Fitting the univariate marginal distribution of each series of equity returns by maximum
likelihood estimation. The distributions considered, all of which accept for skewness, have
been collected in the appendix. Among the different tested distributions, we select the
one that best fits the data. The selection criterion is the higher log-likelihood value. Note
that once a distribution has been estimated and selected, it must be accepted in order to
employ the standard chi-square test. In our analysis a K-S test was applied, and all the
selected marginal distributions were accepted for a significance level α = 0.05.

2. Transform each data vector into uniform variates using the probability-integral transfor-
mation.

3. For each pair of transformed data vectors, plug the data into a family of copulas and
estimate the copula parameters by maximum likelihood as described in section 3. Repeat
this procedure with all the families of copulas considered.

4. Apply the bivariate chi-square test of goodness of fit described in section 4 for each family
of copulas estimated.

All the results were obtained using Matlab software. The results of the univariate marginal
fitting are reported in Table 1. The values of the log-likelihood at the optimum are compared
in order to select the best fitting marginal distribution (higher values are highlighted in bold
fonts). The SGED distribution is the most selected, followed by the skewed t-location scale
distribution. The skewed laplace also performs quite well for high-frequency data, as noted in
Linden [20]. The worst performance is obtained by the skewed cauchy, which has only been used
for the sake of a comparison.

The combinatory of the data vectors yields 120 pairs. Each pair is fitted with all the nine
copulas described in section 2. Then, the bivariate chi-square GOF test is applied to each copula
estimated. For every test, the unit square [0, 1]2 is divided into bins of equal area, being r = s,

and rearranging bins when needed. As the analysis is quite sensitive to the selection of the
number of bins, the results are reported for different choices of r and s. In tables 2, 3 and 4
we examine the goodness of fit of the different copula models. Table 2 shows the percentage of
rejection for each family of copulas given a significance level α = 0.1, table 3 given a significance
level of α = 0.05, and finally, table 4 given α = 0.01.

2In our analysis, all the families of copulas except the arquimedean family number 6.

9



Table 1: Log-likelihood values at the optimum

Skewed Kappa Skewed Skewed Skewed SGED
T-Loc Logistic Cauchy Laplace

Abertis 5432.7 5425.6 5423.6 5242.4 5437.2 5441.7
Acciona 5171.9 5117.7 5114.5 5031.5 5171.2 5177.4
Acerinox 4819.7 4815.2 4812.2 4610.9 4812.2 4820.9
ACS 4970.6 4956.2 4955.5 4779.1 4971.5 4973.1
Aguas Bar. 5307.5 5258.8 5296.9 5103.9 5301.9 5309.1
Altadis 5017.9 5008.8 5009.5 4796.7 4996.7 5010.1
B. Popular 5209.7 5201.2 5200.8 5001.1 5201.6 5210.3
Bankinter 4990.3 4961.9 4960 4826.2 4994.2 4995.1
BBVA 4758 4733.4 4731.6 4570.7 4746.1 4748.4
Corp. Alba 5038.6 5032.7 5031.1 4581.2 5048.3 5051.7
Endesa 5177.6 5172.8 5171.1 4973.8 5171.2 5180.3
FCC 4954.7 4952.7 4949.3 4763.2 4963.1 4969.1
NH Hoteles 4894.2 4853.7 4852.3 4729.1 4887.4 4887
Repsol 5244.4 5235.1 5231.8 5041 5235.6 5241.9
Santander 4675.2 4658.9 4655.9 4487.6 4668.4 4671.6
Telefónica 4652.4 4654.4 4652.4 4420.9 4651.6 4655.2

As it was expected, two-parameter copulas fit better than one-parameter copulas. In par-
ticular, note the considerable improvement of arquimedean family 2 when it is extended with a
new parameter (case of arquimedean familiy 7). The Normal copula, our benchmark due to its
relevance in the financial world, is highly rejected. This result contradicts those of Malaverge
& Sornette [13] and Chen, Fan & Patton [4] for the bivariate case. If we attend to the best
fitting copula, the t-copula is clearly the one that fits better, although it is rejected nearly 30%
of the times at α = 0.05. Other two-parameter families don’t achieve the degree of fitting of
the t-copula. However, nearly 50% of the data pairs can be well represented with these families
at α = 0.05. These results highlight the difficulty in fitting the bivariate distribution of daily
equity returns.

The chi-square GOF test can also be used as a criterion for choosing a copula to represent the
sample data. Generally, the lower the chi-square statistic, the better the copula represents the
data. However, in this case we compare statistics distributed with different degrees of freedom.
In order to select the best fitting copula, we compare the p-value of the contrasts. For each pair
of data vectors we compare the fitting of the nine copulas, and the selected will be that with
higher p-value. Table 5 summarizes the number of times a copula has been selected according
to this criterion.

The t-copula is the most selected one. Although other bivariate copulas have been selected,
the t-copula clearly outperforms other copula specifications. Items for future research are the
extensions of these results to the multivariate case.

The overall results suggest that the t-copula provides good accuracy for the bivariate case,
which had been previously reported in the literature. However, an interesting result is obtained
when considering the number of pairs that could be accepted given all nine considered copulas.
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Table 2: % of rejections for α = 0.1

Fam. r=s=8 r=s=10 r=s=12 r=s=14 r=s=16
Normal 90.00 89.17 84.17 79.17 88.33

T-Copula 45.00 50.83 45.00 44.17 53.33
Arq. 1 91.67 91.67 81.67 87.50 95.83
Arq. 2 80.83 93.33 85.00 89.17 96.67
Arq. 3 90.83 90.00 80.00 80.83 94.17
Arq. 4 67.50 60.00 55.00 53.33 59.17
Arq. 5 67.50 60.83 55.83 55.83 61.67
Arq. 6 70.00 66.67 59.17 56.67 60.00
Arq. 7 72.50 72.50 62.50 60.00 68.33

Table 3: % of rejections for α = 0.05

Fam. r=s=8 r=s=10 r=s=12 r=s=14 r=s=16
Normal 82.50 84.17 75.00 67.50 81.67

T-Copula 28.33 33.33 31.67 31.67 40.83
Arq. 1 86.67 84.17 77.50 77.50 88.33
Arq. 2 73.33 89.17 80.00 79.17 90.00
Arq. 3 84.17 82.50 74.17 75.00 81.67
Arq. 4 49.17 50.83 45.83 46.67 51.67
Arq. 5 53.33 50.83 45.83 48.33 54.17
Arq. 6 55.83 52.50 47.50 48.33 54.17
Arq. 7 66.67 60.38 51.67 52.50 57.50

That result is a crucial result when trying to explore the possibilities of copulas for modelling
equity returns. With our data, we found that in the 57.50% of the pairs, the H0 could not be
rejected at a significance level α = 0.1, the 76.67% at a significance level of α = 0.05 and the
90.83% at a significance level of α = 0.01. This means that given a significance level of 5%, in
the 23.33% of the pairs none of the nine copula specifications could be accepted. The extreme
behaviour of these pairs requires further research in this area.

6 Conclusions

In this paper we have analyzed different models of dependence structures for equity returns
within a copula approach. The bivariate distribution of time series has been tested with Spanish
stock market data. A total of nine copulas have been fitted and compared. Using a fully
parametric chi-square test of fit, we have found statistical evidence against the Normal copula,
and a better performance for the t-copula. According to this test procedure, a significant number
of data pairs could not be fitted properly, which shows the need of further research in order to
generate more flexible distribution functions for the financial modelling.

New solvency regulations and the fast growth of multivariate instruments have turned out
this problem into a crucial issue. The knowledge of the multivariate joint distribution function,
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Table 4: % of rejections for α = 0.01

Fam. r=s=8 r=s=10 r=s=12 r=s=14 r=s=16
Normal 65.83 64.17 56.67 50.00 50.83

T-Copula 9.17 16.67 18.33 10.00 16.67
Arq. 1 68.33 74.17 61.67 63.33 68.33
Arq. 2 42.50 76.67 64.17 65.00 71.67
Arq. 3 65.00 66.67 53.33 55.83 57.50
Arq. 4 25.83 27.50 25.83 23.33 21.67
Arq. 5 27.50 29.17 26.67 24.17 25.00
Arq. 6 30.00 29.17 28.33 24.17 25.83
Arq. 7 37.5 39.17 36.67 30.38 32.50

Table 5: Number of times a copula has been selected

Fam. r=s=8 r=s=10 r=s=12 r=s=14 r=s=16
Normal 0 0 0 0 0

T-Copula 93 92 94 86 73
Arq. 1 0 0 0 0 0
Arq. 2 1 0 0 0 0
Arq. 3 0 0 0 0 0
Arq. 4 9 12 10 9 16
Arq. 5 5 6 5 10 11
Arq. 6 6 4 5 4 8
Arq. 7 6 6 6 11 12

and the dynamic dependence structure of equity returns over time keep as an important line of
future research.
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Appendix
The appendix collects some functional forms of the distributions used in the univariate

marginal fitting. Skewness has been allowed in some distributions introducing inverse scale
factors in the positive and the negative orthand. This approach was introduced in Fernández
and Steel [11].

The cdf will be denoted by F, and the pdf by f.
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a. Skewed logistic:

f(x) =
2

γ + γ−1

(
g

(
x

γ

)
I[0,∞] + g (xγ) I(−∞,0)

)
, where

g (x) =
exp

(x−µ
σ

)
σ
(
1 + exp

(x−µ
σ

))2 , σ > 0.

b. Skewed t-location scale

f(x) =
2

γ + γ−1

(
g

(
x

γ

)
I[0,∞] + g (xγ) I(−∞,0)

)
, where

g (x) =
Γ
(

υ+1
2

)
σ
√
υπΓ

(
υ
2

) [ν +
(x−µ

σ

)2
υ

]−( ν+1
2 )

, σ > 0, ν > 0.

c. Four-parameter Kappa from Hosking [14]

F (x) =
(
1− h [1− k (x− ξ) /α]

1
k

) 1
h
,

f (x) = α−1 (1− k (x− ξ) /α)
1
k
−1 [F (x)]1−h , α > 0.

d. Skewed Cauchy

f (x) =
2

γ + γ−1

(
g

(
x

γ

)
I[0,∞] + g (xγ) I(−∞,0)

)
, where

g (x) =
1
π

1
λ2 + (x− α)2

, λ > 0.

e. Skewed Laplace. More details about this distribution can be found in Linden [20].

f (x) =

{
b1
2 exp (−b1|x− µ|) x > 0

b2
2 exp (−b2|x− µ|) x ≤ 0,

with b1, b2 > 0.

f. Skewed Generalized Error Distribution (SGED). Introduced in Theodossiou [29], it is an
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asymmetric version of the generalized error distribution.

f (x) =
C

σ
exp

(
− 1

[1− sign (x− µ+ δσ)λ]k θkσk
|x− µ+ δσ|k

)
,

σ > 0, k > 0, − 1 < λ < 1, where

C =
k

2θ
Γ
(

1
k

)−1

,

θ = Γ
(

1
k

) 1
2

Γ
(

3
k

)− 1
2

S (λ)−1 ,

δ = 2λAS (λ)−1 , with

S (λ) =
√

1 + 3λ2 − 4A2λ2,

A = Γ
(

2
k

)
Γ
(

1
k

)− 1
2

Γ
(

3
k

)− 1
2

.
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