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ABSTRACT

BACKGROUND AND AIMS: Agents that induce an immune response against tumors by
altering T-cell regulation have increased survival times of patients with advanced-stage tumors,
such as melanoma or lung cancer. We aimed to characterize molecular features of immune
cells that infiltrate hepatocellular carcinomas (HCCs) to determine whether these types of
agents might be effective against liver tumors.

METHODS: We analyzed HCC samples from 956 patients. We separated gene expression
profiles from tumor, stromal, and immune cells using a non-negative matrix factorization
algorithm. We then analyzed the gene expression pattern of inflammatory cells in HCC tumors
samples. We correlated expression patterns with the presence of immune cell infilirates and
immune regulatory molecules, determined by pathology and immunohistochemical analyses, in
a training set of 228 HCC samples. We validated the correlation in a validation set of 728 tumor
samples. Using data from 190 tumors in the Cancer Genome Atlas, we correlated immune cell
gene expression profiles with numbers of chromosomal aberrations (based on single-nucleotide
polymorphism array) and mutations (exome sequence data).

RESULTS: We found approximately 25% of HCCs to have markers of an inflammatory
response, with high expression levels of the CD274 molecule (PD-L1) and programmed cell
death 1 (PD-1), markers of cytolytic activity, and fewer chromosomal aberrations. We called this
group of tumors the Immune class. It contained 2 subtypes, characterized by markers of an
adaptive T-cell response or exhausted immune response. The exhausted immune response
subclass expressed many genes regulated by transforming growth factor beta 1 (TGFB) that
mediate immunosuppression. We did not observe any differences in numbers of mutations or
expression of tumor antigens between the immune-specific class and other HCCs.
CONCLUSIONS: In an analysis of HCC samples from 956 patients, we found almost 25% to
express markers of an inflammatory response. We identified 2 subclasses, characterized by

adaptive or exhausted immune responses. These findings indicate that some HCCs might be
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susceptible to therapeutic agents designed to block the regulatory pathways in T cells, such as

PD-L1, PD-1, or TGFB inhibitors.

SHORT SUMMARY: The study defines the ~25% population with molecular characteristics -
including high infiltration of immune cells, expression of PD-1 and CD274 molecule (PD-L1),
and active IFN-y signaling - that highly resemble those of cancers most responsive to

immunotherapy.

KEYWORDS: immune checkpoint; virtual microdissection; molecular subgroups; immune

regulation
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INTRODUCTION

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality
worldwide. The number of HCC deaths (approximately 800,000 per year) overlap with that of
new cases, a testament to its high lethality" 2. This malignancy often occurs in the setting of
chronic inflammatory liver disease (e.g., cirrhosis) and is associated with well-defined risk
factors such as hepatitis B virus (HBV), hepatitis C virus (HCV), alcohol abuse, metabolic
syndrome and diabetes?. Over the past decade, major advancements have elucidated the
molecular pathogenesis of HCC? 3, and yet, current therapeutic options remain very limited.
Only a minority of HCC patients are diagnosed at early stages when curative approaches, such
as surgical resection, transplantation or local ablation, are effective?. In patients at advanced
stages, the only systemic therapies that increase survival are the multi-tyrosine kinase inhibitors
sorafenib (first line)* and regorafenib (second line)°. Nonetheless, even with the survival benefits
provided by these agents, the median life expectancy is of less than 2 years. Therefore, there is

a clear need to expand the therapeutic arsenal for advanced HCC.

In recent years, immune checkpoint inhibitors, which unleash the body’s own immune response
to attack tumors by targeting regulatory pathways in T cells, have shown remarkable efficacy in
different solid cancers; this has led to the Food and Drug Administration (FDA) approval of 4
immune-based compounds for the treatment of advanced stage malignancies such as
melanoma or lung cancer (i.e., ipilimumab, nivolumab, pembrolizumab, and atezolimumab).
These agents include monoclonal antibodies directed against the cytotoxic T-lymphocyte protein
4 (CTLA-4), the programmed cell death protein 1 (PD-1) and its ligand PD-L18. Intriguingly, not
all patients have the same likelihood of responding to these regimens’. High expression of PD-
L1 is currently under investigation as a potential predictor of response to anti-PD1 therapy®'°.
Emerging experimental data indicate that the presence of a pre-existing intra-tumoral T cell

infiltration, interferon (IFN) signaling, checkpoint molecules (PD-1, PD-L1 expression) or high
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tumor mutational burden could favor a clinical response''3. Conversely, tumor-intrinsic active
3-catenin (CTNNB1) signaling may result in T cell exclusion and resistance to anti-PD-L1 and
anti-CTLA4 antibodies™. In HCC, promising responses have been recently reported with
nivolumab, a monoclonal antibody directed against PD-1, in a phase /Il trial™. Unfortunately,
litle is known about the immunological profile of HCC tumors and how to leverage this

information to maximize response to immune-based therapies.

HCCs comprise a mixture of cell types, including malignant hepatocytes, immune cells and
endothelial cells dispersed within the extracellular matrix and supporting stroma. Previous
studies have established a set of analytical approaches to virtually dissect the molecular signals
deriving from these distinct compartments'® 7. Using non-negative matrix factorization (NMF),
we have deconvoluted the gene expression data of 956 human HCC samples and isolated the
signal released from the inflammatory infiltrates to characterize the immunological landscape of
HCC. This has allowed us to identify an immune-specific class of HCC with specific biological
traits. Key features of this class include actual presence and activation of immune cells,
enhanced cytolytic activity, protein expression of PD-1 and PD-L1, and enrichment of gene
signatures predictive of response to immunotherapies. Further dissection of this class has
revealed two robust microenvironment-based types with either active or exhausted immune
activity.These findings provide a comprehensive understanding of the immunological milieu of

HCC and deserve further investigation in HCC patients treated with immunotherapy.
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MATERIALS AND METHODS

Patients and samples

For the purpose of the study, gene expression profile from a total of 956 HCC human samples
was analyzed (Flow chart, Figure 1), including a training cohort of 228 surgically resected fresh
frozen (FF) samples (Heptromic dataset, GSE63898). All samples of the training set were
previously obtained from two institutions of the HCC Genomic Consortium upon IRB approval:
IRCCS Istituto Nazionale Tumori (Milan, Italy) and Hospital Clinic (Barcelona, Spain). RNA
profiling and methylation data were available for all 228 HCC samples and 168 non-tumor liver
adjacent cirrhotic tissues and are published elsewhere™. Additional 728 HCC samples of
patients with mixed etiology from 7 independent datasets were used for external validation

(Figure 1, Supplementary Table 1).

Statistical analysis

All analyses were performed using SPSS software version 22. Correlations between molecular
classes, histological markers and clinico-pathological variables were analyzed by Fisher's exact
test and Wilcoxon rank-sum test for categorical and continuous data, respectively. All signatures

used in the study were previously reported (Supplementary Table 2).

Additional detailed protocols are provided in the Supplementary Materials and Methods.

10
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RESULTS

A novel Immune class of HCC

In order to isolate immune-related genomic signals from bulk gene expression data in HCC
tumors, we performed NMF analysis of 228 resected HCC samples (training cohort, Figure 1).
Clinical characteristics of the training cohort are summarized in Table 1. Among the distinct
expression patterns identified by NMF, one was attributed to the presence of inflammatory
response and immune cells through integration with a previously reported immune enrichment
score (Supplementary Figure 1A). Analysis of the top-ranked genes (named exemplar genes)
that defined this expression pattern further confirmed immune-related functions and signaling
(Supplementary Figure 1B). Consensus clustering on exemplar genes (Supplementary
Figure 2) identified a new molecular subgroup accounting for 24% of the cohort (55/228),
referred herein as ‘Immune class’ (Figure 2A). Patients belonging to the Immune class showed
significant enrichment of signatures identifying immune cells [i.e. T cells, cytotox, tertiary
lymphoid structures (TLS), and macrophages (p<0.001)], immune metagenes, IFN gene
signatures predictive of response to pembrolizumab in melanoma (28-genes, p<0.001) and
head and neck squamous cell carcinoma (6-genes , p<0.001), and PD-1 signaling (36/55 vs
19/173, p<0.001) (Figure 2A). Class comparison between the Immune class and remaining
samples identified 112 genes significantly deregulated (Immune Classifier), including 108 over-
expressed immune-related genes such as T cell receptor components and chemo-attractants
for Natural Killer (NK) and T cells (CCL5, CXCL9 and CXCL10, p<0.001, Supplementary Table
3). Similarly, GSEA identified enrichment of IFN alfa and gamma signaling, inflammatory
response (i.e. lymphocyte activation, T helper 1- cytotoxic module, NK-mediated toxicity, etc.),
TGF-B and JAK/STAT signaling (FDR<0.001, Supplementary Figure 3 and Supplementary
Table 4).

We next sought to integrate the Immune class with previously reported HCC molecular

classifications. This revealed an enrichment of the IFN-related (18/55 vs 12/173, p=0.0001) and

11



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

S1 classes (TGF-B/WNT activation) (32/55 vs 15/173, p=0.0001), as well as a significant
exclusion of S2 (2/55 vs 46/173, p=0.0001) and CTNNB1 classes (8/55 vs 59/173, p<0.001,
Figure 2A). All together, these data suggest that we successfully identified an immune-related
class of HCC enriched with signatures capturing the presence of immune cells, signatures of

response to immune checkpoint therapy and IFN signaling.

Immune class immunophenotype shows enrichment of PD-1/PD-L1 signaling

We performed immunophenotyping to gain further biological insight into the immunological
nature of the Immune class. As predicted, patients belonging to this class had significantly
higher rates of immune cell infiltration (11/49 vs 14/167, p=0.01, Figure 2A-B) and density of
TLS (= 5 foci, 19/51 vs 34/170, p=0.01, Figure 2A and Supplementary Figure 4A) as revealed
by the examination of hematoxylin and eosin-stained sections. We then assessed PD-1 and PD-
L1 protein expression by immunohistochemistry in a subset of samples of the training cohort (48
within the Immune class and 51 outside, Figure 2B and Supplementary Figure 4B). Overall,
PD-L1 tumoral expression was observed in 16% (16/99) of HCC in accordance with recent
reports'®. PD-1 protein expression was observed in 10% of the cohort (10/99), but no significant
correlation was found between high PD-1 and PD-L1 expression, likely due to the small sample
size. Nonetheless, tumors with high PD-1 (8/48 within the Immune class vs 2/51 in the rest,
p=0.04) and PD-L1 (12/48 within in the Immune class vs 4/51 in the rest, p=0.03) protein
expression were significantly enriched in the Immune class. No difference was observed
between the Immune class and the rest of the cohort in terms of other clinico-pathological
variables (data not shown, p>0.05). In summary, pathological examination revealed that
patients belonging to the Immune class showed a high degree of immune infiltration, higher
immunohistochemical expression of PD-1/PD-L1, and presence of TLS. These data underscore
the performance of the Immune Classifier to capture molecular signals deriving from infiltrating

immune cells in HCC.

12
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The Immune class captures two distinct components of the tumor microenvironment:
active and exhausted subtypes

The immune system can exert both anti- and pro-tumor activities. Indeed, cross-talk between
cancer cells and the tumor microenvironment triggers immune responses which favor cancer
progression by supplying growth factors that sustain proliferation and facilitate epithelial-
mesenchymal transition (EMT), invasion, and metastasis?®°. To further explore this concept in
HCC, we analyzed the type of immune modulation occurring in response to the tumor
microenvironment in patients within the Immune class. As depicted in Figure 3, 33% of the
Immune class (18/55) was characterized by “activated stroma” whereas the remaining patients
(37/55, 67%) showed lack of such activation, as predicted by nearest template prediction (NTP)
analysis using a previously published molecular signature that captures activated inflammatory
stromal response. Interestingly, patients with normal or non-active stroma (37/55, 67%) showed
significant enrichment of T cells and IFN signatures, including overexpression of adaptive
immune response genes (i.e. T Cells receptor G, CD8A, IFN-Y, GZMB, etc.) and IFN signatures
predictive of response to pembrolizumab (p<0.001). Thus, we named this cluster Active Immune
Response. Conversely, the presence of activated stroma was significantly associated with a T
cell exhaustion signature (10/18 vs 4/37, p<0.001), and with immunosuppressive components,
such as TGF-B signaling and M2 macrophages (8/18 vs 1/37, p=0.0003). In particular, over-
expression of TGF-B -1 and -3 along with enrichment of several signatures reflecting activation
of TGF-R pathway, such as late TGF-R signature (9/18 vs 6/37, p=0.02), S1/TGF- signature
(16/18 vs 16/37, p=0.001), WNT/TGF-R signaling (15/18 vs 12/37, p<0.001), and TGF-beta
response signatures (TBRS) of Fibroblasts (F-TBRS) (9/18 vs 6/37, p=0.02) and T-Cells (T-
TBRS) (10/18 vs 9/37, p=0.03), were observed in this subgroup (Figure 3). T cell exhaustion
and impaired cytotoxic activity in this cluster was supported by the up-regulation of
immunosuppressive factors (i.e. LGALS1, CXCL12) and myeloid chemo-attractants (CCL2).

Other essential NK cell activators such as Granzyme B (GZMB) IFN-Y, NKG2D and TBX21

13
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receptors®! 22, were strongly down-regulated (Figure 3). Based on these features, we named
this cluster Exhausted Immune Response. GSEA analysis comparing both clusters confirmed
the driver role of TGF-B in the Exhausted Immune Response, and enrichment of pathways
related to metastasis, EMT, angiogenesis and liver cancer recurrence, suggesting a more
aggressive phenotype (Supplementary Table 5). Interestingly, we did not observe any
significant difference between the Active and Exhausted Immune subtype in terms of immune
infiltration, TLS count, PD-L1 and PD-1 expression (Supplementary Figure 4B-C).

We further explored the potential prognostic implications of the type of immune response by
correlating these clusters with clinico-pathological parameters. Interestingly, patients within the
Active Immune Response cluster showed lower rates of tumor recurrence after resection
compared to the Exhausted Immune Response cluster (median time to recurrence 32 versus 21
months, p=0.04, Supplementary Figure 5A-B); we also observed a trend towards better
survival (median survival time of 88 months in the Active Immune vs 63 months in remaining
patients, p=0.07) (Figure 4A, Supplementary Figure 5C). No differences in other clinico-
pathological variables, including HBV and HCV infection, were found between the distinct
Immune subtypes (Supplementary Table 6). Notably, the Active Immune subtype was retained
as independent prognostic factor of overall survival (HR=0.58, CI 0.34-0.98, p=0.04,
Supplementary Table 7) along with vascular invasion, multinodularity, platelets count, and
HCV infection.

Altogether, these data divide the Immune class in two distinct microenvironment-based

components: a) Active Immune Response Subtype (~65%) characterized by overexpression of

adaptive immune response genes (Figure 3), and b) Exhausted Immune Response Subtype

(~35%) characterized by the presence of immunosuppressive signals (i.e. TGF-B, M2

macrophages).

14
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The Immune class is validated across datasets

The presence of the Immune class was further evaluated in 7 additional datasets (n= 728
HCCs, Figure 1) using the 112 gene-expression based Immune Classifier (Supplementary
Table 8). Firstly, we applied the Immune Classifier to the TCGA dataset, the largest dataset
publicly available [n=190 fresh frozen (FF) samples] profiled by RNA-sequencing]. Similar to our
training cohort, 42/190 (22%) HCC samples were successfully predicted within the Immune
class. Molecular characterization of the Immune class confirmed a significant enrichment of
signatures identifying immune cells (i.e. T cells, cytotox, TLS and macrophages, p<0.001),
signatures predictive of response to immune checkpoint therapy (p<0.001) and PD-1 signaling
(24/42 vs 31/148, p<0.001) (Figure 4B). Compared to known HCC molecular classes, we
confirmed the enrichment of the IFN-related (13/42 vs 11/148 in the rest, p<0.001) and S1
classes (28/42 vs 20/148 in the rest of cohort, p<0.001) and the significant exclusion of the
CTNNB1 class (2/42 vs 30/148 in the rest of the cohort, p<0.001) as previously observed in the
training cohort. In addition, half of the TCGA-Immune class showed lack of the activated stroma
signature along with over-expression of adaptive immune response genes, recapitulating the
Active Immune Response Subtype (Figure 4B). On the other end, the remaining half of patients
showed activated stroma which was associated with TGF-3 signaling (11/21 vs 1/21 in the rest
of the Immune class, p=0.01) and down-regulation of NKG2D and TBX21 receptors (p<0.01),
main characteristics of the Exhausted Immune Response subtype. Correlation with clinical
outcomes confirmed that patients within the Active Immune Response subtype had a better
survival (median survival time of 107 months in the Active Immune cluster vs 33 months in the
remaining patients, p=0.03) (Figure 4C, Supplementary Figure 5D).

We next interrogated the Validation cohort previously collected by our group [n=131 formalin-
fixed paraffin embedded (FFPE) HCCs] and 5 additional datasets including 4 testing FF tissues
(n=289) and 1 of FFPE samples (n=118) (Figure 1, Supplementary Table 1). The percentage

of patients allocated to the Immune class was consistent across all FF datasets with an average
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of 27% of the samples predicted to this class (range 22-28). In the two FFPE datasets
(Validation and HCC-V), 37% (48/131) and 30% (35/118) of patients were allocated to the
Immune class, respectively (Supplementary Figures 6 and 7). The higher percentage could be
due to the different genomic platform used [DASL (lllumina) versus Affymetrix] or a different
type of tissue material (FFPE versus FF samples). Nonetheless, molecular characteristics of the
Immune class and the presence of the two microenvironment-based subtypes were successfully
recapitulated in all datasets tested regardless of the platform and type of samples used.

Finally, we tested the capacity of the Immune class to predict response to immunotherapy. The
tumoral gene expression derived from two HCC patients treated with nivolumab was analyzed
for the presence of the immune classifier rendering a positive result for patient #1 (FDR=0.001)
who showed a partial response (Supplementary Figures 8) but not for patient #2 (FDR=0.23)
who presented with stable disease.

Considering that checkpoint inhibitors are not yet approved for HCC management by regulatory
agencies, we compared the gene expression profile of our Immune class with the expression
profiles of melanoma patients responding to immunotherapy using a recently published dataset
of 32 patients?®. SubClass mapping analysis revealed that our Immune class, and in particular
the Active Immune subtype (Supplementary Figure 9), shows similarity to the group of

melanoma patients who respond to PD-1 checkpoint inhibitors.

Immune class tumors show lower burden of chromosomal aberrations but no differences
in the expression of neo-antigens or tumoral mutational burden

Recent analyses have linked the tumoral genomic landscape with anti-tumor immunity. In
particular, it has been proposed that presence of neo-antigens and overall mutational load might
drive T cell responses'® 24 25 whereas tumor aneuploidy correlates with markers of immune
evasion and reduced response to immunotherapy?* 2. In order to verify if the burden of somatic

copy number aberrations (SCNAs) and mutated neo-antigens may influence local immune

16
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infiltrates in HCC, we used the TCGA dataset. In a recent analysis, the local immune cytolytic
activity of several tumors showed strong correlation with cytotoxic T cells and interferon-
stimulated chemokines that attract T cells?*. Interestingly, in HCC patients we observed a strong
correlation between the cytolytic activity score and our Immune class (p<0.0001, Figure 4B). In
terms of SCNAs, patients within the Immune class showed lower burden of gains and losses,
both broad and focal (Figure 5A-B and Supplementary Figure 10A-B) with a median of 3
broad gains (range 0-16) and 3.5 broad losses (range 0-20) in the Immune class versus 5 broad
gains (range 0-22) and 9 broad losses (range 0-26) in the rest of the cohort (p=0.046 and
p=0.01, respectively). Similarly, we identified a median of 5 focal gains (range 0-18) and 9 focal
losses (range 0-25) in the immune class versus 8.5 focal gains (range 0-20) and 13 focal losses
(range 0-27) in the rest of the cohort (p=0.03 for both comparisons). When analyzing the
regions associated with recurrent SCNAs in patients outside the Immune class (low immune
infiltrates based on immune signatures), recurrent copy number gain in chromosome 1q and
recurrent losses in chromosomes 3p, 17p, and 18p were observed at arm level
(Supplementary Tables 9-10). In terms of focal high-level amplifications and homozygous
deletions, we restricted the analysis to focal structural aberrations involving driver genes
previously reported in HCC?. As indicated in Supplementary Table 11, we only found
significant difference for the high level amplification of the locus 11913 (CCND1, FGF19, etc.),
which was significantly enriched in the Immune class, and particularly in the Active Immune
subtype. No significant differences were found regarding loci involving MYC, TERT and PTEN.

We then correlated the Immune class with the overall rate of mutations and rate of predicted
neo-antigens, as per previous analysis of the TCGA dataset?*. There was no association
between the Immune class and both features (Figure 5C and Supplementary Figure 10C). In
particular, the median number of mutations for Immune class compared among the remaining
patients was 175 vs 212, respectively (p=0.1, Supplementary Figure 10C). Similarly, the rate

of neo-antigens was not statistically different between the two groups (21 vs 23, respectively,
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p=0.28, Figure 5C). Nonetheless, when we analyzed both parameters according to the
microenvironment-based subtype, the Active Immune subtype showed a trend towards lower
neo-epitopes rate (median of 18 versus 33 in Exhausted versus 23 in rest of cohort, p=0.20,
Figure 5D) and mutations (median of 140 versus 269 in Exhausted subtype versus 212 in rest
of cohort, p=0.06, Supplementary Figure 10C). Finally, we correlated the Immune class with
mutations in known driver genes. With the exception of mutations in the CTNNB1 pathway
(12/42 vs 81/148, p=0.003), no other mutations showed differential distribution (Figure 5E). All
these data show no correlation between neo-antigen load and T cell response, which indicates
that additional mechanisms, such as aneuploidy and mutations in specific oncogenic pathways,

may impair immune cell recruitment in highly immunogenic tumors.

The Immune class has a unique DNA methylation signature

Considering the profound up-regulation of immune—related genes in the Immune class, we
wondered if such deregulation could mirror epigenetic alterations in these tumors. Supervised
analysis of whole genome methylation data revealed that 363 CpG sites in 192 immune
response gene promoters were differentially methylated in the Immune class compared to the
rest of the cohort (FDR<0.05, Supplementary Figure 11 and Supplementary Table 12).
Furthermore, among the 192 genes showing differentially methylated CpG sites, 115 showed a
significant correlation with gene expression (Supplementary Table 13). In particular, the
immunosuppressive molecule LGALS3, which may play a role in immune escape during tumor
progression through the induction of apoptosis of cancer-infiltrating T cells?® and the regulator of
the TGF-B signaling, PMEPA1, were significantly over-expressed in the 2 Immune subtypes
(p<0.001, Supplementary Figure 12). Overall, these data indicate that the Immune class is
characterized by a unique methylation profile. In particular, differential methylation was
observed in 192 immune related genes and, in most instances, was associated with altered

gene expression.
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Specific oncogenic signaling pathways could cooperate to reduce T cell infiltration in
the CTNNB1 class of HCC

The integration of the Immune class with previously reported molecular classifications revealed
a significant exclusion of the CTNNB1 class in all datasets tested (Figures 2A and 4B,
Supplementary Figures 6-7). The CTNNB1 class of HCC is characterized by over-expression
of liver-related Whnt-target-genes, enrichment in nuclear B-catenin staining and CTNNB1-
mutations?®. Exclusion of the CTNNB1 class supports recent reports in melanoma where
activation of the pathway is associated with T cell exclusion, through the repression of
CCL4 and subsequent failure of T cell priming™. In our cohorts, HCC samples within the
CTNNBH1 class showed significantly lower enrichment score for several immune signatures, in
particular T cells, compared to patients within the Immune class or the remaining patients
(p<0.001, Supplementary Figure 13A-B). In addition, in accordance with data in melanoma,
patients within the CTNNB1 class showed down-regulation of CCL4 (p<0.001). Further
oncogenic pathways have been associated with T cell exclusion, including PTEN3® and PTK23'.
Interestingly, PTK2 was significantly over-expressed in the CTNNB1 class (Supplementary
Figure 13A-C), suggesting a possible cooperation between PTK2 and CTNNB1 pathways to
induce immune cells exclusion in this subgroup. In addition, DNA copy number and expression
of PTK2 were highly correlated (p<0.0001, Supplementary Figure 13D-E). These data suggest
that HCC samples within the CTNNB1 class showed lower expression of immune signatures
compared to patients of the Immune class and the remaining tumors. Activation of specific
oncogenic signaling, such as CTNNB1 and PTK2 signaling —through activating mutations or
additional mechanisms- may play a seminal role in influencing the immunological profile of this

subgroup.

Compartmentalization of immune signals: immune infiltration in the surrounding tissue

does not reflect its tumor counterpart
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Finally, in order to assess whether the type of intra-tumoral immune cell infiltrates mirrors its
peritumoral counterpart, we correlated the intra-tumoral immune infiltration with the surrounding
liver tissue. To do so, we performed a sub-analysis in 167 patients of the training cohort for
whom gene expression data were available for both tumor and matched surrounding non-
tumoral tissue. Among the 167 cases, 25% (42/167) were positively classified within the
Immune class based on the expression profile of the tumor (Figure 6A). Interestingly, only a
minority of these patients (13/42, 31%) showed a combined positive prediction in both tumor
and matched surrounding liver, suggesting that the intra-tumoral immune infiltration does not
reflect the profile of the surrounding tissue. Given these observations, we further explored the
type of immune infiltration occurring in the non-tumoral liver. Interestingly, patients positively
predicted by the Immune Classifier based on the profile of the surrounding tissue showed a
strong enrichment of signatures capturing the presence of immune cells (CD8, macrophages,
p<0.001), activated stroma [31/57 (54%) vs 7/110, (6%), p=0.0001], TGF-R signaling [38/57,
(67%) vs 2/110, (2%), p= p=0.0001] and additional immunosuppressive components (LGALS1,
CXCL12, etc., p<0.001). In addition, exhausted T cells [19/57, (33%) vs 7/110 (6%), p=0.0001],
and a prognostic 186-gene signature derived from the surrounding liver [43/57 (75%) vs 7/110
(6%), p= 0.0001] were also enriched in this subgroup. In addition, we observed that METAVIR
F3-F4 stages [42/45 (93%) vs 66/87 (76%) in rest of cohort, p=0.02] and HCV infection [36/54
(67%) vs 39/108 (36%) in rest, p<0.001] were significantly associated to a positive Immune
Classifier in the surrounding liver. On the other end, HBV infection [7/54 (13%) vs 34/108 (31%),
p=0.01] and alcohol abuse [2/54 (4%) vs 20/108 (19%), p=0.008] were more frequent in patients
negative for the immune classifier (Figure 6A). Finally, patients positive for the Immune
Classifier showed significant worse prognosis with a median survival time of 37 vs 76 months in
the rest of the cohort (p<0.001, Figure 6B). In essence, these data suggest that the immune
profile of the surrounding liver tumor does not reflect the intra-tumoral profile and is mostly

characterized by immunosuppressive components associated with survival of HCC patients.

20



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

DISCUSSION

Our study represents a comprehensive characterization of the immunological profile of human
HCC tumors. The use of virtual separation analytical approaches enabled us to deconvolute the
gene expression signals deriving from the intra-tumoral immune infiltrates; this identified a
previously unnoticed robust class of HCC (~27% of 956 patients), herein named Immune class.
The immune nature of our classifier is supported by the overlap with gene signatures identifying
immune cells (i.e. T cells and cytotox), signatures predictive of response to immune checkpoint
therapy, presence of high immune cell infiltration, enhanced cytolytic activity and PD-1 and PD-
L1 protein expression. Among tumors within the Immune class, we discovered two distinct
microenvironment-based immune clusters with either an active or exhausted immune response,

ultimately providing a comprehensive description of the intra-tumoral immunologic milieu.

Survival of patients with melanoma or lung cancer has significantly improved since the recent
FDA approval of immune checkpoint inhibitors (e.g., nivolumab, pembrolizumab). These
compounds elicit durable clinical responses and long-term remissions in a fraction of patients
with metastatic disease” 2. Given that these therapies are directed to immune cells rather than
tumor cells, they can be effective in a broad range of cancer types, with important activity
recently reported in both solid and hematologic malignancies including bladder®® and colorectal
cancer'® 2, In HCC, results of the phase Il extended clinical trial testing nivolumab indicate an
objective response rate of 16%, and median survival of 14 months among the 214 patients
treated’™. In this trial, objective responses (21/145 cases, 15%) were not related to PD-L1
expression on tumor cells™. Thus, identification of accurate predictive biomarkers to select ideal
candidates for immunotherapy is a major unmet need in HCC. Initial trials, particularly in non-
small cell lung cancer, have suggested that patients positive for PD-L1 expression have a
greater overall response compared to patients negative for PD-L1%'°, Nonetheless, accurate

scoring of PD-L1 protein expression is complex due to technical (i.e. affinity, threshold) and
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biological pitfalls (i.e. cell type, dynamic expression). Furthermore, responses observed in
patients with PD-L1 negative tumors have highlighted the need to investigate more robust
biomarkers, such as immune signatures. In this context, a better understanding of the anti-tumor
immune responses and the interplay between cancer cells and the microenvironment will be
essential to predict reponders to immunotherapies.

Our study identifies a new immune molecular class of HCC, and provides important insights into
the immunological profile of this tumor, and how it may be influenced by the interaction with its
microenvironment. Close to 25% of HCCs belong to the herein called Immune class, whose
molecular characteristics - including high infiltration of immune cells, expression of PD-1 and
PD-L1, and active IFN-y signaling - highly resemble those of cancers most responsive to
immunotherapy'-"3. Indeed, when tested in patients receiving nivolumab, positive prediction of
the immune classifier was observed only in the patient achieving objective response to
immunotherapy. Accordingly, two immune signatures that predict response to pembrolizumab in
melanoma and head and neck squamous cell carcinoma were significantly enriched in patients
of our Immune class. These signatures are associated with T cell cytotoxic function and IFN-y
signaling, reinforcing the idea that clinical responses to PD-1 blockade occur in patients with a
pre-existing IFN-mediated adaptive immune response®. PD-L1 staining was enriched in the
Immune class, but failed to capture most of the cases, and thus represents a suboptimal
marker. As mentioned before, this is consistent with the lack of predictive capacity observed for
PD-L1 expression on tumor cells in the large phase Il study with nivolumab for HCC patients'S.
Further investigation in patients receiving immunotherapy is necessary to verify the predictive
capacity of the immune classifier. Interestingly, neither the mutational load nor the presence of
neo-antigens was associated with the Immune class, suggesting that, unlike melanoma'? and
lung cancer?®, other molecular mechanisms may drive anti-tumor immunity in HCC. A similar
lack of association has been described in other tumors with modest mutational burden, such as

prostate, ovarian cancer and pancreatic cancer®. In these settings, the quality or clonality of
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neo-antigens, rather than the quantity, may influence the immune reactivity?®. In addition, other

mutations-independent mechanisms, such as expression of HCC-associated antigens (i.e. AFP,
Glypican 3, MAGE, NY-ESO-1) might have an impact on the immune infiltrate. The lack of

association between neo-antigenes and immune profile of HCC tumors could also reflect the
fact that the immune response is more likely regulated by a combination of both tumor-intrinsic
factors, based on the genetic make-up of the tumor (e.g. aneuploidy, activation of specific
oncogenic signaling, expression of immune checkpoint molecules, etc), and extrinsic factors
present in the microenvironment®. Further investigation is needed to fully understand the

molecular mechanisms responsible for the different immunogenicity of HCC tumors.

The sole presence of an immune phenotype does not necessarily predict response to
immunotherapies. A favorable response to checkpoint inhibitors relies on the intricate and
dynamic interactions between tumor cells, immune cells and other immunomodulators present
in the microenvironment, which may either dampen or enhance the immune response. In this
regard, virtual dissection of the gene expression profile of the Immune class allowed us to
elucidate such interactions and identify two clear cut microenvironment-based clusters of
samples: 1) Active Immune Response and 2) Exhausted Immune Response. Robustness of
these subtypes was supported by their successful replication in seven independent datasets
across different platforms, ranging from RNA-sequencing to microarray and using distinct types
of samples (i.e., fresh frozen and paraffin-embedded tissue). While the Active Immune
Response cluster showed anti-tumor immune features such as enrichment of IFN signatures,
overexpression of adaptive immune response genes and better survival, the Exhausted Immune
Response was characterized by tumor-promoting signals (e.g., activated stroma, T cell
exhaustion and immunosuppressive components). In particular, activation of TGF-3, a potent
immunoregulatory cytokine frequently overexpressed in aggressive cancers, was significantly

enriched in our Exhausted Subtype. TGF-B regulates tumor-stroma interactions, angiogenesis,
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metastasis, and suppresses the host immune response via induction of T cell exhaustion®” %8
and promotion of M2-type macrophages®. Interestingly, we detected differential methylation of
192 immune related genes between the immune clusters, particularly the Exhausted Immune
Response subtype, which suggests that epigenetic mechanisms could play an important role in

influencing the intra-tumoral immune response of HCC patients.

Understanding the interactions between the immune response, oncogenic signaling and the
tumor microenvironment is critical to improve the efficacy of current immunotherapies. For
example, patients within the Exhausted Immune Response subtype could benefit from the
combination of TGF-R inhibition plus immune checkpoint blockade. In this regard, a phase 1b/2
clinical trial testing the novel TGF-f inhibitor, galunisertib, in combination with nivolumab in
advanced solid tumors, including HCC, is currently ongoing in all comers (NCT02423343), with
no patient enrichment strategy. Similarly, dissection of the oncogenic mechanisms responsible
for T cell exclusion could bring additional combination strategies in patients who otherwise
would likely not respond. Recent molecular analyses have revealed a correlation between
activation of the CTNNB1 signaling pathway and lower T cell infiltrates in melanoma and other
tumors*°. Consistent with these findings, HCC samples within the CTNNB1 class showed lower
immune-cell signature scores. Interestingly, the CTNNB1 class also displayed over-expression
of PTK2, another oncogenic signal recently reported to drive immune exclusion®'. While further
investigation is required to elucidate the specific role of CTNNB1 and PTK2 signaling and verify
the physical absence of T cell infiltrates in the CTNNB1 class, these data suggest that multiple

oncogenic pathways could cooperate to modify the immune profile of the tumor.

Finally, we did not observe a correlation between the immune expression profiles of the tumors

and the matched surrounding non-tumoral livers. Perhaps more interesting is the fact that

among 34% of HCC patients with peritumoral immune profile, most of them contained
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immunosuppressive signals, such as TGF-R activation and T cell exhaustion, associated with
shorter survival. This observation is consistent with previous evidence supporting the so-called
“field effect” in the damaged liver due to chronic hepatitis and/or cirrhosis*'. Accordingly, a
strong association was observed in the surrounding liver between the Immune Classifier and
our previously reported 186-gene signature able to identify HCC patients with poor survival after

resection*!, and those HCV cirrhotic patients at higher risk for HCC development*?.

In summary, our study introduces a novel immune-specific class in ~25% of HCC cases which
comprises two robust microenvironment-based clusters with either active or exhausted immune
responses, who might represent the ideal candidates to receive immunotherapy. Further
investigations of this Immune Classifier in a larger cohort of patients receiving
immunocheckpoint therapies is needed to determine its potential use as predictive biomarker of

response in the design of immune-based clinical trials.
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Table 1. Clinical characteristics of the training (Heptromic) and validation cohorts (Validation

and TCGA sets).
Variablet Training set Validation Set TCGA set
(n=225) (n=131) (n=190)
Median age (IQR) 66 (61-72) 66 (55-71) 62 (52-70)
Gender, male (%) 178 (79) 96 (73) 123 (65)
Etiology (%)f
Hepatitis C 101 (46) 64 (50) N/A
Hepatitis B 48 (21) 39 (30) N/A
Alcohol 33 (15) 6 (5) N/A
Others 38 (17) 19 (15)
Child-Pugh score (%)f
A 220 (98) 123 (98) 86 (83)
B 3(1) 2(2) 17 (17)
Tumor size, cm (%)
<2 28 (12) 17 (13) N/A
between 2 and 3 66 (30) 31 (24) N/A
>3 130 (58) 81 (63) N/A
Multiple nodules (%)
Absent 168 (75) 117 (91) N/A
Present 56 (25) 12 (9) N/A
Vascular invasion (%)
Absent 144 (65) 78 (62) 104 (66)
Present 78 (35) 46 (38) 54 (34)
Satellites (%)
Absent 164 (73) 100 (80) N/A
Present 60 (27) 25 (20) N/A
BCLC early stage, 0-A (%) 195 (87) 120 (94) N/A
Degree of tumor
Well 33 (15) 31 (26) 31 (17)
Moderately 106 (47) 73 (61) 96 (52)
Poor 44 (20) 16 (13) 58 (31)
Bilirubin, >1 mg/dL (%) 113 (50) 34 (27) 35 (25)
Albumin, <3.5 g/L 26 (12) 13 (11) 42 (31)
Platelet count, 41 (18) 17 (13) N/A
AFP, >100 mg/dL (%) 51 (23) 38 (31) 43 (33)
Events (%)
Recurrence 150 (67) 78 (60) 88 (59)
Death 133 (59) 46 (35) 84 (44)
Median follow-up, months 49 51 N/A

TMissing values Training set: etiology (n=2); Child-Pugh score (n=2); multiple nodules (n=1); vascular invasion (n=3); BCLC 0-A
(n=2); tumor differentiation (n=42); bilirubin (n=32); AFP (n=11); albumin and bilirubin (n=4); platelet (n=2); recurrence (n=7).
Missing values Validation set: etiology (n=3); Child-Pugh score (n=6); tumor size (n=2); multiple nodules (n=2); vascular invasion
(n=6); satellites (n=6); BCLC 0-A (n=4); tumor differentiation (n=12); bilirubin (n=6); AFP (n=10); albumin (n=9); platelet (n=5);
recurrence (n=1). Missing values TCGA set: Child-Pugh score (n=87); vascular invasion (n=32); tumor differentiation (n=5);
bilirubin (n=50); AFP (n=58); albumin (n=55); inaccurate platelet count; recurrence (n=40); etiology, tumor size and number,
satellites and updated follow-up information is not available.

29




10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Figure Legends

Figure 1. Flow chart of the study. A total of 956 HCC samples were used in this study. A
training cohort (Heptromic) including 228 HCCs was virtually microdissected to identify an

Immune class. Validation was then performed in 7 independent datasets.

Figure 2. Identification of the Immune class of HCC. (A) Consensus-clustered heatmap of
HCC samples (training dataset, n=228) using exemplar genes of the immune expression pattern
and refined by Random Forest. In the heatmap, high and low gene set enrichment scores are
represented in red and blue, respectively. Positive prediction of signatures is indicated in red
and absence in grey. Note: only the 28-gene signature will be shown in following heatmaps.
Similar results were obtained with both signatures. (B) Representative images of immune cell
infiltration, PD-1 and PD-L1 staining in a patient of the Immune class (M515) and a patient

outside of the Immune class (B319). Images were captured with 20X.

Figure 3. The Immune class contains two distinct microenvironment-based subtypes.
NTP analysis of whole-tumor gene expression data using a molecular signature able to capture
activated inflammatory stromal response identified two distinct subtypes of Immune class — the
Active (blue color bar) and the Exhausted (green color bar) Immune Response Subtypes. In the
heatmap, high and low gene set enrichment scores are represented in red and blue,
respectively; same representation is used for high and low gene expression. Positive prediction

of signatures as calculated by NTP is indicated in red and absence in grey.

Figure 4. Kaplan-Meier estimates of overall survival according to the immune response
type status and robustness of the Immune class. (A) Kaplan-Meier estimates of overall
survival according to the Active Immune Response status in the Heptromic cohort (Active

Immune Response vs rest plus Exhausted Immune Response). (B) Kaplan-Meier estimates of
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External validation of the Immune class was conducted in the publicly available TCGA dataset.

Figure 5. Association of the Immune class with copy number aberrations, presence of
neo-antigens and mutations in driver genes. Patients of the Immune class showed
significantly lower burden of gains (A) and losses (B), both broad (left panels) and focal (right
panels).(C) The rate of mutations predicted to yield a neo-antigen was similar between the
Immune class and the rest of the cohort and (D) between the two microenvironment-based
subtypes. (E) Heatmap representation of the distribution of mutations in known driver genes

between patients of the Immune class and rest of TGCA cohort.

Figure 6. The intratumoral immune profile does not correspond to the immune infiltration
of the surrounding non-tumoral liver. (A) Gene expression of the tumor (upper panel) and
matched surrounding non-tumoral liver (lower panel) was available for 167 patients of the
Heptromic cohort (training dataset). Heatmap represents enrichment scores for immune
signatures in the tumors (upper panel) and corresponding surrounding tissues (bottom panel).
Multi-nodularity was more frequent in patients positive for the immune classifier [25/55 (45%) vs
24/110 (22%), p=0.01]. (B) Kaplan-Meyer estimates of overall survival according to the

presence of the Immune Classifier in the surrounding liver.
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