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FINITE GROUPS ACTING SYMPLECTICALLY ON T 2 × S2

IGNASI MUNDET I RIERA

Abstract. For any symplectic form ω on T 2 × S2 we construct infinitely
many nonisomorphic finite groups which admit effective smooth actions on
T 2 × S2 that are trivial in cohomology but which do not admit any effective
symplectic action on (T 2×S2, ω). We also prove that for any ω there is another
symplectic form ω′ on T 2 × S2 and a finite group acting symplectically and
effectively on (T 2×S2, ω′) which does not admit any effective symplectic action
on (T 2 × S2, ω).

A basic ingredient in our arguments is the study of the Jordan property
of the symplectomorphism groups of T 2 × S2. A group G is Jordan if there
exists a constant C such that any finite subgroup Γ of G contains an abelian
subgroup whose index in Γ is at most C. Csikós, Pyber and Szabó proved re-
cently that the diffeomorphism group of T 2×S2 is not Jordan. We prove that,
in contrast, for any symplectic form ω on T 2 ×S2 the group of symplectomor-
phisms Symp(T 2 ×S2, ω) is Jordan. We also give upper and lower bounds for
the optimal value of the constant C in Jordan’s property for Symp(T 2×S2, ω)
depending on the cohomology class represented by ω. Our bounds are sharp
for a large class of symplectic forms on T 2 × S2.

1. Introduction

1.1. In this paper we study effective symplectic finite group actions or, equivalently,
finite subgroups of symplectomorphism groups. Despite the extraordinary devel-
opment of symplectic geometry in the last three decades, the interactions between
finite transformation groups and symplectic geometry seem to be so far a mostly
unexplored terrain (with the remarkable exceptions of [5–7]).

The following notation will be useful in our discussion: for any group G we
denote by F(G) the set of all isomorphism classes of finite subgroups of G. Given a
symplectic manifold (X,ω) we denote by Diff [ω](X) the group of diffeomorphisms
of X which preserve the de Rham cohomology class represented by ω. We have
inclusions

F(Symp(X,ω)) ⊆ F(Diff [ω](X)) ⊆ F(Diff(X))

induced by the inclusions of the groups.
A basic question which apparently has not received attention is the following:

given a symplectic manifold (X,ω), how big can the difference between F(Diff [ω](X))
and F(Symp(X,ω)) be? Similarly, one may want to compare F(Symp(X,ω)) and
F(Symp(X,ω′)) for different symplectic structures ω, ω′.

If Σ is a closed, connected and orientable surface, then for any symplectic form
ω on Σ we have F(Symp(Σ, ω)) = F(Diff [ω](Σ)) = F(Diff+(Σ)), where Diff+ refers
to orientation preserving diffeomorphisms. To prove this claim, let us fix some
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symplectic form ω on Σ. Given a finite subgroup Γ ⊂ Diff+(Σ) one may take,
by the averaging trick, a Γ-invariant Riemannian metric g on Σ; the volume form
ωg associated to g and the orientation given by ω is Γ-invariant, and so is any
constant multiple of ωg. For some λ ∈ R>0 we have an equality of cohomology
classes [λωg] = [ω], and by Moser’s stability there is a diffeomorphism φ ∈ Diff(Σ)
such that φ∗(λωg) = ω (see e.g. Exercise 3.21 in [20]). Conjugating the action of Γ
by φ we obtain an action of Γ which fixes ω.

We will show in this paper that in higher dimensions the situation becomes much
more interesting. We will study in detail F(Symp(T 2×S2, ω)) for every symplectic
form ω on T 2 × S2, and we will prove that for every ω the difference

F(Diff [ω](T
2 × S2)) \ F(Symp(T 2 × S2, ω))

contains infinitely many elements. Hence, there is an infinite sequence of pairwise
nonisomorphic finite groups G1, G2, . . . such that each Gj acts smoothly and effec-
tively on T 2 × S2 but, in contrast, there is no effective symplectic action of Gj on
(T 2×S2, ω). We will also prove that for any symplectic form ω there exists another
symplectic form ω′ such that

F(Symp(T 2 × S2, ω′)) � F(Symp(T 2 × S2, ω)),

i.e., there exists some finite group G which admits an effective symplectic action
on (T 2 × S2, ω′) but no such action on (T 2 × S2, ω).

A related question which we do not answer in this paper is whether there exists
some finite subgroup G ⊂ Diff+(T 2×S2) which does not admit effective symplectic
actions on (T 2 × S2, ω) for any choice of ω (this question is closely related to the
results in [5–7]).

By a theorem of Lalonde and McDuff (see Theorem 1.6 below) the symplectic
forms on T 2 × S2 are classified up to isomorphism by the ratio λ between the vol-
umes of the T 2 factor and the S2 factor. The theorems proved in this paper imply
that one can break the set (0,∞) of possible values of λ in infinitely many intervals
of the form (a, b] so that if two choices of λ belong to different intervals, then the
corresponding symplectomorphism groups have different families of isomorphism
classes of finite subgroups. From this perspective, our results are reminiscent of
those of Abreu and McDuff [1] on the rational homotopy type of the symplecto-
morphism groups of S2 × S2.

Note that the theorem of Lalonde and McDuff implies that F(Symp(T 2×S2, ω))
contains infinitely many elements for every ω. In fact, for any ω and any n there
exists a subgroup of Symp(T 2 × S2, ω) whose cardinal is n (see the remarks after
Theorem 1.6). Hence, any argument ruling out the possibility that some finite group
acts effectively and symplectically on Symp(T 2 × S2, ω) must take into account
more refined information than the cardinal of the group. The strategy we use in
this paper to find obstructions for a finite group Γ to be isomorphic to a subgroup
of Symp(T 2×S2, ω) is based on the notion of Jordan group, which we next explain.

1.2. Jordan groups. A group G is said to be Jordan [27] if there is some constant
C such that any finite subgroup Γ of G contains an abelian subgroup whose index in
Γ is at most C. The terminology comes from a classic theorem of Camille Jordan,
which states that GL(n,C) is Jordan for every n (see [16] and [3, 9] for modern
presentations). A number of papers have appeared in the last few years studying
whether the automorphism groups of different geometric structures are Jordan or
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FINITE GROUPS ACTING SYMPLECTICALLY ON T 2 × S2 4459

not: these include diffeomorphism groups, groups of birational transformations of
algebraic varieties, or automorphism groups of algebraic varieties (see [28] for a
survey).

Around twenty years ago, Étienne Ghys asked whether the diffeomorphism group
of any smooth compact manifold is Jordan (see Question 13.1 in [13], and [22]).
This question has been answered affirmatively in a number of cases (see the intro-
duction and references in [22]). For example, if X is a smooth compact manifold
with nonzero Euler characteristic, then Diff(X) is Jordan (see [22] for a proof in di-
mensions 2 and 4 and [23] for a proof in arbitrary dimensions using the classification
of finite simple groups). However, Csikós, Pyber and Szabó [8] proved recently that
the diffeomorphism group of T 2 × S2 is not Jordan, thus giving the first example
of a compact manifold for which Ghys’s question has a negative answer (see [24]
for more examples). In contrast, in this paper we prove that for any symplectic
form ω on T 2 × S2 the group of symplectomorphisms Symp(T 2 × S2, ω) is Jordan.
Furthermore, we relate the constant in Jordan property to the cohomology class
represented by ω.

Consequently, from the perspective of Jordan property F(Symp(T 2 × S2, ω)) is
qualitatively smaller than F(Diff [ω](T

2 × S2)) (the group actions defined in [8] are
trivial in cohomology, so for any symplectic form ω they give finite subgroups of
Diff [ω](T

2 × S2)).
To state our results with more precision we need to introduce some notation.

Fix orientations on T 2 and S2 and choose elements t ∈ T 2 and s ∈ S2. Define for
any symplectic form ω on T 2 × S2

α(ω) =

∫
T 2×{s}

ω, β(ω) =

∫
{t}×S2

ω.

The numbers α(ω) and β(ω) are independent of s and t by Stokes’ theorem. Since
ω is a symplectic form, both α(ω) and β(ω) are nonzero. Define

λ(ω) = max

{(
2Z ∩

(
−∞,

∣∣∣∣2α(ω)β(ω)

∣∣∣∣
))

∪ {1}
}
.

In words, λ(ω) is the biggest even integer smaller than |2α(ω)/β(ω)| if |α(ω)/β(ω)|>
1, and λ(ω) = 1 otherwise.

Theorem 1.1. Let ω be a symplectic form on T 2 × S2. Any finite subgroup Γ ⊂
Symp(T 2 × S2, ω) contains an abelian subgroup A ⊆ Γ such that

[Γ : A] ≤ max{144, 6λ(ω)}.

The next theorem shows that the bound in Theorem 1.1 is optimal if 6λ(ω) ≥
144.

Theorem 1.2. Let ω be a symplectic form on T 2 × S2 such that λ(ω) ≥ 8. There
exists a finite subgroup Γ ⊂ Symp(T 2×S2, ω) all of whose abelian subgroups A ⊆ Γ
satisfy [Γ : A] ≥ 6λ(ω). Furthermore, the action of Γ on the cohomology of T 2×S2

is trivial.

Combining Theorems 1.1 and 1.2 we immediately obtain:

Corollary 1.3. For any symplectic form ω on T 2 × S2 the difference

F(Diff [ω](T
2 × S2)) \ F(Symp(T 2 × S2, ω))
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contains infinitely many elements; more precisely, there are infinitely many noniso-
morphic finite groups which admit smooth effective actions on T 2×S2 that are trivial
in cohomology but which are not isomorphic to any subgroup of Symp(T 2 × S2, ω).

Furthermore, for any symplectic form ω on T 2 × S2 there exists another sym-
plectic form ω′ such that

F(Symp(T 2 × S2, ω′)) � F(Symp(T 2 × S2, ω)).

If we restrict our attention to finite p-groups for primes p > 3, then our techniques
give the following sharp result.

Theorem 1.4. Let p > 3 be a prime and let ω be a symplectic form on T 2×S2. The
group Symp(T 2×S2, ω) contains a nonabelian finite p-subgroup if and only if 2p ≤
λ(ω). Furthermore, if 2p ≤ λ(ω), then there exists a subgroup of Symp(T 2 ×S2, ω)
which is isomorphic to the Heisenberg p-group

〈X,Y, Z | Xp = Y p = Zp = [X,Z] = [Y, Z] = 1, [X,Y ] = Z〉.
Combining Theorem 1.1 with the main result in [22] we obtain the following.

Corollary 1.5. Let (M,ω) be a symplectic 4-manifold diffeomorphic to the total
space of an S2-fibration over a compact Riemann surface or to the product of two
compact Riemann surfaces. Then Symp(M,ω) is Jordan.

An important ingredient in the proofs of our theorems is a deep result of Lalonde
and McDuff [17, Theorem 1.1] which has been mentioned above and which classifies
symplectic structures on T 2 × S2 (in fact the main theorem in [17] applies to more
general 4-manifolds, but we will only use the result for T 2 × S2). Fix symplectic
forms ωT 2 and ωS2 on T 2 and S2 respectively, both with total volume 1.

Theorem 1.6 (Lalonde, McDuff). Let ω be a symplectic form on T 2 × S2. There
exists a diffeomorphism φ of T 2 × S2 such that φ∗ω = α(ω)ωT 2 + β(ω)ωS2 .

(Pullbacks are implicit in α(ω)ωT 2 +β(ω)ωS2 and in similar expressions appear-
ing in the rest of the paper.) An immediate consequence of Theorem 1.6 is that
for any symplectic form ω on T 2 ×S2 there exist arbitrarily large finite nonabelian
subgroups of Symp(T 2 × S2, ω): by Moser’s stability, ωT 2 (resp. ωS2) is isomor-
phic to the volume form associated to a flat metric on T 2 (resp. a round metric
on S2); so we may take for example a subgroup of Symp(T 2 × S2, ω) of the form
G1 ×G2, where G1 ⊂ Symp(T 2, ωT 2) is an arbitrary large finite abelian group and
G2 ⊂ Symp(S2, ωS2) is isomorphic to any finite nonabelian subgroup of SO(3,R).

By Theorem 1.6, to prove Theorem 1.1 it suffices to consider product symplectic
forms αωT 2 + βωS2 . A standard technique in 4-dimensional symplectic geometry,
based on pseudoholomorphic curves, allows us to prove that any symplectic finite
group action on T 2 × S2 is equivalent to an action which preserves the fibration
T 2 × S2 → T 2 given by the projection to the first factor (Proposition 2.2). The
proof of Theorem 1.1 then follows by combining results on finite group actions on
T 2 and S2 with a result on finite group actions on line bundles over T 2 (Proposition
2.10).

To prove Theorem 1.2 we observe that a slight modification of the construction in
[8] can be made symplectic. (In particular, the groups in the statement of Theorem
1.2 can be taken to be finite Heisenberg groups.) This needs to be done carefully
to estimate the cohomology class represented by the symplectic form.

Theorem 1.1 is proved in Section 2, Theorem 1.2 is proved in Section 3, Theorem
1.4 is proved in Section 4, and Corollary 1.5 is proved in Section 5.

Licensed to University de Barcelona. Prepared on Mon Mar  5 10:04:05 EST 2018 for download from IP 161.116.168.92.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



FINITE GROUPS ACTING SYMPLECTICALLY ON T 2 × S2 4461

1.3. Notation and conventions. All manifolds and group actions in this paper
will be implicitly assumed to be smooth. As usual in the theory of finite transfor-
mation groups, in this paper Zn denotes Z/nZ, not to be mistaken, when n is a
prime p, with the p-adic integers. If p is a prime we denote by Fp the field of p
elements. When we say that a group G can be generated by d elements we mean
that there are elements g1, . . . , gd ∈ G, not necessarily distinct, which generate G.
If a group G acts on a set X we denote the stabiliser of x ∈ X by Gx, and for any
subset S ⊂ G we denote XS = {x ∈ X | S ⊆ Gx}.

2. Proof of Theorem 1.1

2.1. We prove Theorem 1.1 modulo some results whose proofs are postponed to
later paragraphs of this section. Denote throughout this section

X = T 2 × S2

and let

Π : X → T 2

be the projection to the first factor. Take the product orientation on T 2 × S2, so
that ωT 2 + ωS2 is compatible with the orientation.

Suppose that ω is a symplectic form on X and that Γ ⊂ Symp(X,ω) is a finite
group. Since both S2 and T 2 admit orientation reversing diffeomorphisms we may
assume, replacing ω by θ∗ω for a suitable diffeomorphism θ of X, that

α = α(ω) > 0 and β = β(ω) > 0.

(We then conjugate the original action of Γ by θ, so that Γ acts by symplectomor-
phisms with respect to θ∗ω.) By Theorem 1.6 there is a diffeomorphism ξ of X
such that ξ∗ω = αωT 2 + βωS2 . Conjugating the action of Γ on X by ξ we may
assume that

Γ ⊂ Symp(X,αωT 2 + βωS2).

Before continuing the proof, we introduce some useful terminology. Suppose that

q : E → B

is a fibration of manifolds (by that we mean a locally trivial fibration in the category
of smooth manifolds, so in particular q is a submersion). An action of a group Γ on
E is said to be compatible with q if it sends fibers of q to fibers of q. This implies
that there is an action of Γ on B such that if x ∈ q−1(b), then γ · x ∈ q−1(γ · b) for
any γ ∈ Γ.

Let κS2 ∈ H2(X;Z) be the homology class represented by {t} × S2 for any
t ∈ T 2, and let κT 2 ∈ H2(X;Z) be the homology class represented by T 2 × {s} for
any s ∈ S2 (we use the chosen orientations of S2 and T 2). By Proposition 2.2, there
is an orientation preserving diffeomorphism φ : X → X such that the action of Γ
on X is compatible with the fibration Π ◦ φ and such that φ∗κS2 = κS2 , where φ∗
is the map induced in homology by φ. Furthermore, there is a Γ-invariant almost
complex structure J on X which is compatible with ω and with respect to which
the fibers of Π ◦ φ are J-complex.

Since φ is orientation preserving, it preserves the intersection pairing inH2(X;R)
� R2, which is hyperbolic. We have φ∗κS2 = κS2 , and κS2 is isotropic. Hence the
action of φ in H2(X;R) can be identified with an element of O(1, 1) fixing a nonzero
isotropic vector. The following lemma is an easy exercise in linear algebra.
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Lemma 2.1. If A ∈ O(1, 1) fixes a nonzero isotropic vector, then A is the identity.

We deduce that the action of φ on H2(X;R) is trivial. Hence φ acts trivially on
H2(X;R), so in particular φ∗[ω] = [ω].

Replacing ω by φ∗ω and conjugating both J and the action of Γ by φ, we put
ourselves in the situation where the action of Γ is compatible with Π and J , and
the fibers of Π are J-complex. The new symplectic form ω need no longer be a
product symplectic form, but it is compatible with the almost complex structure J
and its cohomology class has not changed:

(1) [ω] = α[ωT 2 ] + β[ωS2 ].

Let ΓS ⊆ Γ be the subgroup whose elements act trivially on the base of the fibration
Π. By Proposition 2.8 at least one of the following sets of conditions holds true:

(1) ΓS = {1}.
(2) There exists a nontrivial element γ ∈ ΓS such that Γ preserves Xγ .
(3) There exists a nontrivial element γ ∈ ΓS and a subgroup Γ0 ⊆ Γ such that

[Γ : Γ0] ≤ 12 and Γ0 preserves Xγ ; furthermore, there is some h ∈ Γ0 ∩ ΓS

such that for any t ∈ T 2 the action of h on Π−1(t) exchanges the two points
of Π−1(t) ∩Xγ .

Suppose that ΓS = {1}. Then the action of Γ on X comes from an effective
action of Γ on T 2. By Lemma 2.5 there is an abelian subgroup A ⊆ Γ such that
[Γ : A] ≤ 6. So in this case the proof of the theorem is finished.

Suppose for the rest of the proof that we are in the second or third situation
given by Proposition 2.8. To facilitate a unified treatment, define Γ0 := Γ in case
we are in the second situation. Let γ ∈ ΓS be the nontrivial element referred to by
the proposition. For any t ∈ T 2 the intersection Xγ ∩Π−1(t) consists of two points
(see the comments before Proposition 2.8). By Lemma 2.7 the restriction of Π to
Xγ is a fibration of manifolds. Hence, F := Xγ is a 2-dimensional manifold and
the restriction

p : Π|F : F → T 2

is a degree two covering map. Furthermore, F is a J-complex submanifold of X.
By Proposition 2.9, F is a compact orientable surface which is either con-

nected or has two connected components, and the normal bundle N → F has
a structure of a complex line bundle satisfying degN = 0 if F is connected and
degN |F1

+ degN |F2
= 0 if F has two connected components F1 and F2. The de-

grees are defined using an orientation on F with respect to which the projection
p is orientation preserving. Furthermore, by Lemma 2.6, the action of Γ0 on the
total space of N is effective.

We treat separately the cases F connected and F disconnected. In both cases
we are going to apply Proposition 2.10 to the induced action of Γ0 to N (or to its
restriction N |Fj

). This can be done because, as the action of Γ preserves J and F
is J-complex, the induced action of Γ on F is orientation preserving.

Suppose first of all that F is connected. Then degN = 0, so by Proposition
2.10 there is an abelian subgroup A ⊆ Γ0 satisfying [Γ0 : A] ≤ 6. Since in any case
[Γ : Γ0] ≤ 12, we have [Γ : A] ≤ 72, so we are done.

Consider, for the rest of the proof, the case in which F has two connected
components F1 and F2.

Suppose that there is some h ∈ Γ0 ∩ ΓS such that for any t ∈ T 2 the action
of h on Π−1(t) exchanges the two points of Π−1(t) ∩ Xγ . Then h exchanges the
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two connected components F1 and F2, and since the action of h is compatible with
J , we get an isomorphism of complex line bundles N |F1

� N |F2
. In view of the

equality degN |F1
+degN |F2

= 0 we obtain degN |F1
= degN |F2

= 0. Let Γ1 ⊆ Γ0

be the subgroup preserving the connected components F1, F2. By Lemma 2.6 the
action of Γ1 on N |F1

is effective. By Proposition 2.10 there is an abelian subgroup
A ⊆ Γ1 such that [Γ1 : A] ≤ 6. Combining all the estimates on indices we get

[Γ : A] = [Γ : Γ0][Γ0 : Γ1][Γ1 : A] ≤ 12 · 2 · 6 = 144,

so the proof is complete in this case.
Consider, to finish, the case in which no element of Γ0 exchanges the connected

components F1, F2. In that case we have Γ0 = Γ. We are going to bound the
absolute value of the degrees of degN |Fj

in terms of the numbers α, β. Let [Fj ] ∈
H2(X;Z) be the homology class represented by Fj using the orientation on Fj which
is compatible with p. Since p restricts to a diffeomorphism Fj → T 2 for j = 1, 2,
we have

[Fj ] = κT 2 + λjκS2

for some integer λj . Let T ver = Ker dΠ ⊂ TX denote the vertical tangent bundle
of the fibration Π. We have T ver = T 2 × TS2, so c1(T

ver) = 2[ωS2 ] (the factor of
2 is the Euler characteristic χ(S2); recall that ωS2 has total volume 1). Since F
intersects each fiber of Π transversely in two points, N can be identified with the
restriction of T ver to F , so we have

degN |Fj
= 〈c1(T ver), [Fj ]〉 = 〈2[ωS2 ], κT 2 + λjκS2〉 = 2λj .

Hence,

λj =
degN |Fj

2
.

In particular, the degree degN |Fj
is an even integer. Since both F1 and F2 are

J-complex submanifolds and J is compatible with ω, we have, using (1) and the
fact that the total volumes of ωT 2 and ωS2 are 1,

0 < 〈[ω], [Fj ]〉 = 〈α[ωT 2 ] + β[ωS2 ], κT 2 + λjκS2〉 = α+ βλj = α+ β
degN |Fj

2
.

Consequently

degN |Fj
> −2α

β

for j = 1, 2. Since degN |F1
+ degN |F2

= 0, this implies that

| degN |Fj
| < 2α

β
,

and since degN |Fj
is an even integer it follows that | degN |Fj

| ≤ λ(ω).
By assumption Γ0 preserves F1, so by Lemma 2.6 the action of Γ0 on N |F1

is
effective. By Proposition 2.10 there is an abelian subgroup A ⊆ Γ0 such that

[Γ0 : A] ≤ 6max{1, | degN |F1
|} ≤ 6 · λ(ω).

Since Γ0 = Γ, the proof of Theorem 1.1 is complete.
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2.2. Construction of a Γ-invariant S2-bundle structure. Recall that κS2 ∈
H2(X;Z) denotes the homology class represented by {t} × S2 for any t ∈ T 2.

Proposition 2.2. Let α, β be positive real numbers and consider the symplectic
form ω = αωT 2 + βωS2 . Suppose that a finite group Γ acts symplectically on
(X,ω). There exists an orientation preserving diffeomorphism φ : X → X such
that the action of Γ is compatible with the fibration Π ◦φ, and a Γ-invariant almost
complex structure J on X such that the fibers of Π ◦ φ are J-complex. Finally we
have φ∗κS2 = κS2 .

Proof. The proof uses pseudoholomorphic curves and is a slight generalisation of
[19, Proposition 4.1] and the note afterwards. We sketch the main ideas for com-
pleteness, giving precise references when necessary (the reader not familiar with
pseudoholomorphic curve theory may look at the beautiful survey [18] for an in-
troduction targeted to results on 4-dimensional ruled symplectic manifolds). Let J
denote the Fréchet space of C∞ almost complex structures on X which are com-
patible with ω. The idea is that upon fixing any J ∈ J the J-holomorphic spheres
cohomologous to κS2 will fit into a fibration.

Fix a complex structure JS2 on S2 compatible with the orientation. Let, for any
J ∈ J,

M(J) = {u : S2 → X | ∂Ju = 0, u∗[S
2] = κS2}.

Here ∂Ju = 1
2 (du◦JS2 −J ◦du) and [S2] ∈ H2(S

2;Z) denotes the fundamental class
defined by the orientation. The group G � PSL(2,C) of complex automorphisms of
S2 acts on M(J) by precomposition. The compact open topology on the set of maps
from S2 to X induces a topology on M(J) with respect to which the action of G is
continuous and proper. The Gromov compactness theorem implies that M(J)/G is
compact because one cannot write κS2 = A1 +A2 in such a way that both A1 and
A2 belong to the image of the Hurewicz homomorphism π2(X) → H2(X;Z), and
also 〈ω,Aj〉 > 0 for j = 1, 2 (hence, no bubbling can occur).

Since 〈c1(TX), κS2〉 = 2 > 1, the main result in [15] (see also [18, §3.3.2]) implies
that M(J) has a natural structure of a smooth oriented manifold of dimension
2(〈c1(TX), κS2〉+1) = 6, and the action of G onM(J) is smooth. By the adjunction
formula (see [18, Exercise 3.5]) each u ∈ M(J) is an embedding. In particular, the
action of G on M(J) is free and M(J)/G has a natural structure of a smooth
oriented compact surface.

The natural evaluation map ψJ : M(J) ×G S2 → X that sends the class of
(u, s) ∈ M(J) × S2 to u(s) is an orientation preserving diffeomorphism (see [19,
Proposition 4.1] and the note afterwards, and also [18, §4.3] — the latter refers only
to fibrations over S2, but everything works identically for fibrations over general
Riemann surfaces). The fact that the evaluation map is orientation preserving is
not explicitly mentioned either in [19, Proposition 4.1] or in [18, §4.3], but it is an
immediate consequence of the fact that the evaluation map has degree 1. Using the
multiplicativity of Euler characteristics in fibrations, it follows that χ(M(J)/G) =
0, so that M(J)/G is diffeomorphic to T 2. Hence the projection f : M(J)×G S2 →
M(J)/G is a fibration over T 2 with fibers diffeomorphic to S2, and its total space
is orientable.

It is well known that over a given surface there exist two oriented S2-fibrations
up to isomorphism, the trivial one and a twisted one (see e.g. [20, Lemma 6.25]),
and their total spaces are not diffeomorphic. Therefore M(J) ×G S2 must be the
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trivial fibration over T 2, so there exist

ξ : M(J)×G S2 → X, η : M(J)/G → T 2

such that Π ◦ ξ = η ◦ f .
We emphasize that the preceding results hold true for every J ∈ J.
Now let JΓ ⊂ J be the subset of Γ-invariant almost complex structures (see [20,

Proposition 5.49] and the comments before it). For any J ∈ JΓ the diffeomorphism

φ := ξ ◦ ψ−1
J : X → X

and the almost complex structure J satisfy the properties of the theorem. Indeed,
the fact that π2(T

2) = 1 implies that any diffeomorphism of T 2 × S2 sends κS2 to
±κS2 . Since Γ preserves αωT2

+βωS2 , it follows that Γ preserves κS2 . Consequently
Γ acts on M(J); this induces an action on M(J) ×G S2 preserving the fibers of η
and with respect to which ξ is Γ-equivariant. �

2.3. Lemmas on finite groups acting on the sphere and the torus.

Lemma 2.3. If H is a nontrivial finite cyclic group acting effectively and orienta-
tion preservingly on S2, then (S2)H consists of two points.

Given two groups H ′ ⊆ H we denote by ΣH(H ′) the collection of all subgroups
of H which are equal to the image of H ′ by some automorphism of H, i.e.

ΣH(H ′) = {φ(H ′) | φ ∈ Aut(H)}.

For example, H ′ is a characteristic subgroup of H if and only if ΣH(H ′) = {H ′}.

Lemma 2.4. Any nontrivial finite group H acting effectively and orientation pre-
servingly on S2 has a nontrivial cyclic subgroup H ′ ⊆ H such that at least one of
these sets of conditions is satisfied:

(1) |ΣH(H ′)| ≤ 1,
(2) |ΣH(H ′)| ≤ 12 and there is some h ∈ H in the normalizer of H ′ which

exchanges the two points in (S2)H
′
.

Furthermore, if p > 2 is a prime and H is a finite p-group acting effectively and
orientation preservingly on S2, then H is cyclic.

Lemma 2.5. Any finite group H acting effectively and orientation preservingly on
T 2 has an abelian subgroup H ′ ⊆ H such that: [H : H ′] ≤ 6, the action of H ′ on
T 2 is free, H ′ is isomorphic to a subgroup of S1×S1, and the induced action of H ′

on H1(T 2;Z) is trivial. Furhermore, if p > 3 is a prime and H is a finite p-group
acting effectively and orientation preservingly on T 2, then the subgroup H ′ can be
chosen to be H itself.

To prove the preceding lemmas, we use the following argument. If a finite group
H acts by orientation preserving diffeomorphisms on a surface Σ, then one may
take an invariant Riemannian metric on Σ and consider the induced conformal
structure. The surface Σ then becomes a Riemann surface, and the action of H
on Σ is by Riemann surface automorphisms. At this point we may use results on
automorphisms of Riemann surfaces to understand the action of H.
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2.3.1. Proof of Lemmas 2.3 and 2.4. Lemma 2.3 follows from Riemann’s uniformi-
zation theorem and the identification of the automorphisms of Aut(CP 1) with
PSL(2,C). For Lemma 2.4 we use the classification of the finite subgroups of
PSL(2,C). These coincide, up to conjugation, with those of SO(3,R), because
SO(3,R) ⊂ PSL(2,C) is a maximal compact subgroup. Each finite subgroup of
SO(3,R) is isomorphic to one of these: a cyclic group Cn, a dihedral group D2n

(n ≥ 3), or the group G12 (resp. G24, G60) of orientation preserving isometries of a
regular tetrahedron (resp. cube, icosahedron), the subindex denoting the number
of elements (see e.g. [10, Lect. 1]).

We prove Lemma 2.4 treating each case separately. If H � Cn then we set
H ′ := H, so |ΣH(H ′)| = 1. If H � D2n, then we define H ′ ⊂ H to be the subgroup
generated by all the elements of H of order bigger than 2; the subgroup H ′ is a
nontrivial characteristic cyclic subgroup of H, so |ΣH(H ′)| = 1. If H � G12, then
taking H ′ ⊂ H to be any cyclic subgroup of order 2 we have |ΣH(H ′)| = 3; H ′

can be identified with the orientation preserving isometries of a regular tetrahedron
fixing the midpoints of two opposite edges, and there is some orientation preserving
isometry h that exchanges the two midpoints. If H � G24, then taking H ′ ⊂ H
to be any cyclic subgroup of order 4 we have |ΣH(H ′)| = 3; H ′ can be identified
with the orientation preserving isometries of a cube fixing the centers of two op-
posite faces, and there is some orientation preserving isometry h that exchanges
the centers of the two faces. Finally, if H � G60, then taking H ′ ⊂ H to be any
cyclic subgroup of order 5 we have |ΣH(H ′)| = 12; H ′ can be identified with the
orientation preserving isometries of a regular icosahedron fixing two opposite ver-
tices, and there is some orientation preserving isometry h that exchanges the two
opposite vertices. The statement of p-groups follows from the classification of finite
subgroups of SO(3,R).

2.3.2. Proof of Lemma 2.5. We may identify T 2 with an elliptic curve T = C/Λ,
where Λ ⊂ R2 � C is a full rank lattice, in such a way that H acts on T by complex
automorphisms. Let Aut0(T ) ⊂ Aut(T ) denote the subgroup of automorphisms
fixing the identity element e. We have Aut(T ) = T ·Aut0(T ). It is well known that
Aut0(T ) coincides with the group of discrete symmetries of the lattice Λ which are
induced by complex linear automorphisms of C, so Aut0(T ) is a cyclic group of
order 2, 3, 4 or 6. Hence [Aut(T ) : T ] ≤ 6. It follows that H ′ := H ∩ T satisfies
[H : H ′] ≤ 6. Since T is isomorphic to S1 × S1 as a Lie group, H ′ is isomorphic to
an abelian subgroup of S1×S1. Since the action of T on itself is trivial in H1(T ;Z),
so is the action of H ′. The statement on p-groups follows from the observation that
the only primes dividing an element of {2, 3, 4, 6} are 2 and 3.

2.4. Lemmas on finite group actions and invariant submanifolds.

Lemma 2.6. Let E be a compact and connected manifold. Suppose that a finite
group H acts effectively on E and that F ⊂ E is an H-invariant submanifold. Let
N → F be the normal bundle. The action of H on E induces, linearising in the
normal directions of F , an effective action of H on N by bundle automorphisms.

Lemma 2.7. Let q : E → B be a fibration of compact manifolds. Suppose that a
finite group H acts on E compatibly with q, preserving an almost complex structure
J on E and preserving all fibers of q. Then for any subset U ⊆ H the fixed point
set EU is a J-complex submanifold and the restriction of q to EU is a fibration of
manifolds.
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The proofs of these lemmas are standard, so we just sketch the main ideas.
Suppose that a finite group H acts on a compact manifold E. Let g be an H-
invariant Riemannian metric on E. Let x ∈ E be any point, and let Hx ⊆ H be
its isotropy group. The action of Hx on E induces a linear action on TxE, and
the exponential map expgx : TxE → E is Hx-equivariant. So, near x, EHx is a
submanifold whose tangent space at x can be identified with the linear subspace
(TxE)Hx ⊆ TxE. Repeating the same argument at each point of EHx it follows
that EHx is a closed submanifold of E. The same argument implies that EH is a
closed submanifold of E.

If the action of H on E is effective and E is connected, then for any nontrivial
subgroup H ′ ⊆ H the fixed point set EH′

has dimension smaller than that of E.
This implies that for any x ∈ EH′

the linear action of H ′ on TxE identifies H ′ with
a subgroup of Aut(TxE), and hence is effective. Lemma 2.6 follows immediately
from this observation.

The proof of Lemma 2.7 follows easily from the previous arguments. Replacing
H by the subgroup generated by U it suffices to consider the case U = H. For the
last statement, note that by Ehresmann’s theorem [11] it suffices to check that the
restriction of q to EH is a submersion.

2.5. Finite groups of automorphisms of spherical fibrations over T 2. Let
J be an almost complex structure on X with respect to which the fibers of

Π : X → T 2

are J-complex. The following observation is implicitly used in the next proposition.
If a finite group G acts on X preserving the fibers of Π and respecting the almost
complex structure J , then for any nontrivial g ∈ G and any t ∈ T 2 the fixed point
set (Π−1(t))g consists of two points. This is a consequence of Lemma 2.3 and the
fact that, since the action of G preserves J and the fibers of Π are J-complex, the
restriction of the action of G to any fiber of Π is orientation preserving.

Proposition 2.8. Suppose that a finite group Γ acts effectively on X respecting J ,
and suppose that the action is compatible with the fibration Π. Let ΓS ⊆ Γ be the
subgroup whose elements act trivially on the base of the fibration Π. At least one
of the following sets of conditions holds true:

(1) ΓS = {1}.
(2) There exists a nontrivial element γ ∈ ΓS such that Γ preserves Xγ .
(3) There exists a nontrivial element γ ∈ ΓS and a subgroup Γ0 ⊆ Γ such that

[Γ : Γ0] ≤ 12 and Γ0 preserves Xγ ; furthermore, there is some h ∈ Γ0 ∩ ΓS

such that for any t ∈ T 2 the action of h on Π−1(t) exchanges the two points
of Π−1(t) ∩Xγ.

Proof. Let Γ be a finite group acting effectively on X and preserving both J and
Π. As mentioned before, since the fibers of Π are J-complex, the induced action of
Γ on each fiber of Π is orientation preserving. Let ΓS ⊆ Γ be the normal subgroup
whose elements preserve the fibers of Π. If ΓS = {1}, then the proposition holds
trivially. So assume for the rest of the proof that ΓS �= {1}.

Let S ⊂ X be any of the fibers of Π. We claim that the action of ΓS on S is
effective. Indeed, if for some element η ∈ ΓS we had Sη = S, then, since by Lemma
2.7 the projection Π : Xη → T 2 is a fibration, we would deduce that the fibers of
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Π : Xη → T 2 are 2-dimensional closed submanifolds of the fibers of Π : X → T 2,
hence Xη = X, contradicting the assumption that Γ acts effectively on X.

Since the action of ΓS on S is effective and orientation preserving, we may apply
Lemma 2.4 and deduce that there is a nontrivial cyclic subgroup Γ′

S ⊆ ΓS for which
at least one of the following two sets of conditions holds true:

(1) |ΣΓS
(Γ′

S)| = 1;
(2) |ΣΓS

(Γ′
S)| ≤ 12 and there is some h ∈ ΓS which normalizes Γ′

S and which

exchanges the two points in SΓ′
S .

In the first case we take γ to be a generator of Γ′
S . Then Xγ = XΓ′

S and, since Γ′
S

is a characteristic subgroup of a normal subgroup ΓS of Γ, Γ′
S is normal in Γ. This

implies that XΓ′
S (and hence also Xγ) is preserved by Γ.

In the second case we again take the generator γ ∈ Γ′
S and we define

Γ0 = {g ∈ Γ | gΓ′
Sg

−1 = Γ′
S}.

Since ΓS is normal in Γ, Γ0 satisfies [Γ : Γ0] ≤ |ΣΓS
(Γ′

S)| ≤ 12. Furthermore Γ0

preserves Xγ = XΓ′
S because Γ′

S is normal in Γ0. We claim that for any t ∈ T 2 the
action of h on Π−1(t) exchanges the two points of Π−1(t) ∩ Xγ . Clearly h ∈ Γ0,
because by assumption h normalizes Γ′

S , so the action of h preserves Xγ . Since
h ∈ ΓS , the action of h also preserves all the fibers of Π. Applying Lemma 2.7 to
the action of the subgroup G ⊆ ΓS generated by h and the elements of Γ′

S , it follows
that the restriction of Π to XG is a fibration of manifolds. Since XG ∩ S = ∅, we
deduce that XG = ∅, and this means that for any t ∈ T 2 the action of h exchanges
the two points in Π−1(t) ∩Xγ . �

Proposition 2.9. Suppose that F ⊂ X is a J-complex closed submanifold inter-
secting transversely each fiber of Π and such that the restriction of Π to F is a
2-sheeted (unramified) covering F → T 2. Let N → F be the normal bundle of the
inclusion F ↪→ X, endowed with the structure of a complex line bundle inherited
by J . Then either F is connected or it has two connected components F1, F2. In
the first case, F is diffeomorphic to T 2 and degN = 0; in the second case, Fj is
diffeomorphic to T 2 for j = 1, 2 and degN |F1

+ degN |F2
= 0.

The hypotheses of the proposition imply that F is a compact orientable surface,
and to give a sense to the degree ofN , we orient F in such a way that p is orientation
preserving.

Proof. Clearly, either F is connected or has two connected components. A com-
putation with the Euler characteristic shows that in the first case F is a torus.
In the second case the restriction of p to each connected component of F is a
diffeomorphism, so F is the disjoint union of two tori.

To prove the formulas on the degree of N , recall that on a real vector bundle of
rank two a choice of complex structure is equivalent up to homotopy to a choice of
orientation. Via this equivalence, the first Chern class is equal to the Euler class.
There is a natural (up to homotopy) isomorphism between N and the vertical
tangent bundle of Π. Endowing the latter with the orientation induced by J , this
isomorphism is orientation preserving. As a fibration of smooth oriented manifolds,
we can identify Π : X → T 2 with the total space of P ×PSL(2,C) CP

1, where P is
the trivial principal PSL(2,C)-bundle. But P admits a reduction of the structure
group to SO(3,R) with respect to which F is invariant under the antipodal map
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X → X, because for any two distinct points p, q ∈ CP 1 the space

{f : CP 1 → S2 conformal isomorphism | f(p) and f(q) are antipodal}/ SO(3,R)

is contractible (S2 is the round sphere in R3). This implies the formulas on degN .
�

2.6. Finite groups of automorphisms of a complex line bundle over T 2.

Proposition 2.10. Let L → T 2 be a complex line bundle. Assume that a finite
group Γ acts effectively on L by vector bundle automorphisms and that the induced
action on T 2 is orientation preserving. Then there is an abelian subgroup Γab ⊆ Γ
satisfying

[Γ : Γab] ≤ 6 ·max{1, | degL|}.
Suppose in addition that Γ acts trivially on H1(T 2;Z) and that the induced action
of Γ on T 2 factors through a free action of an abelian quotient of Γ which can be
generated by 2 elements. Then there is an abelian subgroup Γab ⊆ Γ satisfying

[Γ : Γab] ≤ max{1, | degL|}.

Proof. Let Γ0 ⊆ Γ denote the subgroup consisting of those elements which preserve
the fibers of L. There is an exact sequence 0 → Γ0 → Γ → ΓB → 0, where ΓB acts
effectively and orientation preservingly on T 2. By Lemma 2.5 there is an abelian
subgroup Γ′

B ⊆ ΓB such that [ΓB : Γ′
B] ≤ 6, Γ′

B acts freely on T 2 and trivially
on H1(T 2;Z), and Γ′

B can be identified with a subgroup of S1 × S1. The latter
implies that Γ′

B can be generated by two elements. So if we replace Γ by η−1(Γ′
B),

where η : Γ → ΓB is the quotient map, then we are in the situation of the second
statement. Consequently, the second statement implies the first.

Let us prove the second statement. Assume that a finite group Γ acts effectively
on a line bundle L → T 2 and that the induced action of Γ on T 2 is orientation
preserving and factors through a free action of an abelian quotient of Γ which can
be generated by 2 elements. We also assume that Γ acts trivially on H1(T 2;Z). If
Γ is abelian, then we set Γab = Γ and we are done. So we assume for the rest of
the proof that Γ is not abelian.

Let, as before, Γ0 ⊆ Γ denote the subgroup whose elements act trivially on the
base T 2 so that ΓB = Γ/Γ0 acts freely on T 2 and ΓB is abelian and can be generated
by two elements. Let η : Γ → ΓB be the quotient morphism. We have an exact
sequence of groups

1 → Γ0 → Γ
η−→ ΓB → 1.

The subgroup Γ0 ⊂ Γ is central because its elements act by homothecies on the
fibers of L and the action of Γ on L is linear. Furthermore, the action of Γ on L de-
fines a monomorphism Γ0 ↪→ S1, since the elements of Γ0 act on L as multiplication
by a complex number of modulus one. This implies that Γ0 is cyclic.

Define a map

Q : ΓB × ΓB → Γ0

as follows. Given elements a, b ∈ ΓB take lifts α, β ∈ Γ and set

Q(a, b) := [α, β] = αβα−1β−1.

The term αβα−1β−1 belongs to Γ0 because ΓB is abelian, so η(αβα−1β−1) = 1. It
is straightforward to check that [α, β] only depends on a and b, so Q is well defined.
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Lemma 2.11. The map Q has the following properties:

(1) For all a, b, c ∈ ΓB we have Q(ab, c) = Q(a, c)Q(b, c), Q(a, bc) =
Q(a, b)Q(a, c) and Q(a, a) = Q(1, a) = Q(a, 1) = 1;

(2) for any a, b ∈ ΓB the order of Q(a, b) ∈ Γ divides GCD(ordB(a), ordB(b)),
where ordB refers to the order of elements in ΓB;

(3) if p, q are different primes, a ∈ ΓB is a p-element and b ∈ ΓB is a q-element,
then Q(a, b) = 1;

(4) if a, b are both p-elements, then the order of Q(a, b) is at most
max{ordB(a), ordB(b)}.

Proof. Suppose that α, β, γ ∈ Γ satisfy η(α) = a, η(β) = b and η(γ) = c. We have

Q(ab, c) = (αβ)γ(αβ)−1γ−1 = αβγβ−1α−1γ−1 = α(βγβ−1γ−1)γα−1γ−1

= αγα−1γ−1(βγβ−1γ−1) because βγβ−1γ−1 = [β, γ] is central

= Q(a, c)Q(b, c).

The proof of Q(a, bc) = Q(a, b)Q(a, c) is identical, and Q(a, a)=Q(1, a) = Q(a, 1)=
1 is immediate, so (1) is proved. Using (1) we get Q(a, b)ordB(a) = Q(aordB(a), b) =
Q(1, b) = 1 and similarly Q(a, b)ordB(b) = 1, which gives (2). Finally, (3) and (4)
follow from (2). �

Let Γc ⊆ Γ0 be the subgroup generated by the elements Q(a, b) ∈ Γ0 as a, b run
through all elements of ΓB. Clearly Γc = [Γ,Γ], so Γc �= {1} by assumption.

Before concluding the proof of Proposition 2.10 we prove three lemmas.
Let dc = |Γc|.

Lemma 2.12. |ΓB| divides the product dc degL.

Proof. Consider the line bundle Λ = L⊗dc . The action of Γ on L induces an action
on Λ defined by γ · (v1 ⊗ · · · ⊗ vdc

) = (γ · v1)⊗ · · · ⊗ (γ · vdc
), and the subgroup of

Γ defined as Γ∗
Λ = {γ ∈ Γ | γ acts trivially on Λ} coincides with the set elements

of Γ0 whose order divides dc. Since Γ0 is cyclic and |Γc| = dc, we have Γ∗
Λ = Γc.

The quotient ΓΛ := Γ/Γ∗
Λ = Γ/Γc = Γ/[Γ,Γ] acts effectively on Λ, and defining

ΓΛ,0 := Γ0/Γc there is an exact sequence

1 → ΓΛ,0 → ΓΛ → ΓB → 1.

The action of ΓΛ on Λ gives a monomorphism i : ΓΛ,0 ↪→ S1. Since ΓΛ is finite and
abelian, there is a homomorphism ρ : ΓΛ → S1 which extends i. Denote by

φ : ΓΛ × Λ → Λ

the map corresponding to the action of Γ on Λ so that φ(γ, λ) = γ · λ. Define a
map

ψ : ΓΛ × Λ → Λ

by ψ(γ, λ) = ρ(γ)−1φ(γ, λ). The map ψ defines a new action of Γ on Λ, with respect
to which ΓΛ,0 acts trivially. Hence this new action factors through an action of ΓB

on Λ lifting the action on T 2. Since the action of ΓB on T 2 is free, so is the action
of ΓB on Λ. Consequently, the bundle Λ descends to a line bundle on the quotient
T 2/ΓB. Equivalently, there is a line bundle Λ′ → T 2/ΓB satisfying Λ � q∗Λ′, where
q : T 2 → T 2/ΓB is the quotient map. Since q has degree |ΓB|, it follows that deg Λ
is divisible by |ΓB |. Finally, deg Λ = dc degL, so the proof is complete. �
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Lemma 2.13. We have degL �= 0.

Proof. Suppose that degL = 0. We are going to prove that the action of Γ on L
factors through an abelian group. This is a contradiction because by assumption Γ
is not abelian and the action of Γ on L is effective.

Since degL = 0, there is a nowhere vanishing smooth section σ : T 2 → L. For
any γ ∈ Γ there is a unique smooth map φγ : T 2 → C∗ defined by the property
that γ · σ(p) = φγ(p) · σ(γ · p) for every p ∈ T 2. For any γ, γ′ ∈ Γ the equality
γ′ · (γ · σ(p)) = (γ′γ) · σ(p) gives the cocycle condition

φγ′γ(p) = φγ′(γ · p)φγ(p).

Denoting by ργ : T 2 → T 2 the map ργ(p) = γ · p, we can rewrite the cocycle
condition as φγ′γ = (φ′

γ ◦ ργ)φγ . Associating to each map T 2 → C∗ its homo-

topy class and using the canonical identification [T 2,C∗] � H1(T 2;Z), each φγ

corresponds to a cohomology class Φγ ∈ H1(T 2;Z), and the cocycle condition im-
plies Φγ′γ = ρ∗γΦγ′ + Φγ . Since the action of Γ on H1(T 2;Z) is trivial, we have
ρ∗γΦγ′ = Φγ′ , so we have

Φγ′γ = Φγ′ +Φγ

for every γ, γ′. Now, H1(T 2;Z) is torsion free and Γ is finite, so Φγ = 0 for every
γ ∈ Γ. So each γγ is null homotopic, and this implies that we can choose for every
γ a smooth map ψγ : T 2 → C such that φγ = exp(ψγ).

Now let γ, γ′ ∈ Γ be arbitrary elements and let ζ = [γ−1, γ′−1] so that γγ′ = γ′γζ.
We are going to prove that ζ acts trivially on L. First note that since the action of
Γ on T 2 factors through an abelian quotient, ζ acts trivially on T 2, so the cocycle
condition implies that

(φγ ◦ ργ′)φγ′ = φγγ′ = φγ′γζ = (φγ′γ ◦ ρζ)φζ = φγ′γφζ = (φγ′ ◦ ργ)φγφζ .

It follows that the smooth map χ : T 2 → C defined by the equality

(2) ψγ ◦ ργ′ + ψγ = ψγ′ ◦ ργ + ψγ + χ

satisfies expχ = φζ (note that χ need not be equal to ψζ ; what is true is that the
difference χ−ψζ is a constant integral multiple of 2πi). Let δ be the order of ζ in Γ.
Since ζ acts trivially on T 2 the cocycle condition for φζ implies that φδ

ζ = 1. Hence

the condition expχ = φζ implies that χ(p) ∈ δ−12πiZ for every p ∈ T 2. Since χ is
smooth, we conclude that χ is constant. Fix any point p ∈ T 2. It follows from (2)
that ∑

η∈Γ

ψγ(γ
′η · p) + ψγ(η · p) =

∑
η∈Γ

ψγ′(γη · p) + ψγ(η · p) + χ(η · p).

Clearly
∑

η∈Γ ψγ(γ
′η · p) =

∑
ν∈Γ ψγ(ν · p) and

∑
η∈Γ ψγ′(γη · p) =

∑
ν∈Γ ψγ′(ν · p),

so the terms involving ψ’s in the equality above cancel each other, and it follows
that

∑
η∈Γ χ(η · p) = 0. Since χ is constant, this implies that χ = 0, which implies

φζ = 1, so ζ acts trivially on L. �

Lemma 2.14. We have d2c ≤ |ΓB|.

Proof. We first prove that Γc can be generated by an element of the form Q(a, b)
for some a, b ∈ ΓB. Begin with a generator of Γc of the form

h = Q(a1, b1) · · ·Q(ar, br).
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Since ΓB is abelian we can write ai =
∏

p aip, bi =
∏

p bip, where each product is
over the set of primes and aip, bip are p-elements of ΓB. In the next arguments we
repeatedly use Lemma 2.11. We have

Q(ai, bi) =
∏
p,q

Q(aip, biq) =
∏
p

Q(aip, bip),

and hence, if we denote by ord γ the order of any γ ∈ Γ,

ordh = ord
∏
i

∏
p

Q(aip, bip) = ord
∏
p

∏
i

Q(aip, bip) ≤
∏
p

max
i

ordQ(aip, bip).

Choose for any p an index i(p) such that Q(ai(p)p, bi(p)p) = maxi ordQ(aip, bip).
Let a =

∏
p ai(p)p and b =

∏
p bi(p)p. We have

dc = ordh ≤
∏
p

max
i

ordQ(aip, bip) = ordQ(a, b).

This implies that Q(a, b) is a generator of Γc. We claim that the set

S = {aibj ∈ ΓB | 0 ≤ i < dc, 0 ≤ j < dc}

contains d2c elements. Otherwise there would exist 0 ≤ k < dc and 0 ≤ l < dc
such that akbl = 1, hence b−l = ak. This would imply Q(a, b)k = Q(ak, b) =
Q(b−l, b) = Q(b, b)−l = 1. Hence ordQ(a, b) < dc, a contradiction with our previous
computation. It follows that ΓB contains at least d2c elements, so the lemma is
proved. �

We are now ready to finish the proof of Proposition 2.10. By Lemma 2.13 we
have degL �= 0. By Lemma 2.12, the nonvanishing of degL implies that |ΓB | ≤
|dc degL|. Using this inequality and Lemma 2.14 we have

|ΓB|2 ≤ d2c(degL)
2 ≤ |ΓB |(degL)2.

Dividing both sides by |ΓB | we get

|ΓB| ≤ (degL)2.

Since ΓB can be generated by two elements, there are three possibilities: ΓB is
trivial, ΓB is nontrivial cyclic, or ΓB is isomorphic to Zn1

× Zn2
where n1, n2 are

natural numbers bigger than one. In each of the three cases there exists a cyclic
subgroup Γcyc ⊆ ΓB such that [ΓB : Γcyc] ≤ |ΓB |1/2 ≤ | degL|. Define

Γab := η−1(Γcyc).

By (1) in Lemma 2.11, Γab is abelian. Finally, [Γ : Γab] ≤ | degL|, so we are
done. �

3. Proof of Theorem 1.2

The first three subsections of this section are devoted to introducing the prelim-
inaries of the proof of Theorem 1.2, which is given in Subsection 3.5.
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3.1. The group Γn. Let I be an ideal of a commutative ring R with unit. Consider
the group

T (R, I) =

⎧⎨
⎩A(x, y, z) :=

⎛
⎝ 1 x z

0 1 y
0 0 1

⎞
⎠ ∈ Mat3×3(R) | x, y, z ∈ I

⎫⎬
⎭

with the group structure given by matrix multiplication. For any natural number
n, T (Z, nZ) is a normal subgroup of T (Z,Z), so we may define the quotient group

Γn := T (Z,Z)/T (Z, nZ).

The map
η : Γn → V := Zn × Zn

which sends the class of A(x, y, z) to ([x], [y]) is a surjective morphism of groups.
The kernel of η can be identified with Γ0

n = {[A(0, 0, z)] | z ∈ Z}, which is the
center of Γn. The map ψ : Γ0

n → Zn that sends [A(0, 0, z)] to [z] is an isomorphism
of groups. Hence Γn sits in an exact sequence of groups,

0 → Zn → Γn
η−→ Zn × Zn → 0.

The group Γn is sometimes called a finite Heisenberg group. When n is a prime p,
Γn is isomorphic to the group in the statement of Theorem 1.4.

Lemma 3.1. For any abelian subgroup A ⊆ Γn we have [Γn : A] ≥ n.

Proof. This is proved in Section 3 of [29] (note that Γn � G1
K taking N = n in

[29]). �
3.2. The circle bundle Mn → T 2

n. Fix a natural number n. Let

T 2
n := R2/nZ2

with its natural smooth structure. The group Zn × Zn acts on T 2
n in the obvious

way: ([a], [b]) · [(x, y)] = [(a+ x, b+ y)].
Define

Mn := T (Z, nZ)\T (R,R).
Endow T (R,R) with the structure of a differential manifold with respect to which
R3 � (x, y, z) �→ A(x, y, z) ∈ T (R,R) is a diffeomorphism. Since the action of
T (Z, nZ) on T (R,R) is smooth and properly discontinuous, Mn has a natural
structure of a differential manifold. The group Γn acts smoothly and effectively
on Mn on the left via product of matrices. On the other hand, the projection
T (R,R) � A(x, y, z) �→ (x, y) ∈ R2 descends to a projection

ρ : Mn → T 2
n

which is a principal circle bundle. The structure of a principal bundle is induced
by right multiplication on T (R,R) by central elements. More concretely,

(3) e2πit · [A(x, y, z)] = [A(x, y, z)A(0, 0, nt)].

The action of Γn on Mn is by principal bundle automorphisms, lifting the action
of Γn on T 2

n defined through the map η : Γn → Zn ×Zn and the action of Zn ×Zn

on T 2
n defined above.

We identify the tangent space TIdT (R,R) with the set of 3 × 3 upper diagonal
real matrices with zeroes in the diagonal, namely

(4) TId(R,R) = {α(x, y, z) = A(x, y, z)−A(0, 0, 0) | x, y, z ∈ R}.
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Let

ex = (1, 0, 0), ey = (cos 2π/6, sin 2π/6, 0), ez = (0, 0, 1)

and consider the isomorphism of vector spaces

f : TId(R,R) → R3, f(α(x, y, z)) = xex + yey + zez.

Consider the left invariant Riemannian metric g̃ on T (R,R) whose restriction to
TIdT (R,R) is the pairing

〈α, α′〉 := 〈f(α), f(α′)〉R3 ,

where 〈·, ·〉R3 denotes the Euclidean pairing in R3. We use this choice of metric
because the Z-span of the vectors ex, ey is a lattice in the plane {(a, b, c) | c = 0}
with rotational Z6-symmetry; this will be crucial in Subsection 3.3.

By invariance, the metric g̃ descends to a metric gn on Mn. The metric gn on
Mn is also S1-invariant, since the action of S1 on Mn is defined via multiplication
by central elements of T (R,R), i.e. A(x, y, z)A(0, 0, nt) = A(0, 0, nt)A(x, y, z).

3.3. Introducing an extra Z6-symmetry. Define the following smooth map:

h : T (R,R) → T (R,R), h(A(x, y, z)) = A

(
−y, x+ y, z − xy − 1

2
y2
)
.

A simple but tedious computation proves that h6 = Id (so in particular h is a
diffeomorphism) and that h is an morphism (hence an isomorphism) of groups:

h(A(x, y, z))h(A(x′, y′, z′)) = h(A(x, y, z)A(x′, y′, z′)).

The definition of h may seem a bit awkward, especially for the presence of quadratic
terms. See the appendix for a geometric interpretation of h in which these quadratic
terms come up from an easy computation with iterated integrals.

The identity element A(0, 0, 0) is fixed by h and the action on TIdT (R,R) induced
by h is the linear map which, in terms of (4), takes the form

α(x, y, z) �→ α(−y, x+ y, z).

It follows that h fixes the Riemannian metric g̃ defined in the previous subsection.
Suppose for the rest of this subsection that n is an even natural number. Then

h preserves T (Z, nZ), so h gives rise to a diffeomorphism hn of Mn which is a
gn-isometry. Furthermore, since h acts trivially on the subgroup {A(0, 0, z) | z ∈
R} ⊂ T (R,R), the action of hn commutes with the S1-action on Mn, so hn acts by
principal bundle automorphisms on Mn → T 2

n .

Let Γ̂n ⊂ Diff(Mn) be the subgroup generated by (the action on Mn of the
elements of) Γn and hn. Combining our previous observations on the action of Γn

and h, we deduce that Γ̂n acts on Mn by S1-principal bundle automorphisms and
by gn-isometries.

Lemma 3.2. If n ≥ 8, then any abelian subgroup A ⊆ Γ̂n satisfies [Γ̂n : A] ≥ 6n.

Proof. Let Bn ⊂ Diff(T 2
n) be the subgroup generated by the diffeomorphisms

χ, ta, tb ∈ Diff(T 2
n) defined as

χ([x], [y]) = ([−y], [x+ y]), ta([x], [y]) = ([x+ 1], [y]), tb([x], [y]) = ([x], [y + 1]).
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Since χ−1taχ = tat
−1
b and χ−1tbχ = ta (we omit the symbol ◦ in the compositions),

the subgroup 〈ta, tb〉, which is isomorphic to Zn ×Zn, is a normal subgroup of Bn.
Hence, there is an exact sequence

0 → Zn × Zn → Bn
ζ−→ Z6 → 0,

where ζ(χ) ∈ Z6 is a generator and the element (u, v) ∈ Zn × Zn is mapped to
tuat

v
b . Furthermore, the action of Z6 on Zn × Zn given by conjugation in Bn is

χ · (u, v) = (u+ v,−u).
Suppose that A ⊆ Bn is an abelian subgroup and that ζ(A) �= 0. There are

three possibilities for the image ζ(A). Suppose first that ζ(A) = Z6. Then for any
(u, v) ∈ A∩Ker ζ ⊆ Zn×Zn we have χ · (u, v) = (u+v,−u) = (u, v), which implies
(u, v) = (0, 0), i.e.,

ζ(A) = 〈χ〉 =⇒ A ∩Ker ζ = 0.

Next suppose that ζ(A) = 〈χ2〉 ⊂ Z6. Then for any (u, v) ∈ A ∩ Ker ζ ⊆ Zn × Zn

we have χ2 · (u, v) = (v,−u − v) = (u, v), which implies (u, v) = (0, 0) if n is not
divisible by 3 and (u, v) ∈ {(0, 0), (n/3, n/3)} if n is divisible by 3. In any case,

ζ(A) = 〈χ2〉 =⇒ A ∩Ker ζ ⊆ K2 := {(0, 0), (n/3, n/3)},

where we agree that the second term only appears if n is divisible by 3. Finally,
suppose that ζ(A) = 〈χ3〉. Then for any (u, v) ∈ A ∩ Ker ζ ⊆ Zn × Zn we have
χ3 · (u, v) = (−u,−v) = (u, v), which implies (u, v) ∈ {0, n/2} × {0, n/2}; hence

ζ(A) = 〈χ3〉 =⇒ A ∩Ker ζ ⊆ K3 := {0, n/2} × {0, n/2}.

It is immediate from the definitions that there is a morphism of groups η̂ : Γ̂ →
Bn with the property that each φ ∈ Γ̂n, seen as a diffeomorphism of Mn, lifts η̂(φ).
Setting θ = ζ ◦ η̂ we have a commutative diagram

0 �� Γn

η

��

�� Γ̂n

η̂

��

θ �� Z6
�� 0

0 �� Z2
n

�� Bn
ζ �� Z6

�� 0.

Suppose that Â ⊆ Γ̂n is abelian. Then η̂(Â) ⊆ Bn is also abelian. We are going to

bound [Γ̂n : Â], treating different cases separately. If ζ(η̂(Â)) = 0, then Â ⊆ Ker θ,

so Â can be identified with an abelian subgroup of Γn. By Lemma 3.1 we have

[Γ̂n : Â] = 6[Γn : Â] ≥ 6n.

If ζ(η̂(Â)) = Z6, then, by our previous comment, η̂(Â) ∩ Ker ζ = 0, which implies

that Â ∩Ker θ ⊆ Ker η. This implies that |Â| ≤ 6|Ker η| = 6n, so

[Γ̂n : Â] ≥ 6n3

6n
= n2 ≥ 6n.

If ζ(η̂(Â)) = 〈χ2〉, then Â ∩ Ker θ ⊆ η−1(K2), so |Â| ≤ |〈χ2〉| · |η−1(K2)| = 6 ·
|Ker η| = 6n, which gives

[Γ̂n : Â] ≥ 6n3

6n
= n2 ≥ 6n.
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If ζ(η̂(Â)) = 〈χ3〉, then Â ∩ Ker θ ⊆ η−1(K3), so |Â| ≤ |〈χ3〉| · |η−1(K3)| = 8 ·
|Ker η| = 8n, which gives

[Γ̂n : Â] ≥ 6n3

8n
=

6n2

8
≥ 6n,

and so the proof of the lemma is complete. �

3.4. A Γ̂n-invariant symplectic form on Mn×S1S2. Suppose, as in the previous
subsection, that n is an even natural number.

Let us identify T 2 with T 2
1 and consider the diffeomorphism

φ : T 2 → T 2
n , φ(([x], [y])) = ([nx], [ny]).

Let (x, y) ∈ R2 denote the canonical coordinates. These coordinates define trans-
lation invariant vector fields ∂x, ∂y on R2, which induce by projection vector fields
on each T 2

n ; we denote these vector fields on T 2
n with the same symbols ∂x, ∂y. We

denote the dual forms on T 2
n by dx, dy.

Lemma 3.3. There exists a Γ̂n-invariant connection A on Mn → T 2
n whose cur-

vature FA satisfies
φ∗FA = 2πin dx ∧ dy.

Proof. Define a connection A on Mn → T 2
n by the prescription that its horizontal

distribution is gn-orthogonal to the tangent spaces of the S1-orbits. Since the

action of Γ̂n on Mn is by principal bundle automorphisms and gn-isometries, A is

Γ̂n-invariant. To compute the curvature of A we work on T (R,R). Consider the
matrices

mx =

⎛
⎝ 0 1 0

0 0 0
0 0 0

⎞
⎠ , my =

⎛
⎝ 0 0 0

0 0 1
0 0 0

⎞
⎠

and let X,Y be the left invariant vector fields on T (R,R) whose restrictions to
TIdT (R,R) are given by mx,my respectively. The vector fields X,Y descend to
S1-invariant horizontal vector fields X ′, Y ′ on Mn whose projections to T 2

n satisfy
Dρ(X ′) = ∂x and Dρ(Y ′) = ∂y. On the other hand, [X,Y ] is the left invariant
vector field whose restriction to TIdT (R,R) is equal to [mx,my]. The latter can
easily be identified with the restriction of 2πn−1X to TIdT (R,R), where X is the
vector field on T (R,R) induced by the infinitesimal action of i ∈ LieS1 that results
from deriving the action (3). It follows that FA = 2πin−1 dx∧dy. Since φ∗dx = n dx
and φ∗dy = n dy, the result follows. �

Incidentally, note that Lemma 3.3 implies by Chern–Weil theory that degMn =
n, which, combined with Lemmas 3.1 and 3.2, implies that the first (resp. second)
statement of Proposition 2.8 is sharp for line bundles L of even degree satisfying
| degL| ≥ 8 (resp. for any L).

Define
Pn = φ∗Mn, An = φ∗A,

so that Pn is a principal circle bundle over T 2 carrying an effective action of Γn

and An is a Γn invariant connection on Pn whose curvature is equal to FAn
=

2πin dx ∧ dy.
Let us identify S2 with the unit sphere centered at 0 in R3, and consider the

action of S1 on S2 given by rotations around the z-axis:

(5) e2πit · (x, y, z) = (x cos t− y sin t, x sin t+ y cos t, z).
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Let ωFS be the volume form associated to restriction of the Euclidean metric on S2

and the orientation specified by the ordered basis (∂x, ∂y) of T(0,0,1)S
2. We may

look at ωFS as a symplectic form on S2, with respect to which the action of S1

given by rotation is Hamiltonian. The moment map μFS : S2 → iR is

μFS(x, y, z) = iz,

so μFS(S
2) = i[−1, 1]. We have

(6)

∫
S2

ωFS = 4π.

Consider the associated bundle Pn ×S1 S2 and the projection

Πn : Pn ×S1 S2 → T 2.

We are next going to construct a Γn-invariant symplectic form on Pn ×S1 S2 using
the minimal coupling construction (see e.g. [20, §6.1]). In order to keep track of the
cohomology class represented by the symplectic form we will give the construction
in some detail.

Let DΠn denote the vertical tangent bundle of the fibration Πn. Each fiber of
Πn can be identified, in a way unique up to the action of S1, with S2. Since ωFS

is S1-invariant it defines, via these identifications, a section ωver
0 of Λ2(KerDΠn)

∗.
On its turn, the connection An induces a left inverse of the inclusion KerDΠn ↪→
T (Pn ×S1 S2), which when combined with ωver

0 leads to a 2-form

ω̃0 ∈ Ω2(Pn ×S1 S2)

whose restriction to each fiber coincides with ωFS. The form ω̃0 is not closed (unless
An is flat), but the following 2-form is closed (see e.g. [2, Theorem 7.34]):

(7) ω0 = ω̃0 + μFS ·Π∗
nFAn

.

Lemma 3.4. For any real number δ > 2πn

ωδ = ω0 + δΠ∗
n(dx ∧ dy)

is a Γ̂n-invariant symplectic form on Pn ×S1 S2.

Proof. It is clear that ωδ is closed (this holds regardless of the value of δ), so we
prove that ωδ is nondegenerate if δ > 2πn. The vertical and horizontal distributions
in T (Pn×S1 S2) are ωδ-orthogonal, so it suffices to prove that the restrictions of ωδ

to both distributions are nondegenerate. The restriction to the vertical distribution
coincides with ωver

0 , which is nondegenerate because it coincides on each fiber with
ωFS. To prove that the restriction to the horizontal distribution is nondegenerate if
δ > 2πn, use FAn

= 2πin dx∧ dy and |μ(u)| ≤ 1 for every u ∈ S2. Finally, to prove

that ωδ is Γ̂n-invariant observe that ω0 is Γ̂n-invariant (this is a consequence of the
invariance of the connection An) and that dx ∧ dy is invariant under the action of
Bn (see the proof of Lemma 3.2) on T 2 given by conjugating the action on T 2

n via
the diffeomorphism φ : T 2 → T 2

n . �

3.5. Completion of the proof. The action (5) factors through a morphism

S1 → SO(3,R)

(via the standard action of SO(3,R) on S2) which represents an element of or-
der 2 in π1(SO(3,R)) � Z2. Hence for every even natural number n there is a
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diffeomorphism ψn : T 2 × S2 → Pn ×S1 S2 satisfying Πn ◦ ψn = Π (recall that
Π : T 2 × S2 → T 2 is the projection).

Lemma 3.5. For any n ∈ 2N we have [ψ∗
nωδ] = δ[ωT 2 ] + 4π[ωS2 ].

Proof. It suffices to prove that [ψ∗
nω0] = 4π[ωS2 ]. Let σ0, σ1 ⊂ Pn ×S1 S2 be the

submanifolds corresponding to the fixed points (0, 0, 1), (0, 0,−1) respectively of
the action of S1 on S2, i.e.

σ0 = Pn ×S1 {(0, 0, 1)}, σ1 = Pn ×S1 {(0, 0,−1)},
and let Sj = ψ−1

n (σj). Orient σj and Sj so that their projections to T 2, which
are diffeomorphisms, are orientation preserving. Since S1, S2 are disjoint, a sim-
ple computation using the intersection product on H∗(T

2 × S2) proves that the
homology classes represented by Sj are

[S0] = [T 2] + k[S2], [S1] = [T 2]− k[S2]

for some integer k. It follows that for any s ∈ S2∫
T 2×{s}

ψ∗
nω0 =

1

2

(∫
S0

ψ∗
nω0 +

∫
S1

ψ∗
nω0

)
=

1

2

(∫
σ0

ω0 +

∫
σ1

ω0

)
.

Since μFS([1 : 0]) + μFS([0 : 1]) = 0, it follows from the definition of ω0 (7) that

1

2

(∫
σ0

ω0 +

∫
σ1

ω0

)
= 0.

Consequently [ψ∗
nω0] = β[ωS2 ] for some real number β. But β coincides with the

total volume of ωFS, which by (6) is equal to 4π. �
We are now ready to prove Theorem 1.2. Let ω be an arbitrary symplectic form

on T 2 × S2. Let α = α(ω) and β = β(ω), let n = λ(ω) and let ξ = α/β. Suppose
that n is an even natural number satisfying n ≥ 8. It follows, combining Lemma 3.4

and Lemma 3.5, that there exists a Γ̂n-invariant symplectic form ω4πξ on Pn×S1 S2

satisfying
β

4π
[ψ∗

nω4πξ] = [ω].

By Lalonde and McDuff’s Theorem 1.6 there is a diffeomorphism φ of T 2×S2 such
that

β

4π
ψ∗
nω4πξ = φ∗ω.

Since two symplectic forms that differ by multiplication by a constant have identical
symplectomorphism groups, it follows that there is a subgroup of Symp(T 2×S2, ω)

which is isomorphic to Γ̂n. Applying Lemma 3.2, the proof of the first statement
of Theorem 1.2 is complete. It only remains to prove that the action of Γ on the
cohomology of T 2 × S2 is trivial. This follows from the next lemma.

Lemma 3.6. For any symplectic form ω on T 2 × S2 and any symplectomorphism
φ of ω, the action of φ on H∗(T 2 × S2;Z) is trivial.

Proof. It suffices to prove that the action of φ on H2(T
2 × S2;R) is trivial. Let

κS2 , κT 2 ∈ H2(T
2×S2;Z) be as before the classes represented by {t}×S2 and T 2×

{s} respectively, for any t ∈ T 2 and s ∈ S2. Since π2(T
2) is trivial, (Π◦φ)∗κS2 = 0,

so φ∗κS2 = λκS2 for some λ ∈ Z. Since [ω] = α(ω)[ωT 2 ] + β(ω)[ωS2 ] with β(ω) �= 0
and ωT 2 pairs trivially with κS2 , we have λ = 1. The proof is finished using Lemma
2.1 and the arguments preceding it. �
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4. Proof of Theorem 1.4

We first prove that if ω is a symplectic form on T 2×S2, p > 3 is a prime such that
2p > λ(ω), and Γ ⊂ Symp(T 2 × S2, ω) is a finite p-group, then Γ is abelian. This
follows from the same arguments as in the proof of Theorem 1.1. The difference
with the general situation considered in Theorem 1.1 is that when applying Lemmas
2.4 and 2.5 to a p-group H with p > 3, the subgroup H ′ whose existence is claimed
turns out to be H itself in both lemmas. When we apply Proposition 2.8 during
the proof of Theorem 1.1 there are three possible outcomes, which in the context
of a finite p-group Γ (with p > 3 and 2p > λ(ω)) simplify as follows. If ΓS = {1},
then the abelian subgroup A ⊆ Γ which is constructed turns out to be Γ itself, so
Γ is abelian. In the two other cases, the group Γ0 coincides with Γ, and similarly
Γ1 is also equal to Γ. The proof that Γ is abelian is completed by observing that,
in Proposition 2.10, if Γ is a p-group (p > 3), degL is even, and 2p > degL, then
Γab = Γ. To justify this, first note that it suffices to consider the second statement
(again because in Lemma 2.5 for a p-group H, p > 3, the subgroup H ′ coincides
with H). The fact that degL is even and 2p > degL implies that p does not divide
degL. This implies, using Lemma 2.12, that |ΓB| divides dc = |[Γ,Γ]|. In particular
|ΓB| ≤ |[Γ,Γ]|. By (2) in Lemma 2.11 this implies that ΓB is cyclic, because the
exponent of [Γ,Γ] is not greater than the exponent of ΓB, and [Γ,Γ] is cyclic. Then
(1) in Lemma 2.11 tells us that Γ is abelian.

Now suppose that p > 3 is prime and that 2p ≤ λ(ω). By the arguments in the
proof of Theorem 1.2 (see Subsection 3.5) there is a subgroup of Symp(T 2 ×S2, ω)
isomorphic to Γ2p. The group Γp is isomorphic to

〈X,Y, Z | Xp = Y p = Zp = [X,Z] = [Y, Z] = 1, [X,Y ] = Z〉,
so it suffices to prove that Γ2p has a subgroup isomorphic to Γp. The map

d : T (Z,Z) → T (Z,Z), d(A(x, y, z)) = A(2x, 2y, 4z)

is an injective morphism of groups and d−1(T (Z, 2pZ)) = T (Z, pZ). Hence, d gives
an injection

Γp = T (Z,Z)/T (Z, pZ) ↪→ T (Z,Z)/T (Z, 2pZ) = Γ2p

(in fact, computing cardinals it is clear that we can identify the image of this map
with a p-Sylow subgroup of Γ2p).

5. Proof of Corollary 1.5

Let (M,ω) be a symplectic manifold diffeomorphic to an S2-fibration over a
compact Riemann surface Σ. If χ(Σ) �= 0, then χ(M) �= 0, so by the main result in
[22] the diffeomorphism group of M is Jordan. A fortiori, so is Symp(M,ω). The
only case not covered by [22] is precisely when Σ = T 2. In this case, M is either the
trivial fibration T 2×S2 or a twisted fibration. In the first case Theorem 1.1 applies.
In the second case, we can consider a degree 2 unramified covering μ : T 2 → T 2

and take the pullback μ∗M → T 2 of the fibration M → T 2. There is a degree 2
unramified covering ν : μ∗M → M . Then μ∗M � T 2 × S2, so Symp(μ∗M, ν∗ω)
is Jordan by Theorem 1.1, and the arguments in [21, §2.3] imply, using ν, that
Symp(M,ω) is also Jordan.

Suppose now that (M,ω) is a symplectic manifold with M diffeomorphic to the
product of two Riemann surfaces of genuses g and h. If χ(M) �= 0, then [22]
implies as before that Symp(M,ω) is Jordan. Now suppose that χ(M) = 0. Then
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1 ∈ {g, h}, so suppose that g = 1. If h = 0, then M � T 2 × S2, so by Theorem
1.1 Symp(M,ω) is Jordan. Finally, if h ≥ 1, then one may find cohomology classes
α1, . . . , α4 ∈ H1(M ;Z) such that α1 ∪ · · · ∪ α4 �= 0, so by [21] the diffeomorphism
group of M is Jordan. Consequently, Symp(M,ω) is Jordan in this case as well.

Appendix A. Automorphisms of Heisenberg groups and geometry

Here we interpret geometrically the automorphism h ∈ Aut(T (R,R)) of §3.3 in
terms of iterated integrals and the monodromy of certain fibration over the moduli
space of elliptic curves. (See [25] for a group theoretical approach to Aut(T (Z,Z))
and [26] for an approach based on 2-dimensional local fields.)

It is easy to prove that any automorphism of ΓR = T (R,R) lifting the auto-
morphism of ΓR/[ΓR,ΓR] � R2 given by (x, y) �→ (−y, x + y) has to coincide with
h up to adding linear combinations αx + βy to the third term, and all such lifts
have order 6. Varying α and β corresponds to the action on Aut(ΓR) of the in-
ner automorphisms of ΓR, which act trivially on ΓR/[ΓR,ΓR]. In particular, the
automorphism h′ of T (R,R) defined as

h′(A(x, y, z)) = A

(
−y, x+ y, z − xy − y2 − y

2

)

represents the same class in Out(ΓR) as h. Clearly h′ preserves1 Γ = T (Z,Z), and
since ΓR = Γ⊗ R as nilpotent groups, one can recover h′ from its restriction to Γ.
The latter belongs to Aut+(Γ), the group of automorphisms of Γ acting trivially
on Z(Γ) � Z.

Let Int+(Γ) ⊂ Aut+(Γ) be the inner automorphisms. The outer automorphism
group Out+(Γ) = Aut+(Γ)/ Int+(Γ) maps to SL(2,Z) via its action on Γ/[Γ,Γ],
and one can prove easily that this morphism η : Out+(Γ) → SL(2,Z) is injective.
To prove that η is also surjective, consider a principal S1-bundle p : M → T 2 of
degree 1. For any x0 ∈ M we have π1(M,x0) � Γ. Let F ∈ SL(2,Z) and let
φ : T 2 → T 2 be a diffeomorphism whose mapping class coincides with F . Since
detF = 1, φ acts trivially on H2(T 2) and hence admits a lift ψ : M → M which is
a principal bundle automorphism. Then ψ defines an element ψ∗ ∈ Out+(Γ) which
only depends on F and which is mapped to F by η. Therefore η is surjective.

The preceding construction allows us to interpret the quadratic terms in h and
h′ in terms of Chen’s iterated integrals (see e.g. [14]). Let u, v denote the standard
coordinates in R2 and let du, dv be the induced 1-forms in T 2 = R2/Z2. Denote
also for simplicity by du, dv the pullbacks to M . Let α ∈ Ω1(M, iR) be a connection
form whose curvature dα is equal to −2πidu ∧ dv. For any smooth loop γ in M
define

x(γ) =

∫
γ

du, y(γ) =

∫
γ

dv, z(γ) =
−i

2π

∫
γ

α+

∫
γ

du dv.

z(γ) is a homotopy functional by [14, Proposition 3.1], i.e. it only depends on the
homotopy class of γ. One proves easily that

π1(M,x0) � γ �→ A(x(γ), y(γ), z(γ)) ∈ Γ

1We remark that in Subsection 3.3 we use h instead of h′ because h preserves T (Z, nZ) for
even n, whereas h′ does not preserve T (Z, nZ) if n is even.
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is an isomorphism of groups. Choose a lift f ∈ Aut+(Γ) of ψ∗. We have f(A(x, y, z))
= A(x′, y′, z+ g(x, y, z)), where (x′, y′) = F (x, y). Our aim is to compute g(x, y, z)
up to linear terms. Suppose that x = x(γ), y = y(γ) and z = z(γ). We have

g(x, y, z) =
−i

2π

∫
γ

(ψ∗α− α) +

∫
γ

(ψ∗duψ∗dv − du dv).

Take φ : T 2 → T 2 to be the map induced by the linear transformation F : R2 → R2.
Then φ∗(du ∧ dv) = du ∧ dv because detF = 1, so ψ∗dα = dα. Hence ψ∗α − α
is a closed 1-form, so its contribution to g(x, y, z) is a linear term on x, y (closed
1-forms only see Γ/[Γ,Γ] = H1(M) = H1(T )). It follows that the integral involving
ψ∗duψ∗dv − du dv is a homotopy functional which coincides with g up to linear
terms. By naturality we have

∫
γ
(ψ∗duψ∗dv−du dv) =

∫
p◦γ(ψ

∗duψ∗dv−du dv), and

since this is a homotopy functional it only depends on the homotopy class of γ. In
particular we may assume that γ comes from a linear map R � t �→ (λt, μt) ∈ R2.

Then λ =
∫
γ
du = x, μ =

∫
γ
dv = y, and if F =

(
α β
δ ε

)
, a straightforward

computation gives∫
p◦γ

(ψ∗duψ∗dv − du dv) =
αδx2 + (αε+ βδ − 1)xy + βεy2

2
.

Taking α = 0, β = −1, δ = 1 and ε = 1 we obtain the quadratic terms in h and h′.
We close this appendix constructing a morphism of groups ξ : SL(2,Z) →

Aut+(Γ) which is a section of Aut+(Γ) → Out+(Γ) � SL(2,Z). This gives a
conceptual explanation of the existence of elements of Aut(Γ) of order 6 (such as
h′). Let M = M1,1 be the moduli orbifold/stack of elliptic curves over C, let
p : C → M be the universal curve (all bundles here are to be understood in the
orbifold/stack sense), let σ : M → C be the section corresponding to the marked
point, let D = σ(M), let L = O(D) → C, and let λ ∈ H0(L) be a section transverse
to the zero section and satisfying λ−1(0) = D. Let T = σ∗T verC → M, where T verC

is the vertical tangent bundle of C. Let Λ = L⊗ p∗T∗ and let Λ∗ ⊂ Λ be the com-
plementary of the zero section. Since λ vanishes transversely along D, its derivative
defines a nonvanishing section of Hom(T, σ∗L), which can be interpreted as a section
b : M → Λ∗ lifting σ. Let r : Λ∗ → M be the projection and let e0 ∈ M be any point.
We have π1(r

−1(e0), b(e0)) � Γ, and, thanks to the existence of the section b, the
monodromy defines a map SL(2,Z) � πorb

1 (M) → Aut+(r−1(e0), b(e0)) � Aut+(Γ),
which is the desired morphism ξ.
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[2] Nicole Berline, Ezra Getzler, and Michèle Vergne, Heat kernels and Dirac operators,
Grundlehren Text Editions, Springer-Verlag, Berlin, 2004. Corrected reprint of the 1992 orig-
inal. MR2273508

Licensed to University de Barcelona. Prepared on Mon Mar  5 10:04:05 EST 2018 for download from IP 161.116.168.92.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

http://www.ams.org/mathscinet-getitem?mr=1775741
http://www.ams.org/mathscinet-getitem?mr=2273508


4482 IGNASI MUNDET I RIERA

[3] E. Breuillard, An exposition of Jordan’s original proof of his theorem on finite subgroups of
GLn(C), preprint available at http://www.math.u-psud.fr/~breuilla/Jordan.pdf.

[4] Ana Cannas da Silva, Lectures on symplectic geometry, Lecture Notes in Mathematics,
vol. 1764, Springer-Verlag, Berlin, 2001. MR1853077

[5] Weimin Chen, On the orders of periodic diffeomorphisms of 4-manifolds, Duke Math. J. 156
(2011), no. 2, 273–310, DOI 10.1215/00127094-2010-212. MR2769218

[6] Weimin Chen and Slawomir Kwasik, Symplectic symmetries of 4-manifolds, Topology 46

(2007), no. 2, 103–128, DOI 10.1016/j.top.2006.12.003. MR2313067
[7] Weimin Chen and Slawomir Kwasik, Symmetric symplectic homotopy K3 surfaces, J. Topol.

4 (2011), no. 2, 406–430, DOI 10.1112/jtopol/jtr006. MR2805997
[8] B. Csikós, L. Pyber, E. Szabó, Diffeomorphism groups of compact 4-manifolds are not always

Jordan, preprint arXiv:1411.7524.
[9] Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associa-

tive algebras, AMS Chelsea Publishing, Providence, RI, 2006. Reprint of the 1962 original.
MR2215618

[10] Iku Nakamura, McKay correspondence, Groups and symmetries, CRM Proc. Lecture Notes,
vol. 47, Amer. Math. Soc., Providence, RI, 2009, pp. 267–298. MR2500567

[11] Charles Ehresmann, Les connexions infinitésimales dans un espace fibré différentiable
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