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Abstract. Variations in the assemblage and abundance of
coccoliths reveal changes in oceanic and atmospheric dy-
namics in the Guyana Basin over the last climatic cycle,
mainly linked to latitudinal variations in the ITCZ (Intertrop-
ical Convergence Zone). Records of the N ratio (a palaeo-
productivity index of coccolithophores) allowed us to mon-
itor nutri-thermocline fluctuations. Nannofossil accumula-
tion rates (NAR) vary closely with the N ratio, indicating
a strong correlation between these two palaeoproductivity
proxies. Decreases in the N ratio and NAR values sug-
gest lower palaeoproductivity during glacial substages, in-
dicating a deep nutri-thermocline (deep stratification of the
mixed layer) as a consequence of the piling up of warm water
dragged by the NEC. This setting was favoured by the south-
ern shift of the ITCZ and Trade winds which blew perpendic-
ular to the Guyana coast. By contrast, increases in the N ra-
tio and NAR values revealed higher palaeoproductivity dur-
ing interglacial substages, suggesting a shoaling of the nutri-
thermocline. This scenario is favoured by a northward dis-
placement of the ITCZ with the southeast Trade winds blow-
ing alongshore. Additionally, palaeoproductivity changes
during substages of Marine Isotope Stage (MIS) 6-5 are of
much higher amplitude than those recorded in substages of
MIS 4-2 and the early Holocene. Similarities between the
palaeoproductivity and the 65◦ N summer insolation records,
suggest a link between the depth of nutri-thermocline, the lat-
itudinal migration of the ITCZ and ice-sheet changes in the
Northern Hemisphere.
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1 Introduction and background

Coccolithophorids are photosynthetic planktonic algae liv-
ing in the photic layer of the ocean (Hibberd, 1976; Brand,
1994; Young, 1994; Winter et al., 1994). They play a sig-
nificant role in carbonate precipitation (Siesser and Winter,
1994; Steinmetz, 1994). The temporal and spatial distribu-
tion of coccolithophores may respond to major environmen-
tal factors in the upper oceanic layer such as temperature, nu-
trients, the trophic regime and sunlight levels (Brand, 1994;
Young, 1994). For example,Florisphaera profunda, a phy-
toplankton species, thrives in the lower photic layer (Okada
and Honjo, 1973; Okada and McIntyre, 1977) at times of
high nutrient concentrations, pointing to a deep nutricline
(e.g., Molfino and McIntyre, 1990a, b; de Menocal, 1995;
Beaufort et al., 1997; Wells and Okada, 1997; Flores et al.,
1999, 2000; Kinkel et al., 2000; Beaufort et al., 2001; Gibbs
et al., 2004). The relationship between dwellers from the
upper photic zone and those from the lower photic zone has
been used to monitor nutri-thermocline depth in the tropi-
cal Atlantic (Molfino and McIntyre, 1990a, b), in the West-
ern Tropical Atlantic (Kinkel et al., 2000; Bassinot et al.,
1997), as well as in the other parts of the ocean (Okada and
Honjo, 1973; Young, 1994; Okada and Wells, 1997; Wells
and Okada, 1997; Beaufort et al., 1997, 1999, 2001, 2003;
Beaufort and Buchet, 2003; Flores et al., 2000; Liu and Her-
bert, 2004; Baumann and Freitag, 2004; López-Ot́alvaro et
al., 2008).
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The production and sedimentation of coccolith-derived
calcite in the deep ocean plays an important role in the car-
bon cycle through photosynthesis and calcification (West-
broek et al., 1993; Marsh, 2003; Brand, 1994; Young, 1994;
Steinmetz, 1994). These organisms are one of the most im-
portant contributors to carbonate sedimentation in the open
ocean and in continental slopes (Milliman, 1993; Steinmetz,
1994), such as in the Guyana Basin (Shipboard Scientific
Party, 2003), an area controlled by a setting of hemipelagic
deposition. The Guyana Basin is located on the western side
of the Tropical Atlantic Ocean. This region has been docu-
mented as the main route of interhemispheric heat flux ex-
change from the South to the North Atlantic.

Several published contributions have documented the sig-
nificance of the calcareous nannofossil assemblages and
other micropalaeontological groups as proxies of surface wa-
ter mass dynamics and palaeoproductivity in the Western
Tropical Atlantic (WTA). Molfino and McIntyre (1990a, b)
proposed a model in which the nutri-thermocline topography
is related to Trade wind dynamics in the equatorial Atlantic.
They used the relative abundances ofF. profundaspecies,
with higher proportions of this species associated with a deep
nutri-thermocline and lower proportions related to a shallow
nutri-thermocline. The downcore records of coccoliths from
the Western Tropical Atlantic reported by Kinkel et al. (2000)
indicated a high interglacial palaeoproductivity and a shal-
low thermocline as compared to glacial stages and substages
during the last climatic cycle. Bassinot et al. (1997) used
comparative profiles of the relative abundance ofF. profunda
(those recorded by Kinkel et al., 2000) and carbonate accu-
mulation rates to explain that a nutri-thermocline displace-
ment drove palaeoproductivity and carbonate concentration,
with the thermocline displacement responding to the close
relationship between the dynamics of the Trade winds and
the Intertropical Convergence Zone (ITCZ) from 930 Ka to
685 Ka in the Ceara Rise. Also in the Ceara Rise, Rühlemann
et al. (2001) reconstructed the thermocline depth from plank-
tonic foraminifer isotope gradients, and compared this to
the terrigenous sediment content and the relative abundance
of F. profunda(Kinkel et al., 2000). They suggested that
low accumulation rates, during periods of shallower ther-
mocline, indicate a higher primary production during in-
terglacial substages of Marine Isotope Stage (MIS) 5. Us-
ing high resolution calcareous dinoflagellate cyst and or-
ganic carbon records, Vink et al. (2001) presented new ev-
idence of interlatitudinal teleconnections between Tropical
and North Atlantic Ocean during the past 58 Ka. The authors
found that high accumulation rates of calcareous dinoflag-
ellate cysts occurred somewhat before the northern Atlantic
Heinrich Events, indicating that shifts in the zonality of the
low-latitude winds would be partly responsible for the cli-
matic variability related to those events. Vink et al. (2002)
show high interglacial accumulation rates ofThoracosphaera
heimii and calcareous dinocysts in the Western and Eastern
Tropical Atlantic, when the proportions ofF. profundawere

reduced, the nutri-thermocline was shallowed and the nutri-
ent supply was higher over the past 150 Ka.

Our work focuses on a high-resolution micropalaeontolog-
ical analysis of the coccolithophore assemblage over the last
climatic cycle (the last 155 Ka). The primary goal is to recon-
struct the patterns of coccolithophore production and its rela-
tionship with fluctuations in the nutri-thermocline and ocean
dynamics in the Guyana Basin (Fig. 1).

2 Oceanographic setting

The Guyana Basin is located in the area of annual shift of the
ITCZ that moves between 10◦ N and 5◦ S (Müller-Karger,
1989). The northward or southward position of the ITCZ
causes a significant impact on water discharge from the Ama-
zon and Orinoco rivers, as well as variations in the direc-
tion and speed of the Guyana Current (GC) and the south-
east Trade winds (M̈uller-Karger, 1989; Wilson et al., 2002;
Ffield, 2005; Stramma et al., 2005) (Fig. 1).

During the boreal summer, the southeast Trade winds are
stronger, and the South Equatorial Current (SEC) and the
North Brazilian Undercurrent (NBUC, which brings salty
water from the South Atlantic) are well developed (da Sil-
veira et al., 1994; Stramma et al., 1995; and Masson and
Delecluse, 2000). During that season, the westward displace-
ment of the SEC pile up surface waters along the eastern
coast of South America deepens the nutri-thermocline in the
WTA (Hastenrath and Merle, 1987). When the SEC reaches
South America, it splits into two branches: one turns south-
ward, supplying the Brazilian current (BC), and the other one
takes off towards the north and feeds the North Brazilian Cur-
rent (NBC), which is called the Guyana Current (GC) when
it reaches the Guyana Basin (Fig. 1).

The ITCZ is displaced to the northernmost position (6◦ N–
10◦ N), generating a wet season north of∼5◦ N (Müller-
Karger and Aparicio-Castro, 1994). The NBC (or GC)
is mostly retroflexed, contributing to the North Equato-
rial Countercurrent (NECC) between 5◦ N–10◦ N (Müller-
Karger et al., 1988), allowing anticyclonic rings to enter the
continental margin and pass northwestward to merge with the
Orinoco River plume (M̈uller-Karger, 1989; Ffield, 2005).
These eddies transport and advect the Amazon River plume
and, together with the NBUC, develop a zone of minimum
surface salinity, warm temperatures, and a shallower and
stronger halocline, where the river flow is dispersed (Mas-
son and Delecluse, 2000). The other component of the GC is
directed to the North Atlantic, transporting relatively warmer
and fresher waters via the Caribbean Sea (feeding Caribbean
current, CC) and the Gulf of Mexico (where it supports the
Gulf Stream, GS) (Showers and Bevis, 1988; Schmitz, 1995;
Stramma and Schott, 1996; Lynch-Stieglitz et al., 1999).

During the boreal winter, the northeast Trade winds dom-
inate and push the ITCZ to the southermost position (0◦–
5◦ S), causing dry conditions in the north of South America.
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Fig. 1. Satellite images obtained from the SEAWIFS Program at the
location of the Core MD03-2616. Hydrographic and atmospheric
features in the Western Tropical Atlantic (WTA): Surface currents
are indicated by continuous lines and subsurface currents are indi-
cated by dotted lines. SEC: South Equatorial Current, BC: Brazil-
ian Current, NBC: North Brazilian Current, CC: Caribbean Cur-
rent, NECC: North Equatorial Counter Current, SECC: South Equa-
torial Counter Current, EUC: Equatorial Undercurrent, NBCU:
North Brazilian Countercurrent, ITCZ: Intertropical Convergence
Zone. (The hydrographic features were adopted from Richardson et
al. (1994) and Haug et al. (2003). The image background was taken
from http://oceancolor.gsfc.nasa.gov/SeaWiFS).

River plumes decrease in intensity, and together with the GC,
are mostly driven into the coastal area, carrying relatively
colder and saltier waters to the North Atlantic. During this
season, the NBUC mainly feeds the Equatorial Undercur-
rent (EUC) at the equator and cannot cross the equator to the
North Atlantic (Masson and Delecluse, 2000 and references
therein). This atmosphere-ocean dynamics in the WTA plays
a major role in the cross-equatorial heat flux to the North
Atlantic (Ffield, 2005), producing relatively cooler surface
waters south of the equator, and warmer surface waters north
of the equator (>24◦C) in the WTA.

3 Materials and methods

3.1 Core location and materials

Core MD03-2616 was recovered in the Guyana Basin in the
WTA (7◦48.75′ N, 53◦00.80′ W) at a water depth of 1233 m
during the PICASSO Cruise by the Marion Dufresne R/V
(Fig. 1). This area is characterised by the influence of the
Guyana current at the continental margin of French Guyana.
The core shows an undisturbed high-quality sedimentary sec-
tion of 39 m spanning the Pleistocene. It consists mainly of
olive green silt and clay, rich in foraminifera and calcareous
nannofossils, with slight bioturbation levels and high organic
matter remains (Shipboard Scientific Party, 2003). Here, we
focus on the uppermost 18 m (a detailed description was re-
ported by the Shipboard Scientific Party, 2003).

3.2 Age model and biostratigraphy

The age-depth assignments are primarily based on 16 oxy-
gen isotope control points determined on tests of the ben-
thic foraminifer Uvigerina peregrina. Stable isotope anal-
yses were performed using an automated carbonate prepa-
ration line coupled to a Finningan MAT 251 mass spec-
trometer at the Laboratoire des Sciences du Climat et de
l’Environnement in Gif-sur-Yvette (France). Isotopic events
were identified up to MIS 6 (∼155 Ka), by comparison of
the benthicδ18O from the Core MD03-2616 and the benthic
δ18O stack of Lisiecki and Raymo (2005) (unpublished data,
Fig. 2).

We analysed the>150µm fraction to detect the qualita-
tive abundance of planktonic foraminifer species typical of
the WTA. A qualitative study of planktonic foraminifer bios-
tratigraphy allowed the identification of the Ericson Climatic
Biozones W1, X, Y, Z of Ericson and Wollin (1956) and the
YP. obliq. of Kennett and Huddlestun (1972). In our record,
Biozone W1 was identified by the consistent and lower oc-
currence of theGloborotalia menardiigroup from the bot-
tom (155 Ka) of the section studied up to 133 Ka. This event
was dated by Kenneth and Huddlestun (1972) from 150 Ka
to Termination II (128 Ka); i.e., slightly above ours. Biozone
X was dated from 133 Ka to the middle phase of substage
5a (84.3 Ka). Prell and Damuth (1978) reported the top of
the Biozone X at 85 Ka; i.e. slightly below ours. TheG.
menardii complex is absent from Biozone Y (Ericson and
Wollin, 1956; Kennett and Huddlestun, 1972), as we report
here. The disappearance datum ofPulleniatina obliquilocu-
lata (YP. obliq.) was recognised at∼39 Ka, but this datum is
diachronous across the tropical Atlantic (Prell and Damuth,
1978; Kennett and Huddlestun, 1972). Biozone Z was iden-
tified close to the end of MIS 2 (over the latest Wisconsin)
in agreement with Kennett and Huddlestun (1972), although
other authors have placed its bottom at the MIS 1/2 boundary
(Ericson and Wollin, 1956; Maslin and Mikkelsen, 1997)
(Fig. 2).
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Fig. 2. Benthicδ18O stack record (PDB, Lisiecki and Raymo, 2005), benthicδ18O record (PDB) from Core MD03-2616 (unpublished
data), sedimentation rates at Core MD03-2616, and the relative abundance (%) of the specific index species from calcareous nannofossils
at Core MD03-2616. Biozones X, Y, Z and W1 represent the biostratigraphic events of planktonic foraminifers identified at Core MD03-
2616. The YP. obliq. biozone corresponds to the disappearance ofPulleniatina obliquiloculata. The green crosses in theδ18O record from
Core MD03-2616 correspond to the control points used for constructing the chronostratigraphic framework at Core MD03-2616. Grey bars
indicate interglacial marine isotope stages 1 through 5. 5a, 5b, 5c, 5d, 5e correspond to the substages of MIS 5. The Wisconsin and Illinoian
episodes correspond to the Ice Ages between 12 Ka and 80 Ka in the former and 128 Ka and 310 Ka in the latter. T.I = Termination I, T.II =
Termination II. MIS: Marine Isotope Stage.

According to currently available data, the reversal in the
abundance of the coccolithophore speciesEmiliania hux-
leyi andGephyrocapsa muelleraeis not clear. Thierstein et
al. (1977) placed this datum at around 73–85 Ka. The ab-
sence ofPseudoemiliania lacunosa, the relatively low abun-
dance ofGephyrocapsa caribbeanicaspecies (less than 3%),
and the occurrence of bothE. huxleyiandG. muelleraealong
the interval studied suggest that our sediment sequence is
younger than 268 Ka (Fig. 2).

3.3 Slide preparation and counting techniques

Slides were prepared following the decantation technique
outlined by Flores and Sierro (1997) to obtain quantitative
measurements (coccoliths per gram and accumulation rates
of coccoliths). These slides were analysed at a 4-cm spacing
(representing approximately∼0.120 Ka to∼0.700 Ka) with
a polarised microscope at 1000X magnification. 380 samples
were examined, and more than 500 coccoliths were counted
on each slide in order to identify the coccolith assemblage
quantitatively.

We estimated variations in the N ratio (modified from Flo-
res et al., 2000; Ĺopez-Ot́alvaro et al., 2008), which is a func-

tion based on the relative proportion of taxa usually living in
the upper photic zone (small Noelaerhabdaceae,E. huxleyi
andGephyrocapsa oceanica; e.g., Okada and Honjo, 1973;
Okada and McIntyre, 1979; Giraudeau, 1992; Young, 1994;
Okada and Wells, 1997; Wells and Okada, 1997; Flores et al.,
1999, 2000, 2003; Bollman et al., 1998; Beaufort et al., 1999;
Beaufort and Buchet, 2003; Hagino and Okada, 2004) versus
the lower photic zone dwellers (F. profunda; e.g., Okada and
Honjo, 1973; Okada and McIntyre, 1977; Molfino and McIn-
tyre, 1990a, b). High N ratio values (close to 1) indicate a
high production of upper photic species against the produc-
tion of lower photic species as the result of a shallow nutri-
thermocline. Low N ratio values (close to 0) reveal a prolif-
eration ofF. profunda, in agreement with a deep stratifica-
tion and a deep nutri-thermocline (Okada and Honjo, 1973;
Okada, 1980; Molfino and McIntyre, 1990a, b; Wells and
Okada, 1997; Flores et al., 2000). The accumulation rate
of coccoliths (NAR, liths cm−2 Ka−1) has been widely used
by several authors as a reference for high palaeoproductivity
of coccolithophores and particle flux out of the mixed layer
(Steinmetz, 1994 and references therein; Su, 1996; Baumann
et al., 2004). This parameter was estimated following the
standard method of Flores and Sierro (1997), and it involves
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Table 1. Taxonomic notes and morphological differences used for the genusGephyrocapsa(mainly adopted from Flores et al., 2000) in this
study.

Present work SmallGephyrocapsa G. muellerae G. caribbeanica G. oceanica
(it includesG. ericsonii (it includesG. margereli) (it includesG. oceanica
andG. aperta) and largeGephyrocapsa)

Coccolith length <3µm (G. ericsonii); >3µm >3µm 3–4µm (G. oceanica) and
<2.5µm (G. aperta) 4–5µm (largeGephyrocapsa)

Bridge angle 5◦–40◦ Central area closed >50◦

Author equivalence
Thierstein et al., 1977 G. caribbeanica
Raffi et al., 1993 SmallGephyrocapsa SmallGephyrocapsa SmallGephyrocapsa MediumGephyrocapsa
Bollmann, 1997 G. minute G. cold G. oligotrophic,G. transitional G. large,G. equatorial
Flores et al., 2000 SmallGephyrocapsa G. muellerae G. caribbeanica G. oceanica
Baumann and Freitag, 2004G. ericsonii/G. aperta G. muellerae/G. margereli G. caribbeanica G. oceanica

knowing the absolute abundances of coccoliths, the sedimen-
tation rate, and the dry sediment bulk density. The species
identified are listed in Appendix A.

3.4 Taxonomic information

The systematic classification of coccoliths is based on their
morphology. The morphological differences used for the
genusGephyrocapsawere adopted from Flores et al. (2000)
and are summarised in Table 1. Small placoliths (such
asGephyrocapsa apertaandGephyrocapsa ericsonii, small
ReticulofenestraandE. huxleyi) with an open or closed cen-
tral area and smaller than 3µm were classified together
in the group of small Noelaerhabdaceae.Gephyrocapsa
spp. containGephyrocapsaspecies larger than 3µm such
asG. oceanica, G. muellerae, andG. caribbeanica.Differ-
ent sizes ofG. oceanicawere counted separately (medium
Gephyrocapsa3–4µm and largeGephyrocapsa4–5µm),
but later these sizes were lumped together as G. oceanica for
palaeoecological purposes. Additionally,Calciosolenia mur-
rayi, Discosphaera tubifera, Neosphaera coccolithomorpa,
Oolithotus spp., Pontosphaeraspp., Rhabdosphaera clav-
igera, Syracosphaeraspp.,Umbellosphaeraspp. andUm-
bilicosphaeraspp. were included as the group of warm
taxa (Hiramatsu and De Deckker, 1997; Böeckel and Bau-
mann, 2004). The genusUmbilicosphaeraincludesUmbil-
icosphaera hulburtiana, Umbilicosphaera sibogaevar. fo-
liosa and Umbilicosphaera sibogaevar. sibogae. The
marked dominance ofU. siboagevar. sibogae(hereafter
U. sibogae) in the group of the warm taxa suggests that
its palaeoecological behaviour in Guyana Basin should be
analysed. Calcidiscus leptoporusand Helicosphaeraspp.
species are characterised by their lower abundances and
poor consistence along the record studied.Helicosphaera
spp. mainly includeHelicosphaera carteri, and in a much
lower proportion,Helicosphaera pavimentum(<0.5%), but
we only used the record ofH. carteri for palaeoecological
purposes.

4 Preservation

The dissolution of the calcareous nannofossil assemblage
was estimated through the CEX’ index (Fig. 3). That in-
dex provides a qualitative record of the coccolith lysocline
position (Dittert et al., 1999; B̈oeckel and Baumann, 2004;
Böeckel et al., 2006). Higher CEX’ values (close to 1) point
to a better preservation of the coccoliths, while lower CEX’
values (close to 0) point to coccolith carbonate dissolution
(Fig. 3).

This ratio was originally based on the relationship of del-
icate coccoliths ofE. huxleyiversus the stronger calcified
coccoliths ofC. leptoporus(CEX index, Dittert et al., 1999).
Later, the CEX index was modified by Böeckel and Baumann
(2004) to include other fragile species such asG. ericsonii,
and was designated CEX’. We employed the CEX’ index,
including the most fragile species such as:G. ericsonii, E.
huxleyiand smallReticulofenestra(<3µm), since calcare-
ous nannofossil analysis under the light microscope does not
allow identification of specimens smaller than 3µm at the
species level. It is difficult to separateG. ericsoniiwhich
has lost its bridge from smallReticulofenestra. Although the
highly calcifiedG. apertaspecies was not included in the
CEX’ index, we still maintained the original concept of re-
lating delicate coccoliths versusC. leptoporus.

The overall preservation of coccoliths was good along the
last climatic cycle, except during the end of MIS 5e and
MIS 5d, which showed a stronger dissolution and barren in-
tervals; and during the middle of MIS 5b, which showed an
intermediate level between moderate to poor preservation.
Decreases in the CEX’ index and marked increases in the rel-
ative abundances of the most resistant species in the assem-
blage (G. oceanicaandF. profunda) confirmed severe disso-
lution during the late MIS 5e and during MIS 5d (Fig. 3).
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Fig. 3. Review of the bioproductivity proxies used for Core MD03-
2616: N ratio vs. total nannofossil accumulation rates (NAR,
liths cm−2 Ka−1). Grey bars indicate interglacial marine isotope
stages 1 through 5. 5a, 5b, 5c, 5d, 5e correspond to the substages
of MIS 5. The Wisconsin and Illinoian episodes correspond to the
Ice Ages between 12 Ka and 80 Ka in the former, and 128 Ka and
310 Ka in the latter. T.I = Termination I, T.II = Termination II.

5 Results

5.1 Variations in the assemblage

The small Noelaerhabdaceae,F. profundaandG. oceanica
proved to be the dominant species in the coccolithophore as-
semblage. G. muellerae(Table 1) andU. sibogaespecies
were identified as important secondary components.Heli-
cosphaeraspp. andC. leptoporuswere considered subordi-
nate species because they were present in lower proportions
(lesser than 2%) along the record studied (Fig. 4).

The most prominent feature of the coccolith record was the
inverse relationship between small Noelaerhabdaceae andF.
profunda. Maximum proportions and the NAR values of
the small Noelaerhabdaceae were found during interglacial
substages (80% and 1×1011 liths cm−2 Ka−1 respectively).
Higher proportions ofF. profundaoccurred during glacial
substages of MIS 5 (80%) but its specific NAR values were
observed between MIS 5c to 5a (3×1010 liths cm−2 Ka−1).
Conversely, during MIS 4 and extending to the early
Holocene, those taxa exhibit less amplitude (lower gradients)
but more frequent variability in their relative abundances and

in their lower specific NAR values.F. profundadominates
the assemblage during MIS 4 to the middle of MIS 2, with
mean values close to 45%.F. profunda-specific NAR values
show a slight increasing trend towards MIS 2, then declining
during the early Holocene. Small Noelaerhabdaceae reach
higher proportions from the middle of MIS 2 to the early
Holocene (up to 60%).

G. oceanica, U. sibogae, C. leptoporusandH. carteri also
show common stronger NAR gradients during MIS 5. Their
specific NAR values follow those of small Noelaerhabdaceae
during that stage. The relative abundances ofG. oceanica
exceed 30% when the assemblage underwent stronger disso-
lution (the end of MIS 5e and during MIS 5d; Fig. 4). Other
important proportion peaks ofG. oceanicawere recorded
during MIS 3a.U. sibogaealso shows higher relative abun-
dances during MIS 4 and 3, andC. leptoporusduring MIS 3.

The overall trend of all species-specific NAR values re-
veals steadier values during MIS 4 to MIS 2 and point to a
declining trend during the early Holocene (except those of
small Noelaerhabdaceae).

5.2 Variations in the N ratio and total NAR profiles

The variation in total NAR parallels that of the N ratio, indi-
cating higher amplitude changes between the interglacial and
glacial substages of MIS 5 (with values between 0.9 and 0.2
for the N ratio and, 1.2×1011 and 1×1010 liths cm−2 Ka−1

for the total NAR). Frequent and mild fluctuations in the N
ratio and total NAR occur throughout MIS 4-2 and the early
Holocene. These profiles are comparable to those observed
at the end of MIS 5b (Fig. 4). Such parameters are strongly
influenced by the dominant species in the assemblage and
in consequence display low gradients during glacial MIS 4-
2 (Figs. 3 and 4). Thus, the variation in N ratio and NAR
records reveals two different hydrographic scenarios during
the last climatic cycle: the first starts at the end of MIS 6 to
MIS 5, and the second spans MIS 4 to the early Holocene.

6 Discussion

6.1 Latitudinal changes in the ITCZ and productivity
of coccolithophores: the Northern Hemisphere con-
nection

Our data indicate a lower primary production and a deep
stratified photic layer during the glacial substages of the last
climatic cycle (Figs. 1, 3 and 4). This scenario is linked to a
southward displacement of the ITCZ and the northeast Trade
winds, which blew perpendicularly to the Guyana coast,
favouring the piling up of warm surface waters dragged by
the NEC along this coast. As a result, the nutri-thermocline
was depressed, preventing the coastal upwelling and hence,
the inflow of nutrient rich and cooler waters to the euphotic
zone. These atmospheric and hydrological conditions are
similar to those prevailing today during the boreal winter,
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Fig. 4. Relative calcareous nannofossil abundances (%) and nannofossil accumulation rates (NAR, liths cm−2 Ka−1). Grey bars indicate
interglacial marine isotope stages 1 through 5. 5a, 5b, 5c, 5d, 5e correspond to the substages of MIS 5. The Wisconsin and Illinoian
episodes correspond to the Ice Ages between 12 Ka and 80 Ka in the former, and 128 Ka and 310 Ka in the latter. T.I = Termination I, T.II =
Termination II.

when the ITCZ is placed between 0◦ to 5◦ S (Müller-Karger,
1989; well south of the Guyana Basin) and the northeast
Trade winds blow onshore (Gibbs, 1980). Several authors
have indicated severe Northeast Trade winds and a south-
ward latitudinal migration of the atmospheric and hydro-
graphic circulation in the WTA during glacial substages of
MIS 3 and during MIS 2 (Balsam et al., 1995; Harris and
Mix, 1999; Broccoli, 2000; Peterson et al., 2000; Vink et al.,
2001, 2002). Indeed, a southward displacement of 8◦ for the
ITCZ during MIS 2 has been reported (Kolla et al., 1979).

In contrast, a higher primary production and eutrophic
conditions are recorded during the interglacial substages of
the last climatic cycle; primarily the result of coastal up-
welling induced by a northward migration of the ITCZ. The
ITCZ shift would have run parallel to the coast of northeast-
ern South America, channeling the southeast Trade winds
along the coast (Figs. 1, 3 and 4). That along-shore wind
vector favoured eastward water transport through a well-
developed NECC (Fig. 1). During those episodes, the pil-
ing up of warmer waters in the Guyana Basin was reduced
because the area studied was outside the influence of the
northeast Trade winds. This scenario is similar to that pre-
vailing today in the Guyana Basin during the boreal summer.
The northward displacement of the ITCZ (6◦ N–10◦ N) and

the southeast Trade winds induce coastal upwelling in the
Guyana basin during the summer, favouring the development
of the NBC retroflection (Ryther et al., 1967; Hulburt and
Corwin, 1969; M̈uller-Karger et al., 1989, 1995) and the for-
mation of the NECC between 5◦ N–8◦ N, which transports
warm water offshore (Busalacchi and Picaut, 1983). Gibbs
(1980), Pujos and Froidefond (1995, and references therein)
have reported seasonal scenarios where the southeast Trade
winds prevail over northeast Trades and blow alongshore the
Guyana coast during the boreal summer, promoting coastal
upwelling in the basin. Colour reflectance and chemical
data from the Cariaco Basin (Peterson et al., 2000) and mi-
cropalaeontological data from the Tobago Basin (Vink et al.,
2001) are consistent with a northward shift of the ITCZ dur-
ing interglacial substages of MIS 3. Titanium and iron con-
tents in the sediments from the Cariaco Basin also suggest
a northward position of the ITCZ during the early Holocene
(Haug et al., 2001).

Along the same line of evidence, the micropalaeontolog-
ical signal also indicates that maximum palaeoproductivity,
and hence a shallower nutri-thermocline, occurred during the
interglacial substages of MIS 6-5 compared with those of
MIS 4-2 and with the early Holocene. This situation points to
a relatively stronger coastal upwelling in the Guyana Basin
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during interglacial substages of MIS 6-5, induced by the
northernmost position of the ITCZ during the same episodes.

High productivity and a shallow nutri-thermocline in the
Guyana Basin occurred at times of maximum summer insola-
tion at 65◦ N (mean insolation from 1 June to 30 September).
This correlation suggests a close connection between the
Northern Hemisphere (NH) summer insolation, the migra-
tion of the nutri-thermocline, the Trade wind dynamics, and
the latitudinal shift of the ITCZ. Latitudinal changes in the
ITCZ and the associated rain belt are driven by the merid-
ional wind component, which in turn is the response to sea
surface temperature and salinity gradients between the high
and low latitudes in the NH (Hastenrath and Druyan, 1993;
Hastenrath and Greischar, 1993). Such gradients, and the
subsequent changes in Trade winds intensity, are the result
of NH ice-sheet expansions or retreats induced by variations
in the NH summer insolation (Khodri et al., 2003; Chiang
et al., 2003). Besides the coincidence in the phase between
palaeoproductivity and 65◦ N summer insolation, changes in
the amplitude of both records are also related. Higher ampli-
tude changes in palaeoproductivity and insolation during the
substages of MIS 5 contrast with lower amplitude changes
during the substages of MIS 4-2.

Our results support previous records from the WTA
(Kinkel et al., 2000), which record a shallow nutricline and
high coccolithophore productivity along interglacial times
and a deeper nutri-thermocline along the glacial stages and
substages. Geochemical and sedimentological evidence from
the Ceara Rise also supports a shallow nutri-thermocline
during interglacial substages along the last climatic cycle
(Rühlemann et al., 2001). By contrast, in the eastern trop-
ical Atlantic, Molfino and McIntyre (1990a, b) and Wolff et
al. (1999) reported a shallow nutri-thermocline during glacial
periods that was controlled by the Trade winds.

Variations in the position of the thermocline have been re-
ported by Ḧuls and Zahn (2000) and Vink et al. (2001) in a
nearby core taken from the Tobago Basin. They found the
shallowest thermocline for MIS 3 (∼50 m) as compared with
the glacial MIS 2 (∼80 m) and the Holocene (∼150 m), the
latter being closer to its current position at the location where
our core was retrieved (150 m, Pailler et al., 1999).

6.2 River runoff

The main freshwater source that affects the WTA is the Ama-
zon River, which is mostly responsible for the low sea sur-
face salinity in the WTA (Masson and Delecluse, 2000),
since the waters of the Orinoco flow downstream towards
the Caribbean Sea (Ffield, 2005). Several authors (Müller-
Karger et al., 1989 and references therein; Peterson et al.,
2000) have indicated that high abundances of phytoplankton
are associated with higher seasonal river runoffs and lower
salinities in the northern Caribbean Sea (14◦ N and 18◦ N)
than in the typical waters of the WTA.

The association in temperature and pressure gradients be-
tween low and high latitudes, and the ITCZ position cited
above accounts for the relationship between cold/warm pe-
riods in high latitudes in the North Atlantic and drier/wetter
conditions over northern South America (Haug et al., 2001).
The northward position of the ITCZ during the interglacial
substages over the last climatic cycle favoured the influx
of river nutrients to the ocean and the configuration of an
oceanic system that supported a superficial nutri-thermocline
and consequently increased biological productivity in the
Cariaco Basin (Peterson et al., 2000), Trinidad Basin (Vink
et al., 2001), and Caribbean Sea (Martı́nez et al., 2007). Sim-
ilarly, Showers and Bevis (1988) documented an increase
in the Amazon River runoff during Termination I up to 6–
5 Ka BP ago. Other authors have reported the southward geo-
graphic situation of the ITCZ over the last glacial and conse-
quently drier conditions over northern South America (Kolla
et al., 1979; Balsam et al., 1995; Peterson et al., 2000), to-
gether with decreases in the influence of the river flow system
and a deeper nutri-thermocline that reduced bioproductivity
(Peterson et al., 2000; Vink et al., 2000, 2001, 2002).

According to these suggestions and the chlorophyll con-
centration data (primary productivity distribution) presented
by SeaWIFS Project imagery (Fig. 1), the influence of an en-
hanced nutrient supply by rivers in the production of coccol-
ithophores cannot be completely ruled out. However, within
the association of calcareous nannoplankton there is no clear
indicator able to account for a greater discharge from the
Amazon during the interglacials, e.g., reworked coccolith in-
dividuals or even freshwater-related species (phytoliths or
freshwater diatoms), and there is no evidence in the asso-
ciation of low sea surface salinity.U. sibogaehas been di-
rectly related to surface water salinity in the North Pacific
(Roth and Coulbourn, 1982), and has been found in warm
oligotrophic waters (Okada and McIntyre, 1979; Roth, 1994;
Young, 1994; B̈oeckel and Baumann, 2004; Ziveri et al.,
2004), but also in medium-to-high fertility waters (Roth and
Berger, 1975; Roth and Coulbourn, 1982), with temperatures
ranging from 18◦C to 25◦C (McIntyre and B́e, 1967; Okada
and McIntyre, 1979).G. oceanicahas also been observed
in relatively warm, highly saline and fertile waters (Winter,
1982, 1985; Mitchell-Innes and Winter, 1987).H. carteri
has been recorded during low salinity and turbid water set-
tings (Colmenero-Hidalgo et al., 2004) and also in eutrophic
(Ziveri et al., 1995; Ziveri et al., 2000; Andruleit and Rogalla,
2002; Findlay and Giraudeau, 2002; Ziveri et al., 2004; Bau-
mann et al., 2005) and oligotrophic (Haidar and Thierstein,
1997; Giunta et al., 2003) environments. The palaeocologi-
cal preference ofC. leptoporushas been related to elevated
nutrient levels (Roth and Berger, 1975; Fincham and Winter,
1989; Andruleit and Rogalla, 2002; Flores et al., 2003) and
also to more oligotrophic and warmer conditions (Flores et
al., 1999; Baumann et al., 2004; Ziveri et al., 2004; Marino
et al., 2008). However,U. sibogae, G. oceanica, H. carteri
andC. leptoporusdo not show a systematic correspondence
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to temperature or salinity. This implies thatU. sibogae, G.
oceanica, H. carteriandC. leptoporusrespond to a produc-
tivity pattern rather than to a pattern of temperature or salin-
ity, especially significant in MIS 4-2 (Fig. 3).

6.3 Dissolution of coccoliths

Coccolith dissolution episodes (Figs. 3 and 4) suggest either
a shallowing of the lysocline or dissolution above the lyso-
cline. Curry and Cullen (1997) have documented high car-
bonate dissolution during glacial periods in response to deep
water mass changes at greater depths in the WTA (>3000 m
water depth). Owing to the shallow depth position of Core
MD03-2616, dissolution below the lysocline can be ruled
out, because aragonite and calcite lysoclines have been re-
ported at 2200 and 4000 m, respectively (in Vink et al.,
2001). Dissolution above the lysocline may be a response
to the acidification of interstitial waters due to the oxidation
of organic matter within the sediments. However, this hy-
pothesis is not supported by the available observations, and
hence its confirmation requires detailed benthic isotopeδ13C
data, sedimentological studies, and further oceanographic re-
constructions in the Guyana Basin.

7 Conclusions

The evolution of the coccolithophore assemblage in the
Guyana Basin was mainly driven by changes in the produc-
tivity pattern. The NAR record resembles that of the N ratio,
suggesting that the NAR is also indicative of variations in
palaeoproductivity.

High palaeoproductivity and a shallow nutri-thermocline
during interglacial substages over the past 155 Ka resulted
from the dominant southeast Trade winds that displaced the
ITCZ to a northward position and blew parallel to the coast,
causing an upwelling of cool waters. Decreases in palaeo-
productivity during glacial substages were related to a south-
ward movement of the ITCZ. In consequence, the dominant
northeast Trade winds blew perpendicular to the coast, caus-
ing the piling up of warm waters and a deepening of the nutri-
thermocline.

The production of coccolithophores and the shifting of
the nutri-thermocline covary with summer insolation at high
northern latitudes. Low palaeoproductivity is recorded dur-
ing periods of low northern summer insolation (glacial sub-
stages of the last climatic cycle), indicating that during times
of higher ice volume, the northeast Trade winds were en-
hanced, moving the ITCZ southward and causing a deep-
ening of the nutri-thermocline in the Guyana Basin. High
palaeoproductivity is recorded during times of high North-
ern Hemisphere insolation (interglacial substages over the
last climatic cycle), suggesting that southeast Trade winds
prevailed over the northeast Trades and moved the ITCZ

northward, favouring coastal upwelling and a shallow nutri-
thermocline.

The micropalaeontological data reveal that the high-
est palaeoproductivity and, hence, the shallowest nutri-
thermocline occurred during the interglacial substages of
MIS 6-5 compared with those episodes of MIS 4-2 and with
the early Holocene.

A northern position of the ITCZ during interglacial times
would imply a higher annual rainfall and river runoff to
the Guyana Basin. Consequently, times of higher palaeo-
productivity should be related to episodes of greater runoff.
Nevertheless, the coccolithophore assemblage does not seem
to record changes in salinity. However, the influence of
continental-derived nutrients and a freshening of surface wa-
ter masses through the Amazon River runoff cannot be ruled
out.

Appendix A

Taxonomic appendix

– Calcidiscus leptoporus
(Murray and Blackman, 1898; Loeblich and Tappan,
1978)

– Calciosolenia murrayi
(Gran, 1912)

– Discosphaera tubifera
(Murray and Blackman, 1898)
(Ostenfeld, 1900) [Rhabdosphaera]

– Emiliania huxleyi
(Lohmann, 1902; Hay and Mohler in Hay et al., 1967)

– Florisphaera profunda
(Okada and Honjo, 1973)

– Gephyrocapsa aperta
(Kamptner, 1963)

– Gephyrocapsa caribbeanica
(Boudreaux and Hay, 1967)

– Gephyrocapsa ericsonii
(McIntyre and B́e, 1967)

– Gephyrocapsa muellerae
(Bréh́eret, 1978)

– Gephyrocapsa oceanica
(Kamptner, 1943)

– Helicosphaera carteri
(Wallich, 1877; Kamptner, 1954)

– Neosphaera coccolithomorpha
(Lecal-Schlauder, 1950)
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– Oolithotus
(Cohen, 1964; Reinhardt, in Cohen and Reinhardt,
1968)

– Pontosphaera
(Lohmann, 1902)

– Pseudoemiliania lacunosa
(Kamptner, 1963; Gartner, 1969)

– Rhabdosphaera clavigera
(Murray and Blackman, 1898)

– Reticulofenestra
(Hay, Mohler and Wade, 1966)

– Syracosphaera
(Lohmann, 1902)

– Umbellosphaera
(Paasche, in Markali and Paasche, 1955)

– Umbilicosphaera hulburtiana
(Gaarder, 1970)

– Umbilicosphaera sibogaevar. foliosa
(Kamptner, 1963; Okada and McIntyre, 1977)

– Umbilicosphaera sibogaevar. sibogae
(Weber-van Bosse, 1901; Gaarder, 1970)
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changes in the hydrologic cycle of the Tropical Atlantic during
the Last Glacial, Science, 290, 1947–1951, 2000.

Prell, W. L. and Damuth, J. E.: The climate-related diachronous
disappearance ofPulleniatina obliquiloculatain Late Quaternary
sediments of the Atlantic and Caribbean, Mar. Micropaleontol.,
3, 267–277, 1978.

Pujos, M. and Froidefond, J.-M.: Water masses and suspended
matter circulation on the French Guiana continental shelf, Cont.
Shelf Res., 15, 1157–1171, 1995.

Richardson, P. L., Hufford, G., Limeburner, R., and Brown, W.:
North Brazil Current retroflection eddies, J. Geophys. Res., 99,
5081–5093, 1994.

Roth, P. H.: Distribution of coccoliths in ocean sediments, in: Coc-
colithophores, edited by: Winter, A. and Siesser, W. G., Cam-
bridge University Press, Cambridge, 199–218, 1994.

Roth, P. H. and Berger, W. H.: Distribution and dissolution of coc-
coliths in the South and central Pacific, Special Publications Vol.
13, Cushman Foundation for Foraminiferal Research, 87–113,
1975.

Roth, P. H. and Colbourn, W. T.: Floral and solution patterns of

eEarth, 4, 1–13, 2009 www.electronic-earth.net/4/1/2009/
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