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Abstract

The industrial organizational literature identi�es operational costs as being an
important determinant of industry evolution over time; however, it also shows that
they can be endogenous and time-dependent. In this paper, we analyze the e¤ects of
endogenous and time-dependent operational costs on economic activity and, hence,
on economic growth. We show that the particular nature of these costs determines
the way in which the overall number of �rms grows, which ultimately determines the
pattern of economic growth. Our analysis di¤ers from other approaches in that (i) a
new �rm is associated with the creation of a new product in such a way that a planned
expenditure of resources is required (e.g., R&D), and (ii) an accumulation law for the
growth of the number of �rms is assumed. Hence, we show that growth can occur
endogenously in an economy without any speci�c growth generating sector.
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1 Introduction

Dynamic models of industry evolution suggest that operational costs (also known as �xed
or sunk costs) are an important determinant of �rm behavior and, hence, of industry
evolution over time. Since operational costs play a central role in determining the equi-
librium structure of any industry, it follows that they are also an important determinant
of economic activity and, hence, of economic growth. This relationship has been widely
studied in the macroeconomic literature for the case of a constant operational cost, mea-
sured in terms of �nal goods and independent of the volume of output (see Matsuyama,
1995, among many others). However, since the publication of Sutton�s (1991) in�uen-
tial work, the industrial organization literature has shown that operational costs can be
endogenous and time-dependent; see Shaked and Sutton (1987), Sutton (1989), Cabral
(1995), Davies and Lyons (1996), Lyons, Matraves and Mo¤att (2001), Amir and Lamb-
son (2003), Vasconcelos (2006) and Ellickson (2007). In particular, Sutton (1991) focuses
on advertising outlays as the premier type of endogenous operational costs, showing that
there is a positive correlation between market concentration and operational costs. Not
only are advertising and marketing costs associated with the generation of many products
(see Spence, 1976), but they represent more than $280 billion (2006) in the United States
alone, well above 2% of its gross domestic product (see Doraszelski and Markovich, 2007).
In this paper, we analyze the e¤ects of these endogenous and time-dependent operational
costs on economic activity and, hence, on economic growth.

We analyze a monopolistically competitive economy characterized by the presence of
both agglomeration economies and free market entry. In this economy, operational costs
determine the number of �rms, which in turn determines the level of aggregate production.
Some operational costs depend exclusively on the technological or institutional character-
istics of the economy, such as capital requirements or government regulations. Others,
however, are a¤ected by external variables, such as the particular market structure of the
economy, including advertising or brand costs. Moreover, the endogenous evolution of the
market might a¤ect these costs via learning or imitation processes. As Kim (1997, 2004)
argues, it is reasonable to think that operational costs and �rm size are positively related,
and that operational costs are therefore a¤ected by production. Firm size is captured by
Carlson, Fisher and Giammarino (2004) by making operational costs dependent on the
�rm�s level of capital. Thus, the exact form of the operational costs depends on their
speci�c nature or origin, but at the same time it also seems to be related to the market
conditions. This line of thinking is in accordance with Rivera-Batiz and Romer (1991),
who point out that �Theoretical arguments dating from Adam Smith�s analysis of the
pin factory have emphasized the potential importance of �xed costs and the extent of the
market (p. 531)�.

The importance of agglomeration economies for growth has been broadly documented.
For example, Nickell (1996) shows that an increase in the number of �rms is associated
with a higher rate of total factor productivity growth. Álvarez-Peláez and Groth (2005),
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likewise, highlight the importance of the returns to specialization on growth. Ciccone and
Hall (1996) �nd that doubling employment density increases average labor productivity
by 6 percent, whereas Davis, Fisher and Whited (2014) estimate that the impact of local
agglomeration on the growth rate is about 10 percent.

We show that, in the presence of agglomeration economies, the economy experiences
growth when it becomes more capital intensive. Moreover, this outcome occurs when the
number of �rms grows. That is, competition drives growth, as Nickell (1996) has shown
empirically. Thus, any mechanism whose e¤ects result in an increase in the number of
�rms causes agglomeration economies to induce growth. In particular, two variables can
a¤ect entry in our economy. On the one hand, (exogenous) population growth increases
the productivity of capital and, hence, pro�ts. This promotes new entries. On the other
hand, when operational costs are dependent on market conditions, both the number and
the size of the �rms may impact them. This would a¤ect pro�ts and so potentially sustain
a continuous �ow of new entries. Whereas population growth may originate semi endoge-
nous growth, endogenous operational costs can originate endogenous growth. Speci�cally,
we show that when operational costs are positively related to the industry�s �rm size, rep-
resented by the capital level of the industry�s �rms, endogenous growth occurs. Moreover,
since there is a positive correlation between market concentration and operational costs
(Sutton, 1991) and an increased number of competitors in the same industry is positively
correlated with productivity growth (Nickell, 1996), the only functional form in our model
that can simultaneously explain both types of evidence is the operational cost dependent
on capital level.

The literature has pointed out the importance of market entry for production and trade;
see Romer (1990), Jones (1995), Bilbiie, Ghironi and Melitz (2012), and Lewis and Poilly
(2012) among many others. In these papers, a planned expenditure of resources is required
in order to create a new �rm (either R&D expenditure or speci�c labor dedicated to create
new �rms), which determines the operational costs and, in turn, aggregate production. In
this paper, we analyze the other possible causality: that the evolution of the operational
costs determines the number of �rms, which in turn determines aggregate production.
Therefore, we show that growth can occur endogenously in an economy without any speci�c
sector devoted to generating growth.

Schumpeterian models of growth (see Aghion and Howitt, 1992) show a negative rela-
tion between competition and growth, since an increase in competition decreases monopoly
rents, which in turn decreases innovators and, hence, growth. Subsequent variants of mod-
els of this type, such as Aghion, Dewatripont and Rey�s (1997), give ambiguous predictions
on the relation between competition and growth. However, a positive correlation between
competition and productivity growth has been shown empirically. While Geroski (1995)
and Blundell, Gri¢ th and Van Reenen (1999) observe a positive relation between compe-
tition and innovative activity, Nickell (1996) presents evidence that an increased number
of competitors in the same industry is positively correlated with productivity growth. In
our paper, an increase in the number of �rms a¤ects operational costs, which in turn
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raises productivity. Since in our economy a new �rm means a new product, and given
that Bernard, Redding and Schott (2010) show that product creation (in new and existing
�rms) accounts for almost 50 percent of output in a �ve-year interval, competition could
explain an important part of income growth.

In the next section, we present a reduced-form model that allows us to identify clearly
the causes of growth in an economy with free entry. In section 3, we study an economy
with a competitive �nal sector and a monopolistically competitive intermediate sector with
free entry. Section 4 analyzes the relationships among the variables that a¤ect growth and
illustrates the importance of operational costs for determining di¤erent patterns of growth
through di¤erent examples. In section 5 we discuss the results, and section 6 concludes.

2 A reduced-form model of growth

The relationship between market structure and operational costs is complex, since the
former a¤ects the latter, which in turn impacts on operational costs. In order to present our
results, we describe below a reduced-form model to show how this interaction might induce
growth in an economy where a monopolistically competitive sector produces intermediate
goods that are used in a competitive sector.

Consider an economy with a unique �nal good Yt that is produced by competitive
�rms using a continuum of intermediate goods (that are not perfect substitutes) . In each
period t, a �nal goods �rm maximizes

Yt �
Z zt

0
pitxitdi; (1)

where xit and pit are the quantity and price of the intermediate good i in period t, respec-
tively, and zt is the number of intermediate goods in period t, which is taken as given by
the �nal goods �rms. We have normalized the �nal goods price to one.

Each intermediate �rm produces at most one good. In order to operate, these �rms
have to pay an operational cost  t. Since intermediate goods are not perfect substitutes,
these �rms face a downward sloping demand curve which grants them some degree of
market power. This implies that, after maximizing pro�ts and paying for inputs, the
pro�ts function �it can be written as1

�it = �pitxit �  t; (2)

where � measures the degree of market power or mark-up, and �pitxit are monopoly rents.
We have assumed that the operational cost is measured in terms of the �nal good.

1We assume that the operational cost lies completely outside the scope of the �rm�s decision taking. In
the next section, we study the case where the operational cost is partially dependent on the �rm�s decision
taking.
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Since there is perfect competition in the �nal goods sector, in a symmetric equilibrium
where all �rms produce the same quantity xit = xt, set the same price pit = pt, and have
the same pro�ts �it = �t, we have

Yt = ztptxt: (3)

Suppose there is free entry in the intermediate goods sector. Thus, in each period new
intermediate goods producers may enter and produce a new variety. The total number of
�rms zt is determined by the zero-pro�t condition. Applying this condition to Eq.(3), the
gross domestic product GDPt can be written as

GDPt = Yt � zt t =
�
1� �
�

�
zt t: (4)

Total population Nt grows at a constant rate, so that Nt+1=Nt = n. Hence, assuming a
constant mark-up �, per capita GDP growth is

gdpt+1 =
zt+1 t+1

n
; (5)

where gdpt+1 = GDPt+1=Nt+1, and ht+1 = ht+1=ht denotes the growth in variable h
between t+ 1 and t .

Eq.(5) relates growth to the evolution of population, operational costs and number
of �rms. This relationship can be interpreted in di¤erent ways. A �rst approach, taken
by Romer (1990), Jones (1995), Bilbiie, Ghironi and Melitz (2012), and Lewis and Poilly
(2012) among others, considers that a planned expenditure of resources is required (e.g.,
R&D) in order to create a �rm. Then, it is the evolution of the number of �rms zt+1
that determines the evolution of the operational costs  t+1 and, hence, growth gdpt+1 .

2

A second approach, developed in this paper, analyzes the opposite direction. That is, it is
the evolution of the operational costs  t+1 that determines the growth in the number of
�rms zt+1 and, hence, growth gdpt+1 . Thus, free entry in the intermediate goods sector
makes zt dependent on the particular speci�cation and evolution of  t.

3 Market economy

We construct an economy with returns to specialization or agglomeration economies to
analyze how new �rm entries determine the economy�s growth rate. We build on the
model proposed by Coto-Martínez, Garriga and Sánchez-Losada (2007), where the number
of �rms is endogenous. We introduce in that model the possibility of both population
growth and operational costs being dependent on market conditions. The economy has
two sectors: an intermediate goods sector with monopolistically competitive �rms, and
a competitive �nal goods sector where �rms combine the intermediate goods à la Dixit-
Stiglitz, but we separate the agglomeration economies from the monopolistic mark-up, as
proposed by Dixit and Stiglitz (1975), Ethier (1982) and Benassy (1996).

2We discuss this claim in section 5.
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Final goods production: There is a unique �nal good which is produced by com-
petitive �rms through a continuum of intermediate goods, with the following technology
(as in Benassy, 1996):3

Yt =

�
z
v(1��)��
t

Z zt

0
x1��it di

� 1
1��

; � 2 (0; 1); v � 0; (6)

where � is the inverse of the elasticity of the demand for each intermediate good. In a
symmetric equilibrium, all �rms in the intermediate goods sector will produce the same
output level xt and, thus, aggregate output will be Yt = zv+1t xt: Then, the elasticity of
output with respect to the number of �rms zt is given by the degree of agglomeration
economies, v. This parameter measures the intensity with which society bene�ts from
increasing economic density. As a result, an increase in the number of intermediate goods
improves the total factor productivity of the �nal goods technology. This formulation
allows us to separate the e¤ect of the mark-up from that of the agglomeration economies.4

The representative �rm in the �nal goods sector takes the number of intermediate goods
as given and solves

max
fxitg

z
v(1��)��

1��
t

�Z zt

0
x1��it di

� 1
1��

�
Z zt

0
pitxitdi; (7)

from which the demand function for each intermediate input is

xit = (pit)
� 1
� z

v
(1��)
�

�1
t Yt: (8)

Intermediate goods production: Each intermediate goods �rm solves

max
fpit;Kit;Litg

�it = pitxit � (1 + rt)Kit � wtLit �  t; (9)

subject to the �nal goods sector demand, Eq.(8); where xit = K1��
it L�it, Kit and Lit are

the capital and labor used by �rm i, respectively, � 2 (0; 1), wt is the wage, and rt is the
interest rate. We have assumed that there is complete capital depreciation. By allowing
the operational cost to depend (partially) on the �rm�s decisions, the associated �rst-order
conditions of the �rm�s problem yield

1 + rt = pit (1� �) (1� �)K��
it L�it �  Kit

(10)

and
wt = pit (1� �)�K1��

it L��1it �  Lit ; (11)

where  h denotes the partial derivative of  t with respect to h.

3We maintain the notation from the previous section.
4The conventional formulation established by Dixit and Stiglitz (1977) corresponds to the case

v = �= (1� �) ; where there is a one-to-one relationship between the market power and the degree of
agglomeration economies.
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In a symmetric equilibrium, where Kit = Kt and Lit = Lt, �nal output is equal to

Yt = zv+1t K1��
t L�t = zv+1t xt; (12)

and the price, by substituting Eq.(12) into Eq.(8), is

pt = zvt : (13)

Since there is free entry in the intermediate goods sector, each �rm has zero pro�ts. Thus,
using Eq.(13), we obtain

�zvtK
1��
t L�t =  t �  Kt

Kt �  LtLt: (14)

In economies of this type, the entry of a new �rm into the market has two direct and
opposite e¤ects on the incumbent �rms: a complementary e¤ect and a business-stealing
e¤ect. The entry of a new �rm increases the aggregate productivity, which in turn increases
the incumbent �rms�demand. This is the complementary e¤ect. At the same time, the
presence of a new intermediate �rm increases competition, which decreases the incumbent
�rms�demand. This is the business-stealing e¤ect. Although neither of these e¤ects are
considered by entrants, they ultimately determine both the number and the size of the
�rms. Moreover, two variables may a¤ect entry. On the one hand, (exogenous) population
growth increases the productivity of capital and, hence, pro�ts. This promotes new entries.
On the other hand, when operational costs are dependent on market conditions, both the
number and the size of �rms may impact them. This would a¤ect pro�ts and so potentially
sustain a continuous �ow of new entries. We refer to this e¤ect as the general equilibrium
e¤ect.

In our economy, the presence of agglomeration economies v > 0 means that the entry
of a new �rm reduces the relative price between �nal output and intermediate goods
1=pt = z�vt , thus, making entry more pro�table. However, new entries allow the �nal
goods producers to choose from among a greater variety of inputs, which decreases the
demand of the incumbent �rms. Thus, the interaction between the complementary e¤ect
and the business-stealing e¤ect would determine both the number and the size of the
�rms. But this interaction can originate a general equilibrium e¤ect, as it may impact the
operational cost  t.

Consumers: We assume Solow individuals: at any period t, each individual j saves a
constant fraction of her income Rjt and is endowed with one unit of labor that she supplies
inelastically. Therefore, savings for individual j are

Sjt = sRjt ; (15)

where s 2 (0; 1) is the constant propensity to save.5

5Litina and Palivos (2010) characterize the class of production and utility functions that makes the
in�nite horizon model isomorphic to that of Solow; that is, where a constant propensity to save arises. In
particular, the Cobb-Douglas production function used in this paper belongs to this set.
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Labor market clearing condition: In equilibrium, labor demand and supply coin-
cide; that is,

ztLt = Nt: (16)

As population grows at a constant rate, we have

zt+1Lt+1 = Nt+1 = n: (17)

Capital market clearing condition: The amount saved by individuals at t equals
the stock of physical capital at t+ 1; that is,Z Nt

0
Sjt dj = s

Z Nt

0
Rjtdj = zt+1Kt+1. (18)

Noting that
R Nt
0 Rjtdj = wtNt+(1 + rt) ztKt = zt [wtLt + (1 + rt)Kt] = (1� �) zv+1t K1��

t L�t �
zt
�
 Kt

Kt +  LtLt
�
, where we have used the de�nition of the individuals income and Eqs

(10), (11), (13) and (16), the previous equation becomes

s
�
(1� �) zv+1t K1��

t L�t � zt
�
 Kt

Kt +  LtLt
��
= zt+1Kt+1; (19)

or, using Eq.(14),
sGDPt = s (Yt � zt t) = zt+1Kt+1: (20)

Balanced Growth Path (BGP): The dynamics of the model can be reduced to the
capital accumulation Eq.(19) and the free entry condition Eq.(14), which using Eqs (16)
and (17) can be written as

�n
Kt+1

Lt+1
= s

�
(1� �)  t

Kt
�  Kt

�  Lt
Lt
Kt

�
(21)

and

�Nv
t K

��
t L��vt =

 t
Kt

�  Kt
�  Lt

Lt
Kt
: (22)

Thus, for a positive BGP to exist, the right-hand side of Eq.(21) must be asymptotically
a positive constant.

4 Operational costs and growth

We next analyze how both population growth and endogenous operational costs can ex-
plain the existence of the general equilibrium e¤ect (i.e., whether the number and the size
of the �rms a¤ect the operational costs) and, therefore, di¤erent patterns of growth. In
particular, we show that growth is explained by increasing competition among interme-
diate �rms, measured in terms of market share 1=z: This result is consistent with Nickell
(1996), where competition is positively correlated to total factor productivity growth.
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In order to study the impact of operational costs on growth patterns, henceforth we
consider the operational cost function as belonging to the family of Cobb-Douglas func-
tions; that is,  t =  (zt; kt; lt; zt�1; kt�1; lt�1; :::)�Ka

t L
b
t ; where kt and lt denote the average

level of capital and labor per �rm, respectively. Then, using Eqs (16) and (17), Eqs (21)
and (22) can be written as

�Kt+1
zt+1 = s [1� � � a� b]  t

Kt
(23)

and

�zvtK
��
t L�t = [1� a� b]

 t
Kt
; (24)

from where we have to assume that a+b < 1�� for a BGP to exist. When the right-hand
side of Eq.(23) is constant, the right-hand side of Eq.(24) is also constant. This implies
that in any BGP the ratio  t=Kt must be constant; that is,

 = K : (25)

Moreover, from Eqs (24) and (25) we obtain

vzt =  t
�
K

�1
K �L = �K

��
L = �K=L. (26)

From Eqs (16) and (20) we also have gdpt = zt+1Kt+1=sztLt; which implies6

gdp = K
�1
L = K=L: (27)

Hence, from the previous equations we have

gdp = 
v
�
z . (28)

The economy experiences positive growth when it becomes more capital intensive; i.e.,
K=L > 1. Moreover, K=L > 1 turns out to be the case when z > 1. That is, competition
drives growth. Note that the previous equation clearly informs us about the positive e¤ect
of agglomeration economies on GDP per capita growth; that is, a greater number of �rms
is the source of growth. Thus, any mechanism whose e¤ects are translated into z > 1

will induce positive growth.

Depending on the exact form of  t; the economy may experience di¤erent patterns of
growth. A useful point of departure is given by considering the familiar setting in which
the level of operational costs is treated as a constant; that is,  t = 1 for all t. Then, from
Eq.(25) we have K = 1 and, therefore, using Eqs (17) and (26) we obtain z = n�=(��v):

Hence, Eq.(28) gives
gdp = n

v
��v : (29)

Thus, it is clear that when v < � the mechanism that activates the agglomeration
economies is population growth. That is, semi endogenous growth occurs, which is a

6Note that Eqs (17), (25) and (27) give Eq.(5).
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standard result in variety-based growth models.7 When population does not grow, n = 1;
there is no mechanism to activate the agglomeration economies. Hence, the number of
�rms remains unchanged and, consequently, the economy converges to a steady state, as in
Coto-Martínez et al. (2007). Therefore, when operational costs are constant, population
growth is required to activate the agglomeration economies and promote growth. In the
presence of agglomeration economies v > 0, the complementary e¤ect reinforces entry.
As a consequence, since the operational cost is constant, a new entry implies that each
�rm will produce less quantity but at a higher price. As a result, �rms hire less labor8

and become more capital intensive, implying a higher labor productivity, which in turn
makes output per capita grow. In contrast, in the absence of agglomeration economies
v = 0, the economy converges to a steady state where population growth only varies
the absolute size of the economy. The complementary e¤ect is exactly compensated by
the business-stealing e¤ect. Hence, population growth acts as the mechanism that con-
tinuously increases the number of �rms in the economy and, through the agglomeration
economies, induces growth. Note that, since the operational cost is constant, there is no
general equilibrium e¤ect.

It should be noticed that a constant operational cost is su¢ cient to obtain semi en-
dogenous growth, but this condition is far from necessary. In fact, many speci�cations
of the operational cost function can be obtained where population growth is also re-
quired to obtain growth. By way of example, consider a situation where operational
costs are positively related to the capital intensiveness of the industry�s �rms, such that
 t =  (Kt=Lt)

� (kt�1=lt�1)
1�� ; where  is a positive constant. In this case, since in

equilibrium kt�1 = Kt�1 and lt�1 = Lt�1, we have  = K
�1
L ; implying, from Eq.(25),

that L = 1.
9 Then, Eqs (17), (26) and (28) yield z = n, K = nv=� and

gdp = n
v
� : (30)

In this case, each intermediate �rm produces the same quantity but at a higher price and,
at the same time, they become more capital intensive. When population does not grow,
there is no mechanism to activate the agglomeration economies and, then, the economy
converges to a steady state as in the case of constant operational costs.

Although n > 1 is required in the previous examples to obtain growth, it may also be
the case that it does not su¢ ce. If operational costs are related to aggregate capital, such
that  t =  (ztkt)

� (zt�1kt�1)
1��, where � 2 [0; 1) ; we have  = Kz; implying, from

Eqs (25) and (28), that z = 1 and
gdp = 1: (31)

Although population grows, agglomeration economies cannot be activated when the num-
ber of �rms remains constant. As a consequence, growth cannot occur.

7This same result would also be obtained by Coto-Martínez et al. (2007) if allowing for population
growth.

8From Eq.(17) it is direct to check that L = n�v=(��v):
9Note that the case  t =  (KtLt)

� (kt�1lt�1)
1�� would yield the same result.

10



Our point is that endogenous growth can also be obtained from the competition pro-
moted by the existence of endogenous operational costs. Noting that, from Eq.(25),
 = K is required for a BGP to exist, an immediate speci�cation of an operational
cost function satisfying this condition would be  t =  K�

t k
1��
t�1 .

10 This speci�cation re-
sembles the quality cost function proposed by Peretto (2007) in a Schumpeterian growth
model,  t =  Z�t Z

1�� , where �rms decide on the amount of R&D that a¤ects the quality
of their product Zt, and Z is the average quality of the products in the industry.11 Also,
Romer (1990) assumes that total factor productivity is increasing in the capital stock of
the economy (justi�ed in terms of a learning-by-doing process). The crucial element in
the speci�cation of  t =  K�

t k
1��
t�1 is that, when translating into growth rates, it does

not add any restriction on z and L; since it satis�es the condition for a BGP to exist,
 = K (properties of this type are usually called knife-edge conditions). In this case,
in the BGP where kt = Kt, and since the left-hand side of Eq.(24) must be constant in a
BGP, using Eq.(17) we can write Eqs (23) and (24) as 2��K = [s (1� � � �) ] =�z and
K = 

(v��)=�
z n: Thus, solving these two equations and using Eq.(28) we obtain

gdp =

��
�

s (1� � � �)

�
n(2��)

� v
�(1��)�v(2��)

; (32)

implying that, when v < � (1� �) = (2� �) and  < �=s (1� �� �) ; there is endogenous
growth, which is enhanced as population grows. A su¢ ciently low unit operational cost
is needed for new �rms entering the market. Otherwise, operational costs cannot be
compensated for by monopoly rents. Now, the mechanism that induces growth through
new entries is the endogenous evolution of the operational costs. The rationale is that,
in a situation where each �rm produces less quantity but at a higher price, the general
equilibrium e¤ect causes operational costs to fall. As a consequence, the number of �rms
grows. Note that the existence of a complementary e¤ect that reinforces entry is still
necessary to obtain endogenous growth. Otherwise, the general equilibrium e¤ect cannot
be spread into a higher capital intensity.

5 Discussion

In order to shed light on the precise mechanisms that induce growth in our economy, we
next discuss some aspects that are present in the models, ours included, in which economic
growth is dependent on growth in the number of �rms.

10Di¤erent operational cost functions, such as  t =  K�
t k

1��
t ,  t =  K�

t k
1��
t�1 (Lt=lt�1)

",  t =
 K�

t k
1��
t�1 (lt=lt�1)

" and  t =  K�
t k

1��
t�1 (Lt=lt�1)

" (zt=zt�1)
', give the same qualitative conclusions.

11 In this case, however, Zt a¤ects directly and positively the demand of the �rm, which contrasts with
our variety-based growth model where operational costs a¤ect the demand of �rms indirectly through the
complementary e¤ect.
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5.1 The nature of the operational cost

In all the examples discussed (and in most of the papers cited), operational costs are
measured in terms of the �nal good. Alternatively, they might be measured in terms of
the intermediate good, as in Kim (1997, 2004). This enables us to identify a di¤erent
mechanism that induces growth and so clarify the causes of growth.

The basic di¤erence with the situation considered in the previous section is that now
the operational cost is linearly a¤ected by the intermediate good price. In particular, the
(net) intermediate good production of a �rm i is now given by K1��

it L�it� t. Replicating
the calculations presented in the previous section, the equations characterizing the BGP
reduce to

�n
Kt+1

Lt+1
= s (1� �) zvt

�
 t
Kt

�  Kt
�  Lt

Lt
Kt

�
(33)

and

�K��
t L�t =

 t
Kt

� (1� �)
�
 Kt

+  Lt
Lt
Kt

�
: (34)

Using Eq.(17) and the Cobb-Douglas operational cost function, the previous equations
can be written as

�Kt+1
zt+1 = s (1� �) (1� a� b) zvt

 t
Kt

(35)

and

�K��
t L�t = [1� (1� �) (a+ b)]

 t
Kt
: (36)

Since the right-hand side of Eq.(35) has to be constant for a BGP to exist, we have

K = vz : (37)

From Eqs (17) and (36), we obtain

1��K n���z =  ; (38)

and combining the two previous equations yields

�K = n�v��z : (39)

Noting that now GDPt = zv+1t

�
K1��
t L�t �  t

�
, using Eq.(36) we have �GDPt = (1� �)

(1� a� b) zv+1t  t; from where12

gdp = n�1v+1z  : (40)

Then, combining Eqs (17), (37), (39) and (40), we obtain

gdp = 
v
�
z = K=L. (41)

12Note that, since the nature of the operational cost has changed, Eq.(5) does not hold.
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Although the relationship between GDP per capita and the number of �rms remains the
same as in the previous section, the capital accumulation condition Eq.(37) now implies
that z = 1 when K =  . Thus, an operating cost function of the form  t =  K�

t k
1��
t�1

induces no growth even if population growth is positive. That is,

gdp = 1; (42)

implying K = n = L. Output per capita does not grow. This happens because now the
complementary e¤ect does not reinforce entry, since the relative price of the operational
costs is independent of zt. Consequently, the general equilibrium e¤ect cannot be extended
into higher capital intensity and, therefore, the number of �rms remains unchanged even
if there are agglomeration economies. This shows that when the general equilibrium
e¤ect fails to induce a complementary e¤ect that reinforces entry, growth is not possible.
Moreover, as the general equilibrium e¤ect does not a¤ect the price of intermediate goods
since z = 1, then the capital-labor ratio and, therefore, the productivity of capital remain
unchanged. Hence, population growth does not necessarily promote entry, meaning that
it may be absorbed by the existing �rms.

Although the general equilibrium e¤ect becomes inoperative when operational costs
are measured in terms of intermediate goods, population growth can activate the agglom-
eration economies. However, it may also be the case that it does not su¢ ce. We illustrate
this claim by considering the same examples as in the previous section. Under constant
operational costs, however, from the capital accumulation condition Eq.(37) and the free
entry condition Eq.(38) we obtain K = nv�=[��v(1��)] and z = n�=[��v(1��)]; which
combined with Eq.(41) gives

gdp = n
v

��v(1��) : (43)

We have the same qualitative growth rates as those in the previous section, with the
exception that now capital per �rm increases. Population growth induces a continuous
growth of �rms so that the agglomeration economies are activated.

For the other operational costs speci�cations analyzed in the previous section, we �nd
similar results. In particular, if operational costs are  t =  (ztkt)

� (zt�1kt�1)
1��, we have

 = zK . Hence, using Eqs (17), (37) and (38), we obtain z = 1, L = n and K = n,
yielding gdp = 1. Thus, we obtain the same qualitative growth rates as those in the
previous section. In the case where  t =  (Kt=Lt)

� (kt�1=lt�1)
1��, we have  = K

�1
L

and, using Eqs (17), (37) and (38), we obtain z = n1=(1+v), K = n(1+�)v=�(1+v) and
L = nv=(1+v); yielding gdp = nv=�(1+v). Again, we have the same qualitative growth
rates as those in the previous section, with the exception that now labor per �rm increases.

5.2 Growth of the number of �rms as a determinant of the operational
costs

We turn now to the models where a planned expenditure of resources (say R&D) is required
in order to create a �rm; that is, when the growth of the number of �rms implicitly
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determines the evolution of the operational costs and, hence, growth. There are two main
di¤erences between these models and ours. The �rst is that, by construction, in these
models we have z > 1; so that growth is imposed in the BGP. The second is that,
since the expenditure is intentional, the �rm becomes an asset and the operational cost
forms part of the GDP in payment of this asset. We now show how the two best known
papers in this literature, Romer (1990) and Jones (1995), can be adapted to our Eq.(5).
In particular, we adapt both their R&D production functions and their speci�c implicit
operational costs (price of patents).

First, consider a situation where the number of �rms evolves as

zt+1 � zt = �Lz;tzt; (44)

where Lz;t is a given fraction of the total population dedicated to developing new �rms,
and � is a positive constant. The evolution of the number of �rms causes operational costs
(price of a patent) to be constant in the BGP (Romer, 1990, p. S90); that is,  t =  .
Then, rewriting Eq.(5) yields

gdpt+1 =
1 + �Lz;t

n
: (45)

Constant population is required for a BGP to exist; that is, Lz;t must be �xed. If there
is population growth, then growth is not balanced, since Lz;t in Eq.(45) is permanently
growing whereas n is a constant. Moreover, without population growth, the country with
the biggest Lz;t would have the highest per capita GDP growth. This is the reason why
this type of model is said to have scale e¤ects. Note that the growth rate coincides with
that in Romer (1990).

Second, consider a situation where the number of �rms evolves as

zt+1 � zt = �Lz;tz
�
t l
��1
z;t ; (46)

where lz;t is an externality, and � and � are constants. The parameter � captures the fact
that the number of current �rms can a¤ect either positively or negatively the emergence
of new �rms. Assuming that in aggregate lz;t = Lz;t, the growth of the number of �rms is

zt+1 =
�
1 + �L�z;tz

��1
t

�
: (47)

Population cannot be constant in a BGP, since the growth of the number of �rms zt
does not allow the factor 1 + �L�z;tz

��1
t to be constant. This factor remains constant if

z = n�=(1��). Moreover, in the BGP, the evolution of the number of �rms causes the
operational cost to take the form  t =  Nt,13 so that rewriting Eq.(5) yields

gdp = n�=(1��): (48)

13The price of a patent in the BGP can be easily derived from Jones (1995). From (A15), w =

PA +  _A � LA . Similarly, from the BGP we obtain  _A � LA = A � LA = �n= (1� �)� n. Dividing
(A2) by L we obtain w=L = �y=LY and, therefore, w = n + y � LY = n + �n= (1� �) � n, since in
any BGP y � LY = �n= (1� �)� n. Then, we have n = PA ; that is, the price of a patent increases at
the same rate as population in the BGP.
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Hence, we have semi endogenous growth. When population does not grow, the number of
�rms collapses into a constant and, then, growth is not possible. Note that this growth
rate coincides with that in Jones (1995).

6 Concluding remarks

The main contribution of this paper has been to stress the importance of endogenous and
time-dependent operational costs for growth. In an economy with both agglomeration
economies and free market entry, we have analyzed the relevance of the relationship be-
tween operational costs and market structure in determining growth. In particular, we
�nd that economic growth is positively correlated with the number of �rms. We show that
the economy experiences positive growth as it becomes more capital intensive. Moreover,
this outcome occurs when the number of �rms grows. That is, competition drives growth,
as Nickell (1996) has shown empirically. Thus, any mechanism whose e¤ects result in
an increase in the number of �rms causes agglomeration economies to induce growth. In
particular, two variables can a¤ect entry in our economy. On the one hand, (exogenous)
population growth increases the productivity of capital and, hence, pro�ts. This pro-
motes new entries. On the other hand, when operational costs are dependent on market
conditions, both the number and the size of �rms may impact them. This would a¤ect
pro�ts and so potentially sustain a continuous �ow of new entries. Whereas population
growth may originate semi endogenous growth, endogenous operational costs may origi-
nate endogenous growth. Speci�cally, we show that when operational costs are positively
related to the industry�s �rm size, represented by the capital level of the industry�s �rms,
endogenous growth occurs.

This said, it is our contention that the relationship between technology and market
structure needs to be more closely addressed to fully understand some of the growth
mechanisms. Likewise, factors such as human capital or public infrastructure could al-
ter operational costs. A study of the endogeneity of the mark-up, di¤erent mark-ups
for di¤erent sectors, or di¤erent market structures, would also shed more light on this
relationship.
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