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We deduce a novel expression for the non-equilibrium photochemical potential
and the power conversion efficiency of non-equilibrium light absorption by a ther-
mostated material. Application of our results for the case of electron migration
from valence to conduction bands in photovoltaic cells allows us to accurately
interpolate experimental results for the maximal efficiencies of Ge-, Si-, GaAs-
based cells and the like. © 2017 Author(s). All article content, except where oth-
erwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4979608]

Radiation-matter interaction is an ubiquitous and very important phenomenon in several fields
of science including physics, chemistry, biology, medicine and technology.1–7 The key role of this
interaction is that it promotes the absorption of the energy contained in the radiation that, in turn,
may be converted and stored into other types of energy such as chemical or electrical. Radiation
allows for an accurate control of nanomachines like information processing nanodevices, mobile
biosensors, and regulators of chemical reactions and molecular assembly.1,8 The processes involving
heat exchange by means of (non-thermal) radiation between materials at different temperatures are
out of equilibrium. Therefore, beyond the Planck’s seminal work on the thermodynamics of thermal
radiation,9 one has to consider the existence of a non-vanishing photochemical potential associated
to the photon-matter interaction.10,11

Here, we analyze the radiative energy-exchange of two materials, α and β, which are thermal-
ized with their corresponding heat baths at temperatures, Tα ,Tβ , see Fig. 1. The kinetics of this
non-equilibrium situation coupling the two materials is studied on the basis of a quantum master
equation for two-level atoms, from which we deduce an explicit expression for the non-equilibrium
photochemical potential of photons and the entropy produced during photon absorption. In energy
conversion devices, like PV-cells, light absorption promotes the transference of electrons from valence
to conduction bands. We prove that the ”ultimate efficiency” factor limiting this conversion process
can be calculated from the entropy production. Thus, our results constitute a generalization of the
classical work by Schockley and Queisser (SQ) in which a radiation-matter thermal equilibrium is
tacitly assumed when the detailed balance relation is used, see Refs. 7,12. Previous works considering
the implications that a solar cell is operating at steady-state conditions rather than in equilibrium can
be summarized in the following references 13–16. Here, we start by considering the balance of radia-
tive energy exchange between two systems of two state atoms thermalized at different temperatures
in terms of quantum master equations for the state populations. These equations contain the matrix
elements of the Hamiltonian of the matter-radiation system and therefore come, in principle, from the
Von Neumann equation satisfied by the quantum density operator of the system. This approach is then
used in a mesoscopic version of the non-equilibrium thermodynamics appropriate to this case due to
the probabilistic nature of the description and the presence of energy and population fluctuations.19
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FIG. 1. Schematic representation of the system considered. Two sets of atoms,α and β in thermal contact with their respective
thermostats at different temperatures Tα and Tβ . Both materials interact with each other via radiation, hν.

In this form, our analysis starts by considering that each material is well represented as a system
of two-level atoms in which transitions occur between their corresponding ground m to excited n
states with energies Em and En. These transitions match stimulated and spontaneous emission and
absorption of photons of frequency hν =En − Em. Mathematically, the model can be assembled with
the help of Einstein’s-like model17,18 for which the evolution equations for the normalized number
of atoms in the ground state, mi (i= α, β) of materials α and β are

dmi/dt =−
[
Bi

mnuj
ν + H i

mn

]
mi

+
[
Bi

nmuj
ν + Ai

nm + H i
mnehν/kBTi

]
ni (1)

Here, j , i and ni is the number of atoms in the excited state. Bi
mn and Bi

nm stand for the transitions
probabilities per unit time associated to the stimulated radiation process and satisfying the detailed
balance condition Bi

mn =Bi
nm. The spontaneous transitions rates from n to m are represented by Ai

nm.
The thermal interaction of the atoms with the thermostats is quantified by means of the coefficients
H i

mn and H i
nm, that satisfy the detailed balance relation H i

nm/H
i
mn = ehν/kBTi .18 Considering this last

interaction is one of the main differences between our approach and that of Ref. 7.
The coupling between these two materials at different temperatures acts as a drift that takes

the system away from equilibrium. Hence, it is convenient to rewrite Eq. (1) in terms of the differ-
ence between electromagnetic energy densities:

(
uj
ν − ui

ν

)
. Thus, by adding and subtracting terms in

Eqs. (1), we may define the radiative currents

ji ≡−Bi
mn

(
uj
ν − ui

ν

)
(ni − mi) , (2)

and write the more compact equations

dmi/dt =−ji − k+
i mi + k−i ni. (3)

Eq. (3) describes a first order chemical reaction without detailed balance, where k+
i and k−i are the

corresponding forward and reverse rates constants or probabilities per unit time of passing from
ground to excited states and viceversa. These constants are given by

k+
i ≡Bi

mnui
ν + H i

mn,

k−i ≡Bi
nmui

ν + Ai
nm + H i

mnehν/kBTi . (4)

In Eq. (2), jα is proportional to the net radiation received by material α from material β that
promotes the transference of atoms from the ground to their excited state. In correspondence, jβ is
proportional to the net radiation received by material β from material α. In equilibrium, Tα =Tβ and
thus ji vanishes. In these conditions detailed balance is satisfied7

neq
i /m

eq
i = k+

i /k
−
i = e−hν/kBTi , (5)

and, from Eq. (3) it may be derived the Planck’s radiation formula18

uj
ν =

8πhν3

c3

ρj(ν)

ehν/kBTj − 1
. (6)
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Here, we included the spectrum of the incoming radiation to material i will depend on the tem-
perature and the emission properties of material j and viceversa. Thus, the overlapping of the
absorption/emission properties of both materials will determine the specific frequencies that are
permitted by the radiative interaction. This is accounted in Eq. (6) by the emission coefficient ρj(ν).

When Tα ,Tβ the entire system is out of equilibrium since there is a net flux of the number of
atoms that perform transitions from their ground states m to their excited states n. Thus, Eq. (5) should
be modified by considering a macro-canonical correction term accounting for the photochemical
affinity per photon of frequency ν of material i, that is, the photochemical potential µi:

ni(t)/mi(t)≡ e−hν/kBTj eµi/kBTj , (7)

where we have to emphasize that the radiation at temperature T j acts as a heat bath for material i and
viceversa.

The photochemical potential can be deduced by assuming stationary conditions in Eq. (3), that
is, dmi/dt = 0:

ji =−k+
i mi + k−i ni. (8)

Using now Eq. (2) we can obtain an expression for ni/mi:

ni

mi
=

1 + Bi
mn

(
uj
ν − ui

ν

)
/k+

i

1 + Bi
mn

(
uj
ν − ui

ν

)
/k−i

e−
hν

kBTi . (9)

which can be substituted into Eq. (7) yielding the photochemical potential

µi

kBTj
=

hν
kB

(
1
Tj
−

1
Ti

)
+ ln

��������

1 + Bi
mn

k+
i
∆uji

ν

1 + Bi
mn

k−i
∆uji

ν

��������
, (10)

where ∆uji
ν = uj

ν − ui
ν was introduced for notation convenience. In a first order approximation the

expression of the photochemical potential is

µi

kBTj
'

hν
kB

(
1
Tj
−

1
Ti

)
+ χi

(
uj
ν − ui

ν

)
, (11)

where the frequency-dependent photochemical response function χi is defined by

χi =
Bi

mn

(
ehν/kBTi − 1

)
Ai

nm + H i
mnehν/kBTi + Bi

nmui
ν

(12)

Including higher order terms of the series expansion in (11) yields a response function χi that depends
in a non-linear way on the drift uj

ν − ui
ν . Other approaches introducing the concept of photochemical

potential have been reported in the literature, see Refs. 10, 11. However, unlike the one developed
here, out-of-equilibrium effects and the related dissipation are not considered.

For equilibrium processes, the thermodynamic efficiency η of a system performing irreversible
processes is defined in a very general way by the well known expression: η =Wnet/Qin, in which Wnet

is the maximal available work and Qin is the heat absorbed by the system in order to perform work.
For irreversible processes it is more convenient to introduce the power conversion efficiency

ε ≡TΣ/Q̇in, (13)

that introduces the rate of energy dissipated (TΣ) by the system in terms of the entropy produced
per unit time Σ and Q̇in, the incoming energy per unit time. Defining the efficiency by using TΣ is a
direct way to measure the number of activated transitions that dissipate photon energy. This dissipated
photon energy is used to produce hole-electron pairs in the valence and conduction bands. Hence,
TΣ is the maximal output power, i.e., the work which is transformed in an electronic current.

In this form, if Tβ > Tα, then the efficiency in the radiation absorption corresponds to material
α and the power conversion efficiency ε can now be defined by

εα ≡TβΣα/Q̇
in
α . (14)
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This quantity has its correspondence with the “ultimate efficiency” computed for PV-cells in Ref. 7.
We emphasize that εα contains the temperature of the β-material also through the term Q̇in

α . There
are other issues limiting the real efficiency of PV cells in practice: the carrier lifetime and diffusion
length, defects, excitons, band alignment, interface properties and so on. All these factors bring about
a lower efficiency and could properly be accounted for by following, for instance, the heuristic factors
considered in Ref. 7. In our approach, some of these factors are implicitly incorporated through the
coefficient Hnm that quantifies the interaction with the thermostat. For the explicit evaluation of εα
we use Eq. (2) that introduces the incoming radiative energy flow

Q̇in
α =σT4

β jα (15)

where σ is the Stefan-Boltzmann constant. The rate of entropy production of material α can be
computed from the expression of Gibbs entropy19

Sα =−kB

∑
a=mα ,nα

a ln
( a

aeq

)
+ Seq. (16)

Hence, the rate of change of the entropy is given by the time derivative of (16): dSα/dt =ψα + Σα,
where

ψα = kBjα ln

(
k+
αmα

k−αnα

)
, (17)

is the entropy exchange due to the radiative interaction between materials and the second term

Σα =−kB

(
k−αnα − k+

α
mα

)
ln

(
k+
αmα

k−αnα

)
≥ 0.

constitutes the irreversible entropy production per unit time in material α, Σα. This second term is
always positive in agreement with the second law of thermodynamics.10 Since ψα arises from the
radiative coupling between both materials, it vanishes when Tα =Tβ , that is, in equilibrium.

The logarithmic term in Eq. (17) can be rewritten as a function of χα
(
uβν − uαν

)
by using Eqs. (5),

(7) and (11). In the stationary state, dSα/dt = 0, and thus Σα =−ψα that implies jα =
(
k−αnα − k+

α
mα

)
,

and therefore

Σα = kB χαjα
(
uβν − uαν

)
. (18)

Using Eqs. (14), (15) and (18) one finally obtains

ε = kB χα
uβν − uαν
σT3

β

. (19)

Our results can be applied to calculate the efficiency of light absorption and electron migration
from valence to conduction bands in PV-cells, see Fig. 2. In this case, the lower state of the semi-
conductor material α corresponds to the valence band with population mα and the upper state to the
conduction band with population nα.

FIG. 2. Diagram of the bands structure of a typical semiconductor driven out-of-equilibrium by the action of an incident
radiation field. Due to the radiation, the original Fermi level (EF ) splits into two quasi-Fermi levels EFc and EF3 , in such a
way that the equilibrium energy gap, Eg, is reduced to E3 .
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In equilibrium, the energy Eeq of the semiconductor material α should be minimum. The incom-
ing radiation takes the semiconductor away from equilibrium and therefore, the corresponding energy
should be larger than in equilibrium: Eneq > Eeq. This is also true for the free energy per particle, that
is, the chemical potential: µneq > µeq. The equality can be recovered if we add the chemical poten-
tial corresponding to the photons absorbed, that is, the photochemical potential (11). The resulting
expression is

µneq = µeq + µν . (20)

The free energy can be recovered from Eq. (20) by noticing that the reaction coordinate ξ obeys the
relations dξ =−dm= dn, in agreement with the stoichiometric coefficients of Eq. (3). Integration of
Eq. (20) with respect to ξ having in mind that µν does not depends on ξ, yields

Eneq(ξ)=Eeq(ξ) + µνξ, (21)

From this analysis, it follows that the photochemical potential tilts the equilibrium free energy,
promoting in this way the transference of electrons from the valence to the conduction bands.
At equilibrium, that is, for µν = 0, the energy gap Eg between conduction and valence bands is
given by

Eeq(n) − Eeq(m)=Eg. (22)

When the system is taken away from equilibrium by radiation, that is, for µν , 0, the Fermi level
splits into two quasi-Fermi levels (see Fig. 2) separated by the open circuit voltage Eν given by

Eneq(n) − Eneq(m)=Eν , (23)

where the subindex ν stands for the fact that the splitting of the Fermi level is caused by the incoming
radiation.

A comparison between experimental data20 and the efficiency given by Eq. (19) can be performed
in the case when the photon energy hν coincides with Eg. Before discussing this comparison, in
Fig. 3 we show the behavior of the power conversion efficiency as a function of the band gap energy
for two radiation temperatures and χα given by Eq. (12). The figure emphasizes the important
role of the coefficient Hnm in determining the maximal efficiency. This coefficient measures the
thermal interaction of the atoms with the thermostat and other physical mechanisms that entail
photon dissipation not associated to electron migration. The result shows that increasing the intensity
of this interaction, that may be due to physical or construction imperfections among other factors

FIG. 3. Power conversion efficiency ε given by Eq. (19) as a function of the band gap Eg for two temperatures of the incoming
radiation, Tβ = 6000 K (red lines with circles) and Tβ = 4500 K (blue lines). The different type of lines correspond to different
intensities of interaction between the system and the heat bath, characterized by the parameter Hnm entering in the definition
of χα in Eq. (12). The power conversion efficiency decreases when the parameter Hnm increases, indicating a higher energy
dissipation to the heat bath at temperature Tα = 300 K. The rapid decay of the efficiency at low eV’s is due to the value of the
spontaneous emission coefficient used, see the table of Fig. 4. For lower values of Anm the curve becomes smoother at low
eV’s. The value of Bnm is also given in the table of Fig. 4.
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in practice, then the power conversion efficiency decreases. This is indicated by the solid, dotted,
dashed and dotted-dashed lines of Fig. 3. Evidently, smaller values of Hnm entail grater efficiencies.
The overall shape of the function depends on the value of the spontaneous emission coefficient Anm.
For values smaller than that used in Figs. 3 and 4 the function becomes smother at low gap energies.
However, the value used in these figures is consistent experimental data of PV-cells materials, see
the supplementary material.

The comparison of maximal power conversion efficiencies of different cells and the theoretical
expression, Eq. (19), is shown in Fig. 4. A remarkable good interpolation of these maximal experi-
mental efficiencies of several PV-cells taken from Ref. 20 was obtained, specially at low band gap
energies. In doing this comparison we again used the microscopic expression of χα, Eq. (12). The
table of values of the parameters Anm, Bnm and Hnm is given in the same figure.21 See the supplemen-
tary material for a thorough explanation on the hypotheses regarding the deduction of the “ultimate
efficiency” factor obtained by SQ.7 and its difference with the present approach. In the supplementary
material we also explain how the physical data for the interpolation of experiments in Fig. 4 have
been chosen.

As a summary, we have performed a thermostatistical analysis of radiation-matter interac-
tion which constitutes a case of an irreversible non-conductive heat exchange between mate-
rials at different temperatures. In particular, we have derived an explicit expression for the
photochemical potential of the out-of-equilibrium radiation-matter interaction and the associated
energy dissipation (entropy production). This has enabled us to give a general expression for the
power conversion efficiency of the light absorption process, Eq. (19), and use it for accurately
interpolate experimental results for the maximal efficiencies of Ge-, Si-, GaAs-based cells, see
Fig. 4.

Our model is based on a master equation that, in principle, contains the matrix elements of
the corresponding Hamiltonian of the matter-radiation system and therefore comes from the Von
Neumann equation satisfied by the quantum density operator of the system, thus, it can be mapped
onto first-principles. However, the final results are formally independent of the particular characteristic
of the model and thus, are completely general. Our contribution, neither empirical nor semi-empirical,
has no precedents in previous literature, since previous analyses of maximum efficiency did not take
internal dissipation into account, see, for instance, Refs. 7, 12.

Our work offers a novel result with important technological implications in the field of
energy harnessing, and may also be valuable in the realm of photochemical reactions in complex
materials.

FIG. 4. Data interpolation (curve), using Eq. (19), of the maximal experimental efficiencies (symbols) of several PV-cells
taken from Ref. 20. In this case, we used the microscopic expression of χα , Eq. (12). The values of the parameters Anm, Bnm

and Hnm are given in the Table and correspond well to the values reported in Ref. 21 for Si. The maximum of the curve is
matched by assuming a temperature Tβ = 5200K.

ftp://ftp.aip.org/epaps/aip_advances/E-AAIDBI-7-082703
ftp://ftp.aip.org/epaps/aip_advances/E-AAIDBI-7-082703
ftp://ftp.aip.org/epaps/aip_advances/E-AAIDBI-7-082703
ftp://ftp.aip.org/epaps/aip_advances/E-AAIDBI-7-082703
ftp://ftp.aip.org/epaps/aip_advances/E-AAIDBI-7-082703
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SUPPLEMENTARY MATERIAL

See supplementary material for a thorough explanation of the concept of ultimate and power
conversion efficiencies, and the election of the parameters for data interpolation in Fig. 4.
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