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Three-dimensional telegrapher’s equation and its fractional generalization
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We derive the three-dimensional telegrapher’s equation out of a random walk model. The model is a three-
dimensional version of the multistate random walk where the number of different states form a continuum
representing the spatial directions that the walker can take. We set the general equations and solve them for
isotropic and uniform walks which finally allows us to obtain the telegrapher’s equation in three dimensions. We
generalize the isotropic model and the telegrapher’s equation to include fractional anomalous transport in three
dimensions.
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I. INTRODUCTION

Within the vast and complex field of transport of particles
through continuous media, diffusion is surely the most used
approach for modeling the whole process. The main reason
lies in the fact that diffusion provides one of the simplest ways
of reproducing many qualitative features of transport as well
as giving reasonable quantitative estimates [1].

When the moving particle is not driven by any external field,
the diffusive approximation reduces the transport equation
(usually a rather complicated and nonlinear integrodifferential
equation with an imperfectly known scattering kernel [2]) to
the much simpler diffusion equation,

∂p

∂t
= D∇2p, (1)

where p(r,t) is the probability density function of the diffusing
particle to be at r at time t and D is the diffusion coefficient. A
major characteristic of any diffusion process is that the mean
square deviation grows linearly with time,

〈|�r(t)|2〉 = Dt, (2)

where �r(t) = r(t) − 〈r(t)〉. A second major characteristic
is the Gaussian character of the free diffusion process. Thus
the solution to Eq. (1) in unbounded space and assuming the
particle is initially at the origin p(r,0) = δ(r) reads

p(r,t) = 1

(4πDt)3/2
e−r2/4Dt . (3)

Let us observe that the form of this solution shows that for
any t > 0 the function p(r,t) > 0 is strictly positive for any
value of r = |r|. As a result, there is a nonzero probability of
finding the particle arbitrarily far away from the initial position.
In other words, the diffusion model allows for the possibility
of particles traveling at arbitrary velocities, even larger than
the speed of light in vacuum. The diffusive approximation is,
therefore, not compatible with relativity [3].

There are further limitations of the diffusion approximation.
Thus, in situations, such as those of photon migration through
continuous media, one finds the inability of the diffusion
equation to account for ballistic motion as well as inaccuracies
near interfaces and in thin samples. Also in the description of
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early-time effects when the flux of ballistic particles may not
be negligible which may result in anisotropic scattering along
the forward direction [1,4–6].

Although there are no unambiguous and widely accepted
relativistic generalizations of the diffusion equation, it has
been suggested by a number of researchers from different
fields that one of the simplest generalizations (still retaining
significant diffusive properties but characterized by a finite
propagation speed as well as considering possible fluxes of
ballistic particles) is the telegrapher’s equation (TE) [4–18].
The equation first appeared in the nineteen century with
the works of Kelvin and Heaviside related to the analysis
of the distortion and dissipation of electromagnetic waves
in telegraph lines [9]. In this electromagnetic context the
three-dimensional telegrapher’s equation is derived directly
from combining Maxwell’s equations for homogeneous media
[1,9].

The generic form of the TE is

∂2p

∂t2
+ 1

τ

∂p

∂t
= v2∇2p, (4)

where τ > 0 is a characteristic time and v > 0 is a charac-
teristic speed. It is a hyperbolic equation which as τ → ∞
with v fixed becomes the wave equation whereas as τ → 0
and v → ∞ with v2τ → D finite it turns into the diffusion
equation. Equation (4) thus possesses wave and diffusion
features, and it describes “diffusion with finite propagation
velocity” [9,11].

In the context of transport theory, the three-dimensional
TE is the so-called P1 approximation to the full transport
equation for which the basic assumption is that the change in
direction due to a single scattering event is small [1,2,10,19].
Other approaches suppose phenomenological generalizations
where a three-dimensional TE is postulated by assuming the
same form as the one-dimensional TE but with numerical
corrections in the coefficients which guarantee correct ballistic
and diffusive behaviors in three dimensions [4–6]. In one
recent approach [20] such a generalization consists of a
convenient modification of the continuity equation for the
probability current. The model is, however, limited to a discrete
number of directions which restricts possible applications to
transport processes.

Within this background, a number of works have tra-
ditionally attempted to obtain the TE from random walk
models since they try to reproduce the microscopic (or, at
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least, mesoscopic) mechanism of the transport process. These
models are modifications of the ordinary random walk because
the latter, in the so-called “fluid limit” (see below), leads to the
diffusion equation but not to the telegrapher’s equation [1,9].

Despite that in one dimension the TE is readily achieved
from the persistent random walk on the line [1,18,21], in
higher dimensions obtaining the TE from microscopic models
encounters serious difficulties. The main reason lying in the
difficulty of generalizing persistence in dimensions higher than
one [22–28].

One chief objective of the present paper is to arrive at the
three-dimensional TE out of a random walk model. To this
end we propose and develop a continuous version of a three-
dimensional multistate random walk with a continuum in the
number of states. The model may be seen as a generalization
of the persistent random walk in three dimensions, and it has
been inspired by previous work on continuous-valued noise
[29]. As we will see the model can be solved for homogeneous
and isotropic walks which, in turn, finally leads to the three-
dimensional TE.

For more than two decades, so-called “anomalous trans-
port” and “anomalous diffusion” have been the object of
intense research with countless applications in many areas of
physics, chemistry, and natural and socioeconomic sciences.
There is immense literature on the subject, and for complete
reports we may cite Refs. [30–39] among many others. The
concept first emerged from the theory of random processes,
specifically from continuous time random walks [40–42], and
it was first applied to diffusion of charge carriers in organic
semiconductors by Scher and Montroll in Refs. [43,44].

Anomalous transport arises in extremely disordered sys-
tems, such as random media and fractal structures [45], and its
most distinctive characteristic is that the mean square deviation
follows the asymptotic law [31,32]:

〈|�r(t)|2〉 ∼ tα (5)

(t → ∞), where α > 0 is any positive real number. The range
of 0 < α < 1 describes subdiffusion, α = 1 corresponds to
(normal) diffusive transport, and α > 1 describes superdiffu-
sion. Within the diffusive approximation and in the force-free
case, the anomalous transport process is described by a
fractional diffusion equation, which can be written as

∂αp

∂tα
= D∇2γ p (6)

(0 < α � 1, 0 < γ � 1), where ∂α/∂tα is the fractional
Caputo derivative and ∇2γ is the Riesz-Feller fractional
Laplacian (see Sec. VI). The mathematical properties of
the solutions to the fractional diffusion equation have been
studied thoroughly and very clearly exposed by Mainardi and
collaborators [46–48], and we refer the reader to the works of
these authors for more information.

As mentioned above, the formulation of anomalous trans-
port originally was devised out of the continuous time random
walk formalism [43,44]. As a result, the derivations of Eq. (6)
are based mostly on this formalism. Even though there also
exist alternative approaches based on master equations or
(fractional) Chapman-Kolmogorov expansions [32].

Similar to the ordinary diffusion equation (1), the fractional
equation (6) ignores possible changes in the dynamics of

the diffusing particle as time increases. We recall that these
changes account for ballistic motion and anisotropic scattering
(among others) that are relevant in a number of experimental
settings [49]. As we have seen, the TE explains some of
these characteristics of transport which imply, in particular, the
transition from ballistic to diffusive motion with the increase
in time.

In a recent work [50] we have presented a derivation of
the fractional telegrapher’s equation (FTE) in one dimension
which is based on a fractional generalization of the persistent
random walk on the line. We also have shown there that
a simple and direct three-dimensional generalization of the
one-dimensional persistent random walk leads to inconsistent
results. A second chief objective of this paper is, therefore,
obtaining a three-dimensional FTE out of a fractional gener-
alization of our continuous and isotropic random walk model.

The paper is organized as follows. In Sec. II we present the
continuous multistate random walk in three dimensions, which
is a generalization of the multistate random walk allowing
for a continuous number of states. In Sec. III we study the
special case of an isotropic and homogeneous walk. In Sec. IV
we derive, out of the isotropic walk, the three-dimensional
TE. In Sec. V we generalize the isotropic walk to include a
fractional version of it. From this generalization, we derive the
three-dimensional fractional telegrapher’s equation in Sec. VI.
Some concluding remarks are in Sec. VII.

II. CONTINUOUS MULTISTATE RANDOM WALK
IN THREE DIMENSIONS

In this section we present a microscopic model for the
transport of particles in continuous media. The model is based
on a generalization of multistate random walks (see Ref. [51]
and references therein) and assumes a continuum in the number
of states [29]. In the standard formulation of multistate random
walks, the walker can be in a discrete number of internal
states, and the transition between different states is random
and governed by a given transition matrix that generally is
supposed to be Markovian. The usual formulation also assumes
that the walker moves on a line. In order to model transport
of particles we will generalize the multistate random walk
in two key features: (i) We will assume that the walker (i.e.,
the particle) moves in three dimensions, and (ii) it can have
internal states defined on a continuous set of values.

Suppose a random walker moving in the three-dimensional
space. At any instant in time the walker moves along a straight
line with a direction determined by the solid angle � = (θ,ϕ),
where θ is the polar angle and ϕ is the azimuthal angle. The
particular direction in which the particle is moving constitutes
the “internal state,” and, since all possible directions form
a continuous and denumerable set, we will deal with a
continuous multistate random walk.

The walker shifts direction randomly. Hence the duration of
the motion along a given direction �, which we call sojourn, is
a random variable determined by a probability density function
(PDF) denoted by ψ(t |�). The probability that the duration of
a given sojourn is greater than t will thus be given by

�(t |�) =
∫ ∞

t

ψ(t ′|�)dt ′. (7)
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Let us further indicate by h(r,t |�) the joint PDF for the
displacement in a single sojourn along direction � to be
equal to r and the sojourn duration to equal t . In addition,
let H (r,t |�) be the probability density for the displacement
to be r in a single sojourn when the total sojourn time is
greater than t . Notice that the duration PDF ψ(t |�) is the time
marginal density of h(r,t |�),∫

R3
h(r,t |�)d3r = ψ(t |�), (8)

whereas ∫
R3

H (r,t |�)d3r = �(t |�). (9)

At the end of a given sojourn the walker, which is supposed
to move along �′, switches to direction �. We denote by
β(�|�′) the scattering kernel, that is, the PDF for the transition
�′ → �. In this way the probability that a single scattering
changes the direction of the walker from �′ to a direction
falling somewhere inside the angular region (�,� + d�) is
given by

Prob{�′ → (�,� + d�)} = β(�|�′)d2�, (10)

where d� = (dθ,dϕ) and

d2� = sin θ dθ dϕ (11)

denotes the surface element on the sphere of the unit radius.
Let us observe that in this model the walker after each

sojourn has a nonvanishing probability of traveling in the
previous direction. In those cases where this probability is
higher than 1/2, the walk is persistent in moving along a
given direction. We may well say that the model constitutes
a three-dimensional generalization of the persistent random
walk [42].

Our objective is to find the PDF for the walker to be at r at
time t . We denote this density by p(r,t). It can be written as

p(r,t) =
∫

p(r,�,t)d2�, (12)

where p(r,�,t) is the joint PDF for the random walker to be at
r at time t and moving in direction � and the integral extends
over all possible directions.

A first step in the calculation of p(r,�,t) relies on the
knowledge of an intermediate function denoted by ρ(r,�,t)
and defined as

ρ(r,�,t)d3r dt = Prob{a sojourn in direction � ends in

the region (r,r + dr) at (t,t + dt)}.
Note that this density describes the state of the process at the
“scattering points” where the direction of the walker changes.
A standard renewal argument shows that the auxiliary density
obeys the following integral equation:

ρ(r,�,t) = β(�)h(r,t |�) +
∫

β(�|�′)d2�′
∫ t

0
dt ′

×
∫
R3

h(r − r′,t − t ′|�)ρ(r′,�′,t ′)d3r′, (13)

where β(�) is the probability that the process starts moving
in direction �. The renewal reasoning behind Eq. (13) simply

says that, if a scattering event occurs at time t , it must be either
the first one (after the initial one at t = 0) this described by the
first term on the right hand side, or else an earlier scattering
�′ → �, governed by the density β(�|�′), occurred at time
t ′ < t when the walker was at r′ and no further change in
direction occurred during the time interval t − t ′. All of this
integrated over all possible directions �′, positions r′ ∈ R3,
and intermediate times t ′.

Once we know the auxiliary density ρ(r,�,t), the PDF
p(r,�,t) for the walker to be at r at time t while moving in
direction � is

p(r,�,t) = β(�)H (r,t |�) +
∫

β(�|�′)d2�′
∫ t

0
dt ′

×
∫
R3

H (r − r′,t−t ′|�)ρ(r′,�′,t ′)d3r′. (14)

The reasoning behind this equation is similar to that following
Eq. (13). Thus the displacement of the walker is either within
the first sojourn, this given by βH on the right hand side, or
else an earlier change in direction occurred at time t ′ < t while
the walker was at position r′ and the time interval to the next
scattering event exceeded t − t ′.

The degree of difficulty in solving the integral equation (13)
is reduced by using the Fourier-Laplace transform,

ˆ̃ρ(ω,�,s) =
∫ ∞

0
e−st dt

∫
R3

eiω·rρ(r,�,t)d3r.

Indeed, transforming Eqs. (13) and (14) yields

ˆ̃ρ(ω,�,s) = ˆ̃h(ω,s|�)

×
[
β(�) +

∫
β(�|�′) ˆ̃ρ(ω,�′,s)d2�′

]
, (15)

and

ˆ̃p(ω,�,s) = ˆ̃H (ω,s|�)

×
[
β(�) +

∫
β(�|�′) ˆ̃ρ(ω,�′,s)d2�′

]
. (16)

From Eq. (15) we see that∫
β(�|�′) ˆ̃ρ(ω,�′,s)d2�′ =

ˆ̃ρ(ω,�,s)
ˆ̃h(ω,s|�)

− β(�),

which after substituting into Eq. (16) yields a rather simple
relation between ˆ̃p(ω,�,s) and ˆ̃ρ(ω,�,s),

ˆ̃p(ω,�,s) =
ˆ̃H (ω,�,s)
ˆ̃h(ω,s|�)

ˆ̃ρ(ω,�,s). (17)

Finally, plugging Eq. (17) into the Fourier-Laplace transform
of Eq. (12) yields

ˆ̃p(ω,s) =
∫ ˆ̃H (ω,�,s)

ˆ̃h(ω,s|�)
ˆ̃ρ(ω,�,s)d2�. (18)

The solution of the integral equation (15) for ˆ̃ρ(ω,�,s) and
its subsequent use in Eq. (18) summarize the main results of
the model and furnish a convenient starting point for numerical
work in the most general case when no further simplifications
can be performed.
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Independent scattering

In order to proceed further we should specify some form
for the scattering kernel β(�|�′). For this purpose we will
consider the case in which the direction is randomized at the
end of each sojourn independent of its previous value. In this
way the PDF for the transition �′ → �,

β(�|�′) = β(�) (19)

is independent of �′. The scattering process is thus an
independent random process in the change in direction. Let us
incidentally mention that this model is similar in spirit to that
of Gordon in his study of rotational relaxation in fluids wherein
the angular momentum is randomized at each collision [52]. In
the context of fluctuations in laser fields the model corresponds
to the so-called Burshtein model [53,54].

When the scattering kernel has the form given by Eq. (19),
Eqs. (15) and (16) reduce to

ˆ̃ρ(ω,�,s) = β(�) ˆ̃h(ω,s|�)

[
1 +

∫
ˆ̃ρ(ω,�′,s)d2�′

]
, (20)

and

ˆ̃p(ω,�,s) = β(�) ˆ̃H (ω,s|�)

[
1 +

∫
ˆ̃ρ(ω,�′,s)d2�′

]
. (21)

Integrating Eq. (20) with respect to all possible directions
and defining the function,

ˆ̃ρ(ω,s) ≡
∫

ˆ̃ρ(ω,�,s)d2�, (22)

we get

ˆ̃ρ(ω,s) = [1 + ˆ̃ρ(ω,s)]
∫

β(�) ˆ̃h(ω,s|�)d2�,

which, after defining

ˆ̃h(ω,s) ≡
∫

β(�) ˆ̃h(ω,s|�)d2� (23)

yields

ˆ̃ρ(ω,s) =
ˆ̃h(ω,s)

1 − ˆ̃h(ω,s)
. (24)

Notice that Eq. (21) can be rewritten in terms of the function
ˆ̃ρ(ω,s) defined in Eq. (22) as

ˆ̃p(ω,�,s) = β(�) ˆ̃H (ωω,s|�)[1 + ˆ̃ρ(ω,s)].

The integration of this equation with respect to all directions
yields

ˆ̃p(ω,s) = ˆ̃H (ω,s)[1 + ˆ̃ρ(ω,s)], (25)

where [cf. Eq. (12)]

ˆ̃p(ω,s) =
∫

ˆ̃p(ω,�,s)d2�, (26)

and

ˆ̃H (ω,s) ≡
∫

β(�) ˆ̃H (ω,s|�)d2�. (27)

Substituting Eq. (24) into Eq. (25) we finally obtain

ˆ̃p(ω,s) =
ˆ̃H (ω,s)

1 − ˆ̃h(ω,s)
, (28)

Equation (28) constitutes a generalization of the Montroll-
Weiss equation [40–42] for the three-dimensional continuous
time random walk with independent directions.

III. AN ISOTROPIC AND UNIFORM WALK

We next assume that the walker moves inside an isotropic
medium so that the pausing time density ψ(t,�) = ψ(t) and
the probability �(t |�) = �(t) are both independent of the
direction �. We additionally assume that inside any sojourn
the motion is uniform with a constant speed given by c. Thus,
after each sojourn the velocity of the walker takes a different
direction but with the same modulus c (i.e., after each collision
the kinetic energy is conserved). Despite its simplicity the
model describes the motion of noninteracting particles—as,
for instance, photons—suffering elastic scattering with fixed
centers randomly distributed.

For this model the densities h(r,t |�) and H (r,t |�), respec-
tively, describing the displacement inside a given sojourn in
direction � are given by

h(r,t |�) = δ(r − ctu)ψ(t), (29)

and

H (r,t |�) = δ(r − ctu)�(t), (30)

where u is the unit vector pointing in direction � = (θ,ϕ); that
is

u = (sin θ cos ϕ, sin θ sin ϕ, cos θ ).

The Fourier transforms of these densities read

h̃(ω,t |�) = ψ(t)ei(ω·u)ct , (31)

and

H̃ (ω,t |�) = �(t)ei(ω·u)ct . (32)

We next assume, as we did in the previous section, that after
each scattering the new direction is randomized independently
of any previous direction [cf. Eq. (19)]. We take in addition a
further step and suppose complete isotropy so that

β(�|�′) = β(�) = 1

4π
. (33)

In other words, all outgoing directions are equally likely.
The average,

h̃(ω,t) =
∫

h̃(ω,t |�)β(�)d2�

gives the joint characteristic function of displacement and
duration inside any sojourn independent of the direction. In
the isotropic case and for uniform motion [cf. Eqs. (31), (33),
and (11)] we have

h̃(ω,t) = 1

4π
ψ(t)

∫
ei(ω·u)ct d2�

= 1

2
ψ(t)

∫ π

0
ei|ω|ct cos θ sin θ dθ.
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After integrating we get

h̃(ω,t) = ψ(t)
sin |ω|ct
|ω|ct , (34)

and analogously,

H̃ (ω,t) = �(t)
sin |ω|ct
|ω|ct , (35)

We can now obtain the PDF for the position of the random
walker to be at r at time t . We will get such a distribution
by means the Fourier-Laplace transform ˆ̃p(ω,s) as given
in Eq. (28) in terms of the Fourier-Laplace transform of
the densities h and H . To this end we need to specify the
form of the waiting time density ψ(t). We thus assume that
the random instants of time at which the scattering process
occurs are distributed according to the Poisson distribution,
which constitutes one of the simplest and most universal
assumptions. This implies that time intervals inside any
sojourn are exponentially distributed [55]

ψ(t) = λe−λt and �(t) = e−λt ,

and we have

h̃(ω,t) = λe−λt sin |ω|ct
|ω|ct , H̃ (ω,t) = 1

λ
h̃(ω,t).

We next take the Laplace transform of these expressions.
Recalling that [56]

L
{

sin |ω|ct
t

}
= arctan

( |ω|c
s

)
,

and the property L{e−λtf (t)} = f̂ (λ + s), we get

ˆ̃h(ω,s) = λ

|ω|c arctan

( |ω|c
λ + s

)
, (36)

and

ˆ̃H (ω,s) = 1

|ω|c arctan

( |ω|c
λ + s

)
. (37)

Substituting Eqs. (36) and (37) into Eq. (28) we finally
obtain

ˆ̃p(ω,s) = arctan[|ω|c/(λ + s)]

|ω|c − λ arctan[|ω|c/(λ + s)]
, (38)

which constitutes the solution of the homogeneous and
isotropic model and our starting point for deriving the three-
dimensional telegrapher’s equation. It is worth mentioning that
a similar expression was obtained some years ago by Claes and
Van den Broeck [57] in the context of modeling the end-to-end
distance of polymer chains, although they used a different
approach.

IV. TELEGRAPHER’S EQUATION IN THREE
DIMENSIONS

Let us recall that the homogeneous and isotropic random
walk described above is a microscopic model of transport in
which the particle moves on a straight line until it elastically
collides with centers of force randomly distributed in a given
region of the three-dimensional space. We will now zoom
out this microscopic description and perform the so-called

fluid limit, that is, we will rewrite the model for long times
and distances [48,58]. Because of Tauberian theorems [59,60],
long times and distances t → ∞ and |r| → ∞ correspond to
small Laplace and Fourier variables s → 0 and |ω| → 0.

We next take the fluid limit in the expression (38) for
the transformed PDF of the isotropic walk. We first perform
the long-distance limit (|ω| → 0) and briefly postpone the
long-time limit (s → 0). As |ω| → 0 we have the following
expansion:

arctan

( |ω|c
λ + s

)
= |ω|c

λ + s
− 1

3

( |ω|c
λ + s

)3

+ O(|ω|5)

= |ω|c
(λ + s)3

[
(λ + s)2−1

3
(|ω|c)2+O(|ω|4)

]
.

(39)

Substituting into Eq. (38) and simple algebra yield

ˆ̃p(ω,s) = (λ + s)2 − (|ω|c)2/3 + O(|ω|4)

s(λ + s)2 + λ(|ω|c)2/3 + O(|ω|4)
. (40)

In the long-time limit (s → 0) this expression may be written
as [61]

ˆ̃p(ω,s) = λ2 + 2λs + O(s2,|ω|2)

λ2s + 2λs2 + λ(|ω|c)2/3 + O(s3,|ω|4)
.

We, therefore, propose as a fluid limit approximation the
following expression for the PDF of the uniform and isotropic
walk:

ˆ̃p(ω,s) = λ/2 + s

λs/2 + s2 + |ω|2c2/6
. (41)

Let us next derive the three-dimensional TE. To this end we
begin with Eq. (41) and try to find an associated differential
equation satisfied by p(r,t). In this way we multiply both sides
of Eq. (41) by the denominator and rewrite the result as

s2 ˆ̃p(ω,s) − s + λ

2

[
s ˆ̃p(ω,s) − 1

] = −c2

6
|ω|2 ˆ̃p(ω,s).

We now proceed with Fourier inversion. Taking into account

F−1{|ω|2 ˆ̃p(ω,s)} = −∇2p̂(r,s), F−1{1} = δ(r),

we see that

s2p̂(r,s) − sδ(r) + λ

2

[
sp̂(r,s) − δ(r)

] = c2

6
∇2p̂(r,s).

We next address Laplace inversion. With the standard initial
conditions,

p(r,0) = δ(r),
∂p(r,s)

∂t

∣∣∣∣
t=0

= 0, (42)

and the Laplace inversion formulas [56],

L−1{s2p̂(r,s) − s δ(r)} = ∂2p(r,t)
∂t2

,

L−1{sp̂(r,s) − δ(r)} = ∂p(r,t)
∂t

,

we see that p(r,t) satisfies the three-dimensional TE,

∂2p

∂t2
+ 1

τ

∂p

∂t
= v2∇2p, (43)
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with τ = 2/λ as the characteristic time and v = c/
√

6 as the
characteristic speed.

We remark that the TE enjoys both wave and diffusion
characteristics. This duality becomes even more apparent as
time progresses. Thus, as t → 0 Eq. (43) reduces to the wave
equation whereas as t → ∞ it does to the diffusion equation.
Indeed, scaling time with τ one can easily see that [51]

∂2p

∂t2
� v2∇2p (t → 0),

∂p

∂t
� D∇2p (t → ∞),

(D = v2τ ). Note that this leads to

〈|r(t)|2〉 ∼ t2 (t → 0), 〈|r(t)|2〉 ∼ t (t → ∞),

showing the transition from ballistic motion to diffusive
motion as time increases.

V. THE FRACTIONAL ISOTROPIC WALK

We recall that the second major objective of this paper
consists of deriving a three-dimensional fractional teleg-
rapher’s equation out of a microscopic picture based on
three-dimensional random walks. We proceed as we did in
the one-dimensional case [50] and first obtain a fractional
generalization of the homogeneous and isotropic walk of the
previous section.

To this end we first describe an alternative way of deriving
the expression for ˆ̃p(ω,s) in the fluid limit approximation
that we have obtained previously [cf. Eq. (41)]. The starting
point of such an alternative derivation consists of realizing that
the approximation given by Eq. (41) is achieved readily after
substituting into Eq. (28) the following expansions in the fluid
limit:

ˆ̃h(ω,s) = 1 − s

λ
− 2

(
s

λ

)2

− 1

3λ2
|ω|2c2 · · · , (44)

and

ˆ̃H (ω,s) = 1

λ

(
1 + 2s

λ

)
· · · (45)

(s,|ω| → 0). The derivation of these approximate expansions
goes as follows. From Eqs. (36) and (39) we write

ˆ̃h(ω,s) = λ

(λ + s)3

[
(λ + s)2 − 1

3
|ω|2c2 + O(|ω|4)

]
.

Simple manipulations yield

1 − ˆ̃h(ω,s) = 1

(λ + s)3

[
s(λ + s)2 + λ

3
|ω|2c2 + O(|ω|4)

]

= 1

(λ + s)3

[
λ2s+2λs2+λ

3
|ω|2c2+O(s3,|ω|4)

]
,

which when s → 0 we approximate as

1 − ˆ̃h(ω,s) � 1

λ3

[
λ2s + 2λs2 + λ

3
|ω|2c2

]
,

so that

1 − ˆ̃h(ω,s) � s

λ
+ 2

(
s

λ

)2

+ 1

3λ2
|ω|2c2, (46)

which agrees with Eq. (44). Starting from Eq. (37) and
following the same approximation scheme we get

ˆ̃H (ω,s) = 1

(λ + s)3

[
(λ + s)2 − 1

3
|ω|2c2 + O(|ω|4)

]

= 1

(λ + s)3

[
λ2 + 2λs − 1

3
|ω|2c2 + O(s2,|ω|4)

]

� 1

λ3
(λ2 + 2λs) = 1

λ

(
1 + 2s

λ

)
.

which is Eq. (45). Substituting Eqs. (45) and (46) into Eq. (28)
immediately leads to the fluid limit expression for ˆ̃p(ω,s) as
given by Eq. (41).

In order to propose a fractional generalization of the
isotropic walk we reproduce the steps of the derivation of the
fractional persistent random walk that we did in one dimension
[50]. Thus looking at Eq. (44) we propose the following
expansion for the sojourn density in the fluid limit:

ˆ̃h(ω,s) = 1 − (T s)α − 2(T s)2α − 1
3 (L|ω|)2γ · · · (47)

(s,|ω| → 0), where 0 < α � 1, 0 < γ � 1 and T > 0 and
L > 0 are arbitrary parameters. T defines a characteristic time,
and L defines a characteristic length.

In addition to the fractional approximation for ˆ̃h(ω,s) we
also need to assume a fractional expansion for the function
ˆ̃H (ω,s) consistent with Eq. (47). To this end, we return to

Sec. II and multiply both sides of Eq. (8) by β(�) and integrate
over all directions �, we have∫

R3
h(r,t)d3r = ψ(t), (48)

where

h(r,t) =
∫

h(r,t |�)β(�)d2�,

and

ψ(t) =
∫

ψ(t |�)β(�)d2�

are the sojourn PDFs independent of direction. Note that in
terms of the Fourier transform h̃(ω,t) Eq. (48) can be written
as h̃(ω = 0,t) = ψ(t).

Starting from Eq. (9) and following an identical reasoning
we may write H̃ (ω = 0,t) = �(t). In the Fourier-Laplace
space we thus have

ˆ̃h(ω = 0,s) = ψ̂(s) and ˆ̃H (ω = 0,s) = �̂(s).

However, from Eq. (7) we see that �̂(s) = [1 − ψ̂(s)]/s,
consequently,

ˆ̃H (ω = 0,s) = 1

s
[1 − ˆ̃h(ω = 0,s)].

Introducing Eq. (47) into this expression yields

ˆ̃H (ω = 0,s) = T αsα−1 + 2T 2αs2α−1,

which leads us to conjecture the following fluid limit approx-
imation:

ˆ̃H (ω,s) � T αsα−1 + 2T 2αs2α−1 · · · (49)
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(s → 0,|ω| → 0). Let us stress that this is simply a conjecture
because the approximation given by Eq. (49) might have
depended on ω as well [50].

Substituting Eqs. (47) and (49) into Eq. (28) and some
reorganization of terms yield

ˆ̃p(ω,s) = 2T 2αsα−1[sα + 1/2T α]

2T 2α[s2α + sα/2T α + |ω|2γ (L2γ /6T 2α)]
.

That is,

ˆ̃p(ω,s) = sα−1(sα + 1/τ )

s2α + sα/τ + v2|ω|2γ
, (50)

where

τ ≡ 2T α, v ≡ 1√
6

(Lγ /T α), (51)

(0 < α � 1, 0 < γ � 1). The parameters τ and v can be con-
sidered as a fractional time and a fractional speed, respectively.

Equation (50) determines the probability distribution of the
fractional three-dimensional isotropic random walk in the fluid
limit approximations and is the starting point for deriving the
fractional telegrapher’s equation in three dimensions.

VI. FRACTIONAL TELEGRAPHER’S EQUATION
IN THREE DIMENSIONS

We next proceed to derive the three-dimensional FTE from
the fractional isotropic walk. To this end we first need some
formalism concerning fractional derivatives.

The Caputo fractional derivative of order β > 0 of a
function φ(t) is defined by the functional [46,47,58,62,63],

∂βφ(t)

∂tβ
=

{
1

�(n−β)

∫ t

0
φ(n)(t ′)dt ′

(t−t ′)1+β−n , n − 1 < β < n,

φ(n)(t), β = n
(52)

(n = 1–3, . . .). Using this definition the Laplace transform of
the Caputo derivative is found to be [51,63]

L
{

∂βφ(t)

∂tβ

}
= sβφ̂(s) − sβ−1φ(0) −

n−1∑
j=1

sβ−1−jφ(j )(0)

(53)

(n = 1–3, . . . ; n − 1 < β < n), where L{·} stands for the
Laplace transform and φ̂(s) = L{φ(t)}.

The second type of fractional derivative that we need
is the Riesz-Feller Laplacian of order β (0 < β � 2) of a
function g(r) such that g(r) → 0 as |r| → ∞. There are
several equivalent ways to define it [63], although one of
the simplest and most operative definitions is obtained using
Fourier analysis. We thus define [58]

∇βg(r) = F−1{−|ω|β g̃(ω)} (54)

(0 < β � 2), where F−1{·} stands for the inverse Fourier
transform and

g̃(ω) =
∫ 3

R
eiω·rg(r)d3r

is the direct transform.

We can now proceed with our derivation of the three-
dimensional FTE. The first step is to rewrite Eq. (50) as(

s2α + 1

τ
sα + v|ω|2γ

)
ˆ̃p(ω,s) = s2α−1 + 1

τ
sα−1.

Having in mind the definition of the Riesz-Feller derivative
given by Eq. (54) and recalling thatF−1{1} = δ(r), the Fourier
inversion yields(

s2α + 1

τ
sα − v2∇2γ

)
p̂(r,s) =

(
s2α−1 + 1

τ
sα−1

)
δ(r),

which we rewrite as

s2αp̂(r,s) − s2α−1δ(r)+ 1

τ
[sαp̂(r,s) − sα−1δ(r)] = v2∇2γ p̂.

(55)

Taking into account Eq. (53) and the initial conditions on
p(r,t) given by Eq. (42), we have proved in Ref. [50] the
following transformation formulas (0 < α � 1):

∂2αp

∂t2α
= L−1{s2αp̂(r,s) − s2α−1δ(r)},

and

∂αp

∂tα
= L−1{sαp̂(r,s) − sα−1δ(r)}.

Returning to Eq. (55) and taking the inverse Laplace
transform we immediately get

∂2αp

∂t2α
+ 1

τ

∂αp

∂tα
= v2∇2γ p, (56)

which is the fractional telegrapher’s equation in three dimen-
sions and constitutes the second major objective of this paper.
Let us recall that in Eq. (56) τ is a fractional time and v is a
fractional velocity [cf. Eq. (51)].

We have seen in Sec. IV that the ordinary telegrapher’s
equation (43) enjoys both wave and diffusion characteristics.
We now extend this duality to the FTE. To this end we first take
the limit τ → 0 in Eq. (56) and let v → ∞ such that τv2 →
D finite. This results in the fractional diffusion equation [cf.
Eq. (6)],

∂αp

∂tα
= D∇2γ p. (57)

In the same way as the ordinary TE, the fractional equation
leads to the fractional diffusion equation (57) as t → ∞
[50]. Furthermore, the FTE (56) also contains the so-called
“fractional wave equation” as a limiting case. Indeed, letting
τ → ∞ [i.e., T → ∞, cf. Eq. (51)] and at the same time
L → ∞ such that the fractional velocity v = Lγ /T α

√
6

remains finite, Eq. (56) reduces to a wavelike equation,

∂2αp

∂t2α
= v2∇2γ p. (58)

Since when α = 1/2 and γ = 1 this equation reduces to an
ordinary diffusion equation, we follow Mainardi [46] and call
Eq. (58) the “fractional diffusion-wave equation.” We finally
mention that the fractional diffusion-wave equation (58) is the
short-time limit of the FTE (56) regardless the value of the
time constant τ [50].
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All of this reflects the fact that the FTE embraces two
different dynamics: One, at short times, representing fractional
wavelike behavior, and another, at long times, representing a
fractional diffusionlike behavior. This constitutes the fractional
generalization of the dual character between waves and
diffusions showed by the ordinary TE.

VII. CONCLUDING REMARKS

In this paper we have obtained the three-dimensional tele-
grapher’s equation (ordinary and fractional) out of a random
walk model. The model is a three-dimensional generalization
of the persistent random walk on the line. It is based on
multistate random walks with a continuum in the number
of states representing the different spatial directions that the
walker can take. In the special case of homogeneous and
isotropic walks the general equations can be solved exactly
in the Fourier-Laplace space. This model seems to be rather
appropriate for the transport of particles undergoing elastic
scattering with fixed centers of force randomly distributed. We
have shown that in the fluid limit (i.e., long times and distances)
the master equation for the PDF of the homogeneous and
isotropic random walk is the three-dimensional telegrapher’s
equation with characteristic time and velocity related to the
corresponding microscopic parameters of the random walk
model.

We also have generalized the telegrapher’s equation to
account for anomalous transport in three dimensions. To this
end we have extended the homogeneous and isotropic random
walk to allow for fractional behavior. We have thus seen that the
master equation for the fractional walk is the fractional telegra-
pher’s equation in three dimensions. As in the one-dimensional
case [50], an exact solution for the characteristic function
p(ω,t) of the three-dimensional FTE (56) can be obtained
along with some asymptotic and approximate expressions.
However, for the sake of simplicity and briefness, we have
not treated them here, and we will deal with these questions
in a future work. In any case, we address the interested reader
to the works of Mainardi and collaborators [46,47,62,64] on
solutions for fractional diffusion and fractional wave-diffusion
equations and to Orsingher and collaborators [65–67] on
several kinds of solutions to the FTE.

Like in one dimension, we also have shown that the FTE
accounts for two different dynamics. One of them at short

times when the FTE reduces to the fractional wave-diffusion
equation and a second one when at long times the FTE reduces
to the fractional diffusion equation. This dual character is
even more manifest for the time-fractional equation where in
Eq. (56) the spatial exponent γ = 1 and only time is fractional.
In this case, one can see easily that the the mean square
displacement exists and its evaluation goes along the same
lines as in the one-dimensional case [50] which results in the
following exact expression:

〈|r(t)|2〉 = 2v2t2αEα,2α+1(−tα/τ ), (59)

where Eα,2α+1(z) is the two-parameter Mittag-Leffler function
(see Refs. [50,66] for further details). From this exact expres-
sion it easily is shown that the mean square displacement exists
and that is approximated by

〈|r(t)|2〉 ∼ t2α (t → 0); 〈|r(t)|2〉 ∼ tα (t → ∞),

which clearly shows that in the course of time the fractional
telegraph process suffers transitions between different anoma-
lous diffusion regimes depending on the value of the fractional
exponent α.

Let us finally remark that we have exclusively dealt with
three-dimensional problems and that the formalism presented
cannot be used for any dimension, at least, in a direct
way. Indeed, the mathematical treatment of Sec. III (and,
therefore, all subsequent developments) must be adapted to
the dimension considered. In transport problems one does
not expect dimensions greater than three, and the question,
besides some theoretical interest, is rather irrelevant from the
practical point of view. This is not, however, the case for two
dimensions where transport on surfaces has a great number of
applications in, for example, semiconductor electronics [68],
chemical physics [69], or biophysics [70], just to name a few.
The extension of the formalism to include two-dimensional
walks is under current investigation.
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