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Abstract. Health is highly influenced by food intake. 

Nutrimetabolomics has been proposed as a tool for assessing the 

changes in metabolome associated with food consumption and/or 

the effects of a dietary intervention. In this chapter, we have 

summarized the most relevant results of our recent research on the 

identification of biomarkers related to food ingestion (biomarkers 

of intake), as well as their potential association with health 

(biomarkers of effect), through the application of an untargeted 

HPLC-QToF-MS metabolomics approach in nutritional studies       
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with different designs. The results have shown that diet-related differences in urinary 

metabolome are associated with food digestion, microbiota metabolism and endogenous 

metabolism; and the predictive capacity of dietary exposition can be improved using 

multimetabolite combined models compared with the use of single compounds 

 

Introduction 
  

 Evaluation of the effects of food on health requires results to be obtained 

in studies that allow conclusions to be reached with the maximum degree of 

scientific evidence and, based on this information, solid and reliable 

recommendations to be elaborated for consumers. For this reason, precise 

measurement of dietary intake is a crucial factor in studies that analyse the 

relationships between diet and health. Traditionally, dietary intake data have 

been obtained from food surveys. The most commonly used methods are 

food frequency questionnaires, 24-hour recalls and dietary records. 

However, in spite of being the most frequently used methods, they present a 

series of methodological limitations due to systematic and random errors       

[1, 2]. These drawbacks may attenuate the relative risk estimates and 

decrease the statistical power of the studies [3, 4] and it has been pointed out 

that they are one of the causes of some of the reported inconsistencies 

between food and health in the scientific literature, since the effects of diet 

on risk factors may be distorted due to errors in the assessment of intake (in 

the case of observational studies) or due to a lack of compliance with the 

assigned nutritional intervention (in the case of intervention studies) [5]. 

 Faced with this situation, and given the need to obtain a more precise 

intake assessment, nutritional biomarkers have emerged as a precise and 

objective tool for the determination of dietary exposure that could 

complement the data obtained from food surveys [6]. Biomarkers have been 

defined as “a  characteristic that is objectively measured and evaluated as an 

indicator of normal biological processes, pathogenic processes, or 

pharmacologic responses to a therapeutic intervention” [7]. Biomarkers can 

be divided into three categories: i) exposure biomarkers, defined as those 

exogenous compounds, or some of their metabolites, that can be measured in 

a biological sample of the organism; ii) effect biomarkers, defined as those 

measurable elements related to a biochemical or physiological alteration in 

the organism that, depending on the magnitude, may be associated with a 

possible deterioration in health or disease; and (iii) susceptibility biomarkers, 

defined as those substances that indicate the body’s ability to respond to a 

particular exposure [8, 9]. 

 Within the field of food sciences, a nutritional biomarker is any 

biochemical, functional or clinical indicator measured in a biological sample 
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that reflects the nutritional status with respect to the intake or metabolism of 

dietary components, as well as the biological consequences of food intake 

[10]. An ideal dietary biomarker should accurately indicate the level of 

intake and should be specific, sensitive and applicable to a large number of 

populations [6]. In this respect, the most important criteria to take into 

account when using dietary biomarkers are summarized in Table 1. 

  
Table 1. Biological and analytical considerations for biomarkers of dietary exposure. 

Adaptation of Andersen 2014 [11], from Spencer et al. 2008 [12], Jenab et al. 2009 

[6] and Manach et al. 2009 [13]. 
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It is necessary to define the type of sample, the time of  

its collection, and the conditions of storage 

and preparation. 

Methodology 
The marker should be quantifiable by a defined 

method and the analytical error should be known. 
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Relation to  

the exposure 

The association between food intake and the exposure  

marker should be causal. That is, the marker should  

be a known compound (or a metabolite) present  

in the food. 

Sensitivity and  

specificity 

The biomarker should be as particular of the evaluated  

food as possible, so that the percentage of true positive  

values for exposure (sensitivity), and true negative  

values for non-exposure (specificity), should be as  

high as possible. 

Dose-response 

There should be a positive association between the  

level of exposure and the measured level of the  

biomarker. 

Time of  

exposure 

It should be determined whether it is a short-term  

(reflects recent consumption of food) or long-term  

(reflects habitual intake) exposure marker. 

Population 
The population in which the exposure marker can  

be applied should be known. 

Interindividual  

variation 

The main potential sources of interindividual variation  

(such as genotypes, gender, age, smoking, microbiota,  

etc.) should be investigated. 
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 In the investigation of new biological markers related to diet, 

metabolomics has emerged as a powerful tool for the discovery of new 

nutritional biomarkers of intake and effect [14]. Metabolomics is the science 

that studies the metabolome, i.e. the set of metabolites (defined as those 

intermediate molecules and products of metabolism with a molecular weight 

less than 1500 Da) present in a biological system (cell, tissue or fluid)        

[15–17]. The diet influences two fractions of the human metabolome: i) the 

food metabolome, which includes all external metabolites derived from 

dietary exposure; and (ii) the endogenous metabolome, which includes all 

the metabolites produced by the organism [18]. In recent years, there has 

been a significant increase in the number of publications in this field (Fig. 1). 

This demonstrates the growing interest that is being devoted to this 

discipline, as well as the potential it offers in research. 

 With the introduction of metabolomics in the field of nutritional 

research, the concept of nutritional metabolomics, or nutrimetabolomics, has 

emerged. It has been defined as the omics discipline that studies how the diet 

affects the whole metabolome [19].  

 Feeding induces changes in the metabolism of the organism, which can 

be evaluated by the analysis of the endogenous and exogenous metabolites in 

biofluids. These metabolites can be used as objective and accurate 

biomarkers of food consumption and/or the effects of a dietary intervention. 

The food metabolome includes all metabolites derived from food intake, their 

 

 
 
Figure 1. Number of publications per year appearing in PubMed using the search 

“metabolomics” (the number of publications resulting from the search “metabolomics 

& nutrition” in the same database is indicated in orange). 
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absorption and their biotransformation in the tissues or organs or by the 

microbiota [20]. In light of this, the application of metabolomics in 

nutritional studies has become a new strategy in obtaining new biomarkers 

related to the evaluation of the nutritional status of an individual, food 

consumption, biological consequences produced after a nutritional 

intervention, or the study of metabolic mechanisms in response to diet 

according to a specific metabolic phenotype [13, 17, 21]. The food 

metabolome has a high complexity and variability, since it is estimated that 

food contains > 25,000 different compounds, the great majority of which 

will undergo various metabolic processes in the organism [18]. This 

particular characteristic makes the food metabolome a very important source 

of information about the diet of individuals, and its characterization would 

enable eating habits to be monitored in an objective and precise way, and the 

influence food has on the risk of developing diseases could be studied [18]. 

 Herein we will summarize the main results of our recent research on 

the discovery of new biomarkers of dietary exposure in a population from 

the Mediterranean region at high risk of cardiovascular disease through the 

application of an untargeted HPLC-QToF-MS metabolomics approach in 

nutritional studies with different designs. Different foods habitually 

consumed within the dietary pattern of the studied populations were 

selected. Specifically, the metabolic fingerprint of white and whole-grain 

bread [22], nuts [23, 24] and cocoa [25, 26] was analysed. 

 

1. HPLC-QToF-MS untargeted metabolomics analyses 
 

1.1. Identification of biomarkers of bread consumption in a free-living 

population 
 

 The objective of this work was to identify biomarkers of bread 

consumption by applying a nutrimetabolomics strategy [22]. Using an 

untargeted HPLC-QToF-MS approach together with multivariate analysis, 

the urine of 155 free-living individuals stratified into three groups according 

to their usual bread consumption was analysed (56 non-bread consumers, 48 

consumers of white bread and 51 consumers of whole-grain bread).  

 The most differentiated metabolites (VIP ≥ 1.5; Table 2) included plant 

phytochemical compounds, such as benzoxazinoid and alkylresorcinol 

metabolites, and compounds produced by gut microbiota (such as 

enterolactones, hydroxybenzoic and dihydroferulic acid metabolites). 

Pyrraline, 3-indolecarboxylic acid glucuronide, riboflavin,                                     

2,8-dihydroxyquinoline glucuronide and N-α-acetylcitruline were also 

tentatively identified. 
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Table 2. Metabolites identified with different bread consumption levels. 

 

RT 

(min) 

Detected 

mass 

(m/z) 

Assignation Identification 

NBC 

vs 

WHB 

NBC 

vs 

WGB 

WHB 

vs 

WGB 

Benzoxazinoid-related compounds 
0.88 188.0049 [M–H]- 2-Aminophenol sulphate ↑ ↑ – 

1.48 328.1036 [M+H]+ HPAA glucuronide ↑ ↑ – 

 326.0651 [M–H]-  – ↑ – 
2.07 168.0609 [M+H]+ HHPAA – ↑ ↑ 

3.40 372.0925 [M+H]+ HMBOA glucuronide ↑ – – 

 370.0772 [M–H]-  ↑ ↑ – 
3.68 326.0922 [M–H]- HBOA glycoside – ↑ ↑ 

3.72 152.0671 [M+H]+ HPPA – ↑ – 

4.78 196.0596 [M+H]+ HMBOA ↑ ↑ – 

 194.0410 [M–H]-  ↑ ↑ – 

Alkylresorcinol metabolites 

2.85 357.0791 [M–H]- DHPPA glucuronide ↑ ↑ ↑ 
3.12 233.0118 [M–H]- 3,5-Dihydroxyphenylethanol 

sulphate 

– ↑ – 

5.75 289.0412 [M–H]- DHPPTA sulphate – ↑ ↑ 
Microbial-derived metabolites 

3.67 313.0558 [M–H]- Hydroxybenzoic acid GlcA ↑ ↑ – 

4.72 275.0219 [M–H]- Dihydroferulic acid sulphate – ↑ ↑ 
6.32 299.1278 [M+H–GlcA]+ Enterolactone glucuronide – ↑ ↑ 

 473.1447 [M–H]-  – ↑ ↑ 

Markers of heat-treated food products 
2.73 255.1345 [M+H]+ Pyrraline – ↑ – 

 253.1172 [M–H]-  – ↑ ↑ 
Other exogenous metabolites 

3.25 338.0871 [M+H]+ 3-Indolecarboxylic acid 

glucuronide 

– ↑ ↑ 

 336.0697 [M–H]- – ↑ ↑ 
4.65 377.1475 [M+H]+ Riboflavine ↑ ↑ ↑ 

Endogenous metabolites 

0.63 218.1140 [M+H]+ N-α-Acetylcitrulline – ↓ – 
4.20 338.0882 [M+H]+ 2,8-Dihydroxyquinoline 

glucuronide 

– ↑ ↑ 

 160.0382 [M–H–GlcA]- – ↑ ↑ 

 
 

 

DHPPA, 3-(3,5-dihydroxyphenyl) propanoic acid; DHPPTA, 5-(3,5-dihydroxyphenyl) pentanoic acid; GlcA, 

glucuronide; HBOA, 2-hydroxy-1,4-benzoxazin-3-one; HHPAA, 2-hydroxy-N-(2-hydroxyphenyl) acetamide; 

HMBOA, 2-hydroxy-7-methoxy-2H-1,4-benzoxazin-3-one; HPAA, N-(2-hydroxyphenyl) acetamide; HPPA, 

2-hydroxy-N-(2-hydroxyphenyl) acetamide; NCB, non-consumers of bread; RT, retention time; WGB, whole-

grain bread consumers; WHB, white-bread consumers.  

↑ indicates significantly higher levels in the second group of the comparison; ↓ indicates 

significantly lower levels in the second group of the comparison. 
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 A stepwise logistic regression analysis was used to combine several 
metabolites in a multimetabolite model to predict bread consumption. ROC 
curves were constructed to assess the predictive capacity of both the 
individual metabolites and their combination (multimetabolite models). The 
values of the area under the curve [AUC (95% CI)] of the combined models 
ranged from 77.8% (69.1% – 86.4%) to 93.7% (89.4% – 98.1%), whereas 
the AUCs for the metabolites included in the prediction models had weaker 
values when they were evaluated individually. The AUCs ranged from 
58.1% (46.6% – 69.7%) to 78.4% (69.8% – 87.1%). 
 The results of this study demonstrated that a daily bread intake has a 

significant impact on the urinary metabolome, although this is evaluated in 

free-living conditions. It was also shown that the predictive ability of a 

combination of various biomarkers of dietary exposure is better than using 

single biomarkers. 

 

1.2. Nutritional biomarkers of regular nut consumption in intervention 

and observational studies  
 

 Healthy effects of nuts have been attributed to their particular chemical 
composition. Monitoring metabolites present in biological samples after nut 
consumption could help to unveil the pathways involved in the effects of this 
food on the human organism. Therefore, changes in the urinary metabolome 
of patients with metabolic syndrome undergoing a 12-week nutritional 
intervention with a daily intake of 30 grams of nuts were determined through 
an untargeted metabolomics approach [23]. In line with this study, the 
urinary metabolome of habitual consumers of walnuts in free-living 
conditions was characterized using the same methodology [24]. 
 This strategy revealed several markers associated with nut intake in both 
studies. They included markers of fatty acid metabolism, phase II and 
microbial-derived metabolites of nut polyphenols, and intermediate 
metabolites of the tryptophan/serotonin metabolic pathway. The increased 
excretion of serotonin metabolites was associated with nut consumption for 
the first time in the intervention study [23] and some of them were replicated 
in the observational study [24].  
 In the observational study, subjects were divided into two groups 
(training and validation sets) and a stepwise logistic regression analysis was 
used to select a multimetabolite prediction model for walnut exposure in the 
training set [24]. The predictive model of exposure to walnuts included at 
least one component of each class. The AUC (95% CI) for the combined 
biomarker model was 93.5% (90.1% – 96.8%) in the training set and 90.2% 
(85.9% – 94.6%) in the validation set. In contrast, the AUC values for 
individual metabolites were ≤ 85% in all cases (Fig. 2). 
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Training set Validation set 

  
   AUC = 93.45% (90.08% – 96.81%)      AUC = 90.22% (85.87% – 94.57%) 

 
Figure 2. ROC curves of multimetabolite prediction biomarker model (black line) 

and of included individual metabolites (coloured lines) in the training and validation 

sets. 

 

1.3. Analysis of the metabolic footprint of cocoa product exposure in 

studies with different designs 
 

 An interventional and an observational study were developed for the study 

of biomarkers of habitual consumption of cocoa. The design of intervention 

study was a randomized, crossover and controlled 4-week clinical trial 

involving 22 participants [27], whereas in the observational, the urinary 

metabolome of 32 consumers of cocoa products and 32 matched subjects not 

consuming cocoa was profiled [28]. In the nutritional intervention study, 

subjects received 40 g/day of cocoa powder in 500 mL of skimmed milk or 

500 mL/day of skimmed milk as control. Twenty-four-hour urine samples 

were collected at the beginning of the study and after each intervention period. 

An untargeted metabolomics strategy using HPLC-QToF-MS followed by 

multivariate data analysis was applied to all urine samples. 

 Most compounds identified as being discriminant for cocoa consumption 

were related to theobromine and polyphenol metabolism, as well as to 

compounds produced during cocoa processing. In the case of the endogenous 

metabolites, the identifications suggested a reduction in the urinary levels of 

acylcarnitines and sulphation of tyrosine. These metabolites may be related 

to cardiovascular disease, although specific studies are needed to evaluate 

whether changes in these markers are a consequence of some metabolic 

alterations associated with cocoa intake, or are caused by decreased or 

increased regulation of some metabolic pathways that are affected by the 

consumption of this food product. 
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Figure 3. Venn diagram showing overlapping and unique metabolites associated with 

cocoa consumption for the three types of study. 

 

 A Venn diagram was produced to display how many metabolites were 

characteristic of cocoa exposure in both studies [27, 28], together with those 

in another previous acute study that also used cocoa [29]. Fig. 3 shows that 

10 metabolites were discriminant for cocoa consumption independently of 

the study design. These metabolites belong to the metabolic pathway of 

theobromine and to the microbial metabolism of cocoa polyphenols. These 

10 metabolites were considered for the development of the multimetabolite 

biomarker model. The AUC values (95% CI) for the model were 95.7% 

(89.8–100 %) and 92.6% (81.9–100 %) in training and validation sets, 

respectively, whereas the AUCs for individual metabolites were <90%. 

 

2. Replication of biomarkers of dietary exposure in nutritional 

studies with differentiated designs 
 

 There are practically no studies aimed at the replication of biomarkers of 

dietary exposure in populations in free-living conditions [30]. In this context, 

the replication of markers allows the level of evidence of observed 

associations to be increased, as previously suggested for genomic studies 

[31]. 

 Diet control is a very important factor in the study of biomarkers of 

dietary exposure. It may have a high influence on the results, since the foods 

to which individuals are exposed during a clinical trial depend on dietary 

interventions or restrictions, or on the eating habits of individuals in the case 
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of observational studies [18]. This aspect has an important repercussion on 

the specificity and sensitivity of the candidate biomarkers. On the one hand, 

the markers identified in controlled intervention studies may not have 

sufficient specificity when attempting to apply them in observational studies 

because habitual diets may include other foods that also contain the same 

markers and that have been restricted during a nutritional intervention. On 

the other hand, when observational studies are being developed it should be 

taken into account that many foods are usually consumed together, following 

certain patterns of intake, which can lead to the identification of biased              

low-sensitivity markers [18]. Thus, the replication of a marker in studies 

with differentiated designs (in this case, controlled interventions and 

observational studies) is an indication that it is a metabolite with high 

specificity and sensitivity [11].  

 The studies summarized in this chapter have evidenced the replication of 

the discriminant metabolites of the metabolic footprint associated with the 

consumption of certain foods. Initially, markers of nut and cocoa 

consumption were characterized in controlled nutritional intervention studies 

[23, 25], most of which were also discriminant in a population analysed 

using an observational study design and taking into consideration their usual 

diet under free-living conditions [24, 26].  

 Another aspect to consider in the study of biomarkers is the type of 

biological sample used. Urine, along with plasma and serum, is one of the 

biological fluids most frequently used in nutrimetabolomics studies, and it 

has been shown to reflect a higher concentration of metabolites derived from 

food than plasma [18]. Twenty-four-hour urine samples have been described 

as a more robust method for monitoring daily dietary intake than the use of 

spot urine samples [12, 32]. The clinical trials with dietary interventions 

included in this chapter used 24-hour urine samples [23, 25]. However, 

collecting 24-hour urine samples is a difficult and cumbersome task, 

especially in large-scale epidemiological studies [32, 33]. Therefore, the 

replication of the exposure markers (initially characterized in 24-hour urine 

samples) in spot urine samples reinforces their discriminatory power 

independently of the type of sample used [24, 26]. 

 Finally, the time course of excretion will define whether the compound 

is a short-, medium- or long-term marker. For example, in the study of 

urinary metabolome associated with habitual cocoa consumption, it was 

observed that metabolites that remained discriminant independently of the 

study design were those with an excretion pattern of at least 24-hours after 

ingesting the food, such as theobromine and polyphenol metabolites derived 



Biomarkers of dietary exposure 45 

from microbial metabolism [34, 35]. Therefore, these observations reinforce 

the concept that in observational studies, where subjects are evaluated under 

free-living conditions, biomarkers that are excreted later or during a wide 

time frame may be better predictors of food intake than those that are rapidly 

excreted [36, 37]. In contrast, short-term biomarkers will only be useful in 

those populations that consume the corresponding dietary source with some 

regularity and frequency [38]. 

 

3. Design of multimetabolite biomarker models to improve the 

prediction of dietary exposure 
 

 Given that most food constituents are widely distributed in several 

foods, very few compounds can be considered biomarkers of a particular 

food or food group. This would be the case of proline betaine for citrus 

intake [39] and resveratrol for wine consumption [40]. Additionally, it must 

also be taken into account that in some cases differentiated compounds, after 

undergoing various metabolic processes in the organism, may converge with 

common metabolites, as is the case for several groups of polyphenols in 

wine, which, after their absorption and metabolism, are usually transformed 

into common phenolic acids [41], or the different classes of ellagitannins 

that are found in walnuts, pomegranates and strawberries, which microbiota 

metabolize to common urolithins [42, 43]. 

 In order to solve this issue, it has been proposed that by combining more 

than one compound in a multimetabolite model, a more precise measurement 

of consumption could be achieved. It was shown that generating models of 

biomarkers formed by more than one metabolite provided better results than 

with the measurements obtained for each individual compound [22, 24, 26]. 

These results reinforce the hypothesis that an improved discriminate dietary 

exposure ability is achieved through the use of biomarker models made of 

more than one metabolite. It is important to emphasize that these models are 

constructed of metabolites of different classes, most probably because each 

of these metabolites gives complementary information on dietary intake, 

whereas those that are left out of the model probably do not contribute any 

additional biological information to that which has already been part of the 

corresponding model. 

 To date, there have been very few cases in the scientific literature that 

have tried to work with combinations of nutritional biomarkers to improve 

the predictive capacity of dietary exposure measures [18]. One of the few 

examples that have been proposed so far is the ratio between two 
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alkylresorcinols for the consumption of whole grains [44]. However, in 

studies reported in this chapter a new proposal has been made that allows the 

consideration of ≥ 2 metabolites. This represents an important novelty in the 

field of nutrimetabolomics by opening an alternative route for the discovery 

of new biomarkers of dietary exposure. 

 

4. Future perspectives 
 

 The application of metabolomics to the study of biomarkers of dietary 

exposure is still far from being exploited in depth. For example, most of 

the available untargeted nutrimetabolomics studies have been exploratory. 

Thus, for some markers there are very few studies with which to compare 

the results. For this reason, it is very important to continue replicating the 

markers in different populations and in studies with different designs.  

 Targeted studies on dose-response behaviours and interindividual 

differences are also needed before biomarkers can routinely be applied in 

nutritional studies. In fact, the maximum utilization of the data obtained 

through untargeted metabolomic studies is obtained when qualitative and 

quantitative analyses are combined, since the quantitative measurements of 

the markers using a targeted approach and in a controlled study improve its 

applicability and interpretation. Additionally, it will provide information 

that can be very useful in interpreting the metabolic pathways affected 

[45]. 

 Some untargeted metabolomic studies have been performed to identify 

markers of the usual dietary patterns [46, 47], but the studies are too 

different in design and in the analytical approaches used. The results of 

these studies showed that dietary patterns are reflected in urine and plasma, 

although it is necessary to propose new studies focused on the 

determination of the inherent footprint of this food consumption to 

reinforce its predictive power. 

 The most recently proposed challenge includes the integration of 

different omic technologies (genomics, proteomics, transcriptomics and 

metabolomics) to obtain a more complete picture of health status and, thus, 

to unravel the links between disease prevention and dietary intake. 

Therefore, in future studies, the comprehensive understanding of dietary 

effects needs the approaches of systems biology, including genomics, 

proteomics, transcriptomics and metabolomics, combined with a suitable 

experimental design and a sufficient number of included subjects to be 

able to find the variables associated with the effects associated with the 

diet. These studies will require multidisciplinary working teams. 
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 At the same time, it would also be interesting to analyse the 

relationships between classical health markers and biomarkers measured 

by untargeted metabolomics, with the aim of deciphering the biological 

connection between traditional clinical parameters and metabolic markers.  

 

5. Conclusions 
 

 The main conclusion drawn from this work is that the application of an 

untargeted metabolomics strategy in the study of nutritional biomarkers 

enables the main differences in the urinary metabolome associated with 

dietary intake to be characterized. They are associated with food digestion, 

microbial metabolism and endogenous metabolism. Most of the biomarkers 

characterized in clinical trials of nutritional intervention have been replicated 

in individuals evaluated observationally in free-living conditions. The 

biomarkers that are usually replicated as discriminatory in studies with 

different designs (i.e. nutritional interventions and observational studies) are 

those that usually present a medium- and/or long-term urinary excretion with 

respect to the moment of ingestion of the corresponding food. The predictive 

ability of dietary exposure through multimetabolite biomarker models is 

greater than the ability of single metabolites when they are evaluated 

individually. The combined models could be extremely useful in improving 

accuracy during the evaluation of dietary intake 
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