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Abstract

Cage Active Contours (CACs) have shown to be a framework for segmenting connected objects using a new class of
parametric region-based active contours. The CAC approach deforms the contour locally by moving cage’s points
through affine transformations. The method has shown good performance for image segmentation, but other
applications have not been studied. In this paper, we extend the method with new energy functions based on
Gaussian mixture models to capture multiple color components per region and extend their applicability to RGB color
space. In addition, we provide an extended mathematical formalization of the CAC framework with the purpose of
showing its good properties for segmentation, warping, and morphing. Thus, we propose a multiple-step combined
method for segmenting images, warping the correspondences of the object cage points, and morphing the objects
to create new images. For validation, both quantitative and qualitative tests are used on different datasets. The results
show that the new energies produce improvements over the previously developed energies for the CAC. Moreover,
we provide examples of the application of the CAC in image segmentation, warping, and morphing supported by our
theoretical conclusions.

Keywords: Parametrized active contours, Cage Active Contour, Deformable models, Mean value coordinates, Image
morphing, Shape similarity

1 Introduction
Cage Active Contours (CACs), proposed in [18], are a
framework for segmenting connected objects using a new
class of parametric region-based active contours. The
evolving contour is parametrized by an ordered set of
control points, using mean value coordinates (a distinct
generalization of barycentric coordinates), called a cage.
The CAC approach deforms the contour locally bymoving
the cage’s points through affine transformations. The cage
allows to easily introduce other restrictive criteria (e.g.,
avoid self-intersections), apart from the already intrinsic
properties of the mean value coordinates such as smooth-
ness [17]. The properties of the CAC method allow to
easily deal with region-based models which proves to
be hugely advantageous with respect to most previous
parametrized approaches, which are only able to deal with
edge-based energies. As far as we know, except for [7],
which treats 3D images, there is almost no work in the
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field of parametric-based approaches that is able to deal,
in a unified manner, with several region-based models.
The CAC approach has proven to be quite versatile,
for instance in the domain of medical image segmen-
tation, where the structure to be segmented has often
only one regular connected component. However, the
status quo of the CAC is simple and limited. In previ-
ous papers, the considered models are based on quite
simple assumptions: a region mean, a Gaussian fitting,
and a discrete histogram fitting. Moreover, the approach
is restricted to gray-scale images, and only the applica-
tion of the CAC to object segmentation is evaluated. The
uniqueness of the method lies in the physical interpreta-
tion of the parameters, i.e., the cage vertices, that control
the contour deformation. The method has been previ-
ously applied to image segmentation, but we believe that
the method can be applied to other applications such
shape similarity or image morphing, a topic that has not
previously been studied in the context of Cage Active
Contours.
In this paper, we present several contributions. First, we

enhance the CAC segmentation approach in order to be
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able to capture more complex properties of the region to
segment. For this issue, we present a Gaussian mixture
model-based energy function inspired by the Gaussian
energy function in [18]. We also generalize this energy
function to higher dimensionality, by an extension to
RGB, and to multicomponent Gaussian called multivari-
ate Gaussian mixture energy function. Finally, we intro-
duce into themodel prior information by allowing the user
to define hard constraints for segmentation by indicating
certain pixels (seeds) that absolutely have to be part of the
object and certain pixels that have to be part of the back-
ground (in the inner and outer regions), in a similar way
to Graph Cuts [10]. As it will be seen in the paper, the
advantage of the CAC approach is that introducing these
enhancements is straightforward in comparison to other
classical approaches.
Second, we propose a method for shape similarity com-

putation. The shape similarity approach derives from the
mathematical formalization of the CAC properties. We
present the concept of a family of shapes, defined by
the CAC, and prove that a categorization of these can
be made if some initial conditions are met (see defini-
tion 10, page 11). As a consequence, the CAC avoids the
definition of landmark points for shape description pur-
poses. We highlight the properties of the approach in
two different applications: automatic image warping and
kmorphing.
Finally, we validate the ability of the CAC framework

as a multiple-step method for segmentation, warping, and
morphing. Images are first segmented using the CAC,
then correspondences among the cage control points of
the shapes are estimated, and finally, a morphing between
the images is constructed. This process is practically auto-
matic since it only needs to define a seed of the object of
interest.
From an experimental point of view, we show

the improvement achieved with the new multivariate
Gaussian mixture energy function in the CAC and we
apply the new CAC for a robust warping and morphing.
Besides, we provide a public Python implementation

(with some wrapped functions in C) of the CAC with a
variety of energies as well as tools for automaticmorphing,
warping, and shape description1.
The rest of the document goes as follows: In Section 2,

we review the related work and set the preliminary con-
cepts of Cage Active Contours. In Section 3.2, we present
the proposed improvements to enhance the CAC and
extend their definition to RGB space. In Section 3.3,
we formalize the shape descriptor based on the CAC.
In Section 4, we evaluate the proposed the CAC seg-
mentation improvements. In Section 4.5, we show the
applications of the CAC in image morphing and warp-
ing. Finally, in Section 5, we discuss our conclusions and
future work.

2 Related work
2.1 Active contours
Active contours [23] are a general method for delineating
an object outline that can be fit to tackle the problem of
single-connected object and have indeed proven to be a
very powerful tool in doing so. Also known as snakes, they
are deformable models that consist on evolving an inter-
face which is propagated in order to recover the shape of
the object of interest.
The description of the interface sub-categorizes these

method into parametric and geometric approaches. The
first approach requires, as the name implies, a set of dis-
crete parameters such as points as seen in [23] or basis
functions (a basis for a function space) such as B-splines
[20, 34]. The advantage of basis functions is that linear
combinations have inherent regularity.
Conversely, geometric active contours, defined as the

zero level set of a higher dimensional function, have more
topological flexibility because contours can break apart or
join without the need of re-parametrization. However, this
property can prove to be a double edge-sword when the
desired shape has to have a specific topology. Level sets are
the most representative technique in this category [32].
The evolution of these interfaces is driven by the mini-

mization of an energy function defined so as to express the
properties of the object to be segmented in mathematical
terms. In this context, we have to differentiate two types
of image features in which these properties are expressed:
edge-based, such as the image gradient on the contour as
in [14], or region-based terms, as introduced by Chan and
Vese in [15]. Region-based terms are known to be more
robust to noise than edge-based contours and therefore do
not require the initial boundary to be so close to the solu-
tion [40]. The work of Chan and Vese is based on evolving
the interface according to the variance of the gray-level
values of both interior and exterior regions allowing for
segmentation of objects with boundaries not defined by
gradient to be detected. This approach has been extended,
since then, to other features such as the Bayesian model
[36] and histogram model [29]. These approaches define
the whole inner region of the evolving contour as the inte-
rior region and its complement as the exterior. Thus, they
may fail if these features are not spatially invariant. In [30],
a solution is proposed by considering the features in a
band around the evolving contour. Another solution pro-
posed by [24] is to consider the inner and outer regions
as those points that are in the intersection of their respec-
tive regions and in the ball centered on the contour. In
[25], a more context-aware solution is introduced where a
kernel function is applied to each point to define a region-
scalable fitting term. Finally, two fast algorithms are pre-
sented in [9] and [38], where a B-Spline parametrization
and a discrete approximation-based representation are
presented, respectively.
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The Cage Active Contours (CACs) are a type of para-
metric active contours which are fit to work with region
energies similar to the ones defined with the geometric
(i.e., level set) methods [18]. Because of the theoretical
framework upon which level sets are built, complex steps
are required in order to evolve the curve, including the
application of Euler-Lagrange to solve for a stationary
point [13]. As it is seen in Section 3.2, the CAC allows for
discretization of the energy function and the calculation
of the gradient through partial derivatives as opposed to
using Euler-Lagrange.

2.2 Shape similarity
Shape comparison is a rich and vast field of research [1, 8].
For this issue, shape descriptors are usually used. Among
the best methods for shape description there is discrete
Fourier transforms (DFT), which provides a description of
the curvature of a shape [8], that is invariant to translation
and uniform change in scale. However, the shape descrip-
tor based on DFT is not invariant to rotation. Another
interesting method is the curvature scale space (CSS)
shape descriptor. This descriptor provides a representa-
tion of a contour which represents the time of inflection
or union of pairs of points of the shape as it is progres-
sively smoothed [1]. This descriptor is neither invariant
to rotation. Usually, the distance computation algorithm
is designed so as to make it robust with respect to
this issue.
In order to a shape descriptor be useful for shape simi-

larity computation, some properties are usually required:
invariance in translation, rotation, and scale, and that each
element in this dataset could be indexed so that fast and
effective retrieval and comparison may be applied. The
latter properties allow its application to retrieval in a large
database of images. Both of latter commented methods,
very used in this field [4, 44], provide good solutions to
indexing and description [44].
In this paper, we formally demonstrate the usefulness

of the CAC representation for shape similarity compu-
tation. Our shape representation has interesting proper-
ties that makes it a good candidate for shape descriptor.
However, we would like to point out that our pur-
pose in this work is not to focus on the CAC rep-
resentation as a shape descriptor. This issue is left as
future work.

2.3 Mean value coordinates
As was introduced in [18], Cage Active Contours use
mean value coordinates for deformation. Let C be the con-
tour or interface that separates the interior region,�1, and
the exterior region, �2. In order to be able to deform the
interface C, a point p belonging to �1 or �2 is expressed
as an affine combination of vertices v1, v2, . . . , vN of a cage.
That is,

p =
N∑

i=1
ϕi(p)vi (1)

where ϕi(p) is the corresponding affine coordinate of the
point p with respect to the vertex vi and N is the number
of vertices.
A variety of approaches have been presented for the

computation of ϕi(p). In deformation applications, we
have harmonic coordinates [21], green coordinates [26],
or mean value coordinates [17]. The advantage of the lat-
ter over the rest include a simple computation and the
convenience of being able to parametrize any point of
the space, be inside or outside the polygon demonstrated
in [19].
Given a set of ordered of a polygon of N points dis-

posed in an anticlockwise order, the mean value coor-
dinates of a point p with respect to V are ϕV (p) =(
ϕV
i (p)|i ∈ (1, . . . ,N)

)2.

ϕi(p) =

⎧
⎪⎨

⎪⎩

δi,j if p = vj
(1 − t)δi,j + tδi,j+1 if p = vj(1 − t) + vj+1t

wi∑N
j=1 wj

otherwise

(2)

where

δi,j =
{
1 if i = j
0 if i �= j (3)

t ∈ [0, 1] and p = vj(1−t)+vj+1t represents a point on the
edge between vj and vj+1. The weight wi is calculated as

wi = tan
(αi−1

2
) + tan

(
αi
2
)

||vi − p|| (4)

where ‖vi−p‖ is the distance between the vertex vi and the
considered point p and αi is the signed angle of

[
vi, p, vi+1

]
.

Given the affine coordinates ϕ(p) of a point p, the point
p can be recovered with (1). If the vertex vi of the cage
moves to position v′

j, the “deformed” point p′ can be
recovered as

p′ =
N∑

i=1
ϕi(p)v′

i, (5)

where note that the point p′ is recovered from the affine
coordinates ϕi(p), see Fig. 1.
Given a set of points, the affine coordinates for each

point are computed in an independent way using (2).
If a point vi of the polygon is stretched in a particular
direction, all the points follow the same direction with
an associated weight given by ϕi(p) which is inversely
proportional to the distance from p to vi since it is the
denominator of (4). In Fig. 1, this effect is depicted when
point vi in the left image is translated to v′

i. The point p,
near to vertex vi, suffers a greater deformation than the
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Fig. 1Motion of a vertex. Influence of a vertex over the points on the plain (image from [18])

points which are farther where the weight are smaller, and
hence, they are barely affected by this deformation.
The following properties are characteristic of the affine

coordinates [19]. We enumerate them here since they are
necessary for the development of the shape descriptor in
Section 3.3:

C.1 Affine precision: For any affine function

f : R2 → R
D, f =

N∑
i=1

f (vi)ϕV
i for vi ∈ V and where

R
D is the dimension of the color space.

C.2 Similarity invariance: If f : R2 → R
2 is a similarity

and for a cage V ′ = f (V ), we have that
ϕV (p) = ϕV ′

(f (p))
C.3 Smoothness: ϕi is C∞ everywhere except at the

vertices vj where it is only C0.
C.4 Edge linearity: ϕV

i is linear along the edges of the
cage V.

C.5 Refinability: If we redefine V to V’ by splitting an
edge between vertices vj and vj+1 at
v = (1 − t) vj + t vj+1, then ϕV ′

j = ϕV
j t + (1 − t) ϕV

j .

3 Methods
3.1 Cage Active Contour framework
Let us formally define the three major components of a
CAC model: an initial contour, an initial cage, and an
energy function.We restrict ourselves to the context ofR2.
Extension to higher dimensions is left as future work.

Definition 1 A curve on a plane is a continuous map-
ping C : [a, b] → R

2 such that [ a, b]∈ R.

Definition 2 A Jordan curve is a non-intersecting, con-
tinuous closed curve.

Definition 3 A contour is used to define the image of a
closed curve C :[ a, b]→ R

2. such that C(a) = C(b).

From now on, however, we use the term curve to mean
contour unless it is explicitly distinguished.
The CAC’s initial contour is a Jordan curve so that by

the Jordan Curve Theorem, we can assure that it divides

the plane into two regions �1 and �2 which correspond
to the interior and the exterior of the curve, respectively.
We define cage as

Definition 4 A cage is an ordered group of points V =
(v1, v2, . . . , vN ) on the plane R2.

By convention, the initial cage V of N points must
define a simple N-sided polygon since it is a requisite to
be able to parametrize points on the plane using mean
value coordinates3. These barycentric coordinates have
very good properties which also open the possibility to dif-
ferent applications such as shape descriptors, morphing,
warping, and image interpolation in Section 3.3.
The energy funtion E is a function with respect to a con-

tour; however, since the contour C is parametrized by a
cage V, and the contours that are able to define depends
exclusively on V, we can define the energy function as

E :
(
R
2)N → R

V �→ E(V )
(6)

The function must be defined in a way so that it is mini-
mum when the object to segment is in the interior region
and the background in the exterior. Of course, this idea
stems from the assumption that the object differs from
that of the background in appearance. The goal is then to
minimize the energy function with respect to a cage:

min
v1,v2,...,vN

E(v1, v2, . . . , vN ) (7)

Since the energy function is in terms of the cage, we can
minimize the function by applying gradient descent [31]
on the energy function with respect to the control points.
From the very simple models on gray-scale image

defined in [18], we can develop more sophisticated
energies as more complex properties are taken into
consideration.

3.1.1 An example: Gaussian energy function
We next briefly describe only the Gaussian energy func-
tion presented in [18] since it will be extended and
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improved in the following sections. The input of the sys-
tem is the image I to segment and the components of Cage
Active Contour: the energy function E, the vertices V, and
the initial contour C.
The presented Gaussian energy function assumes a

Gaussian distribution of pixel gray-level values in inner
and outer regions, �h where h ∈ {1, 2} respectively, and is

EGauss =
2∑

h=1

∑

p∈�h

−log(Ph(I(p)))) (8)

where

log(Ph(I(p)) = − log
(√

2πσh
)

− (I(p) − μh)
2

2σ 2
h

(9)

and Ph is the probability an intensity of p, I(p) belongs to
the normal distribution defined by region h’s seed, a sub-
sample of points that are representative of the region. The
parameters of the Gaussian distribution, σh and μh, are
automatically updated at each iteration of the minimiza-
tion algorithm as is done in [36]. The Gaussian energy
function minimization algorithm presented in [18] stops
when the parameters of the inner and outer regions, �h
with h ∈ {1, 2}, have stable statistics μh and σh. In other
words, the curve stops evolving when each region has
points whose values have a higher probability of being in
that region than otherwise. A more thorough description
of the segmentation process can be found in [18].
So far, Cage Active Contours have only been applied to

gray-scale images in both 2D [18] and 3D [43] scenarios.
That is, the image is a function defined as I : RD → R. The
advantage of this type of image lies in the simplicity of hav-
ing the information in a single value which is also highly
interpretable by humans. However, this has two negative
consequences: first is that color information is lost, and
secondly, since image intensity is directly affected by illu-
mination, methods that rely only on this model are prone
to fail under different settings.
On the other hand, observe that the approach also

assumes that the Gaussian function only has one compo-
nent. Extension to multicomponent Gaussian models, for
both the interior and exterior regions, may enhance the
model.
We thus propose to enhance the Gaussian energy model

of [18], see Eq. (8), to a multicomponent model within a
RGB color space defined as I : RD → R

3 where I(p) =
(r, g, b) for p ∈ R

D. Indeed, the approach presented in the
next section is valid for any color space, such as the RGB
depth, but due to lack of space, we will focus only on the
more simple RGB color space.

3.2 Cage Active Contour energy extensions
To define a new energy function, we have to con-
sider which features characterize a good energy function,
namely E.1 Differentiable, E.2 Few local minima, and E.3
Little dependence on the starting contour. The energies
implemented in [18] can only capture a region’s model
with a single component, being either the mean value of
a region (mean energy function) or a normal distribution
of the values (Gaussian energy function), or maximize the
difference between distribution of values of each region
(histogram energy function), with no regard on prior
information on the resulting object to detect. What these
energies have in common is that their strategy is to polar-
ize the values in each region. Although this proves to be
useful in some cases, it is very limiting when trying to seg-
ment objects and background that have multiple Gaussian
components. Furthermore, by sampling the model of each
region at every iteration, not only it is computationally
expensive but also the contour has to rely on a good
initialization to capture the description of each region.

3.2.1 Multivariate Gaussianmixture energy function
The proposed energy function attempts to solve these
problems by introducing initial information about the
object and background through seeds. This enhances E.3
and allows for each region to capture various dominant
values inside an image so that in each region, different col-
ors or shades can have a representation proportional to
their presence. In order to best capture a model, we need
to define a density function which is differentiable in the
color space so that we are able to minimize it using gra-
dient descent (E.1) and that allows us capture best the
distribution of values.With these properties, the Gaussian
mixture probability density is a candidate that satisfies
both of these criteria since any other continuous (and
therefore, all differentiable functions) distributions can be
expressed as a mixture of Gaussians given enough com-
ponents [12, 39]. Moreover, the Gaussian mixture inherits
good properties from its normal components, as well as
a number of good methods to estimate their parame-
ters, such as the expectation-maximization [42]. However,
instead of using directly the Gaussian mixture probabil-
ity density function, we use its logarithm to smoothen
the exponential effect and thus avoid numerical problems
during minimization. This approach, commonly used in
the literature [2, 22], is also adopted in the Gaussianmodel
defined in [18].
With these criteria, we present the multivariate

Gaussian mixture energy function (MGM), which is
expressed in the following way:

EMixtGauss =
2∑

h=1

∑

p∈�h

− log(Ph(I(p))) (10)
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where Ph as the Gaussian mixture probability density
function of the value of pixel p to belong to region h:

Ph(I(p)) =
rh∑

i=1

wi

2|�i|
√
2π

e−
(I−μi)T�

−1
i (I−μi)
2 (11)

This probability density function has rh normal compo-
nents, each of which has a mean μi, a covariance matrix

�i, and a weight wi such that
rh∑
i=1

wi = 1, where wi ≥ 0 for

i ∈ {1, 2, . . . , rh}.
The minimum is reached when a slight movement of

the contour implies a loss of pixels in each region whose
values have a higher log-likelihood of belonging to the
regions’ model than the other. The minimum can be
obtained by using a gradient descent method. Observe
that the gradient has to be computed with respect the
control points. The gradient of the energy function is:

∇vjEMixtGauss =
2∑

h=1

∑

p∈�h

− 1
Ph(I(p))

∇vjPh(I(p)) (12)

where Ph(I(p)) is the Gaussian mixture defined by the
seed in region h which has r Gaussian components. The
gradient is expressed in the following way:

∇vj Ph(I(p) =
rh∑

i=1

⎛

⎜⎝
wie−

(I−μi)T�
−1
i (I−μi)
2√|�i|

√
2π

(μi − I(p))�−1
i · ∇I(p)ϕj(p)

⎞

⎟⎠

(13)

Multicomponent Gaussian has been applied in the con-
text of level sets [6]. However, as commented previously,
level- sets require the application of the Euler-Lagrange
equations to solve for a stationary point. Once the
equations for the stationary point have been obtained,
equations are discretized to be able to apply them to an
image. As has been seen here, the CAC begins with the
discretization of the energy function to be minimized.
The stationary point can then be obtained by using a
gradient descent method.

3.3 Cage Active Contour shape similarity
One of the challenges in shape similarity is that it is often
hard to find relevant points in a region that might help
to determine structure or orientation of an object that
apparently has none. These points are commonly called
landmarks and are used to build the shape models of an
object [16]. In medical imaging, it is often the case that
these points are unseen, latent, or that they are difficultly
characterized by their shape. Using cage properties to
define a shape descriptor can be extremely powerful since
they allow to define a similarity measure between different
shapes.

To formalize the properties of cage parametrization and
describe the advantages in the applications of image mor-
phing and warping and shape descriptors, we first need
a way to compare similar contour shapes. Assume we
fix an initial regular (or standard) contour and cage con-
figuration. For every new cage obtained by deforming
the initial cage, the corresponding initial contour defines
a deformed contour shape according to (5). Intuitively,
similar cages provide similar contour images under cer-
tain initial conditions. Formally, we want to find a cri-
teria which allows us to link an ordered configuration
of points (i.e., a cage) with contour shapes so that we
may use the existing tools to determine shape similarity
between different contours, for cages. The existing tools
can be borrowed from polygon similarity, such as the
turning function [11], or from point configuration simi-
larity, like Procrustes analysis. The turning function is a
distance measure which reflects the difference between
two shapes and fulfills the distance properties (identity,
symmetry, and triangle inequallity), whereas the Pro-
crustes function is not a distance. Furthermore, the turn-
ing function is invariant to translation, rotation, or scaling,
and this distance has a strong correlation with human
intuition [5]. Figure 2 illustrates the turning function
performance.
Next, we present the following definitions which lead up

to Proposition 1 and its proof.

Definition 5 (Contour family) Given an initial contour
C and an initial cage V = (v1, v2, . . . , vN ), the family of
contours FV

C is the set of all the possible contours that can
be produced with all cages of N points by a deformation
through (5) and it is expressed as:

FCV =
{
CW |W ∈ (

R
2)N}

where for any cage W ∈ (
R
2)N

CW =
{
q ∈ R

2|q =
N∑

i
ϕV
i (p)wi, ∀p ∈ C,W = (w1,w2, . . . ,wN )

}
,

and ϕV
i (p) are the mean value coordinates of p with respect

to cage V. W can be interpreted as a deformation of cage V.

Definition 6 (Similarity) We define a similarity on the
plane as an affine transformation f : R2 → R

2 composed
of rotations, translations, and uniform changes in scale.

Definition 7 (Contour similarity) Two contours are sim-
ilar if there exists a similarity which maps one to the
other.
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Fig. 2 Turning function. Illustration of the turning function performance for three configurations of a shape

Definition 8 (Cage similarity) Two cages U =
(u1,u2, . . . ,uN ) and W = (w1,w2, . . . ,wN ) are similar if
there exists a similarity function such that f (ui) = wi for
each i ∈ {1, 2, . . . ,N}.

Definition 9 (Shifted cage) A shifted cage of another
cage W = (w1,w2, . . . ,wN ) is a permutation conserving
the order of W. There are N shifts (as many as number of
points).

W = W0 = (w1,w2, . . . ,wN )

W1 = (w2,w3, . . . ,wN ,w1)

. . .

Wk = (wk+1,wk+2, . . . ,wk)

. . .

WN−1 = (wN ,w1, . . . ,wN−2,wN−1)

In Definition 5, we define the contour family of an ini-
tial configuration of a contour C and a cage V. However,
there are certain properties that we would like to impose
on this family. Namely, we are interested in those families
where similar cages or similar shifted cages define the
same contour. To achieve this property, first, we need a
definition.

Definition 10 A regular initial cage-contour configura-
tion with ratio r is a set (V, C, r) consisting of an initial
cage V = (v1, v2, . . . , vN ) that defines an N-sided regular
polygon and an initial contour C that is a circumference
concentric to the polygon such that the ratio of the radius
of C and the radius of the polygon is r:1. For simplicity, we
say the ratio is r.

Having these concepts formally defined, we are able to
prove the desired property of the family.
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Proposition 1 Given a regular initial cage-contour con-
figuration (V , C, r), then for every contour CW and CU in
the contour family FC

V , CW and CU are similar if

1 W and U are similar cages
or

2 U is a shifted cage of a similar cage of W.

Proof The first point is trivial. We want to see if there
exists a similarity function g that sends CW to CU . So, for
every point of qW ∈ CW , a point qU ∈ CU has to exist
such that g

(
qU

) = qW . By construction of CW and CU ,
we know that there exists a point p ∈ C such that

qW =
N∑

i=1
ϕV
i (p)wi

and a point p′ ∈ C such that

qU =
N∑

i=1
ϕV
i (p′)ui

Since we know that cages W and U are similar, we have
that, by Definition 8, there exists a similarity f that maps
cage U to W (i.e., wi = f (ui) for all i ∈ {1, 2, . . . ,N}). It
turns out that g = f and pU = pW define the similarity
between contours:

qW =
N∑

i=1
ϕV
i (p)wi =

N∑

i=1
ϕV
i (p)f (ui) = f

( N∑

i=1
ϕV
i (p)ui

)
= f

(
qU

)

Therefore, we have that the same similarity that maps W
to U sends their contours to each other rendering them
similar.
To prove the second implication, a more elaborate solu-

tion is required. We only need to prove this in the case
of U being the shifted cage of W since having that, any
similar cage would only imply a similarity function. To
see that a cage and its shifted cage produces a similar
curves, let us take two cages W0 = (w1,w2, . . . ,wN ) and
one of its shifted (we take the shift k = 1 for simplicity)
W1 = (

w1
1,w1

2, . . . ,w1
N

) = (w2,w3, . . . ,wN ,w1).
If we see that their images4 of C, respectively CW0 and

CW1 are congruent, that is CW0 = CW1 , then they would
be similar because the identity function would be the
similarity between them.
To see this, we have to see if every point q in CW0 is in

CW1 . We have that every point in CW0 can be expressed as

q =
N∑

j=1
ϕV
j (p)wj

where p ∈ C is in the initial contour. If we can find a point
p1 in C such that

q =
N∑

j=1
ϕV
j (p1)w1

j

it would do.
The mean value coordinates of a point p with respect

to control point vi are calculated using the angles α1
and α2 with its neighboring control points vi−1 and vi+1,
respectively. In Fig. 3, we have an example with the cir-
cumference contour C and the cage V = (v1, v2, .., vN )

(N = 6 in the image). Point p has the mean value coor-
dinates ϕV (p) = (λ1, λ2, . . . , λN ). If we apply a rotation
R1 of αR1 = − 2π

N radians and center pc. We have that
R1(vi) = vi+1, and the rotated point p1 = R1(p) would
still be on the contour C. Furthermore, it would maintain
the distance to the rotated control point R1(vi) = vi+1, as
well as the angles to their rotated points, because of the
property of angle invariance through similarities.
Therefore, we can say that for every point, p, there exists

a point p1 = R1(p) such that, the mean value coordinates
are the same but shifted: this can be done for any Rk(p) =
− 2π

N k for k ∈ 1, 2, . . . ,N ;

ϕV (R1(p)) = (λ2, λ3, . . . , λN , λ1)
ϕV (R2(p)) = (λ3, λ2, . . . , λN−1, λ2)

. . .

ϕV (Rk(p)) = (λk+1, λk+2, . . . , λN−k−1, λk)
. . .

ϕV (RN−1(p)) = (λN , λ1, . . . , λN−2, λN−1)

So, once we have these points, we know that given any
point q ∈ CW0 , there exist a point p′

1 ∈ C so that q =
N∑
j

ϕV
j (p)w1

j and it is, in particular, p′ = R1(p), considering

we have the following:

q =
N∑

j
ϕV
j (p)w1

j = w1λ1 + w2λ2 + · · · + wNλN =

= w2λ2 + w3λ3 + · · · + wNλN + w1λ1 =
N∑

j
ϕV
j (p′)w1

j

Since we can generalize for any shift k ∈ {1, 2, . . . ,N}
with rotation Rk , the Proposition is proven.

In Proposition 1, we show a way to compare a family
of shapes defined by the CAC. Thus, we provide a new
way to describe the shape. This shape descriptor does not
depend on landmarks or keypoints, avoiding the man-
ual, and many times difficult, definition of these landmark
points in a set of images. This property can be very use-
ful in certain applications, as medical image. Moreover,
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Fig. 3 Proposition 1. Illustration of the existence of a point p1 needed to prove the second implication in Proposition 1

the shape descriptor can be used in applications such as
automatic image morphing and warping. Image morph-
ing is the result of the interpolation between two objects,
with new shape and texture, while warping is the defor-
mation of the shape of an image. Thus, morphing requires
warping. To perform a morphing from an object into
another, we proceed as follows. We assume that we have
two objects O1 and O2 in images I1 and I2, respectively.
We start, for each object, with a regular cage-contour con-
figuration, (C,V , r). Let V 1 and V 2 be the resulting cages
after minimization. Then, we can state:

1 By Proposition 1, if the resulting cages V 1 and V 2 are
similar or similar to a shifted cage, the contours are
similar.

2 By property 2.3, if there exists a similarity f between
cages, then by that similarity, the mean value
coordinates of O1 with respect to V 1 are equal to the
mean value coordinates of f

(
O2) with respect to V 2.

3 In the proof of Proposition 1, we show that we can
always find a shift of a shifted cage so that we may
find the similarity f.

Given the segmentation of O1 and O2 defined by the
two cages V 1 and V 2, respectively, if V 1 is similar to (a
shifted version of) V 2, then the same similarity maps O1

Fig. 4 Intermediate cage. Illustration of the interpolation of the
intermediate cage in morphing

to O2. This property allows to perform a proper image
morphing. If we want to morph two objects O1 ∈ I1
and O2 ∈ I2 which, respectively, have segmentation V 1

and V 2, then we can define an intermediate cage by the
following interpolation:

Vw = V 1 w + V 2 (1 − w), (14)

wherew ∈ [0, 1], such that if two cages are similar, they are
also similar to their intermediate. In Fig. 4, we illustrate
the result of the interpolation showing the intermediate
cage for two cages (V 1 and V 2).
Once we have an interpolated cage Vw, the associated

interpolated image Iw can be obtained from I1 and I2 by
applying the following equations:

p1 =
N∑

i=1
ϕi

(
pw

)
v1i , p2 =

N∑

i=1
ϕi

(
pw

)
v2i , (15)

Iw(pw) = w I1
(
p1

) + (1 − w) I2
(
p2

)
(16)

In our approach, image morphing using the CAC is
performed obtaining V 1 and V 2 by means of an energy
function minimization technique such as the multivariate

Table 1 Comparison of the multivariate Gaussian mixture
(MGM), Gaussian mixture (GM), and Gaussian segmentation
energies in the CAC with other existing related methods

Method AlpertGBB07 BSDS300

Dice ( %) Std. Dice ( %) Std.

ChanVese 70.71 14.14 64.45 14.59

Shi 61.34 20.23 52.15 21.50

Caselles 58.68 17.02 63.15 13.76

MGM CAC 77.88 1.3 55.58 2.89

GM CAC 65.15 2.3 44.90 5.06

Gaussian CAC 57.13 3.38 44.90 5.06

Italic means best performance
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Table 2 Comparison of computational time of the CAC energies
with other related methods in 300 × 225 images

Method Mean time ( sec.) Std.

ChanVese 3.50 0.24

Shi 114.52 113.84

Caselles 3.47 0.69

MGM CAC 38.72 15.74

GM CAC 24.18 14.20

Gaussian CAC 22.78 11.96

Fig. 5 Segmentation results. First column: initial contour (continuous
white circle) and cage (polygon with 20 points). Second column:
resulting contour (continuous white closed curve) and cage
(deformed polygon) using the multivariate Gaussian mixture energy
function. In the second column, image sizes have been scaled so as to
show all cage points

Fig. 6 Segmentation results. First column: initial contour (continuous
white circle) and cage (polygon with 20 points). Second column:
resulting contour (continuous white closed curve) and cage
(deformed polygon) using the multivariate Gaussian mixture energy
function. In the second column, image sizes have been scaled so as to
show all cage points

Gaussian mixture model. Thus, the main advantage of the
morphing with the CAC is that it is completely automatic.
We automatically start from an intial cage configuration
(see Definition 10, page 11), and it is not necessary toman-
ually set points in the image, as it is the case of many other
applications (of mean value coordinates) [41]. We have
also directly available a similarity between cages, and it is
not necessary to compute them.

4 Results and discussion
We show in this section the experimental results obtained
for the enhanced Gaussian energy function as well as
for the shape similarity approach. We begin first with
enhanced Gaussian energy function.
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Table 3 Distance matrix of segmented images

Balloon Bowl Pumpkin Sewer Bird Bear Star

Balloon 0.0 0.87 0.13 0.55 0.3 0.06 1.1

Bowl 0.0 0.84 0.68 0.3 0.96 0.12

Pumpkin 0.0 0.74 0.7 0.26 1.03

Sewer 0.0 1.03 0.64 0.91

Bird 0.0 0.94 1.09

Bear 0.0 1.17

Star 0.0

4.1 Datasets
We used two datasets in order to test our methods. The
first dataset is a subset of 40 images from the Single Object
Database (AlpertGBB07) [3]. This dataset is characterized
by having well-defined backgrounds from the foreground.
We discarded those images that we did not consider fit-
ting the criteria for which Cage Active Contours were
created, that is, images with single-connected objects with
no holes and visually distinct from the background. The
second dataset is the Berkeley Segmentation Dataset and
Benchmark (BSDS300)[28]. This dataset consists of 300
real images which are muchmore complex than the Single
Object Dataset since they are chosen in order to evaluate
image segmentation in general and not object segmenta-
tion. Nevertheless, we have chosen a subset of 20 images
from this dataset that was used in [35] and whose ground
truth they provide for object segmentation.

4.2 Evaluation measures
We have chosen to consider the Sørensen-Dice coefficient
because of its simplicity and use in object image segmen-
tation. This overlap ratio measure ranges from 0 to 100%,
from least to most congruent. They are sensitive to mis-
placement of the segmentation label, although, in general,
they do not capture shape fidelity.
Let X be the segmentation region and Y the ground

truth segmentation region. The Sørensen-Dice coefficient is

Dice(X,Y ) = 2
|X ∩ Y |

|X| + |Y | (17)

4.3 Model validation
Cage Active Contours are adaptive methods with no
learning. By adapting, we mean that through a few basic

rules, imposed in this case on the energy function and the
cage, a certain intelligence emerges. The more elaborated
these set of rules are, the more complex objects it will be
able to segment. From simple rules, a more abstract and
complex behavior emerges.
Usually, in model evaluation, there are two main points

that we want to know: The overall score of a method and
the best model for that method. In our case, the method
corresponds to an energy function on the CAC while a
model is a set of parameters. Themodel is evaluated as the
mean score result throughout the whole dataset. The best
model would then be that which best scores in a dataset.
To evaluate the method without over-fitting, we use

threefold cross-validation.

4.4 Results
We have carried out several quantitative experiments for
comparing different energies in the CAC to evaluate our
improvements and for comparing our methods to other
existing ones to see where ours stand.We have considered
the energies Gaussian CAC (8), multivariate Gaussian
mixture (MGM) CAC (10), and Gaussian mixture (GM)
CAC which is the same as the MGM with only inten-
sity color. As comparison methods, we have chosen three
active contour methods implementated in Creaseg [33]
and reported to have the best results: the Geodesic Active
Contours presented by Vicent Caselles [13], the Chan &
Vese [15], and the Shi [37]. We have used the default
parameters in [33].
In Table 1, we see the mean Sørensen-Dice coefficient

and its standard deviation for each method and 60 images
(40 from AlpertGBB07 and 20 from BSDS300). Our
multivariate Gaussian mixture energy function scored
best in the AlpertGBB07 dataset and third best in the
BSDS300 dataset. These positive results were expected
given that it uses RGB information while the methods
from Creaseg use gray-scale images. For this reason, we
have also decided to show the Gaussian mixture energy
function which is the equivalent energy function in the
gray-scale space. In this case, the Shi and the Caselles
method were outperformed in the AlpertGBB07. In the
case of BSDS300 dataset, the Chan-Vesse obtains the best
mean performance; however, the CAC methods prove
to be more stable since the standard deviation is much
lower.

Fig. 7Morphing result. Morphing a family car to a sports car automatically through mean value coordinates from a segmentation with the CAC
(initial image from http://www.wellclean.com/wp-content/themes/artgallery_3.0/images/car1.png, final image from http://clipart-library.com/
clipart/8i65pygMT.htm)

http://www.wellclean.com/wp-content/themes/artgallery_3.0/images/car1.png
http://clipart-library.com/clipart/8i65pygMT.htm
http://clipart-library.com/clipart/8i65pygMT.htm
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Fig. 8Morphing result. Morphing from an apple to a pear with a CAC segmentation (initial and final images from [27])

In terms of computational time, in Table 2, we see that
Caselles and Chan & Vese methods are extremely fast
while the Shi, that is supposed to be fast, took the longest
because of the default number of iterations in the Creaseg
Implementation. Note that our approach is not able to
outperform, from a computational point of view, other
approaches. This is due to the fact that at each itera-
tion, the pixels p of �1 and �2 have to be recovered
and that for each pixel p, the affine coordinates have to
be computed. This has, according to our experiments,
a high computationally load and can be improved using
parallelization languages such as OpenCL.
Figures 5 and 6 show qualitative results of eight images

from AlpertGBB07 dataset segmeneted by MGM CAC
method. Images shown are balloon, bowl, pumpkin, and
sewer in Fig 5, and bird, bear, and star in Fig. 6. These
results were obtained using the best parameters: number
of control points 20, ratio 1.1, σ = 0.25, ε = e−200. As it
can be seen, the CAC method is able to properly segment
the objects. The ability to adapt the curve to the object
contour in the results depends on the number of control
points. This parameter controls the regularization effect.
This effect was studied in the previous work [18].
Moreover, it is worth to notice that CAC methods are

not designed for high-precision segmentation of arbitrary
images, but rather, they provide a smooth general contour
of the image which can be used for other purposes and
applications, as is illustrated in the next section.

4.5 Applications: imagemorphing and warping
We validate the application of the CAC in shape similarity
and image morphing. Table 3 shows the turning func-
tion similarity between the seven previously segmented
objects in Figs. 5 and 6. As it can be seen, the cage
similarity works properly for ordering similar shapes.
Next, we use the approach described in Section 3.3 for

themorphing of two objectsO1 andO2 into each other. As
commented before, the morphing is automatic: we start

from two images I1 and I2 to which the multiGaussian
mixture energy function segmentation method is applied.
For both images, an initial regular cage is used. Once seg-
mented cages V 1 and V 2 are obtained, intermediate cages
can be obtained, and corresponding intermediate images
are computed using interpolation.
In practice, if we segment two different images of the

same object, the resulting cages may not necessarily be
similar cages according to Definition 8. However, they can
be similar up to a deformation of the cage. Thanks to
the smooth properties of the warping using mean value
coordinates, this allows a good morphing through inter-
polation of the cages. Figures 7, 8, and 9 show three exam-
ples created using cage interpolation (14), warping (15),
and morphing (16). In these examples, we show 5 and 8
images. The images on the left and right correspond to the
original objects, O1 and O2, respectively, while the oth-
ers (in the middle) are the interpolated objects. To obtain
these images, we repeat the following steps as many times
as desired: first, an intermediate cage between the two
objects using cage interpolation is created; second, both
objects are warped into the intermediate interpolated
shape; and finally, a weighted average of the intensities
results in the morphed image.
These results illustrate the power of the image mor-

phing and warping method, which directly benefit from
the segmentation result and obtain a smooth transition
between the original images. In the first example (Fig. 7),
the shift of the cages (Definition 9) that best corresponds
to a similarity using a turning function is found. Recall that
the turning function returns the correspondence of points
between the two cages that has the minimum turning dis-
tance. The intermediate interpolated image can then be
obtained using the correspondence of cages. The second
example (Fig. 8) has been obtained by avoiding the step
of finding the shift of the cages. The morphing results
show smoothness since the segmentation also are sim-
ilar. In the third example (Fig. 9), we have an example

Fig. 9Morphing result. Morphing from a star to a bear with a CAC segmentation
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Table 4 Car distance matrix

Car1 Car2 Car3 Car4 Car5

Car1 0 0.05 0.09 0.12 0.14

Car2 0 0.05 0.09 0.13

Car3 0 0.05 0.09

Car4 0 0.05

Car5 0

of two images previously segmented with the CAC (see
result in Fig. 6). Here, the morphing between the two
different objects is smooth and the intermediate images
clearly show the transition between the successive pairs.
In the Additional file 1 we include an additional file video
with an animation of a morphing result. In this anima-
tion one can appreciate the smooth transition between
images.
Finally, the turning function similarity between the car

and fruit shapes can be found in the distance matrices in
Tables 4 and 5, respectively.
Note that the computational time associated to the seg-

mentation process is high since, at each iteration of the
algorithm, the interior and exterior pixels of the regions
have to be computed. This is due to the fact that the latter
interior and exterior regions are currently computed using
a hole filling algorithm based on the contour drawn on
the image. However, once the segmentation has been per-
formed, the morphing process can be computed in an easy
and efficient way since it is similar to image interpolation
using optical flow. In our case, the point correspondence
between the cage points allows to compute, in a fast way,
the corresponding points at both original images for the
pixels of the image to be interpolated. Interpolation is then
fast to compute.

5 Conclusions
In this work, we have made various contributions to the
framework of the Cage Active Contours (CACs). First,
the introduction of energy functions on the RGB color
space, Gaussian mixture, and multivariate Gaussian mix-
ture models, which have greatly enhanced the potential
of an otherwise limited method. These enhanced ver-
sions of the CAC provide the ability to capture multiple

Table 5 Fruit distance matrix

Fruit1 Fruit2 Fruit3 Fruit4 Fruit5

Fruit1 0 0.5 0.107 0.11 0.14

Fruit2 0 0.05 0.1 0.15

Fruit3 0 0.04 0.09

Fruit4 0 0.03

Fruit5 0

value components in each region, and the incorpora-
tion of an initial seed which provide the energy function
with prior information about the foreground and back-
ground’s distributions. Furthermore, we have mathemat-
ically formalized the concepts of cage, contour, family of
contours, and others to be able to prove that two con-
tours are similar if their cages are similar given some
initial conditions. This theoretical proof, along with the
properties of mean value coordinates, have allowed us
to define the conditions and strategy for automatic mor-
phing and warping between similar objects. We have
also provided a similarity measure which has been used
for shape comparison and could be also used in other
applications.
Through quantitative and qualitative experiments on

different datasets, we have validated the ability of the CAC
framework for multiple steps for segmentation, warp-
ing, and morphing. The images are first segmented using
the CAC, then the correspondences among cage control
points of the shapes are estimated, and finally, a morph-
ing between the images is constructed. We have shown
that this process is automatic after the objects of inter-
est have been located. This opens the door to different
applications that will be considered as future work. A pub-
lic implementation of Cage Active Contours in Python
with some wrappers in C is available in https://github.
com/Jeronics/cac-segmenter/. The code contains differ-
ent energy functions presented in the paper and including
the ones presented in [18], as well as tools for automatic
morphing and warping.
As future work, we are interested in exploring new

applications of the CAC framework, as for instance,
automatic video interpolation and morphing for articu-
lated object motion. We plan to explore robust functions
for proper articulated object segmentation and warping.
Moreover, we would like to use multiple dependent cages
for local segmentation of object parts in an image, as
well as for segmentation of the different objects/parts in a
video.

Endnotes
1 https://github.com/Jeronics/cac-segmenter/
2 In order to simplify the notation, we use ϕ(p) instead of

ϕV (p) unless there is a possible ambiguity in the context.
3A cage defines a polygon by joining its vertices in order,

the last with the first and removing the middle point of
any consecutive collinear triplet (to fulfill the polygon def-
inition). It is important to note that a cage is not a polygon
since a cage can have three consecutive collinear points
while a polygon cannot by definition.

4 In this context, image refers to the target set of a
function.

https://github.com/Jeronics/cac-segmenter/
https://github.com/Jeronics/cac-segmenter/
https://github.com/Jeronics/cac-segmenter/
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Additional file

Additional file 1: Morphing result animation. (GIF 3041 kb)
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