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“Polynomials pervade mathematics, and much that is beautiful in
mathematics is related to polynomials. Virtually every branch of
mathematics, from algebraic number theory and algebraic
geometry to applied analysis, Fourier analysis, and computer
science, has its corpus of theory arising from the study of
polynomials. Historically, questions relating to polynomials, for
example, the solution of polynomial equations, gave rise to some of
the most important problems of the day. The subject is now much
too large to attempt an encyclopedic coverage”.

Tamas Erdélyi



Abstract
The Mintz-Szész Classical Theorem characterizes increasing sequences {\; }j:og with

0= < A< A<=~

for which the space (1,2, 2*2,...) is dense or not in C([0, 1]), depending on if the series

;r:‘xf 1/); diverges or not respectively.

In the book Polynomials and Polynomials Inequalities (see [7]), Tamas Erdélyi and Peter
Borwein explain the tools needed in order to show a complete and extended proof of the
Miintz-Szasz Theorem. To do so, they use some techniques of complex analysis and also
the algebraic properties of the zeros of some functions called Chebyshev functions.

On these notes we put together all these ideas, beginning with the well known Weierstrass
Approximation Theorem, continuing with the development of the complex analysis results
needed and giving a complete proof of an extended version of the Miintz-Szasz Theorem.
Such new version characterizes arbitrary sequences {\; j:OS of different arbitrary positive
real numbers (except for Ay = 0) for which the space of continuous functions spanned
by the powers 2% is dense or not in C([0,1]). In that case, it depends on if the series
Z;r:“l’ A/ ()\? + 1) diverges or not respectively. Moreover, pursuing in this direction, we
also have studied an equivalent result for the Lebesgue spaces that characterizes arbi-
trary different sequences {\; };r:of of real numbers greater than —1/p for which the space
(x*, 222 23 ...} is dense or not in LP([0, 1]), which in that case depends on if the series
Zj:o‘f (\j +1/p)/((\j + 1/p)* + 1) diverges or not respectively.
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1 INTRODUCTION

In his seminal paper [4] of 1912, the Russian mathematician S. N. Bernstein asked under which
conditions on an increasing sequence A = {A;}/5 (Ao = 0) one can guarantee that the vector
space

I(A) := (zY: j=0,1,2,...),

spanned by the polynomials 2%, is a dense subset of the space of all continuous real valued
functions defined on the interval [0,1], denoted by C([0,1]). He specifically proved that the
condition

X1+ log )
Z ; BN +00
j=1 )‘j
is necessary and the condition
s
Jim —— =0
j—+oo jlog g

is sufficient, and conjectured that a necessary and sufficient condition to have II(A) = C([0, 1])
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This conjecture was proved by Miintz [15] in 1914 and by Szasz [16] in 1916, which was only for
distinct positive real sequences of exponents tending to infinity. After that, this result began to
be called the Miintz-Szasz Classical Theorem. Later works, see for example [1] and [5], include
the original result as well as a treatment of the case when {); jzofj is a sequence of distinct

positive real numbers (except for Ao = 0) such that inf,;>; A; > 0.

The beauty of the Miintz-Szasz Classical Theorem lies on the fact that it connects a topological
result (the density of a certain subset of a functional space) with an arithmetical one (the
divergence of a certain harmonic series). Another reason to be interested on this theorem is
that the original result not only solves a nice problem but also opens the door to many new
interesting questions. For example, one is tempted to change the space of continuous functions
C([0,1]) to other spaces as LP(]0,1]), or to consider the analogous problem in several variables,
on intervals away of the origin, for more general exponent sequences, for polynomials with
integral coefficients, etc. As a consequence, many proofs (and generalizations) of the theorem
have been done by many authors as, for example, Manfred Von Gloitschek [17] and Tamas
Erdelyi (see [7] and [6]).

On these notes, we concentrate our attention on the Miintz’ problem in the univariate setting
for the interval [0, 1] restricted to the uniform and the Lebesgue norms. Moreover, we provide
proofs in great detail of all the results needed in order to show both necessary and sufficient
conditions. We have structured theses notes chronologically and divided in three distinct parts
where we develop different techniques respectively.

On the first part we have shown what condition is necessary in order to satisfy the Miintz-Szész
Theorem in C([0,1]) for sequences {\;}75 of distinct positive real numbers. To do so, we have
begun by motivating the problem with a proof of S. N. Bernstein of the well known Weierstrass
Approximation Theorem (see [3]) which is a particular case of the Mintz-Szasz Theorem. The



proof of Bernstein introduce a discrete function that approximates every continuous function
in the interval [0, 1] as close we desire. Then, we have studied some results in complex measure
theory and functional analysis with the goal to show two relevant results for which the proof of
the necessary condition in the Miintz-Szasz Theorem is based on: the Riesz-Markov-Kakutani
Theorem on C([0, 1]) (see [1]) and a corollary of the Hahn Banach Theorem (see [5]). Finally, we
have given the statement and the proof of the necessary condition in the Miintz-Szasz Theorem.

On the second part our aim is to show that the necessary condition of the Miintz-Szasz Theorem
is also sufficient. To do so, we have introduced some finite vectorial subspaces of the continuous
functions in [0, 1] and we have related them with the space spanned by the powers 2, where
Ao = 0 and {A\;}7, (n € N) is a sequence of different positive real values. To study them
we have followed the book Polynomials and Polynomials Inequalities of Taméas Erdélyi and
Peter Borwein (see [7]), where the material is often tersely presented, with much mathematics
explored in the exercises, many of which are supplied with copious hints, some with complete
proofs. Well over half the material in that book is presented in the exercises. Hence, together
with [7], we also have taken use of the article Miintz Type Theorems I of J.M. Almira (see [18]).
Finally, we have proved the sufficiency of the condition of the Miintz-Szasz Theorem.

On the third part we have presented an extended version of the Miintz-Szasz Theorem, but
now for the Lebesgue spaces in [0, 1] where p € [1,+00). However, in that case we have used
sequences {\;};255 of distinct real numbers greater than —1/p. Even though, as in C([0,1]), we
have proved the theorem on two steps: one for proving the necessary condition that satisfy the
theorem (where we have seen a complete proof for any p € [1,4+00)), and then other for proving
the sufficiency of such condition (where we have seen a complete proof for the case p = 1, but
for the case p > 1 we restrict the sequence to satisfy inf;>; A; > —1/p).

To finish, thanks are due to Maria Jestis Carro for leading me and watching that I did not digress
much from the right way by giving me advices of the best method on each case. Moreover, she
gave me a great range of bibliography and helped me every time I got stuck.



2 DENSITY ON MUNTZ-SZASZ APPROXIMATION
THEOREM

Miintz-Szasz classical Theorem characterizes increasing sequences {\;}/° with

O=X < A < A< ---
for which the space (1,2 2?2 ...) is dense or not in C([0,1]), depending on if the series
Z;’z"‘f 1/); diverges or not respectively.

As a particular case, when A\, € NU {0}, we have the well known Weierstrass Approximation
Theorem, which says that any real valued continuous function defined on a real interval can be
approximated arbitrarily well by polynomials. There are many different proofs of this result,
however, on the following section we present a proof based on Bernstein polynomials [3].

2.1 Weierstrass Approximation Theorem

Before beginning, we note that either the Weierstrass Approximation Theorem holds in every
interval [a, ], it suffices to work with the interval [0,1]. The reason is that the arbitrary real
interval @ < y < b is mapped to 0 < z < 1 by the polynomial x = (a —y)/(a—b) and vice versa
by y = (b — a)x + a. So, if g is continuous on [a, b], then f(x) = g((b — a)x + a) is continuous
on [0, 1]. Therefore, if the polynomial P, of degree n approximates f to within ¢ > 0 in [0, 1],
then the polynomial @Q,(y) = P,((a —y)/(a — b)) of degree n approximates g(y) to within ¢ in
la, b].

First, we present some concepts needed before seeing the theorem, which follows the notation
of [3].

Definition 2.1.1. Let f € C([0,1]) a continuous function and let 6 > 0. A modulus of

continuity in [0, 1] is a positive function defined as

w(f,0) = | §U|I><§{\f($) — fWl}-
x,y€(0,1]

Observation 2.1.2. Since a continuous function is bounded in a compact set, it follows that
w(f,d) < 400 for any § > 0. As a consequence, every f € C([0,1]) is uniformly continuous in
[0,1]. Hence,

liy w(£.) = 0. (4] € C((0.1])

Definition 2.1.3. A Bernstein Binomial is

where n,m € N, 0 <m <n and x € [0, 1].

Lemma 2.1.4. Letn € N, z € [0, 1],



(i) S Pom(z) =1,
(27') Zzl:l) mPn,m($) =nx,
(ZZZ) Z:Ln:() mzpn,m(l") = (712 — n)xQ + nx.

Proof. (i)

m=1 m m=1 m—1
n—1
—1
=nz Y (n )xm(l z)=m — g
m=0 m

(iii)

m=0 m=0 m m=0 m
" n
_ -1 m(q n—m
3 mm =) )a(1 -0
o fn—2
_ -1 2 m—2 1 (n—2)—(m—2)
n(n — 1)z mz::Q (m B 2)9& (1—2)
n—2 -9
=n(n — 1)2? (n ):L‘m(l z) =D=M — p(p — 1)a?
m=0 m

Definition 2.1.5. A Bernstein Polynomial of degree n € N for a function f € C[0,1] is

n

B, f(z) = Z P (@) f(2),
m=0
where x,, = and m =0,...,n.

The following result, given by Bernstein [3]|, would yield as a consequence the Weiesrtras Ap-
proximation Theorem.

Theorem 2.1.6 (Bernstein Approximation Theorem). Let f be a continuous function on [0, 1]
and n > 1 a natural number. Then,

1£(2) = Bag(o)l < Julf,n7),



Proof. Let 6 > 0 and = € [0,1]. Since >.1'_ Pn.m(z) = 1, it follows that

F@) = Bus(e) = 3 (F@) = Fen)Pam@) = 3> (F&) = F(2m)) Pam()
Irrfzz?d
FOS (@) = Fm) Pan(@).

\a:—"ifﬁza

Let’s work each sum separately. First, using that P, ,,(z) > 0 for x € [0, 1],

(oo ]<s s (2.1.1)
w(f,0) Y Pom(z) = w(f,0).

m=0

Next, we take m € {0,...,n} such that | — x,,,| > ¢ and define

Km = 7|~T — xml € Z>1.
6 il
Now, we choose yp < y1 < -+ < yk,, < Yk,,+1 uniformly spaced in the interval generated
by z and z,,, so that each of the new K,, + 1 intervals have length |f< x+m1‘ < ¢ and where
Yo = m1n<x7xm) and YKm+1 = max(:v, xm) 807 since ‘szrl - y’L’ < 57
Km
[f(@) = f(@n)l = | f(yo) = fyrnr)l < D1F (W) = flyie)| < (K + Duw(f,0)
i=0
< (‘x_f’“’ + 1) w(f,9).
Hence, we can bound the second sum by
n 1 n
Z | (@) = f(2m)|Pom(z) < w(f,0) Z Pn,m(x)'f'g Z |2 — @ | P ()
o5 o5 o5
Since ‘xff"" > 1, then (z g{”) > |x_gcm| and
1 " 1 & 9
Z Pn,m(x)—l—g Y |z —zm|Pum(z) <1+ 52 > (@ — 2)° Py ()
|z— a:m\>(5 |xIchL(|)Z5 m=0
1 n
=1+ 52 (Z (2% — 2x2,, + xfn)an(:v)> .



Now, by Lemma 2.1.4, using that z,, =

m
)

n

1
(2% — 2z, + 22)) Py () = 2% — 2 (x) n + —((n* — n)a? + nx)
m=0 n n

:x2—2x2+x2+x(1_x) :x(l—x).
n n

Finally, observe that for = € [0, 1], the function @ takes the maximum at z = % Therefore,

n

> 1) = S Pan(e) < w(1,8) (14 157 (212)

m=0
|x—am|>0

Thus, taking 6 = n~'/2 and using the inequalities of (2.1.1) and (2.1.2) we get
~1/2 1 9 ~1/2
£) — Busle)) < (™) (1414 1) = u(r2),

O

Corollary 2.1.7 (Weierstrass Approximation Theorem). Assume that f € C([0,1]). Given any
e > 0, there is a polynomial P, with sufficiently high degree n such that

|f(z) — Po(x)| <&, VYO0<z<l1.

2.2 Previous Results in Functional and Complex Analysis

From now on, our aim is to extend the Miintz-Szasz Classical Theorem to arbitrary sequences
{\; }j;’g of distinct positive real numbers. To do so, we need some previous results on complex
measure theory and functional analysis. In particular, this section consists on the study of some
of the classical theorems in complex and functional analysis, with taking an special attention to
the Riesz-Markov-Kakutani Representation Theorem on C([0, 1]), which basically says that any
bounded linear functional 7" on C([0, 1]) is the same as integration against a complex measure

W, i.e.

T = [ fdp (7 ecto).

Since the only big result that we will show on this section that has not been studied neither
on the bachelor’s degree nor the master course is the Riesz-Markov-Kakutani Representation
Theorem, we will deal first with it. So that, we will begin by showing all of the concepts and
results that we will use in order to prove it. To do so, we have followed the Rudin’s book Real
and Complex Analysis [1], which begins with the Riesz Representation Theorem for positive
measures, continues with the duality theorem on Lebesgue spaces, and ends with the Riesz-
Markov-Kakutani Representation Theorem. For simplicity, we will consider the real interval I
to be [0, 1] and we will denote the uniform norm on I by

[flloe = sup{lf(z)[: = € I}.



2.2.1 Riesz Representation Theorem for Positive Measures on C([0, 1])

We will study the Riesz Representation Theorem on C(I) for any positive bounded linear
functional 7" on C(I). In such cases, T' is going to be the same as integration against a positive
measure p. On this section, we will denote by C.(R) the space of real valued continuous
functions with compact support on R.

Definition 2.2.1. Let B(/) be the smallest o-algebra that contains the open sets of I; this is
known as the g-algebra of the Borel sets.

The following lemmas play an important role on the Riesz Representation Theorem for positive
measures on C([0, 1]). Since both results are from the course of Functional Analysis and PDE’s,
we present them without proof. For more details, see [1].

Lemma 2.2.2 (Urysohn’s Lemma). Let V' an open set in R, K C R, and let K be compact.
Then there ezists an f € C.(R), such that xx < f < xv.

For simplicity, we will say that f satisfies K < f < V.

Lemma 2.2.3 (Partition of Unity). Suppose Vi, ..., V, are open subsets of R, K is compact,
and
KcWwviu---uUV,.

Then there ezist functions h; € C.(R) such that h; <V; (i=1,...,n) and
d hi(z)=1 (z€K).
Definition 2.2.4. The collection {hq, ..., h,} is called a partition of the unity on K, subordi-

nate to the cover {V1,...,V,}.

Theorem 2.2.5 (Riesz Representation Theorem). Let A be a positive linear functional on C(I)
(i.e., for any f € C(I) such that f > 0, then Af > 0), there ezists a o-algebra 9 in I which
contains all Borel sets in I, and there exists a unique positive measure j on I which represents
A in the sense that

Af = [ fan.
for every f € C(I). Moreover, the following properties hold:

(a) u(l) < +oo.

(b) For every E € 9,
p(E) =inf{u(V): E CV,V open}.

(c) The relation
w(E) =sup{u(K): K C E,K compact}

holds for every E € IN.
(d) If E€ M, ACE, and (E) =0, then A € M (i.e., (I,9M, u) is a complete measure).



Proof. Let us begin by proving the uniqueness of x. Suppose that exist two positives measures
(1 and po satisfying the hypothesis of the theorem. Given E € 9t and € > 0, using properties
(a), (b) and (c), we can find an open set V' and a compact set K such that K C £ C V and

us(V) — 2/2 < (E) < pa(K) + 2/2

then, pa(V) < pa(K) +e. Moreover, by Lemma 2.2.2, exists a continuous function f such that
K < f < V. Hence,

M1<K):/IXKd,M1S/Ifdu1=/\f:/[fd,uzg

< [ xvdnz = V) < oK) +<.

which holds for any arbitrary € > 0. Hence, u1(K) < pa(K).

Analogously, one can see that po(K) < py(K). Since by property (b) these measures are
completely determined by the compact sets, necessarily py = po, and the uniqueness of pu is
proved.

Now, let’s see the existence of the g-algebra 9 and the measure p.
(i) Construction of p and IN:
For any open set V in I, define

u(V)=sup{Af: f <V} (2.2.1)
If Vi C Vi, Vi, V; open sets, it is clear that (2.2.1) implies u(V1) < u(V5). Hence, we can define
u(E) =inf{u(V): ECV,V open} (2.2.2)

for every £ C I, and it is consistent with (2.2.1) to define u(F) by (2.2.2) when E is open.
Now, let My be the class of all £ C I which satisfies u(E) < 400 and

u(E) =sup{u(K): K C E, K compact}. (2.2.3)

Then, we define 91 to be the class of all F C I such that EN K € Mg, for every compact K.

(7i) Proof that 11 and O have the required properties:
Observe that u is monotone, since for A C B C I,

p(A) =inf {u(V): ACV,V open} <inf{u(V): BCV,V open} = u(B).
Hence, p(E) = 0 implies that p(E N K) = pu(K) = 0 for every K C E compact, so E € Mp
and E € M. Moreover, (d) holds, and so does (b) by definition on (2.2.2).

For the next properties, it will be convenient to divide them into several steps. First, observe
that the positivity of A implies that A is monotone. This is clear, since Ag = Af+A(g—f) > Af

iftg>f.



STEP I: If Eq, Es, Es, ... are arbitrary subsets of I, then

u (Uj E) < f w(Ey). (2.2.4)

Let Vi, V5 open sets in I, and choose ¢ < V4 U V5. By Lemma 2.2.3, there are functions hy
and hy such that h; < V; (i = 1,2) and hy(z) + he(z) = 1 for all x € I. Hence, gh; < V;,
g = ghy + gho, and so, by the definition of p,

Ag = AMghi) + A(gh2) < p(Vi) + (V). (2.2.5)

Now, let ¢ > 0. By the definition of supremum, exists f € C(I), f < Vi U V3, such that
pw(ViUVy) < Af 4+ e. Since (2.2.5) holds for any g < V3 U V,, then u(Vy U V) < Af +e <
w(V1) + u(Va) + &, and making € tends to zero, we get

p(ViUVa) < (Vi) + p(Va). (2.2.6)

Now observe that if pu(F;) = +oo for some i, then (2.2.4) is trivially true. Suppose therefore
that u(E;) < +oo for every i € N>y and choose € > 0. By (2.2.2) there are open sets V; D E;
such that

w(Vi) < u(E) +27% (i=1,2,3,...).

Put V = U %V, and choose f < V. Observe that since f is continuous and f is zero in V¢,
then exists a compact set K C I such that supp(f) C K. Then, by the definition of compact,
f<Viu---UV, for some n. Iterating in (2.2.6) we obtain

+o00
Af <p(Viu---UV,) < p(Vi) + - (Vi) < 30 p(E:) + e
=1

Since this holds for every f < V', and since UE; C V/, it follows that
+oo +0o0
w(UB) <uv) < Xutm e
i=1 i=1

which proves (2.2.4) by making € tend to zero.

STEP II: Mg contains every compact set (observe that this implies property (a) because I is a
compact subset of itself).

By (2.2.3), it is sufficient to see that u(K) is finite for every compact set K. So fix some
compact set K such that K < f for some f € C(I), and let V = {z: f(z) > 1}. Then, K C V
and g < 2f whenever g <V (because 2f > xy > ¢g). Hence,

p(K) < p(V) =sup{Ag; g < V} < A(2f) < +o0.



Since K clearly satisfies (2.2.3), K € 9p. Then, in particular we have that u(E) < +oo, for
every I C 1.

STEP III: Every open set satisfies (2.2.3) (then, Mp contains every open set V', since we have
that property (a) holds).

Let V be an open set. Observe that the case u(V') = 0 is trivial. Then assume that p(V) # 0
and let a be a real number such that 0 < o < (V). So, there exists an f < V with o < Af.
Now observe that if W is any open set which contains the support K of f, then f < W, hence
Af < p(W).

Given € > 0, then exists W. D K such that pu(W.) < u(K) + ¢, by the definition of infimum.
Thus, Af < u(W.) < u(K) + €, and by making ¢ tend to zero, we get that Af < p(K). This
exhibits a compact K C V with o < p(K) < (V) for any « satisfying av < (V). Then taking
a = p(V) =4, for § > 0, we have that u(V) — 0 < p(K) < u(V), and making § tend to zero,
we see that (2.2.3) holds for V.

STEP IV: Suppose E = ULYE;, where Ey, Ey, Es, ... are pairwise disjoint members of Mp.
Then

+oo
W(E) =Y ulEy). (2:27)
i=1
In addition, E € Mp.

Let K, and K5 be two disjoint compact sets. Then exist two disjoint open sets V; and V5 such
that K, C V; C Vi € K§and Ky C Vo C Vo C K{. Choose € > 0. By the definition of p,
there is an open set W D K; U K such that u(W) < p(K; U K») +¢/3, and there are functions
fi = W NV, such that Af; > u(WnNV;)—¢/3, (i =1,2).

Since K; C W NV, and since Vi NV, = (), we have that f1 + fo < (IWNV)U (W NV, CW.
So, we obtain

2e
AEL) + p(K2) < p(WOV) +u(WNVe) <Afi+Afe +
2
< pu(W) + §E < (K1 U Ky) +e.
Since ¢ was arbitrary, from STEP I it follows that
p(Ky U Ko) = p(Ky) + p(Ks). (2:2.8)

Now, due to E C I, we have that p(E) < pu(l) < +00. So choose € > 0. Since E; € Mp, there
are compact sets H; C E; with

w(H;) > u(E) —27%  (i=1,2,...).

Putting K, = H; U---U H,, and applying induction on (2.2.8), we obtain
W(E) > p(Ka) =Y p(H) > Y (p(Ei) —27%). (2.2.9)
i=1 i=1

10



Since (2.2.9) is true for all n and every € > 0, using STEP I, it follows (2.2.7).

Besides, since
+oo
> u(E) = pu(E) < p(I) < +o0,
i=1

for every e > 0 there exists some N := N(¢) € N such that

Hw(E) <> n(E) +e.

By (2.2.9), it follows that pu(F) < pu(Ky) + 2¢, and this shows that £ € M.

STEP V: If E € Mg and € > 0, there is a compact K and an open V such that K C E CV
and p(V\ K) < e.

Our definition of u shows that there exist a compact set K and an open set V' so that

u(V) = 5 < p(E) < p(K) + 3.

Since V' \ K is open, by STEP III we get that V \ K € 9Mp. Hence, STEP IV implies that
p(EK) + p(V\K) = p(V) < p(K) +e.

STEP VI: If A€ Mp and B € Mp, then A\ B, AU B, and AN B belong to M.

If e > 0, STEP V shows that there are compact sets K; and open sets V; (i = 1,2) such that
Ky CACWV, Kb CBCVy, and p(V;\ K;) < ¢, for i =1,2.

Since
A\B CVI\ Ky C (Vi\ K1) UK\ Vo) U (Vo )\ Ky),

using STEP I we get
HAN B) < p(Vi\ K) + (Ko \ Va) + pu(Va \ K) < (i \ Va) + 2e. (2.2.10)

Since K \ V4 is a compact subset of A\ B, (2.2.10) shows that A\ B satisfies (2.2.3), hence
A \ B e Mp.

Now AUB = (A\ B) U B, so it follows (by STEP IV) that AU B € Mp. Finallyy, AN B =
A\ (A\ B) € Mp.

STEP VII: M is a o-algebra in I containing all the Borel sets of I.

Let K be an arbitrary compact set in [ (then K € Mp). If A € M, then A°NK = K\ (ANK),
so that A°N K is a difference of two members of M. Hence, A°N K € Mp, and we conclude:
A € M implies A° € M.

Next, suppose A = U;enA;, where A; € M. Put B; = A; N K, and
B,=(A,NK)\(BiU---UB,_1) (n=2,3,...).

11



Then, {B,}nen is a disjoint sequence of members of Mp. Since AN K = UpenB,, by STEP
1V, it belongs to 9. Hence, A € 9.

Finally, if C' is closed, then C'N K is compact, hence C N K € Mg, so C' € M (in particular
IeMm).

We have thus proved that 91 is a o-algebra in I which contains all closed subsets of I. Hence,
2N contains all Borel sets in I.

STEP VIII: Mpr =M (this implies assertion (c) of the theorem).

It £ € Mp, STEP II and STEP VI imply that E N K € Mg for every compact K, hence,
taking K = I we see that £ € 1.

Conversely, suppose E € O, and choose € > 0. By STEP III and STEP V, there is an open
set V' D E, and there is a compact set K C E with pu(V \ K) < e. Since EN K € Mg, by the
definition of supremum, there is a compact H C £ N K with

WENK) < p(H)+e.

Since £ C (ENK)U(V \ K), it follows that
W(E) < u(B N K+ u(V\ K) < u(H) + 2,
which implies that E € Mp.

STEP IX: 1 is a positive measure on .
It is a direct consequence of STEP IV and STEP VIII.

STEP X: For every f € C(I), Af = [; fdu (this proves the main part of the theorem).

Observe that if f is complex, then f = u + v, so it is enough to prove this for a real f. Also,
it is enough to prove the inequality

Af < /fd,u (2.2.11)
I
for every real f € C(I), since for once (2.2.11) is established, the linearity of A shows that
A=A < [ (~Pdn=~ [ s

which, together with (2.2.11), shows that equality holds.

So, let [a,b] be an interval which contains the range of f. Choose ¢ > 0, and choose y;, for
i=1,...,n:=n(e),sothat y; —y; 1 <candyp<a<y; < -+ <y, =b. Put

E={x:y1 < flx) <y} (F=12,...,n).

Since f is continuous, f is Borel measurable, and the sets E; are therefore disjoint Borel sets
whose union is I. By the definition of u, there are open sets V; D E; such that

uV) < p(B)+— (i=1,....n)

12



and such that f(z) < y; + ¢ for all z € V;. By Lemma 2.2.3, there are functions h; < V; such
that >" ; h; = 1 on I. Hence, f = >, h;f. Since h;f < (y; +¢)h;, and since y; —e < f(x) on
E;, we have

M=
M:

Af AChif) <) (yi +e)A(hi) < ) (yi + &)u(Vi)

I

s
Il
i
.
Il

1 1

n n

(4 +e) (Ei)+§:yz+5 => Wy —8+26M(E)+Z(yi—|—g)%

=1 i=1

.
Il

A
= 107

3 |l

<Z E;) 4+ 2en(I) + b—l—és—Z/ i —e)dp + e[2u(l) + b+ €
gZ:/Eifdquam(I)ﬂLbjLe] :/Ifd,u—i-é?[Q,u([)-l-b—Fg].

Since £ was arbitrary, (2.2.11) is established, and the proof of the theorem is completed.

Observation 2.2.6. p(I) = ||A]|, since
p(I) >sup {Af; 0< f <1, fecC(l)}
and A(xr) = p(1).

Definition 2.2.7. A positive measure u defined on the o-algebra of all Borel sets in an interval
I is called a Borel measure on I. We say that a Borel set E C [ is outer regular or inner regular
if £ has property (b) or (¢) of Theorem 2.2.5 respectively. If every Borel set in [ is both outer
and inner regular, u is called regular.

Observation 2.2.8. The measure of the Riesz Representation Theorem (Theorem 2.2.5) is
regular.

2.2.2 Complex Measures

Before talk about the Riesz-Markov-Kakutani Representation Theorem, we must give the defi-
nition of a complex measure and the total variation of a complex measure. On this section, we
will study them and we will show that the total variation is indeed a positive measure. To do
so, we will follow [1].

Definition 2.2.9. Let 9 be a o-algebra in a set X. We say that a countable collection { E; };en
of members of 91 is a partition of F if

iEN
and F; N E; = () whenever i # j.

Definition 2.2.10. A complex measure g on 9t is a complex function on 9 such that is
o-additive, i.e., for £ € 9t we have that

=2 nE

1€EN

for any partition {E;}en of E.
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Definition 2.2.11. We define a set function |u| on 9t by

|1l (E) = sup {Z ’M(Ei”} (EeMm)

ieN
where the supremum is being taken over all the partitions {E; };en of E. This function is called

the total variation of u or the total variation measure.

Observe that if u is positive, then p = |u|. Moreover, note that |u(E)| < |u|(E). Our next step
is to show that |u| is in fact a positive finite measure.

Proposition 2.2.12. The total variation |u| of a complex measure p on 9 is a positive measure

on IN.

Proof. Let E € M, observe that clearly |u|(E) > |u(E)| > 0, then |u| is a positive function on
M.

Now let’s fix {E;}; a partition of E, we want to see that |u|(E) = X, |u|(E;).

First, choose ¢; € R such that |u|(E;) > t; > 0 for each ¢ > 1 (for example, t; = (1 — e)|u|(E;),
for ¢ > 0). Then, by the definition of ||, we can find a partition {4;;}, of E; such that

Z lu(Ai)| > ti.

Hence, due to {4;;},; is a partition of E, it follows that
St < 5 )] < lul(B)
) i j

Therefore, since

(1= X (B = Yot < [pl(E)
for any e, making ¢ tend to zero, we see that

> |ul(B:) < [pl(E).

To prove the opposite inequality, let {A;}; be any partition of E, then for any fixed j, {E;NA;};
is a partition of A;, and for any fixed ¢, { E; N A;}; is a partition of E;. Hence, using that p is
a complex measure,

MERIEDS

J

_ (A N E)

<N (A N E) = Y0 Y Ay 0 B < 3 Il (B,

Since this inequality works for any partition {A;}; of E, taking the supremum over all of them

we see that
HI(E) < X lul(E)
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It reminds to see that |u|(X) < 400 for every complex measure p on a set X. To do so, we
will take use of the following technical lemma.

Lemma 2.2.13. If z1,...,2, € C, n € N, there is S C {1,...,n} such that

Zza

jeSs

<= Z|Z]|

Proof. Put w = |z;| + -+ - + |z,| and consider C as the union of four closed quadrants bounded
by the lines y = +x. At least, there is one of them containing z;,, . .., z;  satisfying |z;, |+ -+
|2i,,| > fw, for m € N and m < n. Let’s consider S = {i1,...,%n,} and let @ be that quadrant.
Since | 5L, 2, €| = | 0, 2, |, by an argument of rotation of the elements 2;’s, we can assume
without lose of generality that @ is the quadrant defined by |y| < x. Now observe that if

z=a+1b € Q, then
|2]* = a* + b* < 2a* = Re(z) >

5=

Finally,

D%

jeS

> (Re(zj) +ilm(z;))| > > Re(z;) Z|zj Z\/_Z]Zlg

Jjes JES jGS

Proposition 2.2.14. If i is a complex measure on X, then |u|(X) < +o0.

Proof. We first show that if |u|(E) = +o0o for some E € 9, then E = AU B, where A, B € M
are disjoint and |u(A)| > 1, |u|(B) = +oo.

Let’s take E € 9. The definition of |u| shows that for every ¢t < 400, there corresponds a
partition {£;}; of £ such that >, |u(£;)| > t. Let us take

t=6(1+[u(E)]) < 6(1 + [u(X)]) < +o0.
Then, since 3, |u(E;)| > t for some {E;}; partition of E, there exists some n € N such that

Z Ej)| > t.

Let z; = u(E;), then by the Lemma 2.2.13, exists some set S C {1,...,n} such that

ZZ]

jeSs

<= Z|Z]|

Let A = UjegFEj, then it follows that

AC E and |u(A)| =

> u(E

JES




If we take B = E'\ A, then
(1(B)] = |p(E) = p(A)] = [u(A)] = [u(E)] > é — B = 1.

Since [4](E) = |ul(A) + [u/(B) and |u|(E) = o0, either |u|(4) = +o0 or u](B) = +o0 (or
both). So, we get the claim.

Now assume that |u|(X) = +o0o. We define a sequence of sets { A, },, and { B, },, of X as follows:

Put Ay = ) and By = X. Then, to construct the following sets for n > 1, we apply the previous
claim to B,_1 (|p|(Bn-1) = +00) choosing B,, as the set B and A,, as the set A of the claim.
Then, we see that A, B, C Bn,_1, A, N B, =0, |u(A,)| > 1 and |u|(B,) = +o.

We does inductively obtain disjoint sets Ay, Ay, As, ... with |u(A4,)| > 1 for every n > 1. If
C= UnAm
p(C) = p(An).
n>1
But this series can’t converge, since p(A,) does not tend to zero. This contradiction shows

that |p|(X) < 400 must hold. O

Definition 2.2.15. If ;s and A are complex measures on the same o-algebra 91, we define p+ A
and cpu by

(1 + A (E) = u(E) + ME), (E e m)

for any scalar ¢ € C. It is then trivial to verify that p+ A\ and cu are complex measures. Then,
the collection of all complex measures on 91, denoted by M, is thus a vector space. If we put

el = [l (X)

it is easy to verify that all axioms of a normed linear space are satisfied.

2.2.3 The Radon-Nikodym Theorem

We now turn to the Radon-Nikodym Theorem, which is probably one of the most important
theorems in measure theory. This theorem concerns the concept of absolute continuity which
gives a certain meaning of continuity of the complex measures.

Definition 2.2.16. Let p be a positive measure on a o-algebra 9, A an arbitrary measure
on 9 (positive or complex), we say that A is absolutely continuous respect to p, and write

A << p, if M(E) =0 for each E € 9t such that u(E) = 0.
If there is a set A € M with AM(E) = A(EN A) for all E € M, we say that A is concentrated on
A, which is equivalent to A(E) = 0 for each EN A = ().

Definition 2.2.17. Suppose A;, Ay are two measures on 90 (positives or complexes), and
suppose that exist A, B € M such that ANB = (), \; is concentrated on A and A, is concentrated
on B. Then we say that A\; and Ay are mutually singular and write Ay L As.
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Proposition 2.2.18. Suppose 1, A\, A\i, Ao are measures on a o-algebra 9N and p is positive:
(a) If X\ is concentrated on A, so is |A|.

(b) If \y L Xy, then |[\] L |Agl.

(¢c) If \i L pand Ny L p1, then Ay + Ao L p.

(d) If Ay << pand Mg << pu, then A\ + Ay << L.

(e) If X << p, then |\ << p.

(f) If My << p and Ny L p, then Ay L Xo.

(9) If N << p and X\ L p, then A =0.

Proof. (a) If ENA = (0 and {E;}; is a partition of E, then since X is concentrated on A,
AE;) =0 for all j, so |A|(E) =

(b) Let A, B € 9 such that AN B =0, \; is concentrated on A and ), is concentrated on B.
Then from (a), |A;| is concentrated on A and |A\y] is concentrated on B. Thus, |[A| L |Ag].

(c) Let Ay, By € 9 such that Ay N By =0, A; is concentrated on A; and p is concentrated on
By, and let Ay, By € M such that Ay N By = 0, Ay is concentrated on A, and p is concentrated
on B,. Taking A = A; U A, and B = By N By, we have that for all E € 9 such that ENA =0
(then ENA; = EN Ay =0)

and if ENB =0,

p(E) = p(EN By N By) = 0.
Moreover, (A; U Ay) N (By N By) = (). Therefore, A\; + Ay L p.
(d) Obvious.

(e) Let {E;}; be a partition of £ € M and pu(E) = 0. Since p is positive, p(E;) = 0 for each
J. S0, A(E;) =0 for all j. Hence, |A[(E) =

(f) Since Ao L pu, there is a set A where pu(A) =
A (A) =0 (A << ). Hence, for any £ C A, \(E)

(g) By (f), we have that A L \. Hence, A = 0. O

0 and where Ay is concentrated. Then,
= 0, and so )\ is concentrated on B C A°.

The following proposition, gives us a continuity sense for measures that are absolutely contin-
uous.

Proposition 2.2.19. Suppose p and A\ are measures on a o-algebra M, u is positive and X is
complex. Then the following two conditions are equivalent:

(a) A <<y,
(b) Ve >0, 3§ > 0 such that |\(E)| < e for all E € M with u(E) < 9.

Proof. 1f (b) holds, let E € 9t such that u(E) = 0. Then, for any € > 0, |A\(F)| < ¢ (because
pu(E) < 6 for any 6 > 0). Hence, A(E) =
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If (b) is false, then Je > 0 and there exist sets E, € M (n = 1,2,...) such that u(E,) < 27"
but |A(E,)| > €. Then, in particular, |A|(E,) > e.

Let A, = U;>,F;, and define A = N> A4,. Then p(A,) < Yisp u(E) < Yisn 20 = 2" and
A1 C A,. Hence,
w(A) = lim p(A,) < lim 2'"" =0.

n—-+o0 ~ n—+o0
Moreover, |A[(A) > limy, 00 |A[(An) > € > 0, since |A|[(An) > [A(Ey).

Thus, |A| is not absolute continuous respect to u. Thus, by Proposition 2.2.18 (e), A is not
absolute continuous respect to pu.

O

The following two lemmas, which both are concerned with measurable functions, will be used
many times on what follows in this chapter.

Lemma 2.2.20. Suppose u is a complex measure on a o-algebra M, f € L'(u), S is a closed
set in the complex plane, and the averages

1
A = — d
lie in S for all E € M with (E) > 0. Then, f(x) € S a.e. z € X.

Proof. We will see that if £ € f71(S¢), then u(E) = 0. Let A be a closed circular disc,
A = D(a,r) for some o € S and r > 0, such that A C S°. Since S¢ C C is open, S is the
union of countable many such discs. So, it is enough to prove that u(E) = 0 where E = f~1(A).

If we have that pu(E) > 0, then

1 1 1
’AE(f)—Oé\_M‘/E(f—a)du‘ SM(E)/E\f—a]dugru(E)u(E)—r,

which the last inequality holds because f(E) C A. But this means that Ag(f) € A C 5S¢,
which is impossible (by hypothesis, Ag(f) € S). Thus, u(E) = 0.

O

Lemma 2.2.21. Let p be a positive measure on a o-algebra I in a set X :
(a) Suppose f: X — [0,400] is measurable, E € M, and [ fdu =0. Then f =0 a.e. on E.
(b) Suppose f € L*(n) and [z fdu =0 for every E € M. Then, f =0 a.e. on X.

Proof. Let’s first see (a). Take F € M. If A, ={z € E; f(x) > 1/n}, n € N, then

1 1
—p(A,) = */ dp S/ fdp =0,
n nJA, An

so that u(A,) = 0. Since
{z € B; f(z) > 0} = UpA,,

(a) follows.
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Now, we see (b). Put f = u+iv, and let E' = {z; u(z) > 0}. Let u™ be the positive real part of
f, then since [ fdu = 0, we get that 0 = Re ([ fdu) = [putdu, and (a) implies that u™ =0
a.e. on X.

We conclude similar that v~ =v™ =0~ =0 a.e. on X. Thus, f =0 a.e. on X.

0

Now we present the Lebesgue Decomposition Theorem, from which the Radon-Nikodym The-
orem follows directly.

Proposition 2.2.22 (Lebesgue Decomposition Theorem). Let A be a positive finite measure
and let p be a o-finite positive measure, both on a o-algebra M in a set X. Then, there is a
unique pair of measures g and Ag on MM such that

A=+ Ao, Ao << p, As L p. (2.2.12)
Proof. First, let’s see the unicity. If X and X, is another pair that satisfies (2.2.12), then

Ao Aa = N, + N,. So,
Ay — M= N = A,

and by Proposition 2.2.18 (c¢) and (d),
A= dg << pand s — X, L pu.
Thus, by Proposition 2.2.18 (g),

N =X, and \, = ).

Now, let’s see the existence. First we deal with the case when p is a finite positive measure.

Put ¢ = A+ p, then ¢ is a positive and finite measure on 9, and we have that

/de<p:/xfdA+/deu.

Observe that if f € L*(p), then

[ s < [isins [ 1side < ([ 152d0) " o007 < o,

where in the last inequality we have used the Cauchy-Schwarz inequality. Then the mapping

fn—>/de)\

defines a bounded linear operator in the Hilbert space L?(p). So, since every Hilbert space is
isomorphic to its dual, there exists a unique g € L?*(¢) such that

/deA:/ngd@ (2.2.13)
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for every f € L%(p).
Put f = xg in (2.2.13), for £ € M with ¢(F) > 0. Then it follows that \(E) = [ gdp. Now,

since 0 < A < ¢,
AE) 1 /
— [ gdp <1
sO( ) - p(B) Jx
Hence, by Lemma 2.2.20, g(z) € [0, 1] a.e.x [¢].

Since g € L*(p), we can assume then that 0 < g <1 for all z € X, without affecting (2.2.13).
So we rewrite (2.2.13) in the form

| =aprax= [ grdu (7 € (). (2.2.14)

Put A= {z;0<g(z) <1} and B = {z; g(x) = 1}, and define
M(B) = MANE), \(E)=XNBNE) (Ecm).

If we take f = xp in (2.2.14), we see that u(B) = 0. Then A\, L p.

Now, observe that since g is bounded, (2.2.14) holds if we replace f by (1+ g+ -+ ¢")xE,
for n € N and E € 9. We then obtain

/E (1—g")dA = /X (1—g)fdxr = /ngdu _ /Eg(l g+ gh)dp (2.2.15)

At every point of B, g(z) = 1, hence 1 — ¢""!(x) = 0. However, at every point of A, g"*!
converges to 0 monotonically on n. Then the left side of (2.2.15) converges, therefore, by the
monotone convergence theorem, to A\(ANE) = A\,(E) as n — +o0o. The integrand on the right
side of (2.2.15) increases monotonically to a positive measurable limit

B —

g X
1_g A

and the monotone convergence theorem shows that the right side tends to [ hdp as n — +o0.

Then, we have proved that
- / hdp (2.2.16)
E
for every £ € M. In particular, for F = X, we see that h € L'(u), since A\(X) < +o0.
Therefore, if p(E) = 0 for some E € M, then

0:/ hdu:/ X\ = Mo(E).
E ANE

Thus, A\, << p and the theorem follows when p is a finite positive measure.

Now, if p is a o-finite positive measure on 91, then X is the union of countably many sets
X, such that u(X,) < 400 (n > 1). We may assume that the X,, are disjoint, for if not, we
replace {X,,}, by {Y,.}n, where Y1 = Xj and Y, = X, \ (Y1 U---UY, ;) for n > 2. Then, we
can apply the same argument to the measures p and A, for each X,,, where ), is defined by
M(FE) = ANENX,) for every E € M. Hence, the decomposition for each A\, and p add up to
a decomposition of A and pu, since A(E) = >, A\ (E).

O
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Definition 2.2.23. The pair )\, and )y is called the Lebesgue decomposition of A relative to
(L.

Finally, we present the Radon-Nikodym Theorem. The point of this theorem is the converse.
However, on this section we will not go such further for this theorem.

Theorem 2.2.24 (Radon-Nikodym Theorem). Let A be a positive finite measure and let p be
a o-finite positive measure, both on a o-algebra M in a set X, such that X << u. Then, there
exists a unique h € L*(p) such that

AE) :/Ehd/L (E € m). (2.2.17)

Proof. First, let’s see the unicity. If #’ € L'(u) is another function satisfying (2.2.17), then

/E(h— B)dp = 0

for every E € 9. Hence, by Lemma 2.2.21 (b), h = h" a.e. [u].

Now, let’s see the existence. By Proposition 2.2.22, we can get the Lebesgue decomposition of
A relative to p
A=A+ Aoy, Ag <<, As L p.

Since A << p and Ag L p, then A\; = 0. Therefore, A = \,. Thus, we have seen in the proof of
Proposition 2.2.22 in (2.2.16) that there exists an h € L'(u) such that

A= A(E) = /Ehdﬂ

for every E € 91. This ends the proof.
O

Definition 2.2.25. The function h is called the Radon-Nikodym derivative of A\ respect to pu.
We may express it in the form d\ = hdu (or h = %).

Now, we introduce the real measures for a o-algebra 9 on a set X.

Definition 2.2.26. A signed measure p on 9 is a function defined as
pe M — RU {400}

such that is o-additive, i.e., for E € 99 we have that

u(E) = Y ju(E)

for any partition {E;}; of E.

Observation 2.2.27. When a signed measure p is finite is, in particular, a complex measure.
Therefore, we can define its total variation |u| as we did for the complex measures.
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Definition 2.2.28. Let p be a finite signed measure on a o-algebra 9. The positive and
negative variations of p are the positive measures on 91 defined as

, 1

1
pr=g (el p), =g (ul=p).

Then, observe that 4+ and = are both bounded and they satisfy
p=pt—p, fpl =gt

This representation of y as the difference of the positive measures pu* and p~ is known as the
Jordan decomposition of .

Now, let u be a o-finite measure and let A be a complex measure on 9. Then A = A\; + i),
where A\; and A\, are finite signed measures. So, applying the Lebesgue decomposition and the
Radon-Nykodim Theorem to the positive and negative variations of A; and Ay, we also have
the following corollary.

Corollary 2.2.29. The Lebesgue decomposition and the Radon-Nikodym theorem are valid if
[t 1S a positive o-finite measure on M and if X is a complex measure on M.

2.2.4 Consequences of the Radon-Nikodym Theorem

On this section we see some of the consequences of the Radon-Nikodym Theorem. As an inter-
esting one, we will study the Hahn Decomposition Theorem, which characterizes the positive
and the negative variations of a finite signed measure.

Corollary 2.2.30 (The polar representation of u). Let p be a complex measure on a o-algebra
M in a set X. There is a measurable function h such that |h(z)| =1 for every x € X and such
that

dp = hd|pu|.

Proof. 1t is obvious that p << |u| and, therefore, the Radon-Nikodym Theorem guarantees the
existence of h € L'(|u|) which satisfies du = hd|ul|. So, let A, := {x: |h(x)| < r} where r > 0
and let {E;}; a partition of A,. Then,

SInE) =X | il =%

J J J

[, | < S ul(E) = a4

So that, taking the supremum over all the partitions, it follows that |u|(A,) < r|u|(A,). Then,
if r < 1, clearly |u|(A,) =0, s0 |h| > 1 a.e. [|pu]].

Now, let E € 9t such that |u|(E) > 0, then

e e = g o =[] <

So, using Lemma 2.2.20 and the fact that |h| > 1 a.e. [|p|], we deduce that |h| =1 a.e. [|u]].
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Finally, take B = {z € X; |h(z)| # 1}. We have seen that |u|(B) = 0, so defining h(x) =1 for
x € B, we have the desired function.

O

Corollary 2.2.31. Suppose pi is a positive measure on MM, g € L' (i) and

)\(E):/Egdu, (E € Mm).
Then,
AE) = [ lgldu, (B € m).

Proof. First observe that if g is a positive real function a.e. in [u], then we are done. Hence,
suppose the contrary. Then ) is a complex (and may also real) measure. So, by Corollary 2.2.30,
dh € L'(u) with |h| = 1 such that d\ = hd|)\| (i.e., A\(E) = [z hd|)| for each E € ). By
hypothesis, d\ = gdu. Therefore, hd|\| = gdu as measures. Hence,

/dw :/Ehdm :/Egdu (B em),
E E E

and we get that d|\| = hgdu as measures. Since |A\| > 0 and p > 0, it follows that hg > 0 a.e.
[1]. Since h is a complex measurable function, necessarily hg = |g| a.e. [p]. Thus,

N(E) = [ lgld (B € m).

O

Theorem 2.2.32 (The Hahn Decomposition Theorem). Let u be a finite signed measure on a
o-algebra M in a set X. Then, there exist disjoint sets A and B in M such that AU B, and
such that the positive and negative variations of i satisfy

p(E)=wANE), p(E)=-pBNE) (EeM).
The pair A and B is called the Hahn decomposition of X, induced by .

Proof. By Corollary 2.2.30, du = hd|p|, where |h| = 1. Since p is real, it follows that h is real
a.e. in X. Hence, we can redefine h to be real everywhere. Then, h = +1. Put

A={z: h(zx)=1}, B={z: h(zx)=—-1}.
Since pt = L (|u| + p), and since

1 h on A,
5(1+h) N {0 on B,

we have, for any F € 9,
1
*E:f/l h)d :/ hdlu| = p(E N A).
prE) =5 | At+hydpl= | - hdp| = p( )
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Since u(E) = p(ENA) + u(E N B) and since pp = ™ — p~, it follows that for any E € 9N,

po(E) = —p(BNE).
U

Finally, we can see that the Hahn-Bannach decomposition of a finite signed measure pu is the
smallest decomposition in the sense that we state on the following corollary.

Corollary 2.2.33. If 1 = \; — Xy, where A\ and Ny are positive measures, then \; > u* and
Ay > no.

Proof. Since p < A\, we have for any F € 9

pH(E)=pn(ENA) < \M(ENA) <\(E).
On the other side,

No=M—p=M—(u —p)=p N —p) >

2.2.5 Riesz-Markov-Kakutani Representation Theorem on C([0, 1])

Now, we are in conditions to study the Riesz-Markov-Kakutani Representation Theorem. To
do so, we first introduce some results about Borel complex measures.

Definition 2.2.34. A Borel complex measure is any measure ;1 defined on B(7) (the o-algebra
of the Borel sets). If the total variation of a Borel complex measure is both inner regular and
outer regular, it is called a regular Borel complex measure. We denote the space of regular
Borel complex measure on the interval I by M ([).

Proposition 2.2.35. Let puy and ps be two reqular Borel complex measures on the interval I,
then py — po is also a regqular Borel complexr measure on 1.

Proof. The difference of Borel complex measures is clearly a Borel complex measure, so that
we just have to see that the measure p; — po is regular.

First observe that since |ps| = | — 2|, the function —puy is a regular Borel complex measure.
Hence, let’s take p3 = —pue. Then, we have to see that the complex Borel measure iy + pg is
regular. So, take an £ > 0 and a measurable set £ € B([). Since both u; and us are inner
regular, there exist compacts sets K; and K3 in I such that |u;|(E) — || (K;) < e/2 (i = 1,3).
Hence let K = K; U K3. Clearly, K is a compact set in [ and

a4 ps| (B K) < (I ] + [ps)) (B N\ K) = (lpa] + |ps)(E) = (lpa| + |ps]) (K)
= (] + (s (E) = [pa| (K1) — |ps| (K3) <e.
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Moreover, since both p; and pus are outer regular, there exist open sets V; and V3 such that
|| (V) — |l (E) < e/2 (i = 1,3). Hence let V' =V, N V3, then V is also an open set and

a4 ps| (VN E) < (] + s (VA E) = (| + LisD (V) = (] + |ps]) (E)

<
< [l (Vi) + Jps(Vs) = (lpa| + (s (E) <e.

Thus, @1 + ps is a regular Borel complex measure.
O

The following result is another of the consequences of the Radon-Nikodym Theorem, and states
that the dual of the Lebesgue space LP (when 1 < p < 00) is the Lebesgue space L7, where ¢
is the conjugate exponent of p (that is, 1/p+1/q = 1).

Corollary 2.2.36 (Riesz-Representation Theorem for Lebesgue spaces). Suppose 1 < p < oo,
[ s a finite positive measure on a o-algebra N in the interval I, and ® is a bounded linear
functional on LP(u). Then, there is a unique g € L(u) such that

of) = [ fodu (e L), (2.2.18)

where % + é = 1. Moreover, if ® and g are related as (2.2.18), we have

1Rl = [lgll oy == Nlgll, -

In other words, Li(u) is the dual space of LP(u), under the stated conditions.

Proof. The uniqueness of g is clear, for if g and ¢’ satisfy the properties, then taking f = yg,
the integral of g — ¢’ over any measurable set E is zero, then by Lemma 2.2.21 (b), g = ¢ a.e.

Moreover, if ®(f) = [; fgdu for any f € LP(u), by the Holder’s inequality, we get that || ®|| <
9]l - So it remains to prove that the other inequality holds and that such g exists.

First, observe that if ||®|| = 0, taking g = 0 we are done. So assume ||®| > 0.

For any measurable set E C I, define
ME) = ®(xp)-

Since @ is linear, and since yaup = xa + x5 if A and B are disjoint, we deduce that A is
additive. To prove countable additivity, suppose F is the union of countably many disjoint
measurable sets F;, put A, = E; U---U E}), and note that

Ixe = xacll, = [(E = A" =0

as k — oo (since p < 4+00). The continuity of ® now shows that A(E — Ag) — 0 as k — co. So
A is a complex measure.

Observe now that if u(E) = 0, then A\(E) = ®(xg) = 0 (since xp = 0 a.e. in p), so A << p.
Hence, the Radon-Nikodym Theorem ensures the existence g € L'(u) such that, for every
measurable £ C I,

(xp) = ME) = [Egd/F /IXEQdM-
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By linearity, it follows that
o(f) = [ Fod (2.2.19)

holds for every simple measurable f, and so for every f € L'(u).

We want to conclude that g € Ly(u) and that [|®[| = [|g]|,; it is best to split the argument into
two cases:

(a) Case 1 (p =1): We have that

’/Egd“’ = |®(xp)| < [|®|| u(E)

for every E' € M. By Lemma 2.2.20, |g(z)| < ||®]| a.e. Thus, ||g|. < ||®]|-

(b) Case2 (1 < p < +00): Observe that since y is a finite positive measure, then LP(u) C L'(1)
(for every 1 < p < 400), then (2.2.19) is well defined for any f € LP(u), 1 < p < +o0.

Let o be a measurable function such that |a| = 1 and ag = |g|. Let E, = {z: |g(x)] < n},
and put f = xg,|g|" 'a. Then, |f|P = |g|@"P = |g|? on E,, f € LP(x), and (2.2.19) gives

/E |g|*dp = /I><Encw|glq‘1 dp = /Ifgdu = o(f)
1/p
<ol 71, = el ([, 1ot7) "

[ . lglvd < e,

for every n = 1,2,3,.... Applying the monotone convergence to h, := xg,|g|? € L'(1)
(0 < hy < hpga), we obtain [|g][, < [[®]].

so that

Thus, for any 1 < p < +o0, [g|l, = || and g € LI(4).

Finally, we are in conditions to state and proof the most important result in this section.

Theorem 2.2.37 (Riesz-Markov-Kakutani Representation Theorem). To each bounded linear
functional ® on C(I) there corresponds a unique complex reqular Borel measure j such that

of) = [ fdu=(f.1) (f €CD)). (2.2.20)

Moreover, if ® and u are related as in (2.2.20), then ||P|| = ||u]|.
Proof. We first settle the uniqueness question. Suppose p € M(I) and [, fdu = 0 for every

f € C(I). By Corollary 2.2.30, there is a Borel function h (measurable in d|u|), with |h| =1
such that du = hd|p|. Then, for any sequence { f,}, in C(I) we have that
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(1) = [ dul = [Pl + [ fdi= [ 0Pl + [ fahdinl =

Z/I@—fn)hdlul = ’/I(h—fn)hdM’ S/Ilﬁ—fn|d|u|, (22.21)

and since C(I) is dense in L'(|u|) (indeed, the continuous functions with compact support in
R are dense in L'(|u|)), {fn}n can be so chosen such that the last expression in (2.2.21) tends
to zero as n — +o00. Then we get that |u|(/) = 0. So, |u(E)| < |u|(E) < |u|(I) = 0 for any
E €B(I). Hence, u = 0.

Finally, since the difference of two regular Borel complex measures on [ is also regular, we get
the unicity.

Now consider a given bounded linear functional ® on C(I). Observe that if & = 0, taking u =0

we are done. Then, without lose of generality assume ||®| = 1 (otherwise take ®/ ||®]|). We
will construct a positive linear functional A on C(I), such that
(N <A <l (f €C)), (2.2.22)

where | f]|, denotes the supremum norm.

Let CT(I) the set of positive continuous functions and let
Af =sup{|@(h)|; h € C(I), |h] < f}  (f €CT(I)).
Then, clearly Af > 0 for any f € C*(I). Moreover,

[ ()] < sup{[®(h)|; h € C(I), [n] < [f]} = A(lSf]),

and
A(If]) < sup{l|®| [|All; h € CU), [h] < |f]} <[]l -

Hence, A satisfies (2.2.22) and it just remains to see the linearity.

Observe that for any ¢ € Ryg and f € C*(I),

Alef) = sup{|®(h)]; h € C(1), |h| < cf}
= sup{|P(ch)|; ch € C(I), |ch| < cf}
=cAf
(if ¢ = 0, then A(0) = 0 since ® is linear).

Hence, to prove the linearity we just have to show that
Af+g)=Af+Ag, fandgeCt(I) (2.2.23)

To do so, observe that 0 < f; < fy implies Af; < Af;. Then, fix f and g in C*(I). By the
definition of supremum, if ¢ > 0, there exists |hi| and |hs| in C(I) such that |hi| < f, |he| < g,
and

Af < |®(hy)|+e, Ag<|®(hs)| +e.
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Moreover, there are complex numbers «;, |o;| = 1, so that a;®(h;) = |®(h;)|, (i = 1,2). Then,
since |a1hy + ashe| < [hu| + |ho| < f + g,

Af + Ag S |(I>(h1)| + e+ |(I)(h2)| +e= CI)(Oélhl + Ozghg) + 2e S

< A(Jha] + [ho|) + 28 S A(f +g) + 2¢,
and this inequality holds for any e. Therefore, Af + Ag < A(f + g).

For the other inequality, choose h € C(I) subject only to the condition |h| < f + g, and let
V ={z: f(z)+ g(x) > 0} (which is an open set in [ since f and g are continuous functions).

e dele F@)h(x) (x)h(x)

x)h(x g(z)h(x
hi(z) =~ hy(z) = ot
R [ Res M A (e

and hy(z) = he(x) =0 if 2 ¢ V. It is clear that h; is continuous at every point xo € V' (since
V is open). If g ¢ V, then h(zg) = 0 and due to h is continuous and |hy(z)| < |h(z)| for all
point z € I, it follow that z is a point of continuity of hy (for any e > 0, 3§ > 0 such that if
|z — x| < d, then |hy(z)| < |h(z)| < €). Thus, hy € C(I), and the same holds for hs.

Since h = hy + hy and |hy| < f, |ha| < g (because we are supposing |h| < f + g), we have

(ifx e V),

|®(h)| = [®(h1) + P(ha)| < |P(R1)] + |P(he)| < Af + Ag.

Finally, taking the supremum over all A € C(I) such that |h| < f + ¢, we get (2.2.23). Thus, A
is linear.

If f is now a real function, f € C(I), then 2f = |f| + fsothat fT € CT(I) and 2f~ = |f| — f
so that f~ € C*(I). Since f = f* — f~, it is natural to define

Af=Aft —Af~ (fecC(l), freal).

Moreover, we can define
A(u +iv) = Au + ilAv.

By simple algebraic manipulations, it is easy to show that our extended function A is linear on

().

Then, by the Theorem 2.2.5, we can associate that linear operator with a regular positive Borel
measure as

Af = [ fax,

such that
AI) = IA]l -

Since |[Af| < 1if || f]|, <1, we see that actually A(I) < 1. Using (2.2.22), we also deduce that

[2(F) < A(lf]) = /I [Fldx =[£I, (2.2.24)

for any f € C(I). Thus, ® is a linear functional on C(I) of norm at most 1 with respect to the
L*(A)-norm on C(I). Then, since the set C(I) is dense in L'()\), we can define an operator ®
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on L'(\) by taking ®(f) = lim,, ®(f,), for any f € L*(\) and {f,}» C C(I) such that f, tends
to f in L'()\) as n goes to +00. Observe that if {g,}, C C(I) is another sequence that tends
to f in L*(\), then by the linearity of ®,

D(F) = ©(gn)| = [0(fu = g < [ 1 = galdA = I1fo = gullircy-

Moreover,
1o = gnll oy S W= Fllpipy + 1 = gnllpiny = 0 (0= F00),

so lim, ®(f,) = lim, ®(g,), and the operator ® is well defined. Moreover, is linear by the
linearity of ®, and by (2.2.24) is bounded.

Hence, there is a norm-preserving extension of ® to a linear functional ® on L (M), and therefore
Corollary 2.2.36 gives a measurable Borel function g, with |g| < 1, such that

(1) = [ fgar (f e L),

and then
o(f) :/Ifgd)\ (f € (D). (2.2.25)

By hypothesis, ® is a continuous functional, and also we have that

[t <17l (e

So, each side of (2.2.25) is a continuous functional on C(/). Hence, we obtain the representation
that we want with du = gdA.

Observe that (2.2.25) shows that for f € C(I) with || f] <1,
()| < [ 1fgldr < [ lglar

Since ||®|| = 1,
[ lglax = sup {0l £ e, I/l <1} =1

Due to |g| < 1, one can see that A\(I) > 1, so we get that A\(/) = 1. Moreover,
O:/(l—l)d)\g/(1—\g\)d)\:)\(1)—/]g]d>\§1—1:0.
I I I
Then, using Lemma 2.2.21 (a), we get that |g| = 1 a.e. [A. Thus, by Corollary 2.2.31,

d|p| = |gld\ = d), and
[l = 1l (1) = M(I) = 1 = || 2],

which proves the theorem.
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Remark 2.2.38. In its original form by F. Riesz [20], the theorem states that every continuous
linear functional ® over the space C([0,1]) of continuous functions in the interval [0, 1] can be
represented in the form

o(f) = [ Faduta), (f € C(o.1])

where p is a function of bounded variation (i.e., such that |u|([0,1]) < +00), and the integral
is a Riemann-Stieltjes integral. See [19], for a historical discussion.

2.2.6 Classical Results in Functional and Complex Analysis

Finally, we show some classical results in functional and complex analysis. We first begin by
seeing one of the most important theorems on functional analysis, the Hahn-Banach Theorem.
The point of this result will be a corollary which will play an important role on the proof of
the Miintz-Szasz Theorem. We will continue by presenting some results in complex analysis
but without proving them, since these results have been seen either on the bachelor’s degree or
during the master course.

Definition 2.2.39. Let E be a vectorial space over a field K. We say that the function
p: E — Ris a convex functional if p(z+vy) < p(z) +p(y) and p(az) = ap(x) fora > 0, a € K,
and x,y € F.

Theorem 2.2.40 (Hahn-Banach Theorem). Let p be a convex functional over the normed
vectorial space X, and u be a linear functional over a subspace M of X. If u(z) < p(z) for
every z € M, then u can be extended to a linear functional v over X such that v(z) < p(z) for
every z € X.

Corollary 2.2.41. Let M be a vectorial subspace of a normed vectorial space X, and let zy € X.
Then, zy € M if and only if there is not any linear bounded functional T over X such that
T(z) =0 for every z € M, but T(z) # 0.

Proof. First suppose that zy € M, and let T be a linear bounded functional on X such that
T(z) = 0 for every z € M. Then, given {z,}, C M a convergent sequence to zy, by the
continuity of T,

T(z) =T <nh_>r£10 zn> = lim T(z,) = 0.
Conversely, suppose that zy ¢ M. Then, 3§ > 0 such that ||z — z||, > 6 for all z € M. So,
we define over the vectorial subspace M’ = (M, xy) C X the functional T'(z + A\zp) = A, where
2z € M and ) is an scalar. Since M is a vectorial space, if z € M and A # 0, then —\"'z € M,
and therefore,
SIA < A 20+ A7z = Az + 2l = [l2 + Azollx -

Then, we see that 7T is a linear functional bounded by §~!, since

A
ITII= sup |T(z+Az)|= sup [N < sup M — 5L

24220 x =1 l2+Az0 ]| x =1 a4 Az0] x =1 0
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Moreover, T'(z) = 0 over M and T'(z9) = 1. Since T is bounded (then is continuous), exists
C > 0 such that |T(z + Az)| < C'||z + Az, and C'[|-|| is a convex functional. Hence, by
the Theorem 2.2.40, we can extend T from M’ to X.

0

Now, let’s see some results about holomorphic functions. We will denote by H(£2) the set
consisting on holomorphic functions in an open set 2 C C, and by H* := H*(D) the set of all
bounded holomorphic functions in the unit disk.

The first result that we present is about the zero set of functions in the space H*. For simplicity
on the statement, we introduce first the concept of Blaschke condition.

Definition 2.2.42. Given a sequence {a;}; C D of complex numbers. We say that {a;},
satisfies the Blaschke condition if

> (1 —lai|) = d(aj,0D) < +oo.

J J
In this context, we have the following result about the zero set of some holomorphic functions.

Theorem 2.2.43. If f € H*™ has the zero set Z(f) = {a;}; in D and if Z(f) does not satisfy
the Blaschke condition, then f(z) =0 for any z € D.

The previous theorem is a particular case of Theorem 15.23 in [1]. The following result that we
are introducing, now for the set H(€2) (where € is a domain), gives a condition for which an
infinite product of holomorphic functions converges to an holomorphic function. For the proof,
see Theorem 15.6 of [1].

Theorem 2.2.44. Let Q C C be a domain. Assume that f, € H(SQ) for every n € N such that

> 11— ful2)]

n>1

converges uniformly over compact sets in ). Then, the product

fi= H fu(2)

n>1

converges uniformly over compact sets in Q. In particular, f € H(Q).

Now we state the well-known theorem Arzeld-Ascoli Theorem. For more details see [2].

Theorem 2.2.45 (The Arzela-Ascoli Theorem). Let K C C be compact and let (f,)nen be a
sequence of continuous functions defined on K. If F = {fn; n € N} is uniformly bounded and
equicontinuous on K, then there exists a subsequence (f,, )ren that converges uniformly to a

function f € C(K).
The following result is a basic theorem on Complex Analysis and says that an holomorphic
function in a domain 2 is determined by its values in any set that contains an accumulation

point of 2 (see [1], page 211).
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Theorem 2.2.46 (Identity Principle). If f and g are two holomorphic functions in a complex
domain Q2 and if f(z) = g(z) for every z in some subset with an accumulation point in 2, then
f(z) = g(z) for every z € .

On the proof of the Miintz-Szdsz Theorem we will need to see what functions are holomorphic.
The following classic results of the complex analysis will be very helpful for this purpose.

Theorem 2.2.47 (Morera’s Theorem). Given a continuous function f defined in a complex
domain 2. If

# 1) d=

for every closed path C and piece-wise C' with compact support in S0, then f is holomorphic in

Q.

Theorem 2.2.48 (Cauchy’s Theorem). If f is an holomorphic function in a simple connected
domain €2, then

§ 1)z
c
for every rectifiable closed path C' in ).

Once checked the analicity of a function, the Cauchy’s representation formula will allow us to
rewrite our function in a specific way.

Theorem 2.2.49 (Cauchy’s Formula). If f is an holomorphic function inside and on the
boundary C of a simple connected domain 2, then for every zy in €,

f(z0) = = (2) dz.

2m Jo z — 2

Finally we introduce the Mobius transformation, an holomorphic function that will play an
important role on proving the density of the Miintz-Szasz Theorem.

Definition 2.2.50. In complex analysis, we can define the Mobius transformation as a rational
holomorphic function from the complex unit disc onto the right complex half-plane

D — Hy :={z € C: Rez > 0},
1+ 2 (2.2.26)

1—2z

Z =

Observe that this function is well defined, since

I+2 (1+2)(1-72) 1— |22
Re (1_3):Re< I1— 2|2 2‘1_2‘2>0, for every z € D.

The inverse Mébius transformation of (2.2.26) is

H0—>D,
w—1
W= ——
w+1



For our interest, we will also consider the definition of inverse Mobius transformation

a—1—w wtl (2.2.27)
= :_wj—l )
CL+1+U) T+1

for an arbitrary a > 0, and which is the inverse of the function

1—=2
zr—>a( )—1
1+ 2

(hence, Re (a (1—2) - 1) = aRe (1_Z> -1 CoRe[(1—2)1+%2)—-1>-1).

1+2z 1+2z = [14-2|2

2.3 Density on Miintz-Szasz Theorem on C([0,1])

With all this previous results in functional and complex analysis, we are in conditions to see
an interesting extension of the Miintz-Szdsz Theorem on C([0,1]) which allows us to use a
sequence {A;};25 (Ao = 0) of distinct real positive numbers without any more restriction.
Consequently, instead of working with the series Z;;O‘f 1/X;, we will have to deal with the series
720 A/ (A + 1), since the sequence {);}]° may has a subsequence that converges to zero.

However, we think that it could be interesting and clarifying to see first a proof for the original
theorem. So before going ahead, the first part on this chapter is focused on the proof of the
Miintz-Szasz Classical Theorem.

2.3.1 Miintz-Szasz Classical Theorem

We will show a constructive proof of the Miintz-Szész Classical Theorem given by M. Von
Golitschek [18], who gives a simple argument to show that (1,z*,z*2,...) is dense in C([0, 1])
when {)\; };;08 is an increasing sequence of distinct positive real numbers tending to infinity.

Theorem 2.3.1 (Miuntz-Szasz Classical Theorem). Let 0 < A\ < Ay < A3 < ... such that
lim, A\, = +00. If ¥, 1/ \n = +00 then the set (1,2 272, ...) is dense in C ([0, 1]).

Proof. Assume that m # A\, for every k = 1,2,3,..., and m € Z,. Let’s define the functions
inductively:

Qo(z) :=a™,
On(x) = (A — m) /1 Oua (M dt, n=1,23, ...

We first claim that for n > 1
Qn(z) = 2™ — Z ai,nz)‘i
i=1

where a;, € R for every 1 =1,...,n.
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Let’s see it by induction. For n =1,

m—>\1

1 1 1
Qﬂ@:(&—mmh/tw+hﬁ:(M—mﬂ?{ tww]:xm—ﬁx
Hence, assuming that Q,_1(z) = 2™ — X" a;,,_12, we have
1 n—1
Qn(z) = (N, —m)a™ / (tm—l—% -y ai,n_lt’\i_l_A"> dt
z i=1

1 1
e (O — ) { tAi—An}
T ™ + (A, —m)x E @i n—1 N )
=™ — 2™ + (N, — m)z™ | — g a; ( Lo x)‘i_)‘”)
" -“”1&—M X — A

n—1 )\
n

— —-m
=™ — A a 1+ A s
;An—A ! ( Z)\ — 1)

So denoting by a;, = i :/\ Qip—1 fori=1,...,n—1and a,, =1 —Z" 1 Qin, We get

n
Qn(x) =2™ — Z ai,nﬁ‘i
i=1

Now, observe that
|Qollo = sup |2 =1.

z€[0,1]

Moreover,

1@nllo = sup

z€[0,1]

< — | |Qusl, sup 2 / 1A gy

O = m) e [ O ()M dt’

z€[0,1]
N
= = [ Quellas sup o (T
z€[0,1]
Hence, by iteration we have that
L m
Q< TI[ - %)
i=1 i

Finally, since lim,, A\,, = +o00, then exists an integer N > 0 such that A\, > m for every n > N
and using the inequality 1 — x < e™* for x > 0, we have that for every n > N

N-1

~Ip- (%)

exp( Zn:)\>%0 (n = 400),

Lm

1Qul .

1_7

’L

1_7

’L

1]
i
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due to 3, 1/, = +00.
Thus, ||Qxll,, — 0 as n — +oo. Hence, 2™ — Q),,(x) converges uniformly to z.

Finally, the proof follows by the Weierstrass Approximation Theorem (Corollary 2.1.7).

Observation 2.3.2. Let n € N and take i € {1,...,n}. Let’s denote by

oA —m

Lin(m) =[] )j —\,
j=1""7 '
JFi

the Legendre polynomial of degree n — 1 evaluated at m € N. Then one can see that

n

Qu(x) = =3 Lin(m)z™ + 2™,

=1

2.3.2 Density on Full Miintz-Szasz Theorem on C(]0, 1])

Finally, we present an extension of the density part for the Miintz-Szasz Classical Theorem
on C([0,1]), which involves arbitrary sequences {);}32, (Ao = 0) of distinct nonnegative real

numbers.

Before showing this Miintz-Szasz Theorem, we see that for the density case, we will be able to
split our sequence in three different subsequences, and then work with them separately instead

of doing it with the original sequence.

Lemma 2.3.3. Let {)\j}j:o‘f be a sequence of distinct real positive numbers such that

= OO,
S+l

and let v > 0 be a real number. Then, there is a subsequence {\;}}25 such that

“+o00 )\

Jk
g = +00
oA+

and it belongs in one of these three cases:
(i) Case 1: \;, >~ for each k=1,2,....
(it) Case 2: 0 < \;, <~ for each k=1,2,... andlim; \;, =a > 0.

(iii) Case 3: 0 < \;, <~ for each k=1,2,... and lim;, \; = 0.

Proof. Let J ={j € N; 0 < A\; < v}. Since the terms of the series are all positive, it follows

that N
XA A A
—l_oozz J :Z J +Z J .
A+ MA§+1 jEJ.A§+1
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Hence, we have two possibilities: either
Z Aj —
AL
and therefore Case 1 holds by taking {\;};¢s, or either
P

2 pu—
jeJ )‘j +1

+00

+00. (2.3.1)

Then, suppose that it occurs (2.3.1). Observe that in J, all the \; are bounded by 7. Since
every bounded sequence has a convergent subsequence, then there exists {\;, }/2) C {\;}jes
such that limy \;, = o € [0,7].

Assume that o > 0. Then, since \;, — a as k — +o00, it follows that
k=too A3 +1 a?+1

(%

%07

and therefore,

+oo )\,

Jk
E = +400.
k=1 A?k + 1

Hence, Case 2 holds.

Now we claim that if there is not any convergent subsequence {);, }/° of {);};cs such that
limy, A\j, = a > 0, then the sequence {);};ecs converges to zero.

Suppose the contrary. Then there exists an € > 0 such that for every N := N(g) € N, there
is a j; > N so that j; € J and )\;, > . Then, replacing j; instead of N, there exists j, > ji,
such that j, € J and A, > «.

Iterating, we get a sequence (jx)reny C J such that j; < jo < j3 < --- and \;, > ¢ for every
k € N. Hence, we have a subsequence {\j, }ren of {\;};es such that is bounded in (e,7].
Therefore, this subsequence must have a subsequence that converges to some « € [g,7]. In
particular, o > 0. But this is a contradiction, due to this subsequence is also a subsequence of

{Ai}ies-
Hence, the sequence {\,;};es converges to zero and by assumption

>

J
jeJ

:—|—007
A5 +1

so Case 3 holds.
O

Here we present a technical Lemma from which the extension of the Mintz-Szasz Theorem
will follow directly. Our proof will be split up in the three cases that we have already seen in
Lemma 2.3.3. For the first and the second cases we have followed the proof of [5]. However,
there are equivalent proofs using similar arguments in [1] and [18]. For the third case, we have
argue similarly as in [6] but reducing us to the real valued continuous functions C([0, 1]), since
it such article they work in the Lebesgue spaces LP(]0,1]) for 1 < p < +o00. We want to point
that is here where Section 2.2.6 takes place.
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Lemma 2.3.4. Let {\;}755 (Ao = 0) be a sequence of nonnegative real numbers, and let \g = 0.

If
Jio N +00
ST
and v is a Borel complex measure in [0,1] such that
1
/ Pidu(t) =0, Vj=0,1,2,..., (2.3.2)
0
then .
/ tdu(t) =0, Vk=0,1,2,.... (2.3.3)
0

Proof. Observe that the integrands in (2.3.2) and (2.3.3) vanishes at ¢ = 0. Hence, we can
assume that the measure p is concentrated in I = (0, 1].

Then, consider the function

f2) = [Fdu() = [ e = du(e),

which is well defined in the right complex half-plane Hy, since if Re(z) > 0 then [t?()| <1 for
t € I and, therefore,

< [l dlul@) = [ et dlu)

(2.3.4)
= [ £ d|u|(t) < |ul(1) = llul < +oc.

Now, let’s see that f is holomorphic in Hy. To do so, we will see first that f is continuous. Due
to the difference

F(2) = flz) = [ #au(t) = [ #0dutt) = [ @ =),

then

() = f()| < [ 16 = | dlpl )

Fix ¢ > 0. Since (¢, 2) +— t* is a continuous function in / x Hy (uniformly in ¢, because I is
compact), exists § := d(g) > 0 such that, if |z — 29| < ¢, then |t* —t*| < ¢, for every t € I.
Hence,

F(2) = F(0)| < & [ dlul(t) =< lull

which proves the continuity of f.

Now, let v be a closed piece-wise C! path in Hy. Then,

ﬁf(z)dz = j{y/ftzdu(t)dz. (2.3.5)
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Observe that

]if(z)dz

< ¢ Jietdule = § [ Odaid
< § [ dldlz] = ull L) < +oo,

where L(v) denotes the length of the curve 7. Hence, we can apply the Fubini’s Theorem to

(2.3.5), and we get
ﬁf(z)dz = /Iﬁtzdzdp(t) =0,

where the last inequality follows from the fact that ¢* is an holomorphic function, which allows
us to apply the Cauchy Theorem (Theorem 2.2.48). Therefore, by the Morera’s Theorem
(Theorem 2.2.47) we conclude that f is holomorphic in Hy. Moreover, we have proved on
(2.3.4) that f is bounded.

Now, we will see that f vanishes in all Hy. Without loss of generality, taking a subsequence if
necessary, we will suppose that {\;},ex is in one of the three cases of Lemma 2.3.3 when v = 1.

Observe that in Case 1 and in Case 2 happen that inf;cy A; > 0. So that, in this two cases
we will consider the function

1
+Z> e D.

o) =1 (7

Observe that g is the composition of a Mobius transformation from the disk to the right half-
plane (see (2.2.26)) and our function f. Hence,

e g€ H(D),
e g is bounded on D (since f is bounded).
This means that g € H>*(D). Moreover, from (2.3.2), we have that
fO,) =T@tY) =0, Vj=1,2,...,

s0, g(a;) = 0, where a; = 3+

Now we claim that

Aj
=+o0 =Y (1-laj|) =+o0
SNt =1 ’
Indeed,
\—1 AT — A — 1
R S P e
i>1 i>1 it =1 it

Hence, depending on if we are in Case 1 or in Case 2, we have two different possibilities:

e Case 1: 0 < A\; <1 for every j € N and lim; A\; = 8 > 0: In this case,

38



for every j € N; so
2\,
Y (1—ay) > —L =

i1 j>1

. 2)\j .
since 37 0, when j — 4o00.

e Case 2: \; > 1 for every j € N: In this case,

NAL—|\—1]=2

Thus,

2
do(I=lay) =2 = +00,
i1 ToEA

since when inf ey A; > 0, the series
1 A
Z — and Z J
i1 AL

are equivalent.

Therefore, applying Theorem 2.2.43, we deduce that g(z) = 0 for every z € D. In particular,
f =0 in H,.

Now suppose that we are in Case 3, that is 0 < A\; < 1 for every j € N and lim; \; = 0. Let’s
consider

g(z)=f(z+1), (z€D).

Hence, ¢ is holomorphic in the unit disk and bounded (f is bounded), so g € H*>°(D). Moreover,
since f vanishes in A; for every j =1,2,..., then g vanishes in \; —1 € D.

Now, since 0 < A\; < 1 for every 7,

1—|N—1] = Aj > = +o00.
j=1 j=1 j=1 )‘?‘i_l

Therefore, Theorem 2.2.43 yields that ¢ = 0 on the open disk. Therefore, f(z) = 0 on the
open disk with diameter [0,2]. Now observe that f is analytic on Hy; hence, by the Identity
Principle (Theorem 2.2.46) f = 0 whenever Re(z) > 0.

Thus, in all the cases, f = 0 in Hy. In particular,
T(t) :/tkd,u(t) — f(k)=0, k=0,1,2,....
I

This concludes the proof of the Lemma.
O

As a consequence of Lemma 2.3.4, we have the following Miintz-Szédsz Theorem extension in
the dense case:
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Theorem 2.3.5 (Full Miintz-Szasz Theorem). Let {\;}52, be a sequence of different positive
real numbers and X the closure in C ([0,1]) of the set generated by the finite linear combinations

of the functions 1,z™M ™2 .. .. If
+

g

Aj
A5 +1

= —|—OO7

<.
Il
-

then X = C ([0, 1]).

Proof. By the Weierstrass Approximation Theorem (Corollary 2.1.7), it is enough to see that
every function x*, with k& € N, belongs to X. Suppose, on the contrary, that exists ky € N,
ko # 0, such that z* ¢ X (that is, X C C([0,1])). Clearly, z* € C([0,1]), and due to the
Corollary 2.2.41, exists a linear and bounded functional 7": C ([0, 1]) — R such that

T(z*) #0 and T‘X =0.

Since T satisfies the hypothesis of the Riesz-Markov-Kakutani Representation Theorem (The-
orem 2.2.37), there exists a unique regular Borel complex measure p such that

T() = [ wl0)du(t), Vo €€ ((0,1)),
satisfying also

() T(#) = Jg thodp(t) #0,
(i) T(tY) = [} thdu(t) = 0,5 =1,2,....

By Lemma 2.3.4, since T satisfies (2.3.2), we have that T'(t*) = 0, which contradicts the fact
that T'(t*) # 0. Thus, t* € X and X = C ([0, 1]).

O
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3 RECIPROCAL ON FULL MUNTZ-SZASZ APPROX-
IMATION THEOREM

On the previous chapter we have seen that a sufficient condition for the Full Miintz-Szasz
Theorem (Theorem 2.3.5) is that Y757 X;/(A\? 4+ 1) = +oo for an arbitrary sequence {);}52,
(Ao = 0) of distinct nonnegative real numbers. Our aim in this chapter is to prove that this
condition is also a necessary condition, i.e., that the reciprocal of the Full Miintz-Szasz Theorem
also holds.

On this chapter, we present different vectorial subspaces of the real valued continuous functions
space, which have some interesting properties about the zeros of its functions. To do so, we
will study some inequalities due to Newman, S.N. Bernstein and P. Chebishev (see [7] and [18])
which are related with that spaces.

Moreover, these vectorial spaces will also be very interesting for us due to it will turn out that
the subspace of the continuous functions (z*0, 2, ... a*) for the real values 0 < \g < \; <
-+ < A\, is a particular case of all of them for every n € N.

Finally, we will see that such properties can be used in order to prove the reciprocal of the Full
Miintz-Széasz Theorem arguing by contradiction.

3.1 Miintz Systems

On that section we begin by introducing the vectorial spaces. The order that we have chosen to
show them is from the biggest one to the smallest, since it turns out that each vectorial space
that we are going to study is contained in the previous one.

Even though in the previous chapter we have worked with C([0,1]), on this chapter we may
work in some sections with C([a, b]) for the real values a < b.

3.1.1 Chebyshev Systems

The first vectorial space that we study is the Chebyshev system. The ubiquitous of such system
lie at the heart of many analytic problems, particularly problems on C([a,b]), the space of real
valued continuous functions equipped with the uniform norm

[l = sup [f(2)].

z€la,b]

Although we will not see it in detail (since it is not the aim of these notes) the Chebyshev
systems will generalize the idea of the vectorial space generated by the orthogonal Chebyshev
polynomials T,,(z) = cos(n arcos z) for n > 0 and x € [—1, 1] (see [7] and [11]).

Then, on this section we will study this vectorial space, giving its properties and also presenting
an important result that will play an important role on the proof of the reciprocal of the Full
Miintz-Szasz Theorem.
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Definition 3.1.1. A sequence of functions (fx),;_, € C([a,b]) is called a Haar system on [a, b]
it
dim ({fo, fur. - fa)) =+ 1. (3.1.1)

A special type of Haar systems are the Chebyshev systems, which are those which also satisfies

fo(wo)  fi(zo) - fulzo)

fox1)  fi(zr) - ful2r)

det >0

folea) Filen) - fulen)

whenever zg < z1 < -+ < &, {x;}, C [a,b].

We will say that the Chebyshev system (fi);_, is complete if (fi);-, is a Chebyshev system
for every 0 < m < n.

Remark 3.1.2. On this section, we will consider a Chebyshev system to be a complete Cheby-
shev system.

Now, we will see a characterization of the Chebyshev systems. However, we need first an
important definition.

Definition 3.1.3. We call the point x € [a, b] a double zero of f € C([a,b]) if f(x¢) =0 and
flrzo—¢e)- f(xzg+¢€)>0

for all sufficiently small € > 0 (in other words, if f vanishes without changing sign at z).
Otherwise, we call xy a simple zero of f.

Proposition 3.1.4 (Zeros of functions in Chebyshev Spaces). Let (fi),_, C C([a,b]) be a
Chebyshev system. Then, every 0 # p € (fo, f1,..., fn) has at most n distinct zeros in [a,b].
Moreover, p has at most n zeros in [a,b] even if each double zero is counted twice.

Proof. Suppose that p has n + 1 distinct zeros in [a, b, namely a < g < 21 < -+ < x, < b,
and assume that p = >7" , i f; for some p; € R. Then, we have the homogeneous linear system

fo(zo)  fi(wo) -+ falzo)\ [Ho 0
folx)  filz) - fal@) | [ 0

folea) Filwn) - fulen)) \m) 0

Since the determinant of such homogeneous linear system is different from zero implies that
the only solution is y; = 0 for every ¢, which contradicts the fact that p # 0. Thus, p has at
most n distinct zeros.

Now we assume that p has at least one double zero and p has at least n+ 1 zeros if each double
zero is counted twice. We denote the distinct zeros of p by a < t; < --- < t;; < b and add to
these points the point t; + ¢ for each double zero t; and also t; — ¢ for the first double zero.
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Observe that we can take ¢ small enough such that the additional points are different from
t1,...,tx and are contained in [a, b], for example

e =min{(t; — a)/2, (ts — t1)/2, .., (e — toe1) /2, (b — ;) /2},

since in a and b we can not have a double zero. Furthermore, the resulting set contains at least
n + 2 points. This can be seen due to we are adding to the set of points tq,..., ¢, the point
t; + ¢ for each double zero (so a total of at least n + 1 points) and we also add the point ¢; — ¢
for the first double zero.

We arrange these in increasing order and relabel the first n+2 of these points as sg, S1, ..., Spt1-
We claim that the values p(s;) must then alternate in sign in the sense that p(s;) > 0 for ¢ odd
and p(s;) < 0 for i even or vice-versa.

To see this, observe that in this arrangement there is some ¢ such that p(s;) # 0 (otherwise p
would not have a double zero). So take

Jjo=min{i: 0 <i<n+1and p(s;) # 0}

and consider s;,. Then, for k < jo, p(sx) = 0 and so p(sy) alternates in sign. By the definition
of jo, necessarily p(s;,4+1) = 0 and sign(p(s;,)) = sign(p(s;y+2)) (sjo+1 is the first double zero).
Now suppose that j, is even since the case that jy is odd is completely analogous. Then,
J1 = jJo + 2 is also even. Therefore, if there is no more double zeros, we are done since this
would mean that the other points are all simple zeros. Otherwise, take

Jo=min{i: 1 +1<i<n+1andp(s;) #0}.

Hence for all j; + 1 < i < jo, p(s;) = 0, then p alternates its sign

(=1 =i +1)=0U2—05)—2
times. Observe that s;, “keeps” the sign of s, o since s;,_; is a double zero. So, if j; is even,
then

sign(p(sj,)) = sign(p(s;,))
otherwise
Sign(p(sjo)) = _Sign(p<8j2))’

and then the alternation property of sign of the values p(s;) holds.
In either case, observe that if p(s) = 31", Aifi(s), then clearly

p(so) p(s1) -+ p(Snt1)

fo(So) fo(Sl) fO(S‘nJrl) _ 0

fn(s0)  fuls1) fn(s.n—l-l)

since the first row is a linear combination of the following rows. Upon expanding the determi-
nant along the first row and using that

fo(wo)  fi(zo) - fulzo)
fox1)  fi(zr) - ful21)

. . . . >O
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whenever zy < z1 < -+ <z, {x;}, C [0, 1], we obtain

n+1

> (=1)'p(si)a; =0

=0
where a; are the n X n minors which are strictly positive.

Hence, since the p(s;) alternate in sign, we can consider (—1)"p(s;)a; > 0 for every i (otherwise
multiply p by —1), and this implies (—1)'p(s;)a; = 0, or what is the same, p(s;) = 0 for every
i €{0,...,n+ 1}, which yields a contradiction.

O

Definition 3.1.5. Let (fi);_, € C([a,b]) be a Chebyshev system. If g € C([a,b]) and p €
(fo, f1,- ., [n) satisfy

lg — p||[a7b] = 4o

then p is said to be a best approximation to g from (fo, f1,..., fa)-

The following result ensures the existence of such best approximations.

Proposition 3.1.6. Let (fi);_, C C([a,b]) be a Chebyshev system and let g € C([a,b]), then
there exists a best approximation to g from {(fo, f1,. .., fu)-

Proof. Take q € {(fo, f1,---, fn). If

inf g = hlljay

lg = 9llapy =, . inf

we are done. Otherwise, consider
T:={pe(fo, fr,---, fu): lIp— QH[a,b] <llg- Q||[a,b] + 1}

Since dim ((fo, f1, ..., fn)) =n+ 1 < 400, the set T is a compact subset of (fo, fi,..., fa)-

Now, by the definition of infimum, there is a sequence (p;)7_; C T" such that

—m. < 51 inf
lg =Pillpy <57+, _in

(foseerfn) ||g o h||[a,b]7 for all ] 2 1.

Therefore, since T is compact, (]%’)?:1 has a convergent subsequence with limit in 7" C (fo, f1,. .-, fa)
and this limit is so a best approximation to g from (fo, f1,..., fa)-
O

Definition 3.1.7. Let g < --- < x,, be n+ 1 points of [a,b]. Then, (zo,...,x,) is said to be
an alternation sequence of length n + 1 for a real valued f € C([a, b)) if

|f(xl)| = Hf”[a,b]v i=0,1,....n

and
sign(f(z;41)) = —sign(f(x;)), i=0,1,...,n— L.
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Lemma 3.1.8 (Functions in a Chebyshev Space with Prescribed Sign Changes). Let (fi);_,
C([a,b]) be a Chebyshev system on [a,b], and let

a<n<z:<-<z,<b 0<m<n.

Then, there is a function p* € (fo,..., fn) such that

(i) p*(x) =0 if and only if x = z; fori=1,2,...,m,

(ii) p*(x) changes sign at each z;, 1 =1,2,... ,m.

Furthermore, if m = n then p* is unique (up to a constant).

Proof. If m = n, take

" fo(Zl fl(Zl fn(Zl
p(.T): : : : €<f0,.. 7fn>
fO(Zn> fl(Zn) fn(zn)
Then, clearly p*(z;) = 0 for every i = 1,...,n. Moreover, recall that a function in a Chebyshev
Space has at most n distinct zeros (Proposition 3.1.4) which implies that z; < 2o < -+ < 2z,

are the only zeros of p*.

Finally, we have to see that p*(x) changes sign at each z;, i = 1,2,...,m. If y; € (2, z;41) for

some 1, then

f0(21) fl(Zl) fn(Zl)
folyi)  f1(vi) fulwi) : : 3
ol%1 1(21 nl21 ) fO(Zi) f1<zi> fn(zz)
) — f(E ) f(E ) f( | I A Ia) |
fo(zn)  f1(zn) fn(2n) fo('zz”l) f1(z;-+1) fn(?«;z‘ﬂ)

and since z; < -+ < z; <Y; < Zip1 < -+ - < z, and the fact that (f;),_, is a Chebyshev system
imply that sign(p*(y;)) = (—1)". Similarly, if @ < yy < 2, and z, < y, < b, sign(p*(yo)) = 1

and sign(p*(y,)) = (—1)" respectively. Thus, p* is our desired function.

If m < n, take

fox)  fi(x) fm(2)
pH(z) = fO(;Zl) fl(fﬁ fmszl) € (forrn fn)-
fo(zm)  fi(2zm) Jm(Zm)

Since we are considering that (fy);, C (fx)r—, is also a Chebyshev system, then for what we

have seen above, p* is our desired function.
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Finally we have to show the unicity when m = n. Let ¢* = >2I" g a;f; and p* = >0 b; f; two
Chebyshev functions satisfying (i) and (7). If a,, = 0, then since (f;)}Z, is also a Chebyshev
system, it implies that ¢* is a Chebyshev function on ( fk)Z;é with n distinct zeros, which is
impossible unless ¢* = 0 (since it has at most n — 1 zeros).

If a,, # 0, then consider

= o = 3 (1= 22 € G S

and again, p* — (b, /a,)q* has n zeros, which only holds if p* = (b,/a,)q*
U

Proposition 3.1.9 (Alternation of Best Approximations). Suppose (fi)r_, € C([a,b]) is a
Chebyshev system. Then, p € (fo, f1,---, fn) is a best approximation to g € Cla,b] from
(fo, f1,-- -, [n) in the uniform norm on |a,b] if and only if there exists an alternation sequence
of length n+ 2 for g —p on [a,b].

Moreover, in this conditions such p is unique.

Proof. Assume first that p is a best approximation of required type and suppose an alternation
sequence of maximal length for g — p is (xo, ..., z,,) where z; € [a,b] and where m < n + 1.
Suppose, without loss of generality, that g(zo) — p(xo) > 0 (otherwise multiply g — p by —1).
Now let

Vi=A{z ela,b]: [g(x) —p(@)| = llg = pllnyt- (3.1.2)
Note that Y is compact and clearly z; € Y for every i (by the definition of alternation sequence).
Since (zo, ..., Tm,) is an alternation sequence of maximal length, we can divide Y into m + 1

disjoint compact subsets Yy, ...,Y,, with g € Yy, ..., 2,, € Y,, so that

sign(g(z) — p(x)) = —sign(g(y) —p(y)) # 0, = € Y3,y € Yis,

fori=0,...,m—1.

Now choose m points z; < 29 < -+ < z,, such that

maxy; ;1 <z <minY;, t=1,2,...,m,
where
maxY; ;:= max y and minY; := miny.
yeY;—1 yey;

Then applying Lemma 3.1.8, there exists a unique (up to a constant) Chebyshev function
p* € (fo, f1,- .., fn) such that p*(z) = 0 if and only if z = z; for i = 1,...,m, and p* changes
sign at each z;, i = 1,..., m. Therefore, since

maxY; 1 < z; <minY; < maxy; < z;;1 < minY;4
fori=1,...,m — 1, we can assume
SlgnzeYz(p*@f)) = (_1)Z = SignxGYi((g - p)(x>)7 i = 07 17 e, M
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We now claim that, for § > 0 sufficiently small,

lg = @+ 80 gy < 19— Pl - (3.13)

which contradicts the fact that p is a best approximation (since p + 0p* € (fo,..., fn)), and
so there must exist an alternation set of length n + 2 for ¢ — p on [a,b]. To verify (3.1.3) we
proceed as follows.

First recall that g(zo) —p(zo) > 0 (then g(x) —p(x) > 0 for every = € Yj) and g—p alternates its
sign in the compact sets Y;. Hence, since the sets Y; are all compact sets, and by the definition

of Y in (3.1.2), for each ¢ = 0,1,...,m we can choose an open set O; C [a,b] (in the usual
metric topology relative to [a,b]) containing Y; so that for every z € O;,
sign(g(x) — p(x)) = sign(p*(x)) (3.1.4)
and ]
l9(x) = p(@)| = S 1lg = lljay - (3.1.5)

Observe that (3.1.5) holds due to ¥; C Y. Now pick a 6; > 0 such that for every z € B :=
[a,b] \ U, O; and § € (0,61),

l9(x) — (p(x) + 6p™(2))] < |g(z) — p(x)| + d[p" ()] < lg = pll0y -
which can be done since B is compact and by construction ¥; N B = (), so we have that
lg = pllg <llg =Dl -
For example, we can take

Mg =Py —llg—pls _ 19 = Plly — g —plls

01
21|l 5 l*]1 5

Now note that (3.1.4) and (3.1.5) allow us to pick a d, > 0 such that for z € A := J, O; and
d € (0,09),
9(z) — (p(x) + 0p" (@) < lg — Pl 0y - (3.1.6)
For example, we can take
g _pH[a,b] ||g_pH[a,b}
52 - k k
2([p*ll4 1% 4

Soifz € U, O;, we have that x € O; for some i. Then, (3.1.5) first implies that g(z)—p(x) # 0.
Moreover, (3.1.4) yields that we can consider the following cases:

e Case 1: g(x) — p(z) < 0, then p*(x) < 0. So we have the inequalities
(9(z) — p(x)) — 0p*(x) > g(z) — p(z) = —|9(z) — p(@)| = = [lg = P[0y
and

(9(z) — p(x)) — dp*(z) = (9(z) — p(x)) + d|p"(v)]

R A€ol
< (9(x) — p(z)) + =

<P =9l = (=) = 9(2)) < llp = gllfasy -

||p - gH[a,b]
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e Case 2: g(x) — p(z) > 0, then p*(x) > 0. So we have the inequalities

(9(x) = p(x)) = 0p™(z) < g(z) — p(x) = |g(z) — p(x)| < [P = gll 0y

and
(g(x) — p(x)) — 0p*(z) = (9(x) — p(z)) — d|p™(x)]|
> (9(a) - pla) — 'ﬁpfﬁ' Ip— alls

v

(9(z) = p(z)) = lp - 9||[a,b] > —|lp— 9||[a,b] :

Thus, all together clearly implies (3.1.6). Therefore, taking § € (0, min(dy, d3)) verifies (3.1.3)
and finishes the first part of the proof.

The proof of the conversely is simple. Suppose that there is an alternation sequence of length
n + 2 for g — p on [0, 1], and suppose there exists a p* with

19 =P e < Nlg = Pllas -
Let xy < -+ < x,41 be the alternation sequence for g — p on [a, b], then
(g = p)(@:)] = lg = Pl
fori=0,...,n+1, and

sign((g — p) () = —sign((g — p)(zi1))

fori=20,...,n.

Now fix i € {0,...,n+ 1} and suppose first that sign((¢g — p)(x;)) = 1. Hence,

(g =p)(@i) = g = plly > g =P llfap = (9 =) (@)

Therefore,
(p" = p)(w:) = (g — p) (i) — (g —p")(2:) > 0.

Moreover, sign((g — p)(x;+1)) = —1 and
(9= p)(@i1) = —|lg— pH[a,b} <—llg- p*H[a,b} < (g9 —p)(@is1)-

Therefore,
(p" = p)(wip1) = (9 — p)(iy1) — (9 — p")(wi11) < 0.

If sign((g — p)(z;)) = —1, we similarly see that
(p" = p)(@i) = (g = p)(x5) = (g = p")(zi) <O

and
(0" —p)(Tit1) = (9 — P)(@is1) — (9 — P")(Tiy1) > 0.
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Then p* — p alternates its sign at least n + 1 times, one between two consecutive alternation
points of g—p on [a, b]. So, it has at least n+1 distinct zeros on (a, b) and, by Proposition 3.1.4,
p* — p must be the zero function.

Now, if g has another best approximation p; € (fo, f1,..., fa), then ||g — p1||[a,b] =g — p||[a7b}.
So, by the alternation characterization, as we argue above, p; — p has at least n 4+ 1 zeros on
(a,b). Finally, Proposition 3.1.4 implies that p; = p.

O

Proposition 3.1.9 allows us to define the Chebyshev polynomial function for a Chebyshev system
(fr)r—o, following the notation of [18].

Definition 3.1.10. Let (fi);_,  C([a,b]) be a Chebyshev system, recall that then (f);—y C
C([a,b]) is also a Chebyshev system. So, there exists a best approximation P, to f, from
(fo, f1,- -, fu—1) which, by Proposition 3.1.9, P, is unique. We say that

n - Pn
T, = —f
an - PnH[a,b]

is the Chebyshev polynomial associated with the Chebyshev system (fi);_,.

One can easily see from the results above that 7T, satisfy the following properties.

(1) Tn € <f07f17---7fn>7

(i) there exists an alternation sequence (zo, x1,...,x,) for T, on [a,b], and
(i) [Tl = 1.

Observation 3.1.11. Since any function in (fo, f1,. .., f») has at most n distinct zeros, T, has
exactly n distinct zeros which are not double zeros, one between two consecutive alternation
points of T,,.

Now, let’s see a technical lemma that will be very useful on these chapter.

Lemma 3.1.12. Let f,g € C([a,b]) such that ||f||j, s = 9]l # 0. Suppose that f hasn + 1
alternation points in [a,b]. Then, f+ g has at least n zeros, where we are counting each double
zero twice.

Proof. First let’s see that between any two consecutive alternation points of f, of which there
are n+1, there is at least one zero of f=+g, where may some of them coincide with an alternation
point of f.

Let g < 1 < -+ < x,, be the n + 1 alternation points of f and take some i € {0,...,n — 1}.
Assume that |[f]|,; =1 = [lgll,, (otherwise divide f and g by their norm). So we have the
following cases:

(i) f(x:) = Fg(z:), then f(x;) £+ g(z;) =0,
(i) f(win1) = Fg(ziv1), then f(riq) £ g(zipr) =0,
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(ili) f(z:) # Fg(xi), f(ir1) # F9(@ir1) and f(z;) = =1 = —f(@;11). Then,
flzi) = =1 <Fg(z;) and f(zir1) =1> Fg(@in).

Hence, f(z;) £ g(z;) <0 and f(z;41) £ g(xi+1) > 0, which implies that f + g vanishes at
least in one point in the interval (x;, z;11).

(iv) f(zs) # F9(zs), f(wiy1) # Fg(@iyr) and f(x;) =1 = — f(@;41). Then
f(z:) =1>Fg(z;) and [f(zi1) = =1 < Fg(Tit1).
Hence f(x;) £ g(z;) > 0 and f(x;41) £ g(x;11) < 0, which implies that f £ ¢ vanishes at

least in one point in the interval (z;, z;11).

Thus, the claim follows. Now, observe that if we are in either case (i) or (ii), this zero of
f £ ¢ is at an internal alternation point of f. In that case, when (f £ g)(z;) = 0 for some
i€{l,...,n— 1}, we claim that either z; is a double zero of f & g or there is at least another

zero of f =+ g in [2;1, xi] \ {2}
Assume that z; is not a double zero. So, we can consider the following:

e Case 1: f(x;—1) £ g(xi—1) =0or f(xip1) £ g(z;41) = 0, and the claim follows.

e Case 2: f(wi—1) £ g(zi—1) # 0 and f(xi11) £ g(zi41) # 0 and (f £ g)(x) # 0 for every

r € [viq,m). If f(ziy) = =1 < Fg(wi1) (vesp.  f(zio1) = 1 > Fg(xi1)) then
f(ziy1) = =1 < Fg(ziy1) (resp. f(xiy1) =1 > Fg(xi41)). Now take € > 0 small enough
such that

(fxg)(zi—e)(fLg)(z;+¢) <0

and (f £ g)(z; +96) # 0 for all 0 < § < e. Then, by the continuity of f + ¢g and since
(f £9)(x) #0 for every « € [z;_1,x;), it yields that

f(z;—e) £ g(xi—¢e) <0, (vesp. f(z;i—¢)xg(z; —¢)>0)

and
flzi+e)Lglax;+e) >0, (resp. f(z; +¢)£g(x;+e)<O0).

Therefore, we have that in particular f(z; +¢) £ g(x; +¢) > 0 and f(z;41) £ g(zi41) <O
(resp. f(x;+¢) £ g(z; +¢) <0 and f(zi41) £ g(zi41) > 0), which implies that there is
at least one zero in the interval (x; + &, z;41).

e Case 3: f(wi—1) £ g(zi—1) # 0 and f(xi11) £ g(zi41) # 0 and (f £ g)(x) # 0 for every
xr € (x4, r;11]. Similarly as in the Case 2, we see that there is at least one zero in the
interval (x;_1,2; — €), for some small enough ¢ > 0.

This proves the claim. Now, in counting the zeros that f + ¢g has between two alternation
points of f, we see that it must have at least n zeros if we are counting each double zeros
twice. This occurs because if we have three consecutive alternation points x; 1 < x; < x;11
(1 < i < n—1) then either we have at least two different zeros y; and y» such that z; | < y; < z;
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and z; < yo < x;41; or we have a double zero at x; (which is counted twice). All in all, f +g¢
has at least as many zeros as the number of pairs of alternating points

To < T1,T1 < Toy...,Tp 1 < Ty, (3.1.7)

which are exactly n.
This ends the proof of the lemma.
O

Finally we introduce the most important result on this section, which characterizes the zeros
of a Chebyshev polynomial. We want to remark that this result will take an important part on
the proof of the Full Miintz-Szasz Theorem.

Proposition 3.1.13 (Zeros of a Chebyshev Polynomial). Let n > 4 and let

T = (fo, s foe1, o) and Sy = (fogs---s fo,) (0< 09 <+ <0 <n)

be Chebyshev systems on [a,b]. Consider T,, = T, 7 and S, = S,.s, the associated Chebyshev
polynomials of the Chebyshev systems T and S, respectively. Then between two consecutive
zeros of S, there is at least one zero of T,,.

Proof. First observe that since (fo,..., fn_1, fn) is a Chebyshev system on [a,b], T,, + S, €
(fo,- -, fn_1, fn) have at most n zeros (Proposition 3.1.4). So, by Lemma 3.1.12, T,, £+ S,, must
have exactly n zeros if we are counting each double zero twice.

Our aim is to proof that between two consecutive zeros of .S,, there is at least one zero of T,,.
To do so, we will suppose the contrary and we will reach a contradiction by the properties of
the zeros of the functions T,, + 5,. Hence, suppose that there are two consecutive zeros of S,
without any zero of T, between them, i.e., S, has at least two consecutive zeros between two
consecutive zeros of T,,. Namely

21 <Y1 <Yz < 29

such that
To(2) = Su(y;) =0, (j=1,2).
Let ;1 < x; < x;41 be the three consecutive alternating points of T}, such that
Ti1 <21 <% < 22 < Tjg1,
for some i € {1,...,n — 1}. We claim that in these conditions, either T,, + S, or T,, — S,, has

four zeros in [x;_1,2;11] (where we are counting each double zero twice).

For proving the claim, our first step is to see that in the interval (yi,y2) C [x;_1, Z;y1], either
T, + S, or T,, — S,, has two zeros (where we are counting the double zeros twice).

So observe that we can assume T,(y;) > 0, since T,, £ S,, and —(7,, F S,,) have the same
number of zeros. By the continuity of 7, it follows that 7,,(y2) > 0. Moreover, we assume that
Sn(y) > 01if y € (y1,y2) (otherwise, multiply S,, by —1 since we are working with T,, + S,, and
T, — Sp). Therefore, we are going to work with 7, — S,,.
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Observe that there is a point § € (y1,y2) such that S,(7) = 1 (since between two consecutive
zeros of a Chebyshev polynomial there is an alternation point). Hence, necessarily T, (3) <

Sn() = 1.
First, if T,,(9) < S.(9), then T,, — S,, has at least one zero in the intervals (yi,9) and (7, y2)
respectively (since T,,(y;) — Sn(y;) = Tn(y;) > 0, for j =1,2).

On the other side, if T,,(§) = Sn(§) = 1, since T,, is determined by the n + 1 alternation points
(due to in the definition of a Chebyshev polynomial, the determinant (3.1.1) is greater than
zero and the matrix is invertible), necessarily § = xo. If 25 is a double zero of T,, — S,,, then it
will have at least two zeros in the interval (y;,y2). Otherwise, there will exists an € > 0 small
enough such that

(Tn - Sn)(?j - 5) ) (Tn - Sn)@ + 5) <0

and y; < J—e<y<g+e<ys Soif (1, —5,)(§—¢) <0, since (T,, — Sp)(y1) = Tn(y1) > 0,
T, — S, has at least a zero in the interval (y;, 9 — ¢). Conversely, if (7,, — S,)(J +¢) < 0, since
(T, — Sp)(y2) = Tn(y2) > 0, T,, — S, has at least a zero in the interval (§ + €, ya).

All in all, T,, — S, has at least two zeros in the interval (y;,yz).

To end the claim, observe that since T, (y;) — Sn(y;) = Tn(y;) > 0 (j = 1,2) and T),(z;—1) —
Sn(xi—l) = —-1- Sn(xi—l) S 0 and Tn(xi+1> — Sn(xi—l—l) = —-1- Sn(xi—i-l) S 0 we have that
T, — S, has at least one zero in the intervals [x;_1,y;) and (ys, z;11] respectively.

Therefore, either T, + S,, or T,, — S,, has four zeros in [z;_1,z;11] (where we are counting each
double zero twice). Our final step is to see that it is not possible the existence of the four zeros.

Assume that T,, — S, has four zeros in [x;_1, ;1] (where we are counting each double zero
twice) since the case T), + S, is completely analogous. For simplicity in counting the zeros of
T, — S, we will relate them with the pairs of alternation points (3.1.7) by saying that T;, — S,
has n zeros, one for each pair.

So, if these zeros are different from x; ; and x;,1, and since T,, — S,, has a zero for each pair of
alternation points, for the n — 2 pairs

To < T1,T1 < T2y, Tig < Ti1,Tip1 < Tjy2, Tn-1 < Tp

in addition to the four zeros in the interval (z;_1,z;41), we have that T,, — S, has at least
n—2+4=mn+4 2 zeros, but T,, — S,, has n zeros.

If either z; 1 or x;;4 is a zero of T}, — S,,, but not both, then T}, — 5, will have one less pair of
consecutive alternation points (either the pair x; o < x;_ 1 or the pair z;,1 < z;42). All in all,
T, — S, will have at least n —3+4 = n+ 1 zeros, but again we know that T,, — S,, has exactly
N Zeros.

Finally, if z;_y and x;,; are zeros of T,, — S, then they must be not double zeros, since if we
are counting them once, we have at least the zeros of the n — 4 pairs (without considering the
pairs x; o < x;_1 and ;41 < x;2) plus the four zeros in the interval [z; 1, x;11], which are a
total of at least n — 4 4+ 4 = n zeros for T,, — S,,. So, if we count them twice, we will get n + 2
zeros for T,, — S,,, which is not possible. Then, suppose that z;_; and z;,, are both simple zeros

of T,, — S,

Now observe that since n > 4, we can consider either the alternation point x; o or z; o (de-
pending on if i > 2 or ¢ < n — 2). Assume that ¢ > 2, since the other case is completely
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analogous. As before, we can assume that (7,, — S,)(v1) = To.(y1) > 0.
Then, if there is no zero in the interval (z;_1,y1), by the continuity of T,, — S,,, we have that

for any 0 € (0,21 — ;1)
(Tn — Sn)(l‘i_l + 5) > 0.

Moreover, since x;_ is not a double zero, for a small enough § > 0, (7,, — S,,)(z;—1 — ) <0
and, since (7, — Sp)(wi—2) = 1 — Sy (x;—2) > 0, there is at least a zero of T}, — S, in [x;_9, 2;_1).

If the zero is different from z;_5, then we have to add one more zero to T,, — S,, (which is not
possible). Otherwise, x;_» must be a simple zero and we can argue analogously with z;_3 (if
i > 3). Iterating, until we get that the alternation point z is a zero of T,, — S,,, we finally reach
the same conclusion of adding another zero to T,, — S,, (which is the z) and again we know
that it is not possible.

Therefore, there are not two consecutive zeros of .S,, between two consecutive zeros of T;,. Thus,
there exists at least one zero of T,, between any two consecutive zeros of .5,,.

U

3.1.2 Descartes Systems

Another vectorial space about we will talk is the Descartes system. This system results to be
a particular case of a Chebyshev system. We have seen that the Chebyshev systems capture
some of the essential properties of polynomials. We will see that the Descartes systems capture
some additional properties.

For this vectorial space, we have followed the notation of [7] and [18].

Definition 3.1.14. We say that a Haar system (fo, ..., f,) is a Descartes system on [a,b] if
for every m < n,

fio(xo)  fir(z0) -+ fi,(20)
det | . o

Fo@m) Falim) o finzm)

holds whenever 0 < ijg <3 < -+ <t <nanda<zg <1 < -+ < Ty, < b.

Observe that when we take m = n we have exactly the definition of a Chebyshev system. The
following version of the Descartes’ rule of signs holds for Descartes systems.

Proposition 3.1.15 (Descartes’ Rule of Signs). If (fo, ..., fu) is a Descartes system on |a,b],
then the number of distinct zeros of any

O#fzzaz‘fm a; €R
i=0

is bounded by the number of sign changes in (ao, ... ,a,), where we are considering a sign change
between a; and a;yp when a;a;v, <0 and a;p1 = Ao = - = a1 = 0.

33



Proof. Suppose that (a, ...,a,) has p sign changes. Then, we can partition {aq,...,a,} into
exactly p 4+ 1 blocks so that each block is of the form

Anp+1s Ong+25 - -+ 5 Qngy gy kZOala"'ap

(no := —1, nyyq := n), where all of the coefficients in each of the blocks are of the same sign,
not all the coefficients in a block vanish and the last coefficient in a block is different from zero.
Assume without loss of generality that the first block aq, ..., a,, is a “positive block”, that is
Ao, a1, ..., ap,—1 > 0 and a,, > 0 (otherwise, consider —f).

Now let

Nk+1
gk ‘= Z |ai|fi7 k:O)lw"ap'
i=ng+1

Then, for 0 <zp <21 < -+ <, <1,

9o(o) g1(zo) -+ gp(o) 2i- n0+1 |ai| fi(zo) -+ Z”;+1|az|f1( 0)

4 go(x1) gi(x1) - gplz1) D itng+1 !a@\f@( ) e ZPZ;H\CLM( 1)
et : : : = det .

9o(wp) gi(wp) - gplzp) it ot |az|fz($p) Z?EZ;+1|ai|fi($p)
fio(xo)  fir(x0) -+ fi, (o)
i " fig(@1)  fi,(x1) -+ fi(21)

=Y > agg| - |ag, |det . , ' ' > 0,
i0=0  ip=ny : . T :
fio(p)  fir(xp) -+ fip (p)
since 0 < ig < 43 < --- < i, < n and each of the determinants in the sum is positive (we

have that (f;)7_, is a Descartes system). Thus, {go,...,g,} is a (p+ 1)-dimensional Chebyshev
system on [a, b], and hence

f=0—g+ -+(-1)7g,
has at most p zeros. This finishes the proof.
O

Now, we present a comparison theorem due to A.Pinkus [10] and, independently, P.W. Smith
[12]. Before showing it, we will see first a technical lemma.

Lemma 3.1.16. Let 0 < 0y < §; < -+ < ds < n and let (fs,,- .., fs.) be a Descartes system in
la,b]. Take a < z1 < -+- < xs < b. Then there exists a unique p = fs, + Zf;& a; fs, such that
p(z) =0 if and only if x = x; fori=1,2,...,s. Moreover, such p has the following properties:

(a) p(x) changes sign at each x;, i =1,2,...s,
(b) a;a; 1 <0, fori=0,1,...,s —1, where as := 1,
(¢) p(x) >0, for x € (x4,b].

Proof. Since (fs,, ..., fs.) is also a Chebishev system, by Proposition 3.1.8 there exists a unique
(up to a constant) ¢ = >°;_, ¢; fs, such that
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(i) gq(z) =0 if and only if z = x; for i =1,2,...,s,

(ii) g(x) changes sign at each z;, i =1,2,...,s.

Moreover, the fact that (fs,,. .., fs._,) being also a Chebishev system implies that gs; # 0, since
q has exactly s zeros. So, consider

s

q q s—1
p=—=Y fs,=fo.+ D afs.
=0

ds i=0 4s

We claim that such p satisfies the desired properties.

First observe that we just have to see properties (b) and (c) (since the others are clearly
satisfied).

Observe that (b) is a direct consequence of Proposition 3.1.15, since p has s zeros and s
coefficients, then there must be exactly s sign changes on the coefficients. To see (c), observe
that for = € [a,b] we have for some constant

foo(1)  fs (x1) -+ fo (@)
foo(2)  fs (x2) -+ fo,(22)

: : o = up(e), (3.1.8)
f50(x8> f51 (]38) T f&s(xS)
f&)(x) fél(x) T f(ss(l’)

since the determinant above satisfies (i) and (ii). Hence,

f50(1'1> f51(x1> f5i—1<x1) f§i+1(‘r1) f5s(x1)
,up(x) :Z:(_l)s+if6i($) féO(sz) f51 (xZ) f&i—1z(x2) f6i+1z(x2) fés ("EZ)
f50(x5) f51 (QES) T f5i71(l’8) f5i+1 (ZL‘S) T f5s (Qfs)

= (1) fs.(2)bi

=0

where b; > 0 for i = 0,...,s, due to (fs,,..., fs.) is a Descartes system. Observe now that
since the coefficient on p of fs, is 1, we have that

= (=1)*b, = b, > 0.

Thus, since g > 0 and (fs,,- - -, f5.) is a Descartes system, by (3.1.8), p(z) > 0 for = € (x4, b].
U

Proposition 3.1.17. Let us assume that (fo, ..., fn) is a Descartes system on [a,b], and let

p:fn+zaszlaq:fn+zbzftz withaiabieR andmgn
=1 i=1
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be chosen such that 0 < t; < k; < n for all i € {1,...,m} with strict inequality for at least
one of the indexes i € {1,...,m}. If p(z;) = q(x;) = 0 for the distinct points x; € [a,b],
t=1,...,m, then

Ip(z)| < lg(z)], Vo € [a,b].

Furthermore, the inequality is strict for all x € [a,b] \ {z;}7,.
Proof. First suppose that there is an index j such that
t; <k; and t; =k; whenever i # j.

So we assume

p= fn+ajfkj + Z aifk‘i

i=1i#j
and

i=1i#j
where 0 < ky < ko < -+ < ky, <mand 0 < k;_; <t; <k; (of course the inequality k;_; < t;
holds only if j > 1). Then

pP—a=a;fe, =bif, + D (ai=0)fu, € (fors- s fryors ey Frys - s Fom)
i=1, ij

has at most m zeros on [a,b]. Since (p — q)(x;) =0 for i = 1,...,m, then p — ¢ has exactly m
zeros on [a,b] at z1,...,x,,. Moreover, this implies that a; # b; for i € {1,...,m} \ {j}.

Applying Lemma 3.1.16 (c) to p and ¢, we have respectively

p(z) >0 and q(z) >0, z€ (zp,b. (3.1.9)

Now we consider pu(p — ¢), where p is chosen so that the lead coefficient of u(p — ¢q) is 1. So
applying Lemma 3.1.16 (c) to u(p — ¢q), we have that

ulp(x) —q(x)) >0, x € (xm,,b. (3.1.10)

Observe that p — ¢ and p have the same coefficient for f;,. So by Lemma 3.1.16 (b) applied to
1(p — q) and p we have that between the sequence

pag, plajir —bji1), s fi(@m-1 — bin-1), 1

there are m — j sign changes for p(p—q) (if 7 = m, then there are no sign changes) and between
the sequence
Qjy Ajt1y - -5 my, 1

there are m — j 4 1 sign changes for p. This means that

sign(a;) = —sign(pa;).
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Therefore, ;1 < 0 and by (3.1.10) we have that

p(x) —q(x) <0, =z € (] (3.1.11)

Now, Lemma 3.1.16 (a) implies that p — ¢, p and ¢ only changes sign at zy,...,2,,. Then
observe that (3.1.9) means that p and ¢ has the same sign in [a, ], but (3.1.11) implies that
p — q alternates in sign with p and ¢ in [a, b]. Thus, when p(z) > 0 and ¢(z) > 0, p(x) < ¢(x)
and when p(z) < 0 and ¢(z) < 0, —p(z) < —¢(x). Therefore,

p(x)] < lg(z)|, Vo € [a,b].

Furthermore, since p — ¢ just vanishes at xi,...,x,,, then the inequality is strict for all z €
[a’ b] \ {ZL“Z iﬂll'

Finally, if there is more than one index such that t; < k;, then consider
jo=max{i: 1 <i<mandt <k}

Then, arguing analogously for j, we get the same result. This ends the proof.

3.1.3 Miintz Systems

Finally, we present the vectorial space that is related with the powers z** that we use on the
Full Mintz-Szasz Theorem. This powers will be of distinct nonnegative real numbers. We will
see that these spaces are a particular case of Descartes systems, and therefore, of Chebyshev
systems. Then, since they are smallest spaces, they will have more interesting properties than
the Descartes systems and the Chebyshev systems have.

As in the Descartes systems and the Chebyshev systems, we have followed the notation on the
references [7] and [18]. Moreover, on this section we will show some results that will be very
useful for the next section (Section 3.2) in order to state some inequalities that holds in such
systems.

Definition 3.1.18. Let (z*)7_, C C([a,b]), where 0 < a < b < +0o. We call Miintz systems
of order n the vectorial spaces

M(A,) == M({}iy) i= (@, ... ™),
where 0 = Ay < A\; < -+ < A\, < 400 and A, = { A\ }7y-

We have two important properties of the Miintz systems. The first one is the following propo-
sition.

Proposition 3.1.19. Let us assume that 0 < X\g < \; < --+ < A, < +00. Then (x)7_; is a
Chebyshev system on [a,b] C (0,+00), for every 0 < a < b < +0c0.
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Proof. Since \; # \; for every i # j, clearly dim ((x’\ﬂ, ML ,x’\")> =n+ 1. Now let
A ={(ap,1,...,a,) € R"™ 1 Fi #£ j such that a; = ;.

Then we claim that

xp’ af! "

Z.TO xfl . :L.Tn
D(po,...,pn) :=det | . L ] #0

xfl() xﬁl e xﬁn

whenever (pg,...,p,) ER"™\ Aanda <zy< - <z, <b

We will show it by induction on n. First, D(py) = z5° # 0 for every xy € [a,b] and py € R.
Moreover, for every (pg, p1) € R\ A and 0 < a < 2y < 7y < b,

2P0 P
__ |0 0| _ ,.p0,.p1 P1,.P0 __
D</007p1)_ 2P0 P =xgxy —xg ) =0
1 1

& afef (1-af el ™) =0

pP1—P0
o)

T

which is not possible since py # p; and xg < ;.

Hence, suppose that D(po, ..., pr) # 0 whenever 0 < k < n and observe that

:L,g() ’Ilo)l - xgn
.,L.TO xfl - x/{n
D(po,...,pn) = det
K I (3.1.12)
1 mgl—PO . :L‘gn_PO
O ER T
=z - xfdet | |
PI=PO ...  gPnPO
I e xhn

Since xf° - - - 2 # 0, we must check that the determinant on the right side of (3.1.12) is not
0 n

zero. Take v; = p; — po > 0 for i = 1,...,n and suppose that the determinant above is zero.
Then this means that the first column of the matrix is a linear combination of the others n
columns. Hence, there exist uq, ..., u, not all zero such that

1 = puzg + -+ g,
L = a4+ ppa)r.

Consider i
p(r)=1- Zuix” e (La™m, ... a"m).
i=1
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Clearly, p(z;) =0 for i = 0,...,n. Now take
p(r)=— Z piyerV Tt e (e ),
i=1

which is continuous in [a,b]. Since p(z;) = p(x;11) = 1 for i = 0,...,n — 1, by the Rolle’s
Theorem, p’ has at least n zeros, one in each interval (z;,z;11) (0 < i < mn —1). But by the
induction hypothesis, (z771)?_, is a Chebyshev system, which implies that p’ is a Chebyshev
function, and therefore, that p’ has at most n—1 zeros. This gives a contradiction on supposing
that the determinant in (3.1.12) is zero.

Now we take 7 : [0,1] — R™* \ A a continuous path defined by
7() = (1 =DAo, 1+ (L =)Ao n+ (L= 1)A)

such that 7(1) = (Ao, ..., A,) and 7(0) = (0,1,...,n). This is possible since 0 < \g < -++ < A,
and for i # 7,

i—j
Ai — A
but 1 —¢ > 0. The continuity of 7 and the continuity of the determinant implies that

<0

sign(D(r(0))) = sign(D(r(1))) = +1,

since the last determinant D(7(1)) is the well known Vandermonde determinant.
U

Observation 3.1.20. In particular, when 0 = Xy < A\; < -+ < )\, < 400, (zM)0_, is a
Chebyshev system on [a, b] C [0, +00), for every 0 < a < b < +00, since

1 0 0 M o
1 xi\l xi\n 1 1
det _ =det | : | #0
: A An
1 xf‘f x;\L" Tn' Tn

whenever 0 < 21 < -+ < x,, < +00.

Moreover, as a consequence of Proposition 3.1.19, we have the second property of the Miintz
systems.

Proposition 3.1.21. Let 0 = \g < A\; < --+ < A\, then (1,2, ..., 2™) is a Descartes system
on each interval [a,b] C (0, +00).

Therefore, we can define the Chebyshev polynomial for the system (2z*)?_, on the interval
[a,b] C (0,+00). Now, we show some of its properties.

Properties 3.1.22. Let A,, = {\e}}_g, 0= Ao < Ay < --- < A, and let T}, , be the correspond-
ing Chebyshev polynomial for the Chebyshev system (z**)%_; on the interval [a,b] C (0, +00).
Then, the following properties hold
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(i) Toa € M(A,),
(ii) there exists an alternation sequence (zo, 1, ..., z,) for T, in [a, b],

(iii) 75, » has n simple distinct zeros (i.e., with sign change), one between two consecutive
alternation points of 7T}, »,

(1) [Tl = 1.
(v) T}, , has n — 1 simple distinct zeros (one between two consecutive zeros of T, »),

(vi) 2o = a and z,, = b, so |Tj, x(a)| = |T,A(b)] = 1.

Proof. Properties (i), (ii), (iii) and (iv) follows by the definition of the Chebyshev polynomial.
Let’s show (v). Recall that there exist n simple distinct zeros vy, . .., y, such that T, x(y;) =0
for 1 <i < n. Hence, by the Rolle’s Theorem, T} , has at least n — 1 simple distinct zeros in
(a,b), one in each interval (y;,y;+1) (1 <i<mn—1).

Since T, , € (zM~!, ... x* ) and (zM71, ... 2?7 !) is a Chebyshev system in [a, 0], T}, , hast
at most n — 1 zeros. Therefore, T}, \ has exactly n — 1 simple distinct zeros.

Finally, it remains to see (vi). Let xo,1,...,2, be the alternation points of T), x. If a < z,
there exists some small enough ¢ > 0 such that a < zo—¢ and |7}, x(xo —€)| < 1, which implies
that in o there is a change of monotony of T}, 5. Hence, there is another zero of T},  at o < yo,
which is impossible since T} , has exactly n — 1 simple distinct zeros. Similarly, we have the
same result for b. This finishes the proof.

O

Observation 3.1.23. Indeed, the n — 1 zeros of T} , coincide with the alternation points
Ti1yevoy, Tp—1 of Tn)\.

We will use these results with the Miintz systems
M(An) = M({Aeti—o) and M(T'n) = M({vetio)
taken in [0, 1], where we assume that
O=Xd <M <--< A\, O=rp<m<-<Mm

and A\, > 7 for all k. With this idea in mind, we take s € (0,1) and denote by T, and
T, the Chebyshev polynomials associated with M (A,) and M (I',,) respectively on the interval
[1—s,1].

The following lemma study the monotony of the Chebyshev polynomials 7}, x and T, ,.

Lemma 3.1.24. The continuous functions |T,\(x)| and |T,~(z)| are monotone decreasing
functions on the interval [0,1 — s].  Furthermore, if \y = y1 = 1, then also |T), \(x)| and
T}, (x)| are monotone decreasing on the interval [0,1 — s].
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Proof. Recall that by the properties of the Chebyshev polynomials on the Miintz systems we
have that T,, , has n zeros in (s — 1,1) (one between two consecutive alternation points of
T,) and T, , has n — 1 in (s — 1,1) (one between two consecutive zeros of T,,y). Then, if
y1 < --+ < y, are the zeros of T, 5, then either T}, \(y) > 0 for y € [0,y1) or T} ,(y) < 0 for
y € [0,11) (otherwise, T; y would have at least another zero in [0, y;)). Thus, since T, x(y1) = 0,
it follows that |7}, z| is monotone decreasing on the interval [0, 1 —s] C [0,y;). Analogously, we
see that |7, , ()| is monotone decreasing.

For the second case, since T}, ,(z) has exactly n — 1 simple zeros in (1 —s,1) and A\; = 1, then

wa(z) has exactly n —2 simple zeros in (1—s,1) (one between two consecutive zeros of T}, , by

the Rolle’s Theorem). Therefore, arguing similarly as above, we have that [T} , ()| is monotone
decreasing. Analogously, we see that |7}, _ ()| is monotone decreasing.

O

Now, we present a comparison result between the Mintz systems M (A,) and M(T',). Before
showing it, we first will see a technical lemma.

Lemma 3.1.25. With the hypothesis and notation just introduced, the following claims hold:

(a) Lety € [0,1—s). Then the mazimum values of the expressions

/
o PO )l
ozpeM(An) [|pll[y_4 4y 0£peM(An) [Pl 41

are both attained by p = £T,, x, where in the second case we are assuming that Ay > 1.

(b) |Tux(0)] < [Tny(0)]. Furthermore, if \y = v1 = 1 then also [T, ,(0)| < |17, (0)].

Proof. Let’s prove (a).
Suppose that there is y € [0,1 — s) such that exists some p € M(A,,) with

Ip(y)|

> |Tn,>\(y)|
||p|| [1—s,1]

We will work with the Chebyshev functions T, x £ p/||p
on counting their zeros.

1—s,1] and we will reach a contradiction

Recall that in [1 — s, 1] the Chebyshev polynomial T, y has n + 1 alternation points
ro <y < --- <z, suchthat |T,\(z;)|=1,

fori =0,...,n. Therefore, by Lemma 3.1.12, the Chebyshev functions T,, x£p/||p||;, _, ,, have at
least n zeros in [1—s, 1], where we are counting each double zero twice. Hence, T, x£p/||p||;_,
has exactly n zeros in [1 — s, 1], where we are counting each double zero twice.

First, suppose that T, \(z¢) = 1 (otherwise, multiply T;,» by —1). Moreover, assume that
sign(T,x(y)) = sign(p(y)) and let’s work with T, x\—p/||p|[; _, ;) (otherwise, consider —p/||p||,_,
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and work with T, x+p/||pll;;_, ). Then, by the continuity of T}, » we have that sign(T}, A(y)) =
sign(7,, A(z0)) = 1, and it follows that

(Tn,xy) p(y)) - (Tn,mxo) - p(“) <0, (3.1.13)

HpH[l—s,l] ||p||[1—s,l]

since (15 — p/”PH[ps,u)(?/) <0and (T, x — P/HPH[ks,u)(xO) > 0.
So let’s study the case when T;, x(z0) — p(0)/ [|P[l_51; = 0 (hence p(zo)/ [Iplly_s1) = 1)-

If z is a double zero, then we will have that T;, (xo) — p(20)/ [[p[l;;_, 1 has at least n+1 zeros
in [1 — s, 1], yielding that T, x = p/ HpH[lfs’H.

Otherwise, there exists an ¢y > 0 small enough such that

sign ((Tux =/ [Pllp_o) (20 — €0)) = sign ((Tur =2/ IPlly o) () = —1

and
sign ((Tox = 0/ Iplly ) (20 +€0)) = 1.

Since Ty x(z1) —p(21)/ [Pl _s 1y < O, there is a zero of T, x — p/ ||pll[y 1) In (z0 + €0, z1]. If this
zero is less than @1, then T;, x — p/ [[p[l;_, ;) Will have at least n + 1 zeros in [1 — s, 1], yielding
again that T;,x = p/|pll;_, - So, we can assume that the zero is located at z1. Arguing
similarly, we have that if z; is a double zero, then T, x = p/[|pl, Otherwise, there is an
small enough ¢; > 0 such that

sign ((Tur = 2/ [plly_s) (21 + 1)) = —1.

1-s,1]"

However, T;, x(z2) — p(2)/ ||pll[_s1 = 0, so it follows that there is a zero of T, x — p/ [[p[l_ 1
in (z1 + €, 23]

Working inductively, we see that for all i € {0,...,n — 1}, there is an ¢; > 0 such that

sign (T =2/ 0l o) (@i + ) = (1)

and '
(=1 (T = 2/ 1Pl y—y) (@is1) > 0.

Therefore, there is a zero of Thx — p/ ||plly_s 1) In (@ + €, Tia].

are located in the alternation points and

Thus, we deduce that the zeros of T, — p/ HpH[l_s .
1_s1))- Since there are n + 1 alternation

they must be simple zeros (otherwise, T,,» = p/ ||p|
points, this implies again that T, x = p/ [[p[l;; _ -

Now, if | T, x(wo)| — [p(z0)|/ IPll[1_s1) > O, therefore, (3.1.13) yields that T, x — p/|p||;_, ) has
at least one more zero between y and zo, which implies that T, x(z) — p(z)/[|pl|;_; ) has at
least n + 1 zeros in [y, 1]. Thus p = T}, ». This proofs the first part of (a).

To prove the second part of (a), we do the following. Recall that Ay > 1. So first observe that
if f e (1,2M,... 2*) is a differentiable Chebyshev function with n zeros in [1 — s, 1] (counting
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each double zero twice), then by the Rolle’s Theorem f’ will have at least n — 1 simple zeros in
(1 — s,1) (where we are adding also to the zeros of f’ the double zeros of f, but now counted
once). Since f € (zM~t g2l M) with \; — 1 >0, for i = 1,...,n, it follows that f is
a Chebyshev function in (#1227t . 2*~1) 50 it has exactly n — 1 distinct simple zeros
in (1—s,1).

So suppose that there is y € [0,1 — s) such that exists some p € M(A,,) with

' (y)|

> T\
||p||[1—s71] A

Assume at this point that 7}, y(x¢) = 1 (otherwise, multiply 7}, » by —1). Then, since all the
zeros of T),  lies in (1 — s, 1), we deduce that T}, (y) > 0. Moreover, for the observation made
before, T} \(z) £ p'(z)/[|pll;_,; has exactly n — 1 distinct simple zeros in (1 — s, 1). Besides,
by Lemma 3.1.24, T} ,(y) < 0.

Now assume that p'(y) < 0 (otherwise multiply p by —1). Therefore,
r'(y)

— T W) = ————— + T, \(y).
Hp“[lfs,l]

/
.- W)
Hp”[lfs,l]
Let yo € (xo,21] be the closest zero to o of Tnx — p(y)/ [Ipll_s1y- Then, since the zeros of
Tox — 7'/ Iplly_s ) lie between two consecutive zeros of T,y — p/ [[pll;;_s -
/
z
—ﬁ +T,\(2) >0 (V2 €[0,40)).
HpH[lfs,l]

By the first part of (a), we have that T,,\(y) — p(y)/[[pll,_s1 > 0, and since p/||p|l;_,
decreases faster than 7T, \ in [0,yo), necessary T, x(yo) — p(¥0)/ [[pll;1_s1 > 0, and we reach a
contradiction.

Let us now proof (b). Let 0 # p € M(A,,) be such that it interpolates T}, \ at its zeros (which
are exactly n and all of them are simple distinct zeros), and such that |p(0)| = |T,A(0)] > 0
in [0,1] (recall that T, ) has its zeros in [1 — s, 1]). This can be done since p is a Chebyshev
function and a function in a Chebyshev system is determined by n + 1 points.

Therefore, it follows from Proposition 3.1.17 that |p(z)| < |T,(z)| for all z € [0,1]. In
particular, ||pl[;,_, 1} < |Tanll;;_,,) = 1 and, taking into account part (a) of this lemma, we get

PO _ [T (0)
p”[l—s,l] - ||Tn,7||[1fs,1]

Toa(0)] = p(0)] < “ = [T 0)];

which proves the first part of (b).

To prove the second part of (b), the argument is similar. We take 0 # p € M(A,,) such that it
interpolates T, 5 at its zeros in [s — 1,1] and we normalize p'(0) = T} ,(0). Observe that there
is no problem in normalize p’(0) since is different from zero; otherwise, the fact that v = 1
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would imply that p € (1,272,... 2"™), which is also a Chebyshev system of dimension n — 1,
and then p would have at most n — 1 zeros, contradicting the fact that it has exactly n.

Then, it follows from Proposition 3.1.17 that |p(z)| < |T,x(x)| for all z € [0,1]. Hence, in
particular we have that |[p[|;,_, ; < [[Twallp_y,) = 1 and it follows again from part (a) of this

lemma that ) ,
PO _ 1T,0)]
p”[l—s,l] - ||Tnn||[1fs,1]

T A0 = 1P (0)] < ” = [T, ,(0)],

which proves the second part of (b).

Proposition 3.1.26 (Comparison Theorem). The inequality
||p||[o,1] < max ||p||[0,1}
07peM (M) [|pl[[y gy — O#pEMTa) [Pl
holds. Furthermore, if \y = v =1 then

/ /
s F2 H[O,lfs} < « F2 H[O,lfs].
0£pEM(An) ||pH[1—s,1} 0F#pEM (I'n) ||pH[1—s,1}

Proof. Let y € [0,1 — s). Observe that from Lemma 3.1.24 and Lemma 3.1.25 (b), we have
that [Tx(9)] < [Tua(0)] < [Tor (O)]. Then,

p(y Tua(y
pw)l | Taa(y)l Tur(y)| < [T, (0)]
0#peM (An) ||p||[1—s,1} HT”’/\ [1-s,1]

| T5,~(0)] Tl

= ——~ " = max
||Tn,w||[175,1] ye[0,1-5] HTnﬁH[kSJ}

||pH[0,1—s} ||pH[0,1}
< max ———— < max ———.
0#pEM(I'n) ”pH [1-s,1] 0#pEM(I'n) HpH [1-s,1]
On the other hand, if y € [1 — s, 1], then

0#peM(An) ||p||[1—s,1] o OApEMTw) Hp“[l—s,l]

Hence,

”pH[O,l] ||p||[0,1]
max ————— <  max
0peM(An) [|plfy_y 1) T 0#pEMT) [Pl

which is what we wanted to prove. By analogous arguments, we have that for y € [0,1 — s]

Wl T
0peM(hn) [|pll g1y T [1—s,1]

el Wl
HTnﬁHU_SJ]  0#pEM(Tn) HpH[lfs,l] 7

= T W) < [T, (0)] < [T, ,(0)]

which is the second claim of the theorem.
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3.2 Miintz Systems Inequalities

Let A, = {\;}7_ (Ao = 0) be a sequence of nonnegative real distinct numbers, there are some
inequalities that holds for the Miintz systems M (A,,), for each n € N, when we constrain A,
under certain conditions. Such inequalities relates the behavior of a function in M(A,) with
its derivative.

For simplicity, we will denote the uniform norm on the real interval [0, 1] by |-||

3.2.1 Newman’s Inequality

The first inequality to deal with is called Newman’s Inequality (see [18]). Before showing it,
we see a technical lemma.

Lemma 3.2.1 (Landau Inequality). Let f € C*(R), then
2
115 < 41 f 1l 17

Proof. Let a € R, we have the following Taylor expansion

£ = fa) + (¢ = a)f (@) + [ (6= 9) ()i
So,
Py =0 L gas
Taking absolute values on both sides,
[f'(a)] < f(ti - i(a) 4T —1 al /at (t = (s)lds (3.2.1)
‘f DO M i < B Ly e

Set s =t — a, then (3.2.1) is true for every s. In particular,

2 "
y <>|<56R< ||J8f||oo+suf2||oo>,

Now observe that the function

21l | Il

9(s) = — 5

has minimum value at
[ flloo / 1" Nl oo

So, for any a € R,

2 "
@) < -l HNIERES

[ lloo /117"l o
1 oo / 1L e (L e+ 11 o) = /4 L Nl 17l oo
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Thus,
2
1o < 411 Moo 11Nl

O

Proposition 3.2.2 (Newman’s Inequality). Let {\;};en be a sequence of different real positive
numbers. Then, the inequality

lzp'(2)]lo < 11 (ZA) Ip(x)

holds for all p € (1,2, ... ™) and alln € N.

Proof. Fix n € N and set \g = 0. We may assume, without loss of generality, that M, :=
“_1Aj = 1 since we may make the change of variable

x — '/ Mn,

Hence, A; € (0,1] for every 1 < j <n.
Set x = e™". If p(x) = X7 _ga;z™ and q(t) = p(e™") = XJ_ga;e ™" then

) =2 Aoz Z Ajaja’ Z Ajaje™V' = —q'(t),
j=0 = i=0

so that we have changed our problem to one of estimating the uniform norm, on the interval
[0, 4+00), of the derivatives of functions of the form

+oo
> aje M, (3.2.2)
j=0

in terms of their uniform norm in the same interval, i.e., we have changed the problem to prove
that

g )l < 11 lg(1)l] »

where now by || - ||, we mean the uniform norm in [0, +00).

Let

Bz) =] 2 € H(k)

2+ A
and define

1 67215 -
T(t) = %/F Boyds €CTE),  where T= {23 |- 1] =1},

Since B(z) has zeros of order 1 in Aq,..., \,, if we let




for every k € {1,...,n}, it follows from the residue theorem that

n

T(t) = Z bke_)‘kt

k=1

and therefore, T is of the form of (3.2.2).

To prove Newman’s inequality we first show the following estimate

1
|B(z)| > 3 for all z € I (3.2.3)

To do so, we will see that
lz—= Al _ 2—2A
> )
2+ A T 24+ A

when z € I
Take z = 1+ €' for t € [0,27]. Then, it is easy to check that

2= AN\® 14 (1= A2 +2(1— \)cos(?) (3.2.4)
lz+A) 14+ (1+X)2+2(1+ N cos(t)’ -
If we derivate the expression of (3.2.4), we get
3 .
4\3 sin(t) (3.2.5)

(242X + A2+ 2(1 + X) cos(t))?’

and by the expression of (3.2.5) we get that the function of (3.2.4) has a minimum value at
t = 0. Therefore,

2= A 14+ (1= N2 4+2(1 = Ncos(0)  (2-A)?
<V+AJ Z1+u+wv+2u+An%m)_< )’

and it holds for every z € I'. Thus,

n

2 .
|B(2)| > 1:[1 Y for all z € T.
]_
To estimate the above product, we take into consideration the fact that for all z,y > 0, the
inequality
1-— 1— 1-—
( x)- v) s 1=@+y) (3.2.6)
1+x 1+y 1+z+y

holds. Iterating (3.2.6), leads us to the inequality

n o Y. 1_l 7?_ i
B > [[ o = [[ 2 ez ]

which proves (3.2.3).
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Moreover, it follows from the definition of 7" and the continuity and derivation under the integral

sign theorem, that
1 Z2e—zt
T// t —_
(®) 2mi Jr B(z)

So taking z = 1 + € as a parametrization of I', the Fubini’s Theorem yields that

+o0 3 +oo 27 . i
/ ‘T”(t)‘ Si/ / ‘1+619|2’€—t(1+6 o)
0 2m Jo 0

+o0 2
:3/ / 2(1 4 cos())e~HHes@tgoar
27 Jo 0

1

:7?; /02”<1 + cos(e))i(l " COS(H))dO = 6.

zZ.

dodt

Now, we will compute integrals of the form
+00
/ e MY (t)dt
0

in terms of the scalars ;. So fix k£ € {1,...,n} and note that by the Fubini’s Theorem,

+o00 1 4o »2,—(z4+Ap)t
0 2mi Jr Jo B(z)

22

. (3.2.7)
" 2mi /p B(2)(z + Ay

dz,

and taking into consideration the fact that

22

B(2)(z + M)

has no poles in the exterior of I' (since 0 < \x < 1), the above integral (3.2.7) depends only on
its residue at co. Now, for every z in the exterior of I,

2 +o0o

z SN A2
. S VT R S
Z4+ A\ : Z( z ) : k+z

=0

and taking the Taylor expansion around the oo we get

2
1 2(Sh) | (25) 2 2
pr— :1 -nc:l p— E— Y
B(z) jlillz—)\j + z + 222 + +z+22+
o that 2—2_Z+(2_>\)+M+
B(z)(z+M\) g 2

This, together with (3.2.7), leads us to the formula
/ e MM (1)t = A2 — 2y, + 2, (3.2.8)
0
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by its residue at oco.

Now let ¢ be an exponential polynomial of the form (3.2.2). Then, if we take into consideration
(3.2.8), we conclude that for every a € [0, +00)

+o0o
A q(t+a)T”( / (Z age” K (t+a) T”( )) dt
- Z ake_’\’“a/ e M (t)dt
k=0 0
= Z age ke (/\z — 2\ + 2)
k=0

— ¢"(a) +2¢'(a) + 2q(a).

Hence,
(@) + 24/ (@) + 20(a)| = | [ alt + )T ()it
< [Tl ool <ol [ 170 d
< 6lgllo
Therefore,
4" (@) = 124'(a) +2q(a)| < 1¢"(a) + 2¢'(a) + 2q(a)| <6 lq|l - (3.2.9)

And (3.2.9) holds for every a > 0, so that
19"l < 2114l + 8 ll4lls

Now, Lemma 3.2.1 yields that
2
W o 3 [ |
holds for all functions f € C%([0,+o0)), so that

2
915 < 4lallo lla e < 4llallo 211¢'llo + 8 llall)
/ 2 /
(\rq\roo> SS(Hqum)MZ
4]l o lall
Now consider the equation

2? — 8 — 32 = (x — 4(1 —V3)) - (x — 4(1 + V/3)).
Then, since 4(1 — v/3) < 0, it follows that 22 — 8z — 32 < 0 if and only if
T <A1+V3) < 401+ V)| +1=11.

Thus, ||¢'||, < 11]g||,, for all expressions of the form (3.2.2).

and
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3.2.2 Gram Matrix and Determinant

In some cases we can give an explicit computation of the best approximation of some given
space. For example, using what is called the Gram Matrix, which we present here, we can
compute the best approximation to elements of a given Hilbert space (see [8]). This results will
be used in the next section, where we will work with another inequality for the Miintz spaces.

Then, given H a Hilbert space over a field K (so we have an inner product inside it) and let
T1, %2, ..., T, independent elements of H. Consider V' = (21, s, ..., x,) a vectorial subspace of
H. Then we can construct an orthonormal system in H by a sequence of orthonormal elements

xy, x5, ..., ). That is,
o 0 1 # ],
($i’xj) o {1; l :j’
where (-, ) denotes the inner product in H.

Moreover, observe that if w € V', then w = a1z, + - - - + a,x, for some a; € K. Since we can get
an orthonormal system from the independent elements z1, s, ..., x,, then w = byzi+- - -+ b,x},
for some b; € K, which implies that every element of V' can be written by its Fourier expansion

respect the orthonormal system x7,x35,..., 2.
Now, before introducing the Gram matrix, let’s see a few technical results of this orthonormal

basis.

Proposition 3.2.3 (Bessel’s Inequality). Let x}, a5, ..., x% be an orthonormal system and let

y be arbitrary. Then,
N

||y S ()

=1

<  min
(a1,...,an)

Yy — Zaix;‘

| N
i=1

for every N € N, N < n.

Proof.
2

N N
= <y— > aiy — Zmﬁ)
=1 3
N
= (y,y) — > ailxj,y) — Z%% +Z%%”j

= i,7=1

= (v y) — > alx],y) Z%% +ZMP

=1

+ZM%W—ZM$2
_Z|(y7 ‘2+Z|6L1 Y,z

=1

N
*
i=1

2,_.

Since the first two terms of the last member are independent of the a;’s and the last term is
greater or equal than zero, it is clear that the minimum of

N 2
*
Hy - E a;T;
i=1
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is achieved if and only if a; = (y,z}), for i = 1,..., N. This ends the proof.

As a direct consequence, we have the following result.

Corollary 3.2.4. Let x1,29,...,7, be independent elements and let x7, x5, ..., x) be an or-
thonormal system respect to the x;’s. Then, for any element vy,

(Y, z3) )
1

y_

k=
is orthogonal to xF, for everyi € {1,...,n}.
Moreover, another result that follows from Proposition 3.2.3 is the following.

Corollary 3.2.5. Let ajxy + asxs + - -+ + a,x, be the best approximation to y from among
the linear combinations of xy,...,x, (assumed independent). Then the coefficients a; are the
solution of the following system of equations:

ai(zy, 1) + ag(za, 1) + -+ - + an(Tn, 1) = (y, 21),

a1 (1, Tn) + ag(T2, Tp) + - - + an(Tn, Tn) = (Y, Tn).

Proof. First, we can write a1z + agx2+ - - -+ a,x, in the orthonormal basis as byz} +- - - +b,x}.
Observe that since bz} + --- + b,z is the best approximation to y, by Proposition 3.2.3,
b; = (y, x}). Moreover, we also can write z; in the orthonormal basis as z; = c1x} + - - - + ¢, 2.

Therefore, this theorem follows directly by the fact that for every 1 <7 <n
(y —a1xry — - — Cln.Tn,CEj) = (y - (yv ZL‘T)QTT -t (ya l’;)ﬂf;, cllﬁ{ +oeee Cn.%:;) =0

which the last equality is a consequence of Corollary 3.2.4.

O

Now we are in conditions to introduce the Gram matrix and the Gram determinant.
Definition 3.2.6. Given a sequence of elements x1,...,z, in an inner product space. The
n X n matrix

(Ihl'l) (xlaxQ) (xlrrn)

G(r1,.. 0, mp) = : : . :

(mnyxl) (331%3:2) T (ajn?xn)

is known as the Gram matrix of z1, ..., x,. Its determinant is known as the Gram determinant

of z1,...,z, and denoted by g(z1,...,x,).
The following result gives us a formula for computing the best approximation in a Hilbert space

using the Gram Determinant. The proof is due to [8], but there are also distinct proofs of it,
for example, [14].
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Proposition 3.2.7. Let xy,...,x, be independent. If
0 = min ||y — (@121 + agws + - -+ + anzy,)||,

(a;

then
52 _ g(xla cee 7xn7y)

g(xy, ... my)

Proof. Let s = a1x1 + asxy + - - - + a,x, be the best approximation to y. Then,
F=ly—sl* =@y —sy—s)=H—sy —(y—ss).
By Corollary 3.2.5, (y — s,s) = 0 so that
0" =(y—s.y) =y — (s,9).

Therefore, we have the following system of equations
al(‘rlv 1'1) + a2($27 1'1) et an(l‘n7l‘1) - (ywrl) =0,

ar(xq, xn) + ag(T2, ) + -+ + ap(@pn, xn) — (Y, 2,) =0,
a1 (w1, y) + az(T2,y) + -+ + an(Tn, y) + 0> — (y,y) = 0.

(3.2.10)

If we introduce the value a,,; = 1 as a coefficient of the elements of the last column, then

(3.2.10) becomes a system of n+1 homogeneous linear equations in n+1 variable a4, . .

-y Qp,y Qp41,

which possesses a nontrivial solution. Thus, the determinant of this system must therefore

vanish:

(37171’1) (332,901) T (xm xl) 0— (%901)
. ) : ) o
(xh xn) (x27 xn) e (Inu In) 0— (y7 xn)
(x1,9)  (z2,9) - (n,y) 0% = (y,9)
Therefore, by the properties of the determinants
(1’17951) (952,5131) (5Un,5€1) 0
gz, ... Tp) = : : ' :

gl )= enan) @oan) o (@m0
(xla y) <m27 y) e ('T'f“ y) 52

(xhxl) (;Uz,.il}l) (xTHxl) (yaxl)

- : : " : : =g(x1,..., 20, 9).
(xl’xn) (x%xn) (xmxn) (y,xn)
(z1,y)  (z2,y) - (Tayy) (YY)

This ends the proof.
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3.2.3 Bernstein-Chebyshev’s Inequality

On this section, we will prove the Bernstein and Chebyshev’s Inequality Theorem (see [7]
and [9]) for the arbitrary Miintz system II(A) := (1,2, 2?2 ...) for an increasing sequence
A = {\HZ5 (Ao = 0) of different positive real numbers. However, we first will show a reduced
version of it, where we suppose the sequences of exponents that satisfy the following jump
condition:

inf (A\x — Ap_ :

e = Ae) > 0
Before seeing it, let’s see a result about error computations that follows from the results that
we have already seen on the Gram Matrix section.

Lemma 3.2.8. For allm € N

Am = i Am
B AN An}) = min = =2} 2o

1 ‘ Am — Ak ‘

:2Am+1k2g¢m A+ Mg+ 1

Proof. By Proposition 3.2.7, we have that for every n € N, n > m,

g(Lyxh o xdmer gAmar A pAm)

)

E(z*, My (A {An})) = $

g(Lyzh o xdmet gAmer o gphn)

where g denotes the Gram determinant of the Gram matrix respect to the Hilbert space
L*([0, 1]).

Now observe that

1 1
A A it
M) = | MV dr = —————.
(2™, 27) /0 Ai+ A +1
Therefore,
g1,z . phmet ghmer )
(171) (Lx)\l) (1’x>\m71) (LxAmH) (1733)\”)
_ det (x)\mfl’ 1) (xAmfl7x)\1) .. (I)\m717x>\m71) (x)\m717x>\m+l> e (:U>\m71 , xAn)
(x)\m+l’ 1) (ka+17 J,’)\l) .. (1/)\771-5-17 x>\m—1) (x)\m+17 x>\m+1) L (x)\'rrkt-l,x)\n)
(:E»An’ 1) (x)\n, x)\l> e (:L‘An7 x)\m—l> (x)\n7xAm+1) ... (x)\n’ IAn)
1 1 ... 1 1 ... _1
A1+1 Am—1+1 Amy1+1 An+1
1 1 o 1 1 U S
— det Am—1+1 Am—1F+A1+1 2Am—1+1 )\mfl+)\m+1+1 Am—1+An+1
1 1 ... 1 1 .1
Am+1+1l App1+Ai+1 Am41+Am—1+1 2Am4+1+1 Am4+1+An+1
1 1 . 1 1 1
)\n+1 )\n+)\1+1 )\n+)\m—1+1 )\n+)\m+l+1 2)\n+1
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If we take a; = A\; and b; = \; + 1, where t = 0,...,m —1,m+1,...,n and \g = 0, then the
determinant above is the well known Cauchy determinant of order n, and we get that

g(L, 2, . ghm=t phmer o gAn)

_ H1§i<j§m—1(aj - ai)(bj —b;) Hm+1§i<j§n(aj - az‘)(bj —b;)
[li<i j<m—1(ai +b;) ILny1<i j<n(ai + ;)

An
yeeos @ - —
) i:l(ai + bm) Hi:l(am + b;)

Thus,

m 2 i= lzyﬁm(am aZ) i= 1z;£m( _bz)
B (AN {Aa})? = " (o t b (am+b)

?zl,iyém()\ AZ) i=1 z;ém(A - )\l)

N A DI (A + A+ 1) (3:2.11)
Hz 1z;£m<)\ B AZ)Q
T (2hm + 21T Lt (Am 4 A +1)2
By taking the square root of (3.2.11) the theorem follows.
U

Proposition 3.2.9 (Bounded Bernstein’s Inequality for Special Sequences). Let us assume
that A = {/\k}Z:OE is an increasing sequence of nonnegative real numbers that satisfies the jump
condition infren(Ax — Mp_1) > 0, and 720 1/ A < 00, \g =0, Ay > 1. Then for all e € (0,1)
there exists a constant c. = c(e,A) >0 such that the inequalities

||p,||[0,1—s} < ce ||p||L2(0,1) ) ||p,||[0,1—a] < cCe ||p||[0,1]

hold for all p € (1,2, 22 .. .).

Proof. 1t follows from Lemma 3.2.8 that for all m € N and all p € II(A \ {\,,}) the inequality

I

k>0, k#m

I1

E>0, k£m

S 1
L2([0.1]) 72N, + 1

1
2\, + 1

|z = pla)

Am + A +1

Ak +1/2) — (M + 1/2)‘
(M +1/2) + (N +1/2)

Am — Mk ‘

(3.2.12)

holds. Hence it is of interest to study products of the form
o + Qo ‘

k>0, k#£m ’ak — Qm

4



for sequences {ay,}; =5 such that infren(ay — ax_1) > 0, ap > 1/2, and 525 1/ay, < +oo (note
that we have, for ease of exposition, reversed the quotients).

Now, we decompose

‘Ozk—i-Oém’_ H ‘a;ﬁ—am‘
k>0, k#m | Ok T Qml g0 ) <o, | Xk T Om
(3.2.13)
H ‘ak+o¢m ’ozk—i-am’
Ak = Qml >0, ap>2a,, | M T Om

k>0, am <ap<20m
Let’s see that the decomposition (3.2.13) can be done. First, we can write the third product as
‘M’ - 1 ‘1 " 2%‘
Ak = Aml k>0,0,>2am = |

since for all k such that ay > 20, we have that oy /2 > a,. Hence, ap—a, > ap—ay /2 = oy /2,
which yields

1< I ‘1+20"”‘_ 11 (1+2am>

k>0, a>20m Y = ¥ml k>0, 0p>20m Ak — Om

200, 200,
< H exp (a) = exp Z (Q)
k>0, g >2am A — O Qp — Qo

k>0, ap>20am

= exp ( Z 2am) < exp (4am Z 1) < 400,

k>0, o >20m Yk T k>0, o >20m Yk

where for the inequalities we have used that 14z < e* for x > 0. Moreover, the surjectivity of
the exponential implies that there exist a constant ; ,, > 0 such that

1 .
gl,m <4 Z — and mliIJIrloo gl,m =0

k>0, ap>2am Yk

satisfying
200,
H ’1 + ' = exp (amfl,m)-
k>0, ap>20m Qp — Qm
Now, it remains to bound the products
‘w"’ (3.2.14)
k>0, ap <o | Yk T Om
and o+«
1 ‘ k’ m‘ , (3.2.15)
k>0, am < g <2am | Yk T Qm
We begin with (3.2.14). To do so, first we claim that
Lo
kgl:li-loo ? = +00. (3216)



Using that {ay}/25 is monotonically increasing and 3572 1/ay < +00, we have the following
inequality

2 1 2
"L S0, nen)

1
CY Qop Qop

and tending n to +oo it yields that

2n noq
0< lim — < lim Z—

T on—4o0 (g, n—>+oo Oék

Now, let r := infen (ax — ax—1) and observe that for 0 < k < m we have the inequality
A — g > (m — k)r.
Hence, for 0 < k£ < m it holds that

ap + o, < 20,

O —a — (m—k)r

Therefore,
m 2 m 2 m ~m
k207 ap<0om ak o Oém kzo, ap<om (m - k)r r m:

Using into (3.2.17) the Stirling formula n! > n™e™", which is valid for any n > N (where N € N
is big enough), we get that

‘M' < (2)m (O‘m)mem (m > N). (3.2.18)

k>0, ap <am | Yk T Om r m

Finally, applying that lim,_, ., 2!/ = 1 into (3.2.18) and using (3.2.16), we get that

1 m m
m |\ am 2\ am m\ om m
1 S H ( W’) S <> <a> eam — 17 (m — +OO)

k>0, ap<a Qg — Qm N m

Thus, since

2\ am am  m
lim log << > (%> eam> =0
m—+oo r m

and by the surjectivity of the exponential, there exist a constant &, > 0 such that

0tz ((2) (22)% )
satisfying
) = exp (am€2,m)'

k>0, ap<am



Now it remains to bound (3.2.15). Let L,, := #{k: a;,;, < o) < 2a,} and observe that since
S 1/ ag < +o0, it follows that

D e D DIFLEI DT D L D
ap<am Qi ap>20m Qg ap<am Qg am<ap<2am Qg ap>200m Qg
—+00
<Zf<—|—oo

k=0 Ok

which implies that L,,/a,, — 0 as m — 400 (since a,, — +00 as m — +00).

Hence, arguing analogously as when we bound (3.2.14), we have that
1

am Lm—m Ly —m
O e e
- oy —any —\r L, —m '

k>0, am <o <2a

Thus, as before, this implies that there exist a constant {3, > 0 such that

ap + oy,

li m =10 d
m—lg-loo 53 an H O — Oy,

k>0, am <o <200m

‘ = exp (m€sm)-

Finally, consider 2, > 1 and take &4 ,,, = log(2cvy,) /o — 0 as m — +o00. Therefore,
1 < 2a,, = exp (log(2a.,)) = exp (méam) -

Thus, taking v, = &1m + So.m + E3m + Eam We get that there exists a sequence of constants
{Ym 15, such that

ap + oy,

200, ’ = exp(@mYm), lim ~,, =0.

‘ —
k>0, km | Ok Mmoo

Hence,
1 ‘ ap — Qi

= exp(—mYm), lim ~,, =0,
(%_+am‘ P(—mYm) gl

%
200m ;5 k#£m Mmoo

and taking into consideration the formula (3.2.12) together with o = Ay +1/2 for every k > 0,
we obtain that

> exp(—(Am + 1/2)7m)

Am
HI p(l’) L2([0,1])
where limy,;, 100 ¥m = 0 and p € ITI(A\ { A\ })-
This clearly implies that for every function p = S°7_, arz* € II(A), the inequality

| > |am| exp(—(N + 1/2)vm)

HPHL2([0,1]) = HamxAm — (ama™ = p(z)) L2[(0,1)
= |am| exp(=Am¥m) exp(—7m/2)

holds for every 0 < m < n. Hence, for a given £ > 0 there is an m := m(e) € N such that
exp(1k) < 1+ ¢ for any £ > m. So take

5 — Vg, if 1 <k <m,
F 0, if k> m,
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and define ¢ . := exp(s,). Then it holds that
|am| < exp(ym/2) exp(ym) ™" 1Pl 20,1y < (1 + €)Cme(1 + )t 121l z2(0,1; - (3.2.19)

Observe that ¢, . just depends on ¢ and A. Taking into consideration that A\; > 1 and
infy (Ax — Ag_1) > 0, we have that there exists a strictly increasing sequence of natural numbers
my, k > 0, such that {{\g]}/25 = {my};=5, where [\;] denotes the integer part of Ay for each
k € N, and furthermore,

M = M(A) := max #{k: [M] =m;} < +oo.

Thus, for all « € (0,1),

n

Z )\ka)\k—l < Z ([)\k] + 1)a[Ak]—1 _ Z [/\k]a[)\k]—l + Z a[)\k]_l

k=0 k=0 k=0 k=0
n n +00 +o0
<M (Z mpa™ 1 4 Z ozmk_1> <M (Z mia™ Z ocm’“_1> (3.2.20)
k=0 k=0 k=0 k=0

+o0 +oo M
<M (Z ko=t + Zak_1> = ——— = C(a, M) < +00.
k=0 k=0 (1-a)*a

We can use (3.2.19) and (3.2.20) to estimate the norm |[|p'||, ,_ as follows,

110, < D Aelarl (1 =) 78 < 37 Awene(T 4 )1 =) [pll oo,
k=0 k=0

2 2\ A\ —1
= (s eke) (1 9 IPlngoay Do M1 =<2

< (maxcre ) (12 Ipll o € (1 - % M)

k>0

< (e, M) [IPlleqo,) »

where (g, A) = (maxy>o crc) (14 €)2C (1 — €2, M), which is what we wanted to prove.

O

The next theorem, proved by Laurent Schwartz (see [13] and [9]), is an important consequence
of the inequality (3.2.19).

Lemma 3.2.10. Let us assume that A = {\,};25 is an increasing sequence of nonnegative real
numbers such that infren(Ax — Me—1) > 0 and 33201/ . < +00, \g = 0, \; > 1. Then the
functions that belong to the closure of II(A) can be analytically extended to D\ [—1,0].

Proof. Let f in the closure of II(A). Assume that ||f|| . =1 (otherwise, take f/ | f||. ). Then,
there exists (¢,);2% C ITI(A) such that

1 o
Hf - Qn”oo < — and qn — Z amk:cAk.
n k=0
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Then the sequence of functions (g,),2% is a Cauchy sequence in C([0,1]). It follows that for
each 0 > 0 and all n,m € N, applying (3.2.19)

g = @mil < chs(L4+ )™ g0 — Gl
1 (n,m — +00).
) o

1
S C;m;(l -+ 5))\]“ (TL + E

This means that for every k € N, there are numbers a5 € R such that lim,,_, a,r = a;. Let
h(z) := 3125 apz™. Then, for all § > 0 we can write

—_ % : Ak _ Ak _ Ak
anl = T fonsd € lim_ e+ 0P gl = cusll+ 6% £l = cus(L+ 6)

We claim that the series h(x) = Y725 apa™ is absolutely convergent for all z < 1. First observe
that for x = 0 is trivial. So take 0 < x < 1. Hence, there exists § := d, > 0 such that

1
0<do<——1=(1+)z <1
T

Now observe that there is some k; € N such that for every k > k;, we have that \;/k > r for
some r € R (see (3.2.16)). Moreover, there is some ks € N so that for every k > ko, we have
csr = 1. So take ks := max{ki, k2}. Therefore, for every k > ks,

M| V/E

< (Ck,(S(l + 5)’““31:”)1/1c = ((1+ 5)x)>\k/k
<((1+d0x) <1

‘ak:c

holds. Thus, the series

k31 k31

Z lapa™| = Z || + Z (\a xAk\l/k) < Z laga™| + Z (1+0)x

k=k3 k=k3

converges absolutely for z < 1.

Now, it is clear that h coincides with the function f since

If = Plle < I = @ulle + llan = hlloe = 0 (0 = +00).

If we consider the branch of logarithm that is defined on the complex plane cut along (—oo, 0]

and that is positive for values greater than 1, this defines a branch of z# = exp(ulog z), for any
p. Now, if z € D\ [—1,0] then

—+00
Z ‘akz’\’“

k=0

(l2]) < +o0.

This proves that f(z) = {25 apz?* is analytic on D\ [—1,0].
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We now will prove (for “special sequences”) the Chebyshev’s inequality which claims that the
norms of the elements of non dense Miintz spaces essentially depend on the behavior of the
elements near z = 1.

Proposition 3.2.11 (Bounded Chebyshev Inequality for Special Sequences). Let us assume
that A = {/\k}zj) is an increasing sequence of nonnegative real numbers that satisfies the jump
condition infren(M — A1) > 0, and SF5 1/ A, < 400, \g =0, A\; > 1. Then for all e € (0,1)
there exists a constant c. = c(e, A) > 0 such that [|p|| 1) < = [[pll_. ) for all p € II(A).

Proof. Let us assume that there exists a sequence of polynomials (p,); /%) C TI(A) such that
My, too [Pallgyy = +o0 but [|pally_.,; = 1 for all n. Then, ¢, = pa/|[pally, satisfies
[gnlljo1) = 1 for all n and limy, 4o [[gnll_. ) = 0.

It follows from the bounded Bernstein Inequality that for each § € (0, 1) there exists a constant
¢s such that

”%/1”[0,1—5} < ¢ [lanllp, = <5,
for all n. The mean Value Theorem implies that the family (g,)% is equicontinuous at [0, 1—0].

Let’s take ¢ € (0,1). We may use the Arzeld-Ascoli theorem (Theorem 2.2.45) in the inter-
val [0,1 — £/2] to obtain from (g,);% a subsequence that converges uniformly to a certain
f € C(]0,1 —¢/2]). By Lemma 3.2.10, f can be analytically extended on (0,1 — ¢/2). But

lim,, 4 o0 anH[kE’H = 0 implies that f ‘ = 0, which by the Identity principle, f must

(1—e,1—£/2)
be the zero function.

Therefore, [|gn||,_. /9 converges to zero as n goes to infinity for every e € (0,1). Making £
tend to zero, contradicts the fact that ||g,l[;,, = 1.

O

Finally we see the complete Bounded Bernstein’s and Chebyshev’s Inequalities for general
sequence, i.e, where we remove the condition gap infxen(Ax — Ap—1) > 0. This is the most
important theorem in this section and it will play an important role on the proof of the reciprocal
of the Full Miintz-Szasz Theorem.

Proposition 3.2.12 (Bounded Bernstein’s and Chebyshev’s Inequalities). Let us assume that
0< A<M <A<, X=0X1x2>1 andz,jfil/)\k < 4+o00. Then for each € > 0 there are
constants c.,ck > 0 such that

1pllo,1y < € pll—eryy and [[P'lg1—g < ciee Pl < ciee lIpllpy
forallp e (1,22, 2%, ...).

Proof. Observe first that limy_, 100 Ax/k = +00 (see (3.2.16)). So, there exists some m € N
such that A\ > 2k for all £ > m. Fix such m and take the sequence I' := {v;}}=5 defined by

_Jmin{\g, k}, ifke{0,1,...,m},
T Ik, if k> m.
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Then, 0 < yg <y < ---, and

ST RS RS G TS NS S AL I B
k=1 Tk k=1 Tk p=my1 Tk k=1 Tk k1 2 X T ka1 Mk ‘

Moreover, we have that
min{\, k} —min{\,_,k — 1}, ifk€{0,1,...,m},

Ve — Vb1 = %)\mﬂ—i—m—l—l—min{)\m,m}, ifk=m+1,
%(Ak—Ak,1)+1, if k>m+ 1.
So observe that if £ > m + 1, then
1
Ve — Vk—1 = 5()% — A1) +1>1,

and if k =m + 1, since \,, > 2m,
1 1
YAl = Ym = §Am+1 +m+1—min{\,, m} = §Am+1 +1>1.

Finally, if £ < m,
Ve — Vk—1 = min{ A, k} —min{A\,_1,k — 1}
E—(k—1)=1>0, ifk<Xlandk—1<X\_q,
)\k—(k’—l)>0, if/fz)\kandk;—lg)\k_l,
k—)\k,121>0, ifkg)\kandk—lz)\k,l,
>\k_)\k—1>07 1f/{:2)\kandk—12>\k_1
and also we have that 79 = 0 and 7; = min{\,1} = 1.

So, we have an increasing sequence I' of nonnegative real numbers that satisfies the jump
condition infyey (7 — Y1) > 0, and >, 1/ < 400, 79 = 0 and 73 > 1. Therefore, by
Proposition 3.2.9 and Proposition 3.2.11 it follows that for all € € (0,1) there exist constants
Ce, ¢z > 0 such that

||p,”[0,1—5] < cCe ||p||[0,1]
and

1Pl < e llpllp—cyy
for all p € (1,27 272 .. .).
Furthermore, observe that vy, < Ax, for all k. Thus, denoting by A,, = { ¢} i and 'y, = {7y},
by Proposition 3.1.26,

[l U ax | [0,1]

Ll U B <
0#peM(An) [|P[l1_cq) T 0FpEMTN) [Pl 1)
and since \; =, =1 then
/ / /
lp “[0,175] < m [P H[O,lfa} <¢  max HpH[O,lfs] < e
0£peM(An) ||pll[y_cq) — 0#PEMTW) [Pl 1 opeM(Tn) [|p|l o 1)

Therefore, for any p € II(A), there is some n € N such that p € M(A,,) satisfying

Pl < cllplly ey and 1Pl < e llplly ey < e [Pl
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3.3 Reciprocal on Full Miintz-Szasz Theorem on C(|0, 1])

Finally, we will show the necessary part of the Full Miintz-Szasz Theorem for arbitrary sequences
{\; };“:08 (Ao = 0) of nonnegative distinct real values. For simplicity, we will split up our proof
in three cases:

(a) infjen A; >0,
(b) lim;_, 0 Aj = 0 and
(c) {N\j}tjen = {uy; lim; p; = 0} U {;; lim;y; = +o0}.

For the first case, which is based in complex analysis, we have followed [5], but you can find
equivalent proofs on, for example, [1]. For the other two cases, which are based on properties
of the zeros of the Chebyshev polynomials, we have followed [7] and [18].

Theorem 3.3.1 (Full Miintz-Szasz Theorem). Let {\;};55 be a sequence of different real pos-
itive numbers, and let X be the closure in C([0,1]) of the set generated by the finite linear

combinations of the functions 1,2, 272, ... . If
+00 >\j -
2 o0,
PV

then X C C ([0,1]).
Proof. First suppose that inf; A; > 0. Set Ay = 0. We will construct a linear bounded functional
T = (-,u) on C([0,1]) such that T'(#*) = 0 for every j = 0,1,2,..., but with T(t}) # 0, for

any A > 0 with \ ¢ {Aj}jgg. If we get such functional, we will be able to apply the Corollary
of the Hahn-Bannach Theorem (Corollary 2.2.41), which would finish the proof.

To do so, observe that by the Riesz-Markov-Kakutani Representation Theorem (Theorem 2.2.37),
it is equivalent to find a Borel complex measure p such that

1
T(¢) = [ e®du(t), (o ec(o.1)
satisfying
(a) T(P) = i du(t) £ 0,
(b) T(tY) = [y thidu(t) =0,Vj =0,1,2,....
Hence, we can reduce our problem to find a bounded and holomorphic function f in
H,={2€C;Rez>—1}
for which exists a Borel complex measure p such that
(1) f(z) = [ t¥du(t), for every z € H_;,
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(i) f(\) =0,Vj=0,1,2,..., and
(iii) f(A) # 0.

One can think of taking the infinite product of holomorphic functions f;(z) in H_; such that
fi(A;) = 0 for every j € Ng = NU {0}, and could be in the right way, but this product may
not converge. So, we do something similar but choosing such f; so that the product converge.

Thus, the function that we consider is

f(Z z € H_l.

2+Z3H2+)\ +z

Observe that each term

)‘j —Z
I8 =505 7=
is holomorphic in H_; and satisfies f;(\;) = 0. Moreover, we have added and additional term,
_c
(2+2)%

which is also holomorphic in H_; and vanishes at z = 0. For the last term, we could choose any
other function, but we choose that one in order to guarantee an integrability property which
we will see later.

So, let’s begin by proving that f is holomorphic in H_;, which by Theorem 2.2.44, it is enough
to see that the series with terms
1 - /\j — Z _
2 + )\j +z

2z 4+ 2
2+)\j+2

converges absolutely and uniformly over compact sets in the domain H_;. So, let’s fix K, a
compact subset of H_; and let Cx := sup,x |22 + 2|. Observe that for every z € K it holds
that

Tinfuex 2+ A +w| T infyem , |24+ A+ w)
g Cic _ Ok _ Ok
Tinfuem , Re(24+ X +w) 14N )\

22+ 2
2+)\j+2

Thus, by the convergence of the series 3-; 1/A; and the M Weierstrass criteria, we can conclude

that the series with therms
22+ 2

converges absolutely and uniformly over compact sets in the domain H_;.
Let’s see now that f is bounded by 1 in H_;. Since each term
)\j —Z
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of the infinite product is the inverse of a Mobius transformation from H_; to D (see (2.2.27)
and take a = A; +1 > 0), then the infinite product is bounded by 1 in H_;. Moreover, the
term outside the infinite product, 2/(2 + z)3, is also bounded in H_, since

(Q—iz)?’ B (zi2)'<(2jz)2>’

and ;75 is the inverse of a Mobius transformation from H_; to D, and

——| <1, Vze H_
'<2+z>2 S
due to |2+ 2| > |Re(2+ 2)| > 1 in H_;.
Now, let’s see that f is in L' when we restrict to Re(z) = —1. Since when z = —1 +ir, r € R
we have
)\j—Z _|()\]+1)—Z’I“|_
then, the norm of the infinite product of f is equal to 1, hence
| = 1+ir| +27°] 1
1 4ir)|d —/ :/ dr — 7 < +o0,
/|f +ir)| dr |14 ar|? R 1+ 72 rEmS e

and this implies that f € L'({Re(z) = —1}). Observe that here f would not be integrable if
we had missed the term z/(2 + 2)3.

The next step is to consider a fixed zg, with Re(zy) > —1, and to apply the Cauchy’s Formula
(Theorem 2.2.49) to f(z), through the semicircumference centered at (—1,0) and with radius
R > 1+ |z, taken from —1 — iR to —1 + R, and unto —1 + iR, and then continued by the
segment from —1+¢R to —1 — iR, as is shown in Figure 1.

—%,

1.5 +
1.0 +

0.5 t
20

-1.5 —-1.0 -0.5
—0.5 4

L 4 —-1.0 +

154

Figure 1: Smooth path where we apply the Cauchy’s Formula
(with R = 2 and zy = —0.5).
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Calling this curve C, once it is parametrized, we have that

1 z
R C
mJo 2 — 2 (33.1)
ROpC1ein) 1 e SRR i
- d / ‘ 9.
27?2/ ' war + 270 J—r )2 —1+Re’9—zoRZ€ d0

—1+4+r— 2z

We want to see that the second term of the integral through the semicircumference, which we
will denote by Iy, tends to 0 as R — +o00. Using again the bound given by

2]
<
1)<
we can write
R [7/2 — 1+ Re"
1 <o [ =1+ Rt
21 J_nj2 |1+ Rei 3] — 1 + Reif — z|
R | — 1+ Re”|
- 2 (—7r/2 71-/2) |1+R610| |—1+R619—Zo|

The triangular inequality implies that

| -1+ Re| <14+ R and |1+ Re"|>R—1.

Moreover, '
| =1+ Re" — 2| >R —[14+ 2| > R—1— %] >0,
so that ‘
| — 1+ Re| R+1
T (R=1)(R =14 2])

11+ Re|3| — 1+ Re'® — 2|
Since zy is fixed, the term R — |1 4 zo| grows with R, so it can be bounded inferiorly by 1, if
R := R(zp) is big enough. Then,
R+1
Ig| < — 0,
Il < R T 1 =)

when R — 400. Applying this, and the dominated convergence theorem over the integrability
of fin {Re(z) = —1}, making R — 400 in (3.3.1), we obtain
f(=1+7r)
—dr. 3.3.2
f(z0) = o Jr 1+ 2 —ir " ( )

Now observe that since Rez > —1,
/ tz zrdt [ tzfir+1
z—ir+1

Then, (3.3.2) can be written as
1 1 .
feo) = [0 | [ p1aine st at
0 2w JR
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The change of the integration order is legitimate since if the integrand in (3.3.3) is replaced by
its absolute value, appears a finite integral due to the fact that the restriction of f to the line
{Re(z) = —1} belongs to L':

1 1
i

. 1 /L
£ f(=1 4 ir)em sl drdt = - [ [1f(=14 i) drat
T Jo R

M 1
_ / #Re(0) gt < 400 (Re(zo) > —1),
21 Jo

where M = || || 11 ((Re(z)=—1})-
Let’s take g(r) = f(—1+ir). Then,

1 1 , 1
feo) = [ 0o [gtremontar] dt = [ tg(108t) d.
0 21 JR 0

where ¢ denotes the Fourier transform of g. Since g € L'([0,1]), then § is bounded and
continuous in [0, 1]. Moreover, since the integral vanishes when t = 0, taking

dp(t) = g(logt)dt,

in (0, 1] (considering p concentrated in (0, 1]) we obtain a Borel complex measure that represents
f in the desired way, i.e.,

f() = [ #au(t),  (Rez>-1),

which, by construction, it vanishes at z = X; for all j € NU {0} but f(X) # 0 for X ¢ {\;}/5.
Equivalently, we have a bounded functional T' = (-, u) that vanishes at %, and therefore, it
does on every linear combination of such powers. Thus, by Corollary 2.2.41, since t* ¢ X when
A # )\, it follows that X C C(]0, 1]).

It remains to see what happens when inf; A; = 0. Observe that in that case,
12 = {uy limpy =0} U {52 limny; = oo},

were we are allowing {~;: lim;~; = 400} = 0.
Assume first that {;: lim;v; = 400} =0 (i.e., lim; \; = 0). Then,
+o00

Z A < 400
A +1

=1

implies that M := Zjﬁf Aj < 400. Hence, Proposition 3.2.2 yields that

lzp"(2)]l o < 11- M - [Ip(2) [
holds for all p € X.

Suppose that X = C([0,1]) and take f(z) = (1—x)"2? € C([0,1]). Then, for every m € N, there

exists p,, € X such that
1

||pm - f”oo < W

86



Take m > 2. Hence for every x € [0, 1],

7@ = 5 < (@) and = (/@) + 5 ) < ~lpm(2)]
So it follows that

pun(1 = 1/m2) = pu(D)] 2o~ 1/m?)] ~ [po(D] > |71~ 1/m?)| — 1/m?

= (@1 +1/m?) = 1/m = 1/m?® = 1/m?
1 2

m  m?2

Now, by the Mean Value Theorem, for a certain £ € (1 — 1/m? 1) we have that

/ . |pm(1_1/m2)_pm(1)| _i 1/m—2/m2
rnlel=e 1/ 2 (1) i (3.3.4)
:(1—1> (m—2) > m—2.
m? - 2

Thus, for every m > 2,

m— 2

1
< Jlaply(2)loe < 11 M - [|pm(@)||, < 11- M - <||f(x)||oo + m2) ,

which is clearly a contradiction since f € C([0,1]) and the left side of (3.3.4) increases with m
while the right side decreases with m.

Finally, we just have one case left. So, we will assume now that {v;: lim;~; = +oo} # 0.

First observe that

io A io i o io Yooy
= 00
j:l/\?"'l jzl,u?-i-l j:1712+1
is equivalent to
+oo “+oo 1
> p; < +ooand Y — < 4oo.
=1 g=17i

Now, observe that we can assume that p; <1 and ; > 1. So take n € N and relabel p1,. ..,y
and 7y, ...,7, such that

P < g < -or <y <7 <0 < Ypo1 < Ve

Hence, by Proposition 3.1.19, (1, z#)7_,, (1,27)}_; and (1,2#*, ... ot 27 ... 27 ) are Cheby-
shev Systems. Let us use the following notation:

e T, , denotes the Chebyshev polynomial associated to the system (1, z"*)p_,,

e T, denotes the Chebyshev polynomial associated to the system (1,27)}_;, and
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o 15, .~ denotes the Chebyshev polynomial associated to the system

(Lyht oo ahe o am).
It follows from Newman’s inequality (Proposition 3.2.2) that

[ 7@ < M) [Tl = 1M ({pi}) < +oo.

Now observe that if z; < x;41 are two consecutive alternation points of 7, ,,, for i € {0,...,n—
1}, by the Mean Value Theorem, there exists £ € (x;, 2;41) such that

Tn,u(xiJrl) - Tn,u(l’i)
Tit1 — T4

§ = 675, ()| < 11M ({1r}).

Therefore, since |T;, ,(z;)| = T u(zi11)| = 1 and sign(T'(z;)) = —sign(T(zi41)),
C2mn (2 | Tnlein) = T
Tit1 — Ly ' Tiv1 — T )

Tiv1 — T4
which implies

< 1IM ({pe })

<m4meMmsanmmH:as(1”“W”>m%

2+ 1M ({1 })

Iterating and using that x; < 1 for every ¢ = 0, ..., n, we obtain that

1M ({jn}) L)) )
"= (2 - 11M({/~Lk})> s (2 + 11M({”’f})> h

UM ({m}) "
§<2+1Mﬂ&%D> |

Moreover, observe that

( M ({#})

2+11M({ﬂk})> =0 (m— +00).

Hence, for a given € > 0, take

A“:mm{mENz<zfﬁEﬁiﬁﬂm<g}

Then,

UM ({m}) \Y
<2+1MHU%D> =

which means that in the interval [e, 1] there are at most N alternation points of T, ,.

Now, recall that the zeros of a Chebyshev polynomial lie between two consecutive alternation
points of it. So for such given ¢ > 0, there exists a constant k;(¢) := N — 1 which only depends
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on ¢ and M = M({p}) (but does not depend on n) such that T, , has at most k;(e) distinct
zeros in [e, 1] and at least n — ky(¢) distinct zeros in [0, ).

On the other hand, it follows from the bounded Bernstein’s inequality (Proposition 3.2.12)
applied to T, , that for a given € > 0,

Then, observe that if y;_; < y; are two consecutive alternation points of T, , in [0,1 — ¢, for
i €{1,...,n}, by the Mean Value Theorem there exists £ € (y;_1, ;) such that

Tn,'y(?/i) - Tn,’y(%’—l)
Yi — Yi—1

T/

"’7H[0,1_5] <c HTn,'yHOO = ¢l < 400.

= [T, ()] < .
Hence, since |T), ,(yi) — Tn(vi—1)| = 2, it follows that

2 2
= <Y~ Y1 =Y = Yi1 T
C€ CE

(2)=1(2)
YiZYot+r|— | =t —|.
c: c:
2
N’::min{mENsm<*>>1—5}.
C€

Therefore, there are at most N’ alternation points of 7, , in [0, 1 —¢]. Thus, arguing as above,
we have that T}, , has at most ky(g) := N’ — 1 zeros in [0,1 — ¢) and at least n — kq(e) zeros in
[1 —&,1] (where ky(¢) only depends on € and M = M ({u}), but does not depend on n).

[terating, we get that

So, take

Now, if we take into account the fact that the system (1, 2" 27)}'_, is an extension of both
systems (1, x#*)7_, and (1,27)}_,, it follows by the interlacing properties of the zeros of Cheby-
shev polynomials (Proposition 3.1.13) that between two consecutive zeros of T}, ,, there is at
least a zero of b, (and the same for T, ).

Therefore, T, ,, has at least n — ki(g) — 1 zeros on [0,¢) and at least n — ka(c) — 1 zeros on
[1 —¢,1]. Hence, we conclude that there exists a certain constant k := k(g) = k() + kao(e) + 2
(which only depends on the sequence {\;}/>) and ¢) such that Tb, , - has at most

2n—(n—Fki(e) = 1) — (n—ka(e) = 1) = k(e)

zeros in the interval (g,1 — ¢).

Set k = k(1/4) and let us take a set of points
1/d<ty<t; <--  <tlpyz3<3/4

and a function f € C([0,1]) such that f(x) =0 for all x € [0,1/4] U [3/4,1] and f(t;) = (—1)*2
for all 0 <7 < k + 3 (see Figure 2).
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0.2 0.4 .6 0.8 1.0

Figure 2: Graphic of a continuous function f in [0, 1]
(with k = 3).

Let us assume that X = C([0, 1]). Then there exists p € (1,2, 2*2,...) of degree n such that
| f —»ll <1. We claim that p — T5, ,, has at least 2n + 1 zeros in the interval [0, 1].

First observe that since f(x) =0 for all = € [0,1/4] U[3/4, 1], then |p(x)| < 1 in such intervals.
Moreover, 15, , - has at least (n — k() — 1)+ (n—ko(e) — 1) = 2n—k zeros in (0,1/4]U[3/4,1),
so it follows that it has at least 2n — k alternation points in such intervals (since the zeros of
a Chebyshev polynomial lie between two consecutive alternation points). Recall that in the
alternation points 75, , . takes the values 1 and —1. Since |p(z)| < 1 in (0,1/4] U [3/4,1), we
deduce that p — T, ., has at least 2n — k — 2 zeros in (0,1/4] U [3/4,1), each one located on
the alternation points of T, , , that lies in (0,1/4] U [3/4,1).

Moreover, we have that f(t;) = (—1)2 for all 0 < i < k + 3. Hence,

Pt = 2> 1= [[Tonpqllo

for every 0 <i < k + 3 and sign(p(t;)) = —sign(p(t;+1)). Therefore, since

‘TQn,um(ti)‘ <1< ’p(tZ)L
in (1/4,3/4) the function p — 15, , , changes its sign at least k + 3 times (since there are k + 4
points ¢;). Thus, p — 15, ., has at least k + 3 zeros in (1/4,3/4).

If we put all together, we get that p — 15, , - has at least 2n —k — 2+ (k+3) = 2n+ 1 zeros in
0,1]. This is a contradiction to the fact that p — Ty, ., € (1,2, 22, ... 2?2") for all n large
enough, since then necessary p — 75, ,, has at most 2n zeros. This ends the proof.

O
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4 EXTENSIONS ON MUNTZ-SZASZ APPROXIMA-
TION THEOREM

It is well known that the space C([0, 1]) of the real valued continuous functions defined on [0, 1]
is dense on the Lebesgue space LP([0,1]) for every 1 < p < +oo. Therefore, one could be
tempted to ask what would happen if we take LP([0, 1]) instead of C([0, 1]) on the hypothesis
of the Full Miintz-Szasz Theorem.

Certainly, the theorem turns out to be true when 1 < p < +o00. Moreover, if we take the series

Jio:o )\j—l—l/p

J=1

instead of
>‘32’ +1

J=1

for sequences {\; }j:o‘f of distinct real numbers greater than —1/p, we also can get a new version
of the Full Miintz-Szasz Theorem for the Lebesgue spaces.
On this chapter, we study the Full Miintz-Szdsz Theorem in LP([0,1]) for 1 < p < +o0.

However, there are results that extends the theorem for 0 < p < 1, but we will not pursue
further on this way. For more details, see [6].

4.1 Density on the Full Miintz-Szasz Theorem on L”([0, 1])

As with the continuous function space section, we first deal with the case when the density
holds. If we try to extend the Miintz-Szdsz Theorem to the Lebesgue spaces LP([0,1]), with
1 < p < +o0, we realize that the case p = +00 is not true. Indeed, we have already seen that

(1L, zM xh2 .. >L°°([0,1])

= C([0,1]) & L=([0, 1]).

However, when 1 < p < +o0, it is possible to obtain an analogous result of approximation.
First, let’s see what happen if we work with the series 37°0 A; /(A + 1) for sequences {\;};2
of distinct positive real numbers.

Theorem 4.1.1. Let {)\J}j:of be a sequence of distinct positive real numbers and X the closure
in LP([0,1]), with 1 < p < 400, of the set generated by the finite linear combinations of the
functions

1o, a2 2t

If

then X = LP ([0, 1]).
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Proof. Let’s call A = (1,2 2?2 ...) C LP([0,1]). So, trivially

w0 e pr(o,1)).

X=A4
Now, remember that the uniform convergence is stronger than the convergence in LP(]0,1]),
e [[fllzeoay < 1l zoe oy for every f € L*([0,1]). Then, the opposite inclusion is obtained
by the Full Miintz-Szész Theorem for continuous functions (Theorem 2.3.5) and the density of
C([0,1]) in LP([0,1]), since

e o1 C WU’([OJ])

£7([0,1)) = c(o, 1" = = X.

U

Observe that Lemma 4.1.1 gives an equivalent result for the Full Miintz-Szasz Theorem for
C([0,1]). However, as we have introduced before, we can get an extension of the Miintz-Szasz
Theorem in LP([0, 1]) for 1 < p < 400, which will allow us to work with sequences of distinct
real numbers {)\; };;"j’ greater than —1/p. Before show it, we need some previous results. First,
let’s see a result about density in LP(]0, 1]) by continuous functions vanishing at 0.

Proposition 4.1.2. Let Fy(]0,1]) = {f € C[0,1] such that f(0) = 0}. Then,

————L7([0,1
Fo(l0, 1)~

= LP([0, 1]).
Proof. Let g € C(]0,1]), and take g, € Fo([0,1]) defined by

_ fnxg(1l/n), xe€l0,1/n],
gn() —{ o(z),  zellmi]. (4.1.1)

Then,

1 1/n
lga = glts = [ lgn(@) = g(a)Pdz = [ nzg(1/m) = g(a)da
< [ nagCa /) +lg@)? e < [ (g1 /)] + o) pda
1/n
<@gl [ dw o,
0

as n tends to +oo.

Now, let h € L,([0,1]) and ¢ > 0. Since C([0,1]) PO _ g ([0,1]), there is a continuous
function h. € C([0,1]) such that [[he — hl, < £/2. Moreover, there exists an n € N such
that [[he — heull, < /2, where he, € Fo([0,1]) defined as (4.1.1), but now for the continuous
function h.. Thus,

e = Bll, < [lhem = hell, + lhe — Al <e.

92



Now, we see a result which claims that the vectorial space (1, 2*2,...) is dense on LP([0, 1]) for
1 < p < +oo when the sequence {}; } 27 of distinct real numbers greater that —1/p converges
to some real number —(1/p) + «, where 0 < a < 2. Observe that in this case, clearly

J = +00.
; O\ +1/p)2+ 1

Proposition 4.1.3. Let p € [1,4+00). Suppose {}, }J 1 is a sequence of distinct real numbers
greater than —(1/p) tending to —(1/p) + , where 0 < o < 2. Then (z™,2*2,...) is dense in
Lr((0,1]).

Proof. Let pj = \j+ % — 5. Then, p; is a sequence of distinct real numbers greater than —(a/2)
tending to «/2. Hence, there exists jo € N such that for every j > jo, |u; — /2] < a/4, and
then p; > a/4 > 0 for every j > jo. Moreover, since p; — /2 > 0, it follows that

+oo

Z Hi  _ = 400,
i=do /~b] +1

and the Full Mintz-Szész Theorem in C([0, 1]) (Theorem 2.3.5) implies that (1, x50, x#io+1 .. .)
is dense in C([0, 1]).

Now, let m € N>;, and observe that since

1 Q 1 Q 1
m+-——>14-——>=>0,
p 2 p 27 p

then z™*+1/P~2/2 ¢ C([0,1]). Hence, since z™*+/P~%/2 vanishes at 0, fixed £ > 0 there exists
Q. € (xto, xtio+1 ... ) such that

meﬂ/pfa/? Q.

<e&.
00

Let
R. =z (Wl () € (o, aton, ),

then we have the inequality

L/ |z — de—i/ ‘ Up+w9( m+(1/p)—a/2 _ Qs())fdm
S(/IIW%QM>HmamHm> QH
0

Hence, the monomials 2™ are in the LP([0, 1]) closure of (z%o, z%o+1 ...} for all m > 1. There-
fore, by the Weierstrass Approximation Theorem and using that the the uniform convergence is
stronger than the convergence in LP([0, 1]), we have that (z%o, z%o+1 .. .) is dense in Fy([0, 1])

with the L7([0, 1]).
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Thus, by Proposition 4.1.2, in L?(]0, 1]) we have that

LP([0,1])

-FO([()? 1]) = Lp([()? 1])7

and since
(g0 grio+r ) C (M 2, ) C LP([0,1])

the theorem follows.

O

Finally, before seeing the extension of the Miintz-Szdsz Theorem for Lebesgue spaces with
p € [1,00), we present a last result about the LP([0,1]) functions.

Proposition 4.1.4. Suppose 1 < p < +oo. Let h € LP([0,1]) such that

for every u € C([0,1]). Then, h(z) =0 a.e. x on I.

Proof. First observe that since u = 1 € C([0, 1]), then
1

/ h(t)dt = 0.
0

Let a € [0,1) and let 6 > 0 such that a + 6 < 1. We define u, s € C(]0, 1]) by

d(z,[a+4,1])
d(z,[a+0,1]) +d(z,[0,a])’

Uns(T) =

where d(z,U) = infyep |z —y| € C([0,1]) for U C I. Then, u,s(z) = 0 for x € [a + 9, 1] and
Uqs(z) =1 for x € [0, a]. Hence, uqs € C([0,1]) and it follows that

/ s (D)t = 0.

Moreover, |u,s| < 1 and

. _ d(z, [, 1]) 1 2z €0,a]
o) = G o t]) + d (o, [0.a]) {o v € [a,1] = X0l(®);

for every x € I.

Thus, by the Dominated Convergence Theorem, for every o € [0, 1),

[ nteyar = | 0w (OR(E)dt = / lim w5 (1)dt

=lim [ uas(OR(t)dt = 0.
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Therefore, for every 0 < ay < ag < 1,

/QQ h(t)dt = /Oal h(t)dt + /a2 h(t)dt = /00“2 h(t)dt = 0.

aq

Thus, for every open set U C I,

and it follows from Lemma 2.2.21 (b), h(x) =0 a.e. z on I.
U

We are now in conditions to state and prove the extension of the Full Miintz-Szdsz Theorem
in LP([0,1]) in the dense case. The proof is based on the Riesz Representation Theorem for
continuous linear functionals in LP([0,1]), valid for p € [1,4+00), so that the assumption of
p < +0o0 is essential.

Theorem 4.1.5 (Full Miintz-Szasz Theorem for Lebesgue Spaces). Let p € [1,+00). Suppose
that {\;}]23 is a sequence of distinct real numbers greater than (—1/p). If

X AN+ (1p)
; (Aj+(1/p))2+1

= —l—oo’

then the closure X of the set generated by the powers (x9)[25 is dense in Ly,([0,1]).

Proof. Assume that X C LP([0,1]). Taking y; = A\; + 1/p and v = 2 in Proposition 2.3.3, and
choosing a subsequence if necessary, without loss of generality we may assume that one of the
following three cases occurs:

(i) Case 1: \; >2—1/pforeach j=1,2,....
(i) Case 2: —1/p< \j <2—1/pforeach j =1,2,... and lim; \; = a —1/p with a € (0, 2].

(ili) Case 3: —1/p < \; <2—1/pforeach j=1,2,... and lim; \; = —1/p.

In Case 1, since \; > 2 —1/p > 1, we have that inf; \; > 1 > 0. Hence,

XN+ (1/p) =1
oo Z(H(l/p 1—ZA+1/p>§ZA7

Therefore, since the series Y>7°7 1/A; and Y757 \;/(A? 4 1) are equivalent when inf; A; > 0, in
particular,

= +00.

>
SN+
Thus, Case 1 follows by Lemma 4.1.1.
In Case 2, Proposition 4.1.3 implies that (2,272, 2, ...} is dense in LP([0, 1]).
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In Case 3, we argue as follows. Let’s call A = (2™ 2* 2% .. ). By Corollary 2.2.41,
and since the uniform convergence is stronger than the convergence in LP(]0, 1]), we get that
X € L*(]0,1]) if and only if there exists a linear bounded functional T such that T'(z%) = 0
for every j = 1,2,... but T(t}) # 0 for any t* ¢ X, X > —(1/p).

Moreover, by Corollary 2.2.36 (Riesz-Representation Theorem for LP([0,1])), we can restate it
as follows: X C LP([0,1]) if and only if there exists a 0 # h € L%([0, 1]) satisfying

1
/thhuﬁza i=12...

[ enod 20, Ag D) A> (1),

where ¢ is the conjugate exponent of p defined by p~! + ¢~ = 1.
Assume there exists such h # 0. Let

-/ CER(dt, Re(s) > -

p

Observe that the integrand vanishes at ¢ = 0, hence, we can assume that the measure h(t)dt is
concentrated in I = (0, 1].
:/ﬁmmﬁ:/ém%@w
I I
By the Holder’s inequality,

Then,
|||
< tpRe(z)) h q
) (/ 1My = GRez) + e = F°°

since pRe(z) > —1.

Moreover, using an analogous argument as used in the proof of the analicity of f in Proposi-
tion 2.3.4, we have that f is holomorpic in Re(z) > —1/p. Now, let’s define

1
9(z) = f <1 +2z - p) = foTip-1,
where 7y/,_1(2) = 2 — 1/p+ 1 is a translation from H_; to H_,/,. Hence, g is holomorphic in

the unit disk and bounded (f is bounded), thus g € H>*(D).
Now, let

1 1 1 1 1

so that
9(ay) = f(Oéj +1-1/p)=f(A;) =0,

for every j € N. Therefore, since lim; \; = —1/p, there exists jo € N such that |[\; + 1/p| =
A +1/p < 1, for every j > jo. Thus,

+oo +o0 1 Jo
RS S R e Dol (B
=1 =) p

J=1

I 1‘)+ > ()\ +1> +
1 1) = e,
Top Top

Jj=jo+1
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due to the inequality

pooo S5 NHD) o §F <Aj+1>'

= KN+ (/)1 T 5 p

Hence, Theorem 2.2.43 yields that ¢ = 0 on the open disk. Therefore, f(z) = 0 on the open
disk with diameter [-1/p,2 —1/p]. Now observe that f is analytic on H_;/,; hence, by the
Identity Principle (Theorem 2.2.46), f = 0 whenever Re(z) > —1/p. So in particular,

1
f(n) = / t"h(t)dt =0, foreveryn=20,1,2,....
0

Now the Weierstrass Approximation Theorem and the Dominated Convergence Theorem yields
that

/ u(h()dt = 0,

for every u € C[0, 1]. By Proposition 4.1.4, this implies h(z) = 0 a.e.  on I, which contradicts
the fact that 0 # h. Thus, X = L*([0, 1]).

0

4.2 Reciprocal on the Full Miintz-Szasz Theorem on L?([0,1])

As in C([0, 1]), we also have the reciprocal of the Full Miintz-Szdsz Theorem for LP([0, 1]) when
p € [1,400). However, on these notes we will just see a complete proof for the case p = 1.
However, for p > 1 we will show that the reciprocal also holds when the sequence {/\J};;"f
satisfies the condition inf; A\; > —1/p. For more details, see [7].

Theorem 4.2.1 (Full Miintz-Szasz Theorem for integrable functions). Let {\;}}25 be a se-
quence of distinct numbers greater that —1, and X the closure in L' ([0,1]) of the set generated
by the finite linear combinations of the functions

N

If
> ol
— (N +1)2+1

J=1

+00
then X C L'([0,1]).

Proof. Assume that X = L'([0,1]). Let m € Z-o and € > 0. Choose a p € (2, 2?2 2% ...)
such that

2™ = p(@)|| 1101 < &

Now let -
q(z) = /0 p(t)dt € (1,zMFh g2t ),
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Then,

xm—f—l

= sup
0,1 =€[0,1]

< sup [ [t™ —q(t)| dt
x€[0,1] /0

= [|z"™ _p(x)HLl([o,l]) <E.

m+1—%@‘

So the Weierstrass Approximation Theorem yields that
(1,201 ghet )

is dense in in C([0, 1]).

Therefore,
i" A+ 1 N
—— = +0.
= (A +1)2+1

This contradiction ends the proof.
O

For the case when 1 < p < 400 we present the following result. The proof is similar as for the
reciprocal of the Full Miintz-Szasz Theorem (Theorem 3.3.1).

Theorem 4.2.2 (Full Mintz-Szész Theorem for Lebesgue Spaces). Let {)\;}7= be a sequence
of distinct real numbers greater than —1/p such that inf; \; > —1/p, and X the closure in
LP([0,1]), with 1 < p < 400, of the set generated by the finite linear combinations of the
functions
e I I
If
+00 A+ L
S BT
=+ +1
then X C LP([0,1]).
Proof. We will construct a linear bounded functional T' = (-, u) on LP([0, 1]) such that T'(#%) =
0 for every j = 1,2,3,..., but with T(#}) # 0, for any A > —1/p with \ ¢ {)\J}j:o‘f If we

get such functional, we will be able to apply the Corollary of the Hahn-Bannach Theorem
(Corollary 2.2.41), which would finish the proof.

To do so, observe that by the Riesz Representation Theorem for LP([0,1]) (Theorem 2.2.36), it
is equivalent to find a nonzero function h € L?([0, 1]), where 1/p + 1/q = 1, such that

T() = [ pOh@dr, (o € 1(0,1))
satisfying
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(a) T(#*) = Jy t*h(t)dt # 0,
(b) T(tY) = [y tYh(t)dt =0,¥j =1,2,3,....

Recall that in the proof of the reciprocal of the Full Miintz-Szasz Theorem (Theorem 3.3.1),
we find a bounded and holomorphic function f in

H,={2€C;Rez>—1}

defined as
z

z )\j_
fz) = (2+z)3H2~|—)\j+z’

Jj=1

zeH_;

such that

Observe that by (i), necessary § is bounded and continuous in [0, 1]. Hence, using also that the
integral vanishes when ¢ = 0, we can take the nonzero function

h(t) = g(log ) x>0y (1) € L([0,1]) < L7([0, 1]).
So, the functional in LP([0, 1])*,

(-,h): LP([0,1]) B R
f (f;h) = Jo F(Oh(t)dL,

vanishes in X, but not in z* for every A\ > —1/p, A ¢ {\;};. Thus, by Corollary 2.2.41,
X ¢ I([0,1)).

—
—

O

99



5 CONCLUSIONS

When [ asked Maria Jestis Carro to be my final master project advisor, my goal was to learn
more techniques in analysis as well as to strengthen the acquired knowledges on the Master
in the subject Functional Analysis and PDE’s. So we mark ourselves the aim of studying
the Mintz-Szasz Theorem, which deals with increasing sequences {,\j}jgg, of positive real
numbers except for \g = 0. Therefore, we start by motivating the problem with the well known
Weierstrass Approximation Theorem, a particular case of the Miintz-Szasz Theorem. Although
our idea was to find a constructive proof of it, we came across with an interesting proof of
Bernstein, which was at least different of what we had already studied. Then, we continue
by introducing the main ideas of the complex measure theory where, during this process, we
had to see some important results such as the Radon-Nikodym Theorem and Riesz-Markovi-
Kakutani Representation Theorem. Moreover, we have recalled some classical results on complex
analysis and on functional analysis, as the Cauchy’s Theorem and the Hahn-Banach Theorem.
Therefore, making retrospective from this point to the beginning, we could say that a great part
of our goal was completed, since the proof that we have studied of the Miintz-Szasz Theorem
requires all this theory.

Studying on the same line, we saw an extension that holds with the same hypothesis but now
with the spaces LP([0,1]) (1 < p < 4o00) instead of C([0,1]), whose proof was based on the
density of C(]0, 1]) into L?([0, 1]) together with the Lebesgue norm and the Riesz Representation
Theorem on LP([0,1]). This stimulated us to do research in that way, so we begun to study
generalizations of the Miintz-Szasz Theorem involving the spaces LP([0,1]), and we found a
new version where the hypothesis dealt with general sequences of exponents, with no more
restriction to be different between them and greater to —1/p. Therefore, this inspired us to
seek for a Muntz-Szasz Theorem in C([0, 1]) but for general sequences of exponents greater than
0. Fortunately, we succeed in the search. Moreover, we realized that we had to divide the proof
of this extension in two parts: the part of the density result, which it could be easily extended to
general sequences by using the complex analysis background on these notes; and the reciprocal,
for which we had to introduce some vectorial subspaces of the continuous functions in order to
complete the proof.

All in all, T can say that working on these notes has overcome my expectations. Not only
for all the background that I have won, but also for all the research I had to do and all the
bibliography I had to read and to understand. Moreover, I had the opportunity to face an
important result with many different proofs and extensions but relatively new, since the most
recently progress are from the beginnings of the XXI century. However, I will say that what
I really regret is not having had more time in order to deepen in some aspects of these notes.
As a result of everything studied, we tried to study the Muntz-Szész Theorem with another
Banach space, since as one could see on these notes, the proof of the Muntz-Szasz Theorem is
based on the Riesz representation and the Hahn Banach. In particular, we have tried to study
the case of the Lorentz spaces LP9([0,1]) for 1 < p < ¢ < 400, since we have not found any
bibliography in that sense which could mean that it is an original research to do. However,
even though I had the opportunity of introducing myself to these spaces and also to deepen in
them, we have not found any result in that sense.
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