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〈, 〉 usual inner product
H̃i(∆, G) reduced homology group, 37
st∆F star of a face F , 38
lk∆F link of a face F , 38
cn(∆) cone of a complex, 39
∆1 ∗∆2 join of two simplices, 39
Rm localization of R in m
H i

m(M) i-th local cohomology of a module M , 41
lim
−→

Mi direct limit of modules Mi

(R,m, k) local ring R with maximal ideal m and residue class field k = R/m
C(n, d) cyclic polytope, 31
∂F boundary of a simplex
∆(n, d) boundary simplicial complex of a cyclic polytope C(n, d)⊕
,
∐

direct sum (of vector space or mudules)
kX vector space over k with basis X
ExtnR(M,N) right derivaded functor of RnHomR(M,N)
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1 Introduction
Let ∆ be a triangulation of a (d − 1)-dimensional sphere with n vertices. The Upper
Bound Conjecture (UBC for short) gives an explicit bound of the number of i-dimensional
faces of ∆.

This question dates back to the beginning of the 1950’s, when the study of the effi-
ciency of some linear programming techniques led to the following problem: Determine
the maximal possible number of i-faces of d-polytope with n vertices.

The first statement of the UBC was formulated in 1957 by Theodore Motzkin [7]. The
original result state that the number of i-dimensional faces of a d-dimensional polytope
with n vertices are bound by a certain explicit number fi(C(n, d)), where C(n, d) is a
cyclic polytope and fi denotes the number of i-dimensional faces of the simplex. We say
that P is a polytope if it is the convex hull of a finite set of points in Rd. Moreover,
we say that C(n, d) is a cyclic polytope if it is the convex hull of n distinct points on
the moment curve (t, t2, . . . , td), −∞ < t < ∞. With this notation the Upper Bound
Conjecture (for convex polytopes) states that cyclic polytope maximizes the number of
i-dimensional faces among all polytopes.

After some proofs of special cases by Fieldhouse, Gale and Klee, finally, in 1970 Peter
McMullen [6] proved the UBC for convex polytopes. McMullen’s proof is based on the
line shelling, introduced by Bruggesser-Mani [1] (we will see these concepts in section 3,
as well as a constructive and simple proof of the Bruggesser-Mani theorem).

In 1964 Victor Klee had extended the UBC to any triangulation ∆ with n vertices
of a (d − 1)-manifold. The specific case of the Klee conjecture when the geometric
realization1 of ∆ is a sphere is called upper bound conjecture for spheres or simplicial
spheres.

There is no clear evidence that the UBC for simplicial spheres is stronger than the
UBC for convex polytopes. We know that a polytope is homeomorphic to a sphere.
However there exist triangulations of spheres which are not the boundary of a simplicial
convex polytope. Moreover, Kalai [4] proved that there are many more such simplicial
spheres than polytopes. Therefore, the UBC for spheres is a generalization of McMullen’s
theorem for polytopes.

Finally, in 1975, Richard P. Stanley [8] proved the Upper Bound Conjecture for
simplicial spheres. In his proof, Stanley associated an algebraic structure, the Stanley-
Reisner ring, to the simplicial complex and study the Hilbert series of this ring.

Richard Stanley with all the techniques developed in his proof of the UBC trans-
formed combinatorics form a collection of separate methods and a discipline with lack
of abstraction to a structured and mature area of mathematics. In this project we will
reproduce the proof of the upper bound theorem following the Richard Stanley steps.
We will do a detailed study of the combinatorial aspects of the simplicial polytope, but
we will focus more in the algebraic and topological structure of the complexes.

In section 2 we will provide the algebraic background essential for our study of
Stanley-Reisner ring. We will introduce the notion of grade and depth that allow us to

1The geometric realization of ∆ is a way to associate a topological space |∆|.
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define the class of Cohen-Macaulay rings. Eventually, we will present some fundamental
results on Hilbert series. The reader familiarized with this notion can skip this part.

In section refsection3 we will introduce the simplicial complexes and study the prop-
erties of the Stanely-Reisner ring that allows us to define the h-vector. We will present
also two special cases of simplicices, the Cohen-Macaulay and the shellable one. The
h-vector contains combinatorial information about the simplex, and in the particular
case of the Cohen-Macaulay we have explicit bound for each component of the vector.
Finally, we will define the cyclic polytopes and characterize his h and f -vector. The
results about cyclic polytopes are followed form the book citezieglerlectures.

In section 4 we will study the homology group of the simplicial complexes and the
local cohomology of the Stanley-Reisner ring. Finally, we will prove the Reisner criterion
which determine when a simplicial complex is Cohen-Macaulay. This result is elementary
in our proof of the UBC. We will follow the proof of Reisner’s theorem from [5].

Finally, in the last section we will give the proof of the upper bound theorem for
simplicial spheres.

Proof of the upper bound theorem:

To read the proof of the upper bound theorem for simplicial spheres only the results from
section 3 the Dehn-Sommerville relation (Theorem 3.27) and Theorem 3.11 are needed.
From section 4 we use Reisner’s Theorem 4.9 to prove that a simplicial sphere satisfy
the Dehn-Sommervile equations. All these results are complemented by Corollary 3.23
and Proposition 3.9.

2



2 Basic Concepts
In this section we will give a brief introduction to all the algebraic tools that we will
use in this project. Since we have seen all these results on the course of "Local Algebra"
in the Master of Advanced Mathematics from "Universitat de Barcelona" we will skip
almost all the proofs. Although it can be found in the book of "Cohen-Macaulay rings",
see [2].

Let us start with a remainder of regular sequences.

2.1 Regular Sequence, Grade and Depth

Let M be a module over a ring R. We say that x ∈ R is an M -regular element if x is
not a zero-divisor on M , that is, if xz = 0 for z ∈M implies that z = 0.

Definition 2.1. A sequence x = x1, . . . , xn of elements on R is called an M -regular
sequence or simply an M -sequence if the following conditions are satisfied:

(i) xi is an M/(x1, . . . , xi−1)M -regular element for i = 1, . . . , n,

(ii) M/xM 6= 0.

A weak M -sequence is only required to satisfy condition (i).

The next result shows that a regular sequence has a good behaviour respect to an
exact sequence. Numerous arguments of this project will be based on this property.

Proposition 2.1. Let R be a ring, M an R-module, and x a weak M -sequence. Then
an exact sequence

N2
ϕ2−−→ N1

ϕ1−−→ N0
ϕ0−−→M −→ 0

of R-modules induces an exact sequence of R-modules

N2/xN2 −→ N1/xN1 −→ N0/xN0 −→M/xM −→ 0.

Another property of the regular sequences is that any permutation on the order of
its elements is again a regular sequence.

Let R be a Noetherian ring andM an R-module. If x = x1, . . . , xn is anM -sequence,
then the sequence

(x1) ⊂ (x1, x2) ⊂ · · · ⊂ (x1, . . . , xn)

is a strictly ascending sequence of ideals. Therefore, an M -sequence can be extended to
a maximal such sequence. We say that an M -sequence x is maximal if x1, . . . , xn+1 is
not an M -sequence for any xn+1 ∈ R. Next, we will see a result, in a quite general case,
where all the maximal M -sequences has the same length.

Theorem 2.2. (Rees). Let R be a Noetherian ring, M a finite R-module, and I an ideal
such that IM 6= I. Then the common length of the maximal M -sequences in I have the
same length n given by

n = min{i : ExtiR(R/I,m) 6= 0}
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This invariant of the length of such sequences, allows us to introduce the notion of
grade and depth.

Definition 2.2. Let R be a Noetherian ring, M a finite R-module, and I an ideal such
that IM 6= M . Then the common length of the maximal M -sequences in I is called the
grade of I on M , denoted by

grade(I,M).

We set grade(I,M) =∞ if IM = M .
On the special case when R is a local ring we will call, this common length, depth

of the regular sequence.

Definition 2.3. Let (R,m, k) be a local ring, andM a finite R-module. Then the grade
of m on M is called the depth of M , denoted

depth M.

Let us see some useful formulas to compute grade and depth.

Proposition 2.3. Let R be a Noetherian ring, I ⊂ R an ideal, and 0 → N → M →
L→ 0 an exact sequence of R-modules. Then

grade(I,M) ≤ min{grade(I,N), grade(I, L)},
grade(I,N) ≤ min{grade(I,M), grade(I, L) + 1},
grade(I, L) ≤ min{grade(I,N)− 1, grade(I,M)},

As a direct sequence of this result we have the depth lemma.

Lemma 2.4. (Depth lemma). Let R be a Noetherian local ring, and 0 → N → M →
L→ 0 an exact sequence of R-modules. Then:

(a) if depth M < depth L, then depth N = depth M ;

(b) if depth M = depth L, then depth N ≥ depth M ;

(c) if depth M > depth L, then depth N = depth L− 1.

Remark 2.1. In the particular case when (R,m, k) is a local ring and 0 → N →
M → L → 0 an exact sequence of R-modules such that depth L = depth N = d then
depth M = d.

In the next proposition we give more formulas and properties related to the grade of
an ideal.

Proposition 2.5. Let R be a Noetherian ring, I, J ideal of R, and M a finite R-module.
Then

(a) grade(I,M) = inf{depth Mp|p ∈ V (I)},
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(b) grade(I,M) = grad(Rad I,M),

(c) grade(I ∩ J,M) = min{grade(I,M), grade(J,M)},

(d) if x = x1, . . . , xn is an M -sequence in I, then

grade(I/(x),M/xM) = grade(I,M/xM) = grade(I,M)− n,

(e) if N is a finite R-module with Supp N = V (I), then

grade(I,M) = inf{i : ExtiR(N,M) 6= 0}.

Definition 2.4. Let R be a Noetherian ring and M 6= 0 a finite R-module. Then the
grade of M is given by

grade M = min{i : ExtiR(M,R) 6= 0}.

We also set
grade I = grade R/I = grade(I,R),

for an ideal I ⊂ R.

In the following result we see how the depth and the Krull dimension (for short
dimension) of a module are related.

Proposition 2.6. Let (R,m) be a Noetherian local ring and M 6= 0 a finite R-module.
Then

depth M ≤ dimM.

Let R be a ring and p a prime ideal of R. The height of p, denoted by ht(p) is the
supremum of the lengths of all chains of prime ideals

p0 ⊂ p1 ⊂ · · · ⊂ pn = p,

which ends at p. Also define height of I as

ht(I) = min{ht(p)|I ⊂ p and p ∈ Spec(R)}.

Established these definitions we have the following result.

Proposition 2.7. Let R be a Noetherian ring and I ⊂ R an ideal. Then

grade I ≤ height I.
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2.2 Graded Rings and Modules

The polynomial ring admit a decomposition into homogeneous components ordered in
terms of their degree. We can apply this idea to rings and modules that admit a decompo-
sition of their elements into homogeneous components. This notion of the decomposition
of a ring will be fundamental in our study of Hilbert series and the local cohomology of
the Stanley-Reisner rings.

Definition 2.5. A graded ring is a ring R together with a decomposition R =
⊕

i∈ZRi
(as a Z-module) such that RiRj = Ri+j for all i, j ∈ Z.

Moreover, a graded R-module is an R-module M together with a decomposition
M =

⊕
i∈ZMi (as a Z-module) such that RiMj ⊂Mi+j for all i, j ∈ Z.

One calls Mi the i-th homogeneous components of M .

An elements of Mi is sad to be homogeneous (of degree i). The elements of Ri are
called i-forms.

Note that R0 is a ring with 1 ∈ R0, and Rn is an R0-module for all n.
Let us see an example.

Example 2.1. Let R = k[x1, . . . , xn] be a polynomial ring over a field k. A natural
way to grade R is to assign degree di to the variables xi, where d1, . . . , dn are positive
integers. For a = (a1, . . . , an) ∈ Nn we set xa = xa1

1 · · ·xan
n and |a| = a1d1 + · · ·+ andn.

Let Ri =
⊕
|a|=i kx

a, for i ≤ 0 and for i < 0 we set Ri = 0. The induces Z-grading is

R =
∞⊕
i=0

Ri

Now let I ⊂ R be an ideal. We say that I is homogeneous of graded, if there are
homogeneous polynomials f1, . . . , ft such that I = (f1, . . . , ft). Then the ideal I is
graded by

Ii = I ∩Ri = f1Ri−deg f1 + · · · frRi−deg ft .

Therefore, R/I inherits a structure of Z-graded R-module whose components are
given by (R/I)i = Ri/Ii.

When we let di = 1 on a polynomial ring we call it the standard grading.

2.3 Cohen-Macaulay Rings

Definition 2.6. Let R be a Noetherian local ring. A finite R-moduleM 6= 0 is a Cohen-
Macaulay module if deph M = dimM . If R itself is a Cohen-Macaulay as an R-module,
then it is called a Cohen-Macaulay ring.

Moreover, an ideal I of R is Cohen-Macaulay if R/I is a Cohen-Macaulay R-module.

An important equivalence between dimension and depth for the case of Cohen-
Macaulay rings is given by the following proposition.

Theorem 2.8. Let (R,m) be a Noetherian local ring, and M 6= 0 a Cohen-Macaulay
R-module. Then
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(a) dimR/p = depth M for all p ∈ Ass M ,

(b) grade(I,M) = dimM − dimM/IM for all ideal I ⊂ m,

(c) x = x1, . . . , xt is an M -sequence if and only if dimM/xM = dimM − t,

Theorem 2.9. Let R be a Noetherian ring, and M a finite R-module.

(a) Suppose x is an M -sequence. If M is a Cohen-Macaulay module, then M/xM is
Cohen-Macaulay (over R or R/(x)). The converse holds if R is local.

(b) Suppose thatM is Cohen-Macaulay. Then for every multiplicatively closed set S in R
the local module MS is also Cohen-Macaulay. In particular, Mp is Cohen-Macaulay
for every p ∈ Spec R. If Mp 6= 0, then

depth Mp = grade(p,M) and dimM = dimMp + dimM/pM.

Proposition 2.10. Let R be a Cohen-Macaulay ring, and I 6= R an ideal. Then
grade I = height I, and if R is local,

height I + dimR/I = dimR.

Proposition 2.11. Let R be a positively graded polynomial ring over a field k and
I a graded ideal of R. If R/I is Cohen-Macaulay, then ht(I) = ht(P) for all P ∈
AssR(R/I).

2.4 Hilbert Series

The Hilbert functions H(M,n) of a graded moduleM measure the dimension of its n-th
homogeneous pieces. Let R be a graded ring and M an R-graded module. We will
assume that R0 is an Artinian local ring, and that R is finitely generated over R. Notice
that in this case, the homogeneous components Mn of M are finite R0-modules, and
hence have finite length. We define the length of a module Mn, denoted l(Mn), as the
largest length of any chain contained in Mn.

Definition 2.7. LetM be a finite graded R-module. The numerical function H(M,−) :
Z → Z with H(M,n) = l(Mn) for all n ∈ Z is the Hilbert function, and HM (t) =∑
n∈ZH(M,n)tn is the Hilbert series of M .

We say that a numerical function F : Z → Z is of polynomial type of degree d is
there exists a polynomial P (X) ∈ Q[X] of degree d such that F (n) = P (n) for all
n� 0. We define the difference operator ∆ on the set of numerical functions by setting
(∆F )(n) = F (n+ 1)− F (n) for all n ∈ Z.

Theorem 2.12. (Hilbert). Let M be a finite R-module of dimension d. H(M,n) is of
polynomial type of degree d− 1.
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Definition 2.8. Let M be a finite graded R−module of dimension d. The unique
polynomial PM (X) ∈ Q[X] for which H(M,n) = PM (n) for all n ≤ 0 is called the
Hilbert polynomial of M . We write

PM (X) =
d−1∑
i=0

(−1)d−1−ied−1−i

(
X + i

i

)
.

Then the multiplicity of M is defined to be

e(M) =
{
e0 if d > 0;
l(M) if d = 0.

Lemma 2.13. Let H(t) =
∑
ant

n be a formal Laurent series with integers coefficients,
and ai = 0 for i � 0. Further, let d > 0 be an integer. Then the following conditions
are equivalent:

(a) There exists a polynomial P (X) ∈ Q[X] of degree d − 1 such that P (n) = an for
large n;

(b) H(t) = Q(t)/(1− t)d where Q(t) ∈ Z[t, t−1] and Q(1) 6= 0.

As a result of this lemma we have the following important corollary:

Theorem 2.14. Let M 6= 0 be a finite graded R−module of dimension d. Then there
exists a unique QM (t) ∈ Z[t, t−1] with QM (1) 6= 0 such that

HM (t) = QM (t)
(1− t)d .

Moreover, if QM (t) =
∑
i hit

i, then min{i : hi 6= 0} is the least number such thatMi 6= 0.

Remark 2.2. Let R = k[X1, . . . , Xn] be a polynomial ring over a field k. Then the
Hilbert function H(R, i) equals the number of monomials of total degree i. It can be
proved by induction on n that this number is

(n+i−1
n−1

)
. Therefore, the Hilbert series is

HR(t) =
∑
i∈Z

(
n+ i− 1
n− 1

)
ti = 1

(1− t)n .

Corollary 2.15. Let M 6= 0 be a finite graded R-module of dim d. Then

(a)

ei = Q
(i)
M (1)
i! for i = 0, . . . , d− 1.

Furthermore, e(M) = QM (1).

(b) If M is also Cohen-Macaulay and assume QM (t) =
∑
hit

i. Then hi ≥ 0 for all i.
Moreover, ei ≥ 0 for all i if Mj = 0 for all j < 0.

8



Remark 2.3. Let M be a Cohen-Macaulay finite graded R-module and let x be a
M -sequence of elements of degree 1. Then we have the exact sequence

0→M(−1) x−→M →M/xM → 0.

From this we obtain that (1− t)HM (t) = HM/(x)M (t). Hence,

QM (t) = QM/(x)M (t).

In order to present the following results on the Hilbert Series we need to introduce
some combinatorial properties about how we can represent an integer. First, given two
integers k and n, we introduce the k-canonical representation of n.

Lemma 2.16. For all integers n, k > 0 there exists a unique representation

n =
(
nk
k

)
+
(
nk−1
k − 1

)
+ · · ·+

(
nj
j

)

where nk > nk−1 > · · · > nj ≥ j ≥ 1.

Proof. First, to prove the existence of such a sequence, we will do induction on k. For
k = 1 choose nk = n. Assume that it is true for k − 1.

Choose nk maximal such that
(nk
k

)
≤ n. If n =

(nk
k

)
, then

n =
d∑
i=1

(
nk
i

)
,

with ni = i− 1 for i = 1, . . . , d− 1.
Now assume n′ = n −

(nk
k

)
> 0. By the induction hypothesis we may assume that

n′ =
∑k−1
i=1

(ni
i

)
with nk−1 > nk−2 > · · · > n1 ≥ 0. It remains to show that nk > nk−1.

By the maximality of nk we obtain
(nk+1

k

)
> n, therefore(

nk
k − 1

)
=
(
nk + 1
k

)
−
(
nk
k

)
> n−

(
nk
k

)
> n′ ≥

(
nk−1
k − 1

)
.

Hence nk > nk−1.
Next, we prove the uniqueness. Assume that we have another k-canonical decompo-

sition of n:
n =

(
mk

k

)
+
(
mk−1
k − 1

)
+ · · ·+

(
mj

j

)
,

where mk > · · · > mj ≥ j ≥ 1. Let s be the largest index such that ns 6= ms.
Let s be the largest index such that nl 6= ml. Recall that our choice nk−i is such

that
nk−i = max{a : n ≥

(
nk
k

)
+
(
nk−1
k − 1

)
+ · · ·

(
nk−i+1
k − i+ 1

)
+
(

a

k − i

)
}.
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Then, for a given i < s, ni is the maximum possible. Therefore, we must have ms < ns
and mi are decreasing as i decreases. Hence, we can conclude that mj are bound by
ni − i− 1 + j.

Since the binomial coefficients are non-negative we have

n =
(
mk

k

)
+ · · ·+

(
mi+1
i+ 1

)
+
(
mi

i

)
+
(
mi−1
i− 1

)
+ · · ·+

(
mj

j

)

≤
(
nk
k

)
+ · · ·+

(
ni+1
i+ 1

)
+
(
ni − 1
i

)
+
(
ni − 2
i− 1

)
+ · · ·+

(
ni − i− 1 + j

j

)

≤
(
nk
k

)
+ · · ·+

(
ni+1
i+ 1

)
+
(
ni − 1
i

)
+
(
ni − 2
i− 1

)
+ · · ·+

(
ni − i

1

)
.

In the last inequality we have just added some non-negative terms to the right side.
Now binding the last i binomial coefficients by

(ni
i

)
we have

n <

(
nk
k

)
+ · · ·+

(
ni+1
i+ 1

)
+
(
ni
i

)
≤ n.

which is a contradiction.

This representation for an integer was introduced by Macaulay. We call nk, . . . , kj
the k-Macaulay coefficients of n.

With this lemma we can now give the two following definitions that will be useful
for the Hilbert Series but also for the number of faces of a simplicial complex.

Definition 2.9. Let n, k ∈ N \ {0}. And let nk, . . . , nj be the k-Macaulay coefficients
of n. Then we define

n(k) =
(

nk
k + 1

)
+
(
nk−1
k

)
+ · · ·+

(
nj
j + 1

)

n〈k〉 =
(
nk + 1
k + 1

)
+
(
nk
k

)
+ · · ·+

(
nj + 1
j + 1

)

We set 0(0) = 0〈0〉 = 0.

One of the main results of this section is the Macaulay theorem, that describe exactly
those numerical functions which occur as the Hilbert functions H(R,n) of a homoge-
neous k-algebra R over a field k. This theorem says that in a Hilbert series HR(t) the
coefficients H(R,n+ 1) are bound in terms of H(R,n). Therefore, the Hilbert Series of
a k-homogeneous algebra is in some way controlled.

Before we can state the Macaulay’s theorem we need to introduce the idea of multi-
complex.
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Definition 2.10. A multicomplex Γ on V = {x1, . . . , xn} is a collection of monomials
xa1

1 · · ·xan
n such that when m ∈ Γ every divisor of m is also in Γ.

Define the h-vector of Γ by h(Γ) = (h0, h1, . . .) where

hi = |{m ∈ Γ| deg m = i}|.

A sequence (h0, h1, . . .) which is the h-vector of some non-empty multicomplex Γ will be
called M -vector2.

A h-vector of a multicomplex may be infinite, and if Γ 6= ∅, then h0 = 1.

Theorem 2.17. (Macaulay). Let k be a field, and let h : N→ N be a numerical function.
The following conditions are equivalent:

(a) h(0), h(1), . . . is an M -vector;

(b) there exists a homogeneous k-algebra R with Hilbert function H(R,n) = h(n) for all
n ≥ 0;

(c) one has h0 = 1 and 0 ≤ hn+1 ≤ h〈n〉n for all n ≥ 1.

Proof. (Sketch)
The implication (a)⇒ (b) follows from another Macaulay result. This result asserts

that for a given N-graded k-algebra R generated by x1, . . . , xn, then R has a k basis
which is a multicomplex on {x1, . . . , xn}.

For the equivalence (a) and (c) one has to construct a multicomplex Γh and verify
that the following conditions are equivalent:

(i) h = (h(0), h(1), . . .) is an M -vector;

(ii) Γh is a multicomplex;

(iii) 0 ≤ h(n+ 1) ≤ h〈n〉n , for n ≥ 1.

Given h we define Γh = ∩i≥0{ first hi monomials of degree i in the reverse lexicographic
order}. Here the difficult implication is (i)⇒ (ii).

Concerning the implication (b) ⇒ (c) one can use Green’s theorem. This result
affirms that for a given homogeneous k-algebra R, with k an infinite field. Then

H(R/gR, n) ≤ H(R,n)〈n〉,

where n ≤ 1, and g is a general linear form. The notation n〈k〉 denotes the sum
(nk−1

k

)
+

· · ·+
(nj−1

j

)
.

Then, we construct an exact sequence

0→ gRn → Rn+1 → R/gR→ 0,
2In honor of F. S. Macaulay.
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that yields the inequality H(R,n + 1) ≤ H(R,n) + H(R/gR, n + 1). It remains to be
proved that H(R,n)〈n〉 ≥ H(R,n+1). This fact follows from properties of the canonical
representation of an integer. (For further details, see Theorem 4.2.10. [2].)

Macaulay’s theorem is valid for any homogeneous k-algebra. It is not surprising that
for stronger restraints on R we can obtain further constraints of the Hilbert series of R.

The following result characterizes the h-vector of Cohen-Macaulay homogeneous al-
gebras.

Proposition 2.18. Let k be a field, and h0, . . . , ht a finite sequence of integers. The
following conditions are equivalent:

(a) There exists an integer d, and a Cohen-Macaulay reduced homogeneous k-algebra R
of dimension d such that

HR(t) =
∑t
i=0 hit

i

(1− t)d ;

(b) h0 = 1, and 0 ≤ hi+1 ≤ h〈i〉i for all i = 1, . . . , t− 1.

Proof. Let R be as in (a). Since R is Cohen-Macaulay, there exists an R-sequence
x = x1, . . . , xd formed by elements of degree 1. By the theorem 2.14, we can write

HR(t) = QR(t)
(1− t)d ,

where QR(t) =
∑s
i=0 hit

t.
Let R = R/xR; then HR(t) = (1 − t)dHR(t) = QR(t). By comparing coefficients it

follows that hn = H(R,n) for all n ≥ 0. Therefore, applying theorem 2.17 we have the
result.

For the reverse implication, we again apply Theorem 2.17. Then, there exists a
homogeneous k-algebra R = k[x1, . . . , xn]/I, where I is generated by monomials such
that HR(t) =

∑s
i=0 hit

i. Since R is of dimension 0, R is Cohen-Macaulay k-algebra.
To see that R is reduced, we can take an reduced homogeneous k-algebra S, whose

defining ideal is generated by square-free monomials, and an S-sequence y of elements
of degree 1 such that R ∼= S/yS3. Hence, R is also a reduced k-homological algebra.

3The proof of the existence of such a reduced k-algebra S can be found in [bibliographic]
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3 Simplicial Complexes and the Face Ring
In this section the simplicial complexes are introduced, the combinatorial objects to
which an algebraic object, the Stanley-Reisner rings, are assigned.
Definition 3.1. A simplicial complex ∆ on a finite set V = {v1, . . . , vn} is a collection
of subsets of V such that
(i) If v ∈ V , then {v} ∈ ∆.

(ii) If F ∈ ∆ and G ⊂ F , then G ∈ ∆.
The elements of ∆ are called faces. Let ∆ be a simplicial complex and F a face of

∆. Define the dimension of F and ∆ by

dim(F ) = |F | − 1 and dim(∆) = sup{dim(F )| F ∈ ∆}

respectively.
Note that for any non empty simplicial complex, the empty set ∅ is a face of dimension

−1. Faces of dimension 0 and 1 are called vertices and edges, respectively. The maximal
faces under inclusion are called the facets of the simplicial complex.
Definition 3.2. The f-vector of a d−simplicial complex ∆ is

f(∆) = (f0, f1, . . . , fd),

where fi = |{F ∈ ∆ : dimF = i}|.
So the fi counts the number of i−dimensional faces of the simplex. Observe that

f−1 = 1, since ∅ ∈ ∆ and f0 = |V |, the number of vertices.
Example 3.1. Consider the set of vertices V = {v1, v2, v3, v4, v5, v6} and let ∆ be the
simplicial complex in Figure 1. The f -vector of this octahedron is f(∆) = (6, 12, 8). The
faces of this simplex are the vertices, the edges and the facets {v1, v3, v4}, {v1, v4, v5},
{v1, v5, v6}, {v2, v3, v4}, {v2, v4, v5}, {v2, v5, v6} and {v2, v3, v5}.

v6

v5

v4

v2

v1

v3

Figure 1: Octahedron
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The main tool which we will work on is the Stanley-Reisner ring.

Definition 3.3. Let ∆ be a simplicial complex on the vertex set V = {v1, . . . , vn}, and
k be a ring. The Stanley-Reisner ring of the complex ∆ is the homogeneous k−algebra

k[∆] = k[X1, . . . , Xn]/I∆

where I∆ = ({Xi1 · · ·Xir | i1 < · · · < ir, {vi1 , . . . , vir} /∈ ∆})4.

Observe that by definition I∆ is generated by square-free monomials. Let see an
example.

Example 3.2. Let ∆ be the simplicial complex on the Figure 2 on the set of vertices
V = {v1, v2, v3, v4}.

Is a complex of dimension 2. Its f -vector
is f(∆) = (4, 5, 1) and the Stanley-Reisner
ideal is I∆ = (x1x2, x1x2x4). Notice that the
face {v2, v3, v4} is a maximal face of maximal
dimension. v4

v3

v2

v1

•

••

•

Figure 2:

Now, the Krull dimension of the Stanley-Reisner rings can be determined easily from
the following result.

Proposition 3.1. Let ∆ be a simplicial complex, and k a field. Then

I∆ =
⋂
F

PF

where the intersection is taken over all facets F of ∆, and PF denotes the prime ideal
generated by all Xi such that vi /∈ F .

Before the proof of this proposition we need some fundamental lemmas about the
primary decomposition of the monomial ideals.

Lemma 3.2. Let k be a field and I ⊂ k[X1, . . . , Xn] an ideal generated by square-free
monomials. Then k[X1, . . . , Xn]/I is reduced.

Proof. Let R = k[X1, . . . , Xn]. We know that a quotient ring R/I is reduced if and
only if I is radical. We also have the following fact. Let k be a field and let I be a
monomial ideal in k[X1, . . . , Xn] then Rad = I if and only if I is generated by square-
free monomials.

Since I∆ is generated by square-free monomials then I∆ is radical, therefore R/I∆ is
reduced.

4We will call the ideal I∆ the Stanley-Reisner ideal.
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First, we shall prove that I∆ is radical, Rad (I∆) = I∆.
The inclusion I∆ ⊆ Rad(I) is by definition of radical, for the other inclusions observe

that ∀f ∈ Rad(I∆) then ∃m ∈ Z such that gm ∈ I∆, since I∆ is generated by square-free
monomials then g ∈ I∆. So I∆ is radical.

Now we will prove that for a radical ideal I∆, the quotient ring R/I∆ is reduced.
Let I∆ be a radical ideal, we have to show that if x+I∆ ∈ R/I∆ such that (x+I∆)n =

0R/I∆ for some positive integer n then x + I = 0R/I∆ . Let (x + I∆)n = 0R/I∆ then
xn + I∆ = 0R/I∆ and therefore xn ∈ I∆. That is x+ I∆ = 0. Hence R/I∆ is reduced.

Lemma 3.3. Let I be a radical ideal in a ring R, then

I =
⋂
p⊃I

p,

where p is a prime ideal containing I.

Proof. Let p be a prime ideal containing I. If r ∈ R such that rn ∈ I, then rn ∈ p, so
r ∈ p since p is a prime ideal. Thus Rad(I) ∈

⋂
p⊃I p.

Conversely, if r /∈ Rad(I), then rn /∈ I, for any k. So S = {1, r, r2, . . .} is a multi-
plicative closed set disjoint from I. We know that there exists a prime ideal pS ⊂ R \ S
and containing I. Since r /∈ pS , we get that r /∈

⋂
p⊃I p.

Definition 3.4. A face ideal is an ideal p of R generated by a subset of the set of
variables, that is, p = (xi1 , . . . , xik) for some variables xij .

Lemma 3.4. Let R = k[X1, . . . , Xn] be a polynomial ring over a field k.

(i) If I ⊂ R is generated by monomials, then every associated prime of I is generated
by a subset of variables (X1, . . . , Xn).

(ii) If I ⊂ R is an ideal generated by square-free monomials and p1, . . . , ps are the
associated primes of I, then

I = p1 ∩ · · · ∩ ps.

Proof. (i): Let R = k[x1, . . . , xn]. We will prove it by induction on the set of variables
tat are generators of I. Recall that by Dickson’s lemma, a monomial ideal I is minimally
generated by a unique finite set of monomials.

Let m = (x1, . . . , xn) and p be an associated prime of I. If Rad(I) = m, then p = m.
Therefore, we can assume Rad(I) 6= m. Choose a variable x1 not in Rad(I) and consider
the ascending chain of ideals

I0 = I and Ii+1 = (Ii : x1) = {a ∈ R|a · x1 ∈ I1} (i ≥ 0).

Since R is Noetherian, this ascending chain is stationary. Hence, there exists k such
that Ik = (Ik : x1).
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New we separate in two cases. First, if p is an associated prime of (Ii, x1) for some
i. Then we can write (Ii, x1) = (I ′i, x1) where I ′i is an ideal minimally generated by a
finite set of monomials in the variables x2, . . . , xn. Therefore, we can write

p = x1R+ p′R,

where p′ is a prime ideal of k[x2, . . . , xn]. By the induction hypothesis p′ is a face ideal,
then p is a face ideal also.

Now assume that p is not an associated prime ideal of (Ii : x1) for any i. Then, for
each i consider the short exact sequence

0 −→ R/(Ii : x1) x1−−→ R/Ii −→ R/(Ii, x1) −→ 0.

Making an recursive use of the property that the associated prime ideals of R/Ii is a
subset of the associated primes ideals of the extremes of the exact sequence, that is,

Ass(R/Ii) ⊂ Ass(R/(Ii : x1)) ∪Ass(R/(Ii, x1)),

and applying the first case, one obtain that p is an associated prime of Ii for all i.
From the stationariness of the chain (Ii : x1) it follows that x1 is a regular element on

R/Ik. Hence, Ik is an ideal minimally generated by monomials in variables x2, . . . , xn.
Repeating the same argument as in the first case, and applying the induction hypothesis
we have that p is face ideal.

(ii): Since I ⊂ p for any p that is an associated prime of I we only have to show that
∩si=1pi ⊂ I.

Let f = xa1
i1
· · ·xar

ir
∈ ∩si=1pi be a monomial, where i1 < · · · < ir and ai > 0 for

all i. Then by Lemma 3.3 f ∈ Rad(I) therefore, there exits k ≥ 1 such that fk ∈ I.
Since I is generated by square-free monomials we obtain that xi1 · · ·xir ∈ I. Hence,
f ∈ I. Now since the intersection of monomial ideals is a monomial ideal again, we
obtain that ∩si=1pi is a monomial ideal. So every element in the intersection if of the
form λ1f1 + · · ·+ λmfm, where fi is a monomial like before and λi ∈ R. Therefore, we
can extend this argument for all this elements, so ∩si=1pi ⊆ I. As we desire.

Now we are ready to prove the that the Stanley-Reisner ideal decompose into prime
ideals.

Proof. (Proposition 3.1). Let ∆ be a simplicial complex, and let F ∈ ∆. Let PF =
({Xi| vi /∈ F}). By Lemma 3.2 k[∆] is reduced since I∆ is generated by square-free
monomials.

Now k[∆] = k[X1, . . . , Xn]/I∆ is reduced if and only if I∆ is a radical ideal. Since
I∆ is a radical ideal, then I∆ is the intersection of all the minimal prime ideals of
k[X1, . . . , Xn] that contain I∆.

By Lemma 3.4 (ii) all these ideals are generated by subset of {X1, . . . , Xn}. Let
pF = (Xi1 , . . . , Xis). New I∆ ⊂ PF if and only if {v1, . . . , vn}\{vi1 , . . . , vis} is a face of
∆, this is just by definition of I∆ and pF .
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Moreover, PF is a minimal prime ideal of I∆ if and only if {v1, . . . , vn}\{vi1 , . . . , vis}
is a facet. Therefore by Lemma 3.4 (ii), since PF are the associated primes of I∆,

I∆ =
⋂
F

PF .

Theorem 3.5. Let ∆ be a (d − 1)−dimensional simplicial complex and let k be a field
with |k| =∞. Then

dim(k[∆]) = d.

Proof. Let F be a face of ∆ with d vertices. By the previous Proposition 3.1 the ideal
PF is generated by variables Xi such that vi /∈ F . This ideal PF has height equal to
the height of I∆,

ht(PF ) = {ht(PF )|I∆ ⊂ PF and PF is prime ideal }.

Hence ht(I∆) = n− d and by the formula dim(R/I) = dim(R)− ht(I) we get that

dim(k[∆]) = d.

Definition 3.5. Let ∆ be a simplicial complex of dim ∆ = d. We say that ∆ is pure if
all of its facets are of the same dimension d.

We say that ∆ is Cohen-Macaulay complex if the ring k[∆] is Cohen-Macaulay over
some field k.

In view of Theorem 3.5 and Proposition 3.1, we immediately obtain the following
Corollary.

Corollary 3.6. If k[∆] is Cohen-Macaulay then ∆ is pure simplicial complex.

Proof. By the Proposition 3.1 I∆ = ∩FPF for F facet of ∆, so PF are the associated
primes of I∆. From the Proposition 2.11, we know that for any Cohen-Macaulay ring S,
dim S/P = dim P for all minimal prime ideals P of S. Since k[∆] is Cohen-Macaulay,
dim k[X1, . . . , Xn]/PF = dim PF = dim F +1 = dim ∆+1. for all F facet of ∆. Hence
all the facets have the same dimension.

Hilbert Series of k[∆]
For a Stanley-Reisner ring k[∆] there are explicit formulas for its Hilbert Series in terms
of f -vector, the combinatorial data of the simplicial complex.

To relate the Hilbert function of the Stanley-Reisner ring with the f -vector of a
simplicial complex ∆ we need to introduce a fine Zn-grading on k[∆].
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Let (G,+) be an abelian group. A G-grading ring R is a decomposition of the ring
R =

⊕
a∈GRa (as a Z-module) such that RaRb = Ra+b for all a, b ∈ G. Similarly, one

defines a G-graded R-module. If R is an G−graded ring, an R-module M is G-graded
if there is a decomposition M =

⊕
a∈GMa, such that RaMa ⊂Ma+b for all a, b ∈ G.

In our case, for the polynomial ring R = k[X1, . . . , Xn] the fine grading is given in
a natural way by the degree of monomials. Now, let a = (a1, . . . , an) ∈ Zn, ai ≤ 0 for
i = 1, . . . , n, we set Xa = Xa1

1 · · ·Xan
n . Let Ra = {cXa|c ∈ k} be the a-th homogeneous

component of R. Set Ra = 0 if ai < 0 for some i. The Zn-graded ideals in R are just
the ideals generated by monomials, and the Zn-graded prime ideals are just the many
finite ideals which are generated by subsets of {X1, . . . , Xn}.

Let I ⊂ R be an ideal generated by monomials. Therefore I is Zn-graded. So we
get an induced Zn-grading on the quotient ring R/I. The inherited Zn-grading is given
by (R/I)a = Ra/Ia for all a ∈ Zn. Therefore, the Stanley-Reisner rings are Zn-graded.
Given simplicial complex ∆, we denote by xi the residue classes of the indeterminates
Xi in k[∆]. With this notation we can express the fine grading of the Stanley-Reisner
ring as follows:

k[∆] = R/I∆ =
⊕

a:Supp(a)∈∆
kxa. 5 (1)

The Zn-graded polynomial ring R = k[X1, . . . , Xn] has the Hilbert series

HR(t) =
∑
a∈Nn

ta =
n∏
i=1

(1− ti)−1.

Our next goal will be to compute the Hilbert Series for the face ring of a simplicial
complex as a homogeneous Z-graded algebra. Grouping the a ∈ Zn in i = |a| = a1 +
· · ·+ an for i ∈ Z, we get a Z-grading for k[∆]:

k[∆] =
⊕
i∈Z

k[∆]i =
⊕
i∈Z

 ⊕
a∈Zn, |a|=i

k[∆]a

 .
Since we are working with monomials of the form xa, the tool that relates these

monomials with the faces of a simplicial complex is the support. Let a ∈ Zn, we define
the support of a in ∆ by

Supp(a) = {vi|ai > 0}.

And for a non-zero monomial x ∈ R, we set Supp(xa) = Supp(a).
With this notation established we are ready to compute the Hilbert Series of the face

ring of a simplicial complex.

Theorem 3.7. Let ∆ be a simplicial complex with f -vector (f0, . . . , fd−1). Then

Hk[∆](t) =
d−1∑
i=−1

fit
i+1

(1− t)i+1 .

5In this last expresion, k is a field.
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Proof. Assume that ∆ is of dimension d. Let V = {v1, . . . , vn} be the set of vertices of
∆. From the equation (1) we get that

H(k[∆], t) =
∑

a: Supp(a)∈∆
ta

By partitioning the faces of ∆ we get

H(k[∆], t) =
∑
F∈∆

 ∑
a: Supp(a)=F

ta
 .

For each a ∈ Nn such that Supp(a) = F , ta must contain
∏

i:vi∈F
ti as well as any number

of additional powers of ti for each vi ∈ F . Therefore we have

H(k[∆], t) =
∑
F∈∆

( ∏
i:vi∈F

ti

)( ∏
i:vi∈F

(1 + ti + t2i + · · ·
)

=
∑
F∈∆

( ∏
i:vi∈F

ti

)( ∏
i:vi∈F

1
1− ti

) .
By replacing all the ti by t, we obtain the following formula

H(k[∆], t) =
∑
F∈∆

t|F | · 1
(1− t)|F |

. (2)

By partitioning the faces of ∆ by dimension, we can write this sum in terms of the
face number of ∆ to get the desired formula:

H(k[∆], t) =
d∑
i=0

fi−1
ti

(1− t)i . (3)

From the Hilbert Series we can read off its Hilbert function.

Proposition 3.8. The Hilbert Function is given by

H(k[∆], n) =
d∑
i=0

(
n− 1
i

)
fi, for n ≤ 1 and H(k[∆], 0) = 1.

Proof. Recall that H(k[∆], n) = dimkk[∆]n since the dimension and the length coincide
over vector spaces of finite dimension. Therefore, for the case n = 0 it is clear that
H(k[∆], 0) = 1.

Let n > 0. The Hilbert Series is given by the power series

1 + f0

(
t

1− t

)
+ · · ·+ fd−1

(
t

1− t

)d
. (4)
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Then dimk[∆]n is given by the coefficient of tn in the expansion of the power series in
(4).

Using the identity (1− t)−(n+1) =
∞∑
i=0

(
n+ i

i

)
ti, we get

dim k[∆]n = f0 + f1

(
1 + n− 2
n− 2

)
+ f2

(
2 + n− 3
n− 3

)
+ · · ·+ fd−1

(
d− 1 + n− d

n− d

)

=
d−1∑
i=0

fi

(
n− i
i

)

Remark 3.1. Observe that H(k[∆], n]) is a polynomial function for n > 0 and by
unicity coincides with the Hilbert polynomial for all n > 0. Evaluating the polynomial

d−1∑
i=0

fi

(
n− i
i

)

at n = 0 gives χ(∆) = f0 − f1 + · · ·+ (−1)d−1fd−1, the Euler characteristic of ∆.
Thus the Hilbert polynomial and the Hilbert function of k[∆] coincide if and only if

χ(∆) = 1 for all n ≤ 0.
Other information that we can obtain from the formula of the Hilbert Series is that

the order of its poles is d, and we recover that dimkk[∆] = d. We also see that the
multiplicity of the Stanley-Reisner ring, e(k[∆]) is fd−1, the number of facets of ∆.

The h-vector of a Simplicial Complex

Recall that the Hilbert series of a homogeneous k-algebra R of dimension d can be
expressed as a quotient of a polynomial QR(t) by (1 − t)d (see 2.14). If we write the
polynomial QR(t) as h0 +h1t+ · · ·hdtd, we know that these coefficients are integers. For
a simplicial complex ∆, write

Hh[∆](t) = h0 + h1t+ · · ·
(1− t)d

and these coefficients are called the h−vector of the simplicial complex.

Definition 3.6. Let ∆ be a simplicial complex of dimension d − 1. The h-vector of ∆
are the coefficients of Qk[∆](t). We write h(∆) = (h0, h1, · · · , hd).

We can get more information about the simplicial complex by studying the h-vector.
It is more easy to manipulate, since it has a direct relation with the algebraic properties
of the simplex.

Comparing the coefficients of the expression in (3) with the h-vector we get an explicit
formula that relates the f -vector with the h-vector.
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Proposition 3.9. The f -vector and the h−vector of a (d − 1)-dimensional simplicial
complex ∆ are related by

d∑
i=0

hit
i =

d∑
i=0

fi−1t
i(1− t)d−i. (5)

In particular hj = 0 for j > d, and for j = 0, . . . , d,

hj =
j∑
i=0

(−1)j−i
(
d− i
j − i

)
fi−1 and fj−1 =

j∑
i=0

(
d− i
j − i

)
hi. (6)

Proof. By multiplying the expression in (3) by (1 + t)d we get the first identity of
polynomials.

Now, by using the relation (1 + x)n =
∑
k=0

(n
k

)
xk we can expand the right side in

the above identity. By, comparing the coefficients on both sides we get the formula for
the hj in terms of fi.

In order to prove the formula for the fi’s, replacing t by s/(1 + s) in the polynomial
identity, we get an analogue expression

d∑
i=0

his
i(1 + s)d−i =

d∑
i=0

fi−1s
i.

If we compare the coefficients, we get the desired result.

From the above equation we have some interesting special cases:

Corollary 3.10. Let ∆ be a simplicial complex of dimension d, then

h0 = 1, h1 = f0 − d, hd = (−1)d−1(χ(∆)− 1) and
d∑
i=0

hi = fd−1.

To compute the h-vector of a simplicial complex we can follow the procedure of R.
Stanley. In the example of the octahedron 1, one has f(∆) = (6, 12, 8). Write down the
entries of the f -vector diagonally, and put a 1 to the left of f0.

1 6

12

8

Complete the array constructing a table, by placing below a consecutive pair of entries
the difference between them, and by placing 1 on the left-hand side:
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1 6

1 5 12

1 4 7 8
h(∆) = (1 3 3 1)

After completing the table the next row of differences will be the h−vector.
Since the f -vector and the h−vector determine each other, we are interested in

studying special case of bound of these two vectors. For the case of Cohen-Macaulay
complex we have a bound for h-vector. Now, we present a result that plays an important
role in the proof of upper bound conjecture.

Theorem 3.11. Let ∆ be a (d−1)-dimensional Cohen-Macaulay complex with n vertices
and h-vector (h0, · · · , hd). Then

0 ≤ hi ≤
(
n− d+ i− 1

i

)
, 0 ≤ i ≤ d.

Proof. First we prove that hi ≤ 0. We may assume that k is infinite. Since R = k[∆]
is Cohen-Macaulay, there exists x an R-sequence formed by elements of degree 1. Set
R = R/(x)R, this quotient module is of Krull dimension 0. Now, from the Remark 2.3,
hi = H(R, i) for all i. Then, applying Corollary 2.15 (b) we get the result, hi ≥ 0 for all
i.

For the second inequality observe that R is generated over k by n − d elements of
degree 1. New the Hilbert function of R is bound by the Hilbert function of a polynomial
ring in n− d variables. And

H(k[y1, . . . , ym], i) =
(
m+ i− 1
m− 1

)

taking m = n− d

H(R̄, i) ≤ H(k[y1, . . . , yn−d], i) =
(
n− d+ i− 1
n− d− 1

)
=
(
n− d+ i− 1

i

)
.

3.1 Shellable simplicial complex

The previous theorem shows us the importance of the Cohen-Macaulay class of com-
plexes. In order to detect when a complex is Cohen-Macaulay we will introduce some
special types of simplicial complexes.

In this section we will introduce the class of shellable simplicial complexes, and we
will see that these complexes are Cohen-Macaulay.

For a simplicial complex ∆, write ∆j for the subcomplex of ∆ generated by F1, . . . , Ft:

∆j = 2F1 ∪ 2F2 ∪ · · · ∪ 2Fj ,
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where 2F = {G ∈ ∆|G ⊂ F}6 and we set ∆0 = ∅.
We also define the face poset of a simplicial complex ∆ to be the set of all faces of

∆ ordered by inclusion. We will denote by F(∆).

Definition 3.7. A pure simplicial complex ∆ of dimension d is shellable if there exists
a total order7 of the facets of ∆, F1, . . . , Ft, such that for all 2 ≤ i ≤ t

2Fi
⋂

∆i−1

is pure simplicial complex of dimension d− 1.
If ∆ is shellable, F1, . . . , Fs is called a shelling order.

Before giving an example, we shall present two more equivalent conditions for shella-
bility.

Proposition 3.12. Let ∆ be a pure simplicial complex and let F1, . . . , Ft be the facets
of ∆. Then the following conditions are equivalent:

(i) ∆ is shellable.

(ii) There exists a total order of the facets of F1, · · · , Ft such that there is a unique
minimal element in

2Fi \∆i−1

for every i, 1 ≤ i ≤ t. This minimal element is called the restriction of Fi and is
denoted r(Fi). We set r(F1) = ∅.

(iii) There exists a total order of the facets of F1, · · · , Ft such that for all 1 ≤ j < i ≤ t,
there is v ∈ Fi \ Fj and k < i with Fi ∩ Fj ⊂ Fi ∩ Fk = Fi \ {v}.

Proof. Let V = {v1, . . . , vn} be the set of vertices of ∆. Suppose that ∆ is a pure
shellable simplicial complex. First, we will prove (i)⇒ (ii).

Without loss of generality we may assume that Fi = {v1, . . . , vt}. Since 2Fi ∩∆i−1 is
generated by non-empty set of maximal proper faces, we can assume that it is generated
by faces of the form {v1, . . . , vj−1, vj+1, . . . , vt} for all 1 ≤ j ≤ r ≤ t. Then the unique
minimal element in the set Γi = {F ∈ ∆i|F /∈ ∆i−1} is {v1, . . . , vr}.

For the proof of (ii) ⇒ (iii) we let G be the unique minimal element in Γ. Since
G 6⊂ Fj for any j ≤ i, then there exists v ∈ G\Fj . Hence v ∈ Fi \Fj . If Fi \Fk 6= {v} for
all k < i, then Fi − {v} 6⊂ Fk for all k < i, therefore Fi \ {v} ∈ Γi. Since every element
of Γi contains G, we must have G ⊂ Fi \ {v}, a contradiction.

Now we can prove the last implication, (iii)⇒ (i). Let F ∈ 2Fi∩∆i−1. Then F ⊂ Fj
for some j < i. Let v ∈ Fi \ Fj such that Fi \ Fk = {v} for some k < i, as in (iii). Then
Fi \ {v} is a maximal proper face o 2Fi that belongs in 2Fi ∩∆i−1 and contains F . This
proves that all conditions are equivalent.

6The notation 2F comes from the fact that the powerset, P, of a set with n elements has cardinal 2n.
7A total order satisfies the antisymmetry, transitivity and totality properties (all elements of the set

are comparable).
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To illustrate the importance of all these different definitions of shellability we must
analyse some simplicial complexes.

Example 3.3. In Figure 3 is illustrated an example of a non-shellable simplicial complex,
while the simplicial complex in Figure 4 is shellable.

Let ∆1 and ∆2 the simplicial complex on the Figure 3 and Figure 4, respectively.
We can apply directly the definition to conclude that ∆1 is not shellable. Notice that to
pass from the facet on the left to the facet on the right we always have to cross {v1} a
face of dimension 0. Hence, ∆1 is not shellable.

On the other hand, all of the facets on the complex ∆2 share a face of co-dimension
1. Therefore, we can find a shelling order.

•

•

•

•

•

v4

v5

v1

v2

v3

Figure 3: Non shellable

•

•

•

•

•

v4

v5

v1

v2

v3

Figure 4: Shellable
Example 3.4. For the simplicial complex ∆ in Figure 5 we have the following shelling:

The facets of this simplicial complex are
F1, F2, F3, F4 and this is a shelling order.
For this order the restriction of each facet
is: r(F1) = ∅, r(F2) is the vertex {4}, r(F3)
is the edge {2, 4}, and r(F4) is the vertex
{5}.
Note that F1 and F4 can not be consecutive
in any sequence of shelling orders. v4

v5

v3

v1

F3
F4

v2

F1

F2

•

•

••

•

Figure 5: Shellable and Restric-
tions

Theorem 3.13. A shellable simplicial complex is Cohen-Macaulay over every field.

Proof. Let ∆ be a simplicial complex d-dimensional, with vertex set V = {v1, . . . , vn}.
Consider R = k[x1, . . . , xn] a polynomial ring over a field k.

Assume that F1, . . . , Ft is a total order of the facets of ∆, such that 2Fi ∩ ∆i−1 is
pure of dimension d − 1 for all i ≤ 2, this is just the definition of shellable simplicial
complex.

Set
σ = {vi ∈ Fs| Fs \ {vi} ∈ 2Fs ∩∆s−1},
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then we have σ ∈ 2Fs . Therefore, we can assume σ = {v1, . . . , vr}. Let f = x1 · · ·xr
then

0 −→ R/(I∆ : f)
ϕf−−→ R/I∆

ϕ−−→ R/(I∆, f) −→ 0 (7)

is a short exact sequence, where ϕ is the projection map and ϕf is the multiplication
by f map. The ideal (I∆ : f) is defined as {a ∈ R|a · f ∈ I∆} and if I∆ is prime then
(I∆ : f) = R or (I∆ : f) = (f). That (7) is an exact sequence is because ϕf is injective
and ϕ is exhaustive, by definition.

First, we need to show the equality R/(I∆ : f) = k[2Ft ] where k[2Ft ] is the Stanley-
Reisner ring associated to the simplicial complex 2Ft . Since Ft is a facet of ∆ it has
dimension d and k[2Ft ] is a polynomial ring in d+1 variable. So k[2Ft ] is Cohen-Macaulay.

We know that we can write I∆ = ∩ti=1Pi, where Pi is generated by V \ Fi for all i
and they are all different.

Actually we arrived that I∆ = ∩F∈∆PF but if G ∈ ∆ is not a facet then, PG ⊃ PF

where F is a facet that contains G. So

⋂
G∈∆

PG =
⋂
F∈∆
F facet

PF =
t⋂
i=1

PFi =
t⋂
i=1

Pi.

Now

(I∆ : f) = {a ∈ R|a · f ∈ I∆} = {a ∈ R|a · f ∈
t⋂
i=1

Pi}

= {a ∈ R|a · f ∈ Pi for all i = 1, . . . , t}

=
t⋂
i=1

(Pi : f) =
⋂
Fi⊃σ

Pi.

(8)

The last equality holds because if σ 6⊂ F then σ ⊂ V \ F , so f ∈ PF and

(PF : f) = {a ∈ R|a · f ∈ Pi} = R.

Hence, we can take only the prime ideals such that σ ⊂ Fi.
Next, we should prove that σ ∈ 2Ft and σ /∈ Fj for all 1 ≤ j < t. If σ ∈ Fj then

σ ∈ 2Ft ∩ ∆t−1, but since this simplicial complex is pure of dimension d − 1, all of its
facets are of dimension d− 1.

So there is v ∈ σ such that σ ∈ Ft \ {v}, but this can not happen, therefore σ ∈ Fj
if j = s.

Hence, we just proved that

(I∆ : f) = (Pt : f) = Pt and R/(I∆ : f) = R/Pt = k[2Ft ].

Following on from this, we will show that

R/(I∆, f) = k[2F1 ∪ · · · ∪ 2Ft−1 ].
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The previous argument also shows us that f ∈ Pi for i = 1, . . . , t− 1; because if f /∈ Pi

for some i < t, then σ ⊂ Fi so we can repeat the argument and again we arrive to a
contradiction.

If P is a minimal prime of (I∆, f) different form P1, . . . ,Pt−1, then Pt ⊂ P and
Xi ∈ P for some vi ∈ σ, thus by construction of σ one has Ft \{vi} ⊂ Fk for some k < t.
Therefore V \ Fk ⊂ {vi} ∪ (V \ Ft), from this we can deduce that Pk ⊂ (Pt, xi) ⊂ P,
and by the minimality of P one has Pk = Pt and this is a contradiction. Hence we can

conclude that P1, . . . ,Pt−1 are the minimal prime of (I∆, f) and (I∆, f) =
s−1⋂
i=1

Pi, as

required.
This gives us an exact sequence induced by (7):

0 −→ k[2Ft ] −→ k[∆] −→ k[2F1 ∪ · · · ∪ 2Ft−1 ] −→ 0. (9)

We finish the proof doing induction on t.
For t = 1, we have the following exact sequence:

0 −→ k[2F1 ] −→ k[∆] −→ 0.

Since k[2Ft ] is Cohen-Macaulay, it is implied that k[∆] is also Cohen-Macaulay.
For t = 2, we have the exact sequence:

0 −→ k[2F2 ] −→ k[∆] −→ k[2F1 ] −→ 0.

Since k[2Fi ] are Cohen-Macaulay, for i = 1, 2; by the depth lemma, depth k[∆] =depth
k[2F2 ]. Thus, k[∆] is Cohen-Macaulay.8

Finally, we come to the induction step. Suppose it is true for t, as before we have an
exact sequence as in (9), with s = s+1. By induction hypothesis depth k[2F1∪· · ·∪2Ft ] =
d+ 1. By applying again the depth lemma we get that depth k[∆] = d+ 1. Hence k[∆]
is Cohen-Macaulay.

From the second equivalent definition of shellability in proposition 3.12 (ii), the
partial ordered face set, F(∆) of a shellable simplicial complex can be broken into a
disjointed union of intervals

F(∆) =
⊔

1≤i≤t
[r(Fi), Fi)].

This gives us a relationship between the h-vector of a simplicial complex and the size of
the restriction faces, r(F ), of a shelling order.

Theorem 3.14. Let ∆ be a pure (d− 1)-dimensional shellable simplicial complex with
F(∆) =

⊔
1≤i≤t

[r(Fi), Fi)]. Then

hi(∆) = |{j : |r(Fj)| = i}|.
8Here we also apply the Theorem 3.5, to get that dim k[∆] = d.
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Proof. We sort the faces of the simplex ∆ by the interval of the partition in which they
appear. So, we look at the faces G ∈ ∆ such that r(Fj) ⊂ G and G ⊂ Fj for all
j = 1, . . . , t.

First, by changing variables in the equation (5), and then using the separation in the
intervals explained above, we get

d∑
i=0

hit
d−i =

d∑
i=0

fi−1(t− 1)d−i =
t∑

j=1

 ∑
G:r(Fj)⊆G⊆Fj

(t− 1)d−|G|
 .

Now we can also separate the faces G by their dimension. Moving k in |r(Fj)| + k we
choose all the faces that are in the previous summation .

Since Fj is a simplex, a face of maximal dimension, the number of simplexes G of
size |r(Fj)| + k such that r(Fj) ⊆ G ⊆ Fj is equal to the number of ways of choosing
k of the vertices of Fj \ r(Fj). Since |Fj \ r(Fj)| = d − |r(Fj)|, this number is equal to(d−|r(Fj)|

k

)
. Therefore we have,

d∑
i=0

hix
d−i =

d∑
i=0

fi−1(x− 1)d−i =
t∑

j=1

d−|r(Fj)|∑
k=0

(
d− |r(Fj)|

k

)
(x− 1)d−|r(Fj)|−k

 .
Then using the binomial theorem9, the sum in brackets is equal to (x−1+1)d−|r(Fj)|,

so we have
d∑
i=0

hix
d−i =

t∑
j=1

xd−|r(Fj)|.

We can rearrange this sum such that the expression {j : |r(Fj)| = i} appear as a
coefficient, grouping the exponents by the size of r(Fj), then yields

d∑
i=0

hix
d−i =

d∑
i=1

xd−i · |{j : |r(Fj)| = i}|.

By comparing coefficients in the both side we have the desired equality.

This theorem shows that the number of restriction faces of a certain size is inde-
pendent of the choice of the shelling order, in other words, all the shelling orders are
equivalent.

One of the main results in this section is the Stanley Theorem, that gives us a
characterization of the h-vector.

Theorem 3.15. (Stanley) Let s = (h0, . . . , hd) be a sequence of integers. Then, the
following conditions are equivalent:

9(x+ y)n =
n∑

i=0

(
n

i

)
xn−iyi
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(a) h0 = 1 and 0 ≤ hi+1 ≤ h〈i〉i for all i, 1 ≤ i ≤ d− 1;

(b) s is the h-vector of a shellable simplicial complex;

(c) s is the h-vector of a Cohen-Macaulay complex.

Proof. The implication (a) ⇒ (b) is a purely combinatorial result. Given h satisfying
the condition 0 ≤ hi+1 ≤ h

〈i〉
i and h0 = 1, take n = h1 + d10 and V = {1, 2, . . . , n}. Let

F be the family of subsets of V with cardinal d. Observe that F has
(n
d

)
these kind of

elements.
We order the elements of F in such a way that for, F,G ∈ C, F < G if max{F4G} ∈

G, i.e. the largest element in their symmetric difference is in G.
Let Fi be the subfamily formed by those F ∈ F such that d + 1 − i is the smallest

element of V not in F . Observe that Fi+1 has at least h〈i〉i elements.
Now for each i, 0 ≤ i ≤ d, choose the first (in the given order) hi members of Fi, and

call the resulting collection C. Therefore, C = {F1, . . . , Ft} consists of the facets of the
desired shellable simplicial complex ∆. The given order on F induces the shelling order
on ∆, and 2Fi \ (2F1 ∪ · · · ∪ 2Fi−1) has a unique minimal element for all i, 2 ≤ i ≤ t, by
the condition established on Fi. So ∆ := 〈F1, . . . , Ft〉 is the desired shellable simplicial
complex.

The implication (b)⇒ (c) is the Theorem 3.13.
The equivalence (a) ⇔ (c) follows from the Proposition 2.18, taking R = k[∆], the

reduced homogeneous k-algebra. Since ∆ is a Cohen-Macaulay complex, k[∆] is also a
Cohen-Macaulay ring.

3.2 Polytopes

A cyclic polytope, denoted C(n, d), is the convex hull of n distinct points on the moment
curve in Rd. The upper bound theorem states that the boundary of a cyclic polytope, de-
noted ∆(n, d), maximizes the number of i-dimensional faces among all simplicial spheres.

In this section we will briefly introduce polytopes and state some basic results. The
methods employed in this section are non-algebraic and, for the most part of the state-
ments will be given without complete proof. Nevertheless, all theorems will be well
referenced.

We consider Rd as a d-dimensional vector space with the standard product 〈x, y〉, for
x, y ∈ Rd. Recall that a subsetX ⊂ Rd is convex if for any two distinct points x0, x1 ∈ X,
the set of convex combination11 of these points x = (1− λ)x0 + λx1, λ ∈ R, 0 ≤ λ ≤ 1,
belongs to X. The intersection of any family of convex sets in Rd is again convex.
Therefore, for any subset X ⊂ Rd, the intersection of all the convex set containing X is
the convex hull of X, denoted conv(X).

The convex hull of a subset of Rd can also be described in the following way:
10Recall that h1 = f0 − d.
11In general, a convex combination of n points is a linear combination,

∑
λixi, such that λi ≥ 0 and∑n

i=1 λi = 1 .
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Theorem 3.16. Let X ⊂ Rd. The convex hull is the set of all convex combinations of
points from X.

Definition 3.8. A polytope is the convex hull of a finite set of points in Rd.

An example of polytope is the octahedron in Figure 1.
Given y ∈ Rd \ {0} and α ∈ R, we can define the hyperplane

H(y, α) = {x ∈ Rd : 〈x, y〉 = α},

and the two closed half-spaces

H+(y, α) = {x ∈ Rd : 〈x, y〉 ≥ α} and H−(y, α) = {x ∈ Rd : 〈x, y〉 ≤ α}.

We can also define the supporting hyperplane, H ⊂ Rd, of a subset X ⊂ Rd to be the
hyperplane that contains X in one of the two closed half-spaces bounded by H and
X ∩H 6= ∅.

Definition 3.9. A polyhedron is a set P in Rd which is the intersection of a finite
number of closed half-spaces of Rd.

The dimension, dim P , of a polyhedron P is the dimension of its affine hull12. A
polytope is just a bounded polyhedron.

Definition 3.10. A proper face of a polyhedron P is a set F ⊂ P such that there is a
supporting hyperplane H(x, α) such that

(a) F = P ∩H(y, α) 6= ∅,

(b) P 6⊂ H(y, α), and P ⊂ H+(y, α) or P ⊂ H−(y, α).

We get the following result that helps us to understand the structure of faces of a
polyhedron

Theorem 3.17. Let P be a polyhedron.

(a) P has only a finite number of faces.

(b) Let F be a face of P and F ′ a face of F . Then F ′ is a face of P .

(c) Any proper face of P is a face of some facet of P .

(d) The set of faces of P , ordered by inclusion, is a lattice.

Definition 3.11. A d-simplex is the convex hull of d+ 1 affinely independent points. A
polytope is called simplicial if all its proper faces are simplices.

The next result explains what the faces of a simplex are.
12An affine hull of a set is all the affine combination of the points on the set.
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Proposition 3.18. Every j-face of a d-simplex P is a j-simplex, and every j+1 vertices
of P are the vertices of a j-face of P .

Let P be a simplicial polytope on the vertex set V . We define the vertex scheme,
∆(P ), of P to be the collection of subsets of V consisting of the empty set and the
vertices of the proper faces of P .

Proposition 3.19. Let P be a simplicial polytope with vertex set V . Then ∆(P ) is a
simplicial complex.

Not every simplicial complex is the vertex scheme of some simplicial polytope P .
However, we can associate a geometric object to any simplicial complex that is the
inverse construction of the scheme vertex. The idea is to choose the base elements of
the vector space Rn as vertices of the simplex.

Definition 3.12. Let ∆ be a simplicial complex with vertices V = {v1, . . . , vn}. Let ei
be the i−th unit coordinate vector in Rn. Given a face F ∈ ∆ set

|F | = conv {ei|vi ∈ F}.

Define the geometric realization, denoted |∆|, of the simplicial complex ∆ by

|∆| =
⋃
F∈∆
|F |.

We can generalize this definition to any injective map ρ : V → Rn, such that elements
of p(F ) are independents for all F ∈ ∆. By choosing ρ(vi) = xi we have our definition.

The geometric realization inherits the topology of the Euclidean space Rn. Observe
that any two geometric realizations are homeomorphic with the induced topology.

After this brief introduction to polytopes, we now move on to a special type of
polytopes, that play a major role in the poof of the upper bound conjecture.

Cyclic polytopes

One of the main goals in this section is to prove the Dehn-Sommerville Equations which
give a symmetry of the h−vector of a cyclic polytope. This result has a direct implication
in the proof of the upper bound conjecture.

Consider the algebraic curve of degree d ≥ 2,Md ⊂ Rd, defined parametrically by

x : R −→ Rd, t 7−→ x(t) = (t, t2, . . . , td).

Md is called the moment curve.
Every hyperplane intersects the moment curve in a finite set of almost d points. These

properties allow us to define cyclic polytopes. Moreover, let t1, . . . , tn be n distinct real
numbers and consider n ≥ d+ 1, then the n-family (x(t1), . . . , x(tn)) of points from Rd
is affinely independent.
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Definition 3.13. A cyclic polytope, denoted C(n, d), is the convex hull of any n distinct
points onMd.

Note that a cyclic polytope with n = d + 1, C(d + 1, d) is a d-simplex, since the
points x(ti) are affinely independent. Let us see the proof of this fact.

Proposition 3.20. Any d + 1 distinct points on Md are affinely independent. In par-
ticular, C(n, d) is a simplicial d-polytope.

Proof. Let t1 < · · · < tn be the distinct parameters of these points. To show that the
vectors, x(t1) − x(t0), . . . , x(td) − x(t0) are linearly independent we will see that the
determinant of the corresponding matrix of the row vectors is different from zero.

This matrix is the Vandermonde one, with determinant

δ =

∣∣∣∣∣∣∣∣∣∣
1 t0 t20 . . . tn0
1 t1 t21 . . . tn1
...

...
...

...
1 tn t2n . . . tnn

∣∣∣∣∣∣∣∣∣∣
=

∏
0≤j<i≤n

(ti − tj).

Since ti are pairwise distinct, this determinant is non-zero.
Therefore,

aff{x(t1), . . . , x(td+1)} = Rd,

implying that dim conv{x(t1), . . . , x(tn)} = d.

The notation C(n, d) of a cyclic d-polytope is motivated by the fact that the points
x(ti) are vertices, and the class of the polytope does not depend on the specific choice of
the parameters ti. The following results encode the combinatorial structure of the cyclic
polytopes.

Proposition 3.21. Let n > d ≥ 2 and let t1 < t2 < · · · < tn. A d−subset S = (ti1 <
· · · < tid) forms a facet of C(n, d) if and only if for any i < j that ti, tj /∈ S then

2
∣∣]{k ∈ N : tk ∈ S, ti < tk < tj}.

Proof. Consider the linear function FS : Rd → Rd defined by

FS(x) = det
(

1 1 · · · 1
x x(ti1) · · · x(tid)

)
.

This function vanishes at the points x(tis), for tij ∈ S. Moreover, FS(x(t)) is polynomial
in t of degree d.

Now, let the point x(t) move on the moment curve {x(t) : t ∈ R}, since FS(x(t))
vanishes at t = tis has d different zeroes, and has a change of sign at each of them.

Observe that S is a facet if and only if FS(x(ti)) has the same sign for all the points
x(ti) with ti /∈ S. That is if FS(x(t)) has an even number of sign changes between t = ti
and tj , for i < j and ti, tj /∈ S.
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If a polytope P has the maximal number of i-faces when every set of i + 1 vertices
is the vertex set of a proper face of P 13.

Corollary 3.22. Any
⌊
d
2

⌋
-set of vertices is the vertex set of a proper face of a cyclic

polytope C(n, d).

Proof. Let t1 < · · · < tn be the parameters for the vertices on the moment curve. Let
T = {i1, . . . , ik} ∈ Nk with k ≤ bd2c. Choose ε > 0 and D such that ti < ti + ε < ti+1 for
all i < n, and M > tn + ε.

As in the argument of the previous theorem, we shall consider the linear function
FT (x) defined by

det
(
x, x(ti1), x(ti + ε), . . . , x(tik), x(tik + ε), x(D + 1), . . . , x(D + d− 2k)

)
.

Since this function is a polynomial in t of degree d, and has as distinct zeroes,

ti1 , ti1 + ε, . . . , tik , tik + ε,M + 1, . . . ,M + d− 2k.

If FT (x(t)) has a zero at tl then it also has a zero at t = tl + ε. Therefore, there is an
even number of zeros between ti and tj for 0 ≤ i, j ≤ n that are not in T . Thus FT (x)
has the same sign on all the points x(ti) such that 0 ≤ i ≤ n, and i /∈ T . By repeating
the previous argument, the corresponding vertexes of T is a face.

An important consequence of this result is the following corollary:

Corollary 3.23. Let C(n, d) be a cyclic polytope. Then

fi =
(

n

i+ 1

)
for 0 ≤ i ≤

⌊
d

2

⌋
.

Moreover,

hk =
(
n+ k − d− 1

k

)
for 0 ≤ k ≤

⌊
d

2

⌋
.

Proof. The previous result is a direct implication of the first equality. Since any (i+ 1)-
subset of vertices is a i-dimensional face.

For the second, let 0 ≤ k ≤
⌊
d
2

⌋
. One has

hk =
k∑
i=0

(−1)k−i
(
d− i
k − i

)
fi−1 =

k∑
i=0

(−1)2(k−i)
(
k − d− 2
k − i

)(
n

i

)

=
(
n− d+ k − 1

k

)
.

(10)

13In this case it is said that P is (i+ 1)−neighbourly.
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Where for the second equality we use
(
r

k

)
= (−1)k

(
−r + k − 1

k

)
, and for the one last

we use the Vandermonde Convolution:
b∑

k=0
=
(
a

k

)(
c

b− k

)
=
(
a+ c

b

)
, for a, c ∈ Z.

Recall that the boundary of a cyclic polytope C(n, d) is a simplicial complex and
we will denote by ∆(n, d). To simplify the notation we will write fi(C(n, d)) for the
f -vector of the boundary a cyclic polytope ∆(n, d).

Theorem 3.24. (Bruggesser-Mani) Every polytope is shellable.

Before the start of the proof we shall outline a constructive way to do the shelling
order of the facets of a polytope P . This is called line shelling and it was introduced by
Bruggesser-Mani [bibliography].

Recall that we can see P as a bounded polyhedron. Therefore, P is the intersection
of closed half-spaces. Assume that F1, . . . , Ft are the facets of P . For each facet Fi, take
ai as his normal vector, then we can assume that

P = {x ∈ Rd : 〈ai, x〉 ≤ 1}, 0 ≤ i ≤ t.

Next, take a vector c such that 〈ai, x〉 6= 0, and order the facets in such a way that
〈a1, c〉 > 〈a2, c〉 > · · · > 〈at, c〉. Our claim is that F1, . . . , Ft is a shelling order of P .

We can give a geometric interpretation of this line shelling. First, choose an oriented
line L intersecting the polytope P that is not parallel to any facet of the polytope. With
this we mean that the line L does not pass through the intersections of the facets and
also that it does not pass through the intersections of the supporting hyperplane of the
facets.14 We give this line the outward orientation with respect to the polytope, is the
same orientation as the one induced by the vector c. This is equivalent to the previous
condition, 〈ai, c〉 6= 0. We also choose a point x on the line L in the interior of the
polytope. We will move x in the direction of c. Note that a line with these properties
always exists.

For a point x we define the visible part of the polytope as the union of the first
intersections of the line segments that pass through x and the vertices of the polytope,
as well as the faces formed by these vertices.

The order of this shelling is the order as we see them from x moving along the line.
See Figure 6.

14We call such a line a generic oriented line.
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The first facet in this shelling order is the face where
the line intersects the polytope with the given orien-
tation c.
Then, we add the facets one by one in the order as x
passes through the intersections with the supporting
hyperplane of the corresponding facet.
After we have passed through all the intersections
of the line with the supporting hyperplanes in the
direction c, we then start listing the remaining facets
in the reverse order as we move in the direction −c.
The last facet in this shelling order is the face in
which the line intersects the polytope with an inward
orientation.

•

L

x

F2

F3 F4

F5

F1

−→c

Figure 6:
We claim that this total order is in fact a shelling order of the polytope P . We prove

this by using the second equivalent definition of shelling.

Proof. (Bruggesser-Mani)
We have to show that 2Fi ∩∆i−1 is pure for all i ≥ 2.
We will separate in two cases. First, when Fi was added to the shelling order before

we passed through the infinity point.
Let G be a face in 2Fi ∩∆i−1, that is not a facet of ∂Fi15. Now G must be visible

form x. We will show that G is always contained in a visible facet of ∂Fi. Therefore
2Fi ∩∆i−1 is pure, since the facets of a simplex have the same dimension.

First, observe that the sub-faces of a visible face are also visible. Now we know that
G is contained in a facet of ∂Fi, if this facet is visible, then it is in 2Fi ∩∆i−1, and we
are done. If it is not, then the facet is not visible, and G is not visible either. Therefore,
is not in the intersection, a contradiction with the hypothesis.

If Fi is added to the shelling after we have passed the infinity point in our line the
situation is reversed. In this case 2Fi ∩∆i−1 is the union of all the faces of ∂Fi that are
contained in any face of ∂Fi not visible from x.

Again, let G be a face in 2Fi ∩ ∆i−1 that is not a facet of ∆Fi. From previous
observation, G must be contained in a face G′ of ∂Fi not visible from x. Since G′ is not
visible form x, all the facets of ∂Fi that contain G′ are also not visible from x. Hence,
G is contained in a facet of ∂Fi not visible from x, and therefore it is in the intersection.

Corollary 3.25. Let F1, . . . , Ft be a line shelling of the polytope P . Then Ft, Ft−1, . . . , F1
is a line shelling of P , too.

Proof. Assume that the line shelling F1, . . . , Ft is induced by the c and the line L. Then
Ft, . . . , F1 is a line shelling induced by −c and L.

15∂Fi denotes the boundary of the face F .
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Lemma 3.26. Given a shelling order F1, . . . , Ft of a simplicial complex ∆ the restriction
Fi is given by

r(Fi) = {v ∈ Fi| ∃ j < i such that (Fi \ v) ⊆ Fj}.

Proof. Let r̃(Fi) be the restriction of Fi in the definition (ii) of 3.12. Let v ∈ r̃(Fi),
then v ∈ 2Fi \∆i−1. Hence, there exists j < i such that v ∈ Fi \ Fj ,then by the second
equivalent definition of shellability in (iii) 3.12 (Fj \ v) ⊆ Fk for some k < i. Therefore
v ∈ r(Fi).

For the reverse implication, let v ∈ r(Fi), then v ∈ 2Fi and v /∈ ∆i−1 since there
exists j < i such that (Fi \ v) ⊆ Fj . Therefore, v ∈ r̃(Fi). The minimality and unicity
of r(Fi) are clear by construction.

Theorem 3.27. (Dehn-Sommerville). Let ∆(P ) be the boundary complex of a simplicial
d-polytope P . Let (h0, . . . , hd) be the h-vector of ∆(P ). Then

hi = hd−i, for 0 ≤ i ≤ d.

Proof. Let G1, . . . , Gt be any labelling of the facets of ∆(P ). Let L be a generic line of
the polytope P with orientation c. We will denote by rc(Gi) the restriction to the line
shelling induced by c, and by r−c(Gi) the restriction induced by −c. Considering all this
two line shelling over the line L.

Since a shelling of P induces a shelling of ∆(P ) then there is a unique Gj 6= Gi such
that (Gi \ v) ⊆ Gj . Therefore, this face Gj will appear before Gi in the line shelling
generated by c or in the line shelling generated by −c and after Gi in the other line
shelling.

By the previous lemma, we know that v is either in rc(Gi) or in r−c(Gi). Therefore
rc(Gi) = Gi \ r−c(Gi), and the cardinal is |rc(Gi)| = |Gi| − |r−c(Gi)| = d− |r−c(Gi)|.

Now, we will apply Theorem 3.14 combined with the equality rc(Gi) = Gi \ r−c(Gi)
to compute hi:

hi(∆) = |{j : |rc(Gj)| = i}| = |{j : |r−c(Gj)| = d− i}| = hd−1(∆).

Let us resume some properties of cyclic polytopes:

• C(n, d) is simplicial, so the boundary ∂C(n, d) defines an abstract simplicial
complex ∆(n, d) such that |∆(n, d)| ∼= Sd−1.

• fi(∆(n, d)) =
( n
i+1
)
for 0 ≤ i < bd2c.

• From Dehn-Sommerville equations we get that f0, f1, . . . , fb d
2 c−1 determine

fb d
2 c
, fb d

2 c+1, . . . , fb d
2 c−1.
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4 Local cohomology of Stanley-Reisner Rings
In this section we will briefly introduce the reduced simplicial homology of a simplicial
complex ∆. The reduced simplicial homology is a slight modification made to simplicial
homology designed to make a point have all its homology group zero. This simplification
is made using an augmented chain complex C (∆).

Next, we shall introduce the local cohomology of the Stanley-Reisner ring. We will see
the two most important alternative definitions of local cohomology, although we will not
prove the equivalence. The fine grading inherited from the Stanley-Reisner ring allows
us to decompose the local cohomology groups. This decomposition has an important
role in one of the basic results of this section, Hochster’s Theorem. This theorem yields
to the Reisner Criterion, which provides a characterization of Cohen-Macaulay simplicial
complexes in terms of the topology properties of ∆, using the reduced homology.

4.1 Reduced Simplicial Homology

We start by defining an orientation in a face of a simplicial complex. This orientation
will induce an orientation in the chain complex of our simplex.

Assume that ∆ is a d − 1-dimensional simplicial complex on the set of vertices
V = {v1, . . . , vn}. An orientation on ∆ is a total order on V . A simplicial complex
together with an orientation on the set of vertices is an oriented simplicial complex.

Assume that ∆ is an oriented simplicial complex. Let F ∈ ∆ be an q-face, the
orientation on ∆ induce an orientation on F , and we write F = [vi1 , . . . , viq ] if F =
{vi1 , . . . , viq} and vi1 < vi2 < · · · < viq . If F = ∅ we write F = [ ].

Now, for any field k we define the free R-module Cq(∆) with basis consisting of the
oriented q-simplices in ∆. The dimension of this module, dimk(Cq(∆)), is equal to the
number of q-simplices of ∆. Thus Cq = 0 for q < 0 and for q ≥ 0 Cq(∆) is a free
R-module with rank equal to the number of q-simplices of ∆.

Observe that we for each i = 0, . . . , d we can write

Ci(∆) =
⊕
F∈∆

dim F=i

ZF.

Having introduced these notations, we can define the standard oriented chain complex
of ∆,

C (∆) : 0 −→ Cd−1(∆) ∂d−1−−−→ Cd−2(∆) ∂d−2−−−→ · · · −→ C0(∆) −→ 0.
For q ≥ 1 we define the homomorphism

∂q : C (∆) −→ Cq−1(∆)

induced by

∂q([v0, v1, . . . , vq]) =
q∑
i=0

(−1)i[v0, v1, . . . , vi−1, v̂i, vi+1, . . . , vq]16.

16The v̂i denotes that vi is missing.
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It is simple to check that ∂q ◦ ∂q+1:

∂q ◦ ∂q+1[v0, . . . , vq+1] = ∂q

q+1∑
i=0

(−1)i[v0, . . . , v̂i, . . . , vq+1]


=

q+1∑
i=0

(−1)i
(∑
j=0
j 6=i

(−1)j [v0, . . . , v̂j , . . . , v̂i, . . . , vq+1]
)

= 0.

Now we can extend ∂q to a homomorphism Cq → Cq−1, and since ∂q ◦∂q+1 = 0 it follows
that C (∆) = {Cq(∆), ∂q} is the orientated chain complex of ∆.

First, let us see that this definition does not depend on the orientation given to ∆.

Lemma 4.1. Define C̃ ′(∆) in the same way as C̃ (∆), but with respect to a different
orientation of ∆. Then, there exists an isomorphism of complexes C̃ (∆) ∼= C̃ (∆).

Proof. Let < and ≺ be two different total orders on the vertex set of V , and the aug-
mented oriented chain complex induced by this total orders are C̃ (∆) and C̃ ′(∆), re-
spectively. Given a face of ∆, F = {v0, . . . , vi}, with v0 < · · · < vi, there exists a
permutation τ of the vertices of F such that

vτ(0) ≺ vτ(1) ≺ · · · ≺ vτ(i).

Now, let ψ : C̃ (∆) −→ C̃ ′(∆) defined by ψ(F ) = sgn(τ)F . By construction this map is
bijective. Hence, the two oriented chain complex are isomorphic.

Recall that the n-th homology group is defined by

Hn(∆) = ker(∂n)/im(∂n+1).

If ∆ 6= 0, the simplicial complex ∆ contains ∅ as a face (of dimension −1). Let
C−1(∆) be the free R-module with basis {∅}, and define an augmentation

ε : C0(∆) −→ C−1(∆) ∼= R, for all v ∈ V
v 7−→ ∅.

The augmented oriented chain complex of ∆ over R is the complex

C̃ (∆) : 0 −→ Cd−1(∆) ∂d−1−−−→ Cd−2(∆) ∂d−2−−−→ · · · −→ C0(∆) ε−→ C−1(∆) = R −→ 0,

and it will be denoted by dented by (C̃ (∆), ε).
Let G be an abelian group. We set

H̃i(∆, G) = Hi(C̃(∆)⊗G), for i = −1, . . . , d− 1.
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We understand Hi(C̃(∆)⊗G) as the i-th homology group of associated chain complex

0 −→ Cd−1 ⊗Z G
∂d−1⊗1−−−−−→ Cd−2 ⊗Z G

∂d−2⊗1−−−−−→ · · · −→ C0 ⊗Z G
ε⊗1−−−→ C−1 ⊗Z G −→ 0,

looking at Ci and R as abelian groups and Ci ⊗Z G is the tensor product of groups.
We call H̃i(∆, G) the i-th reduced simplicial homology of ∆.
Since any linear orientation on the vertex set V of a simplicial complex ∆ yields to

an isomorphism of the chain complexes induced by these orientations, it follows that the
reduced simplicial homology is invariant under orientations.

The i-th reduced simplicial cohomology of ∆ with values in G is defined to be

H̃ i(∆;G) = H i(HomZ(C̃ (∆), G)) for i = −1, . . . , d− 1.

We set H̃i(∆) = H̃i(∆;Z) and H̃ i(∆) = H̃ i(∆;Z) for all i = −1, . . . , d− 1.
Observe that we could also compute the homology H̃i(∆) of the chain C̃ (∆) and

then compute H̃i(∆;G) using universal coefficients theorem.
If G = k is also a field, then the reduced simplicial homology and cohomology groups

are k-vector spaces, and there are canonical isomorphisms:

H̃ i(∆; k) ∼= Homk(H̃i(∆; k), k), H̃i(∆; k) ∼= Homk(H̃ i(∆; k), k)

for all i = −1, . . . , d− 1.
Since Ci ⊗ k is a vector space of dimension fi for all i, it follows that

d−1∑
i=−1

(−1)idimkH̃i(∆; k) =
d−1∑
i=−1

(−1)ifi = χ̃(∆) = χ(∆)− 1.

We call χ̃(∆) the reduced Euler characteristic of ∆.
A fundamental result in algebraic topology is that the reduced singular homology

H̃i(X; k) of a topological space X with triangulation ∆ is isomorphic to the reduced
simplicial homology of ∆, H̃i(∆; k).

Theorem 4.2. Let X be a topological space with triangulation ∆. Then

H̃i(X; k) ∼= H̃i(∆; k) for all i.

For more details about singular homology see [3].

Definition 4.1. A simplicial complex ∆ or a topological space X is acyclic if its reduced
homology with coefficients in Z vanishes in all degrees q, i.e. H̃•(∆) = 0.

The following notation will be very useful in the analysis of the local cohomology of
a Stanley-Reisner ring.

Definition 4.2. Let ∆ be a simplicial complex. and F ∈ ∆. The star of F is the set

st∆F = {G ∈ ∆|G ∪ F ∈ ∆},

and the link of F is the set

lk∆F = {G ∈ ∆|G ∪ F ∈ ∆, G ∩ F = ∅}.
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We will write st and lk instead of st∆ and lk∆ to simplify the notation if is possible
to avoid misunderstandings.

Let us illustrate this in an example.
Example 4.1. Let ∆ be the simplicial complex associated to the hexagon in Figure 7
with vertices {v, a1, a2, . . . , v6} the 1-faces the edges of the triangulation of the hexagon
and with facets (in this case all the 2-faces) are all the faces of the form {v, ai, ai+1} for
the i = 1, . . . , 5 and {v, a6, a1}.

The star of the vertex v, st∆(v) is the full simpli-
cial complex, while the link of v is the subsimplicial
complex constituting the boundary of the hexagon:

lk∆(v) =
{
{a1}, {a2}, {a3}, {a4}, {a5}, {a6}, {a1, a2},

{a2, a3}, {a3, a4}, {a4, a5}, {a5, a6}, {a6, a1}
}
.

a3a4

a5

a6 a1

a2v •

••

•

• •

•

Figure 7:
Definition 4.3. Let ∆1 and ∆2 be two simplicial complexes on disjoint vertex sets V
and W respectively. The join

∆1 ∗∆2

is the simplicial complex on the vertex set V ∪W with faces F ∪G where F ∈ ∆1 and
G ∈ ∆2.

The cone is the join of a point Π = {v0} with ∆,

cn (∆) = Π ∗∆.

Observe that the cone construction can be iterated. For j > 1 we set cnj(∆) =
cn(cnj(∆)).
Lemma 4.3. Let F be a face of the simplicial complex ∆, and G ∈ lk F . Then
(a) F ∈ lk F and F ∈ lkst GF = 〈G〉 ∗ lklk GF ;

(b) lkst GF is acyclic, if G 6= 0.
Proof. (a): The first part is by definition. For the second part, let H ∈ lkst GF . Now
consider H \G and observe that H \G ∈ lklk GF . Therefore we have one inclusion. The
reverse inclusion is clear, since lkst GF contains 〈G〉 and lklk GF .

(b): This proof has two parts. One is to show that the join of a q-simplex with a
simplicial complex Λ is a q iterated cone, cnq(cnq−1(Λ)). The second part is to prove
that the reduced cohomology of a cone is zero in all dimensions, H̃i(cn (Λ)) = 0 for all i.
We omit the proof of this fact, since is completely combinatorial, see Proposition 5.2.5
[9].
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4.2 Local Cohomology

As explained in the introduction of this section, we present two equivalent definitions of
local cohomology.

Let us begin with the construction of local cohomology via injective resolutions.
First, we recall some definitions.

Let R be a commutative ring andM(R) the category of left R-modules. Let M be
any module inM(R). An injective resolution of M is an exact sequence of R-modules

E•M : 0→M → E0(M) ϕ0−→ E1(M) ϕ1−→ E2(M) ϕ2−→ · · · ,

where each Ei(M) is an injective R-module.
We now come to the basic definition of this first construction of local cohomology.

Definition 4.4. For an ideal I in a commutative ring R and M an R-module we define
the submoduele supported on I by

ΓIM = (0 :M I∞) = {y ∈M |Iry = 0 for some r ∈ N}.

An element of ΓIM is said to have support on I.

Now ΓI(_) :M(R) −→M(R) is a left exact additive functor between the categories
of R-modules. We know that for a left exact additive function we can consider its derived
functor

H i
I(_) = RiΓI(_).

Definition 4.5. Let M ∈M(R) be an R-module. The local cohomology of M , denoted
by H i

I(M), are the right derived functors of ΓI(E•M ), i.e.

H i
I(M) := H i(ΓI(E•M ) for all i ∈ Z.

To simplify this notation we will write ΓI(M) or ΓI(E•) instead of ΓI(E•M ).
Another way to see this construction is that, for any injective resolution E• of M ,

ΓI induces an injective resolution

ΓI(E•) : 0→ ΓI(M)→ ΓI(E0)→ Γ(E1)→ · · · .

Then, the i-th local cohomology module of M with support on I is the module H i
I(M)

obtained from any injective resolution E• of M by taking the i-th cohomology of its
subcomplex ΓI(E•) supported on I.

Remark 4.1. LetM be an R-module; then H i
I(M) ∼= ΓI(M), and H i

I(M) = 0 for i < 0.
So, the interesting case is for i > 0.

Before introducing the alternative definition of local cohomology, let us make another
observation.

Let (R,m, k) be a Noetherian local ring and M an R-module. Let F = (Ik)k≥0 be a
family of ideals of R such that Ij ⊂ Ik for all j > k. Then F defines a topology on R.
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Moreover, F gives the m-adic topology on R is and only if for each Ik there is a j ∈ N
such that mj ⊂ Ik, and for each mi there is a l ∈ N such that Il ⊂ mi.

With this notation we arrive at the following

Γm(M) = {x ∈M |Ikx = 0 for all k ≥ 0}.

Let x = x1, . . . , xn be a sequence of elements in R generating an m-primary ideal.
The family (xk) = (xk1, . . . , xkn) gives the m-adic topology on R, and so

Γm = {y ∈M |(xk)y = 0 for some k ≥ 0}.

Since HomR(R/I,M) = {x ∈M |Ix = 0} = (0 :M I) for any ideal I in R, we obtain
natural isomorphisms

Γm(M) ∼= lim
−→

HomR(R/mk,M) ∼= lim
−→

HomR(R/(xk),M).

Now Γm(_) is a left exact additive functor, so again we can consider its derived
functor to obtain the cohomology functor H i

m(_).
As expected, if E• is an injective resolution of an R-module M , then

H i
m(M) ∼= H i(Γm(E•)) for all i ≥ 0.

Therefore, for a Noetherian ring R we have a more explicit construction of the local
cohomology.

Local Cohomology and the Čech Complex

After this brief introduction to local cohomology via injective resolution, we now are
ready to present the alternative definition of the cohomology using the Čech complex.
The equivalence between this two definitions is proved using the Koszul complex, a far
more complicated construction, that we will omit.

Let ∆ be a simplicial complex on the set of vertices V = {v1, . . . , vn}, and R =
k[X1, . . . , Xn]/I∆ the Stanley-Reisner ring of ∆ over a field k. Let m = (x1, . . . , xn) be
the maximal ideal generated by the residual classes xi of the indeterminates Xi.

We are interested in computing the local cohomology of Rm17, the localization of R
at m.

Let C• be the complex defined by

C• : 0 −→C0 −→ C1 −→ · · · −→ Cn −→ 0,
Ct =

⊕
1≤i1<···<it≤n

Rxi1xi2 ···xit
,

where the differentiation dt : Ct −→ Ct+1 is given on the components

Rxi1xi2 ···xit
−→ Rxj1xj2 ···xjt+1

17We write Rx for the localization of R at the multiplicatively closed set closed {xn}n≥0, i.e. Rx =
R[x−1].
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to be the homomorphism (−1)s−1 · nat : Rxi1xi2 ···xit
−→ (Rxi1xi2 ···xit

)xjs if {i1, . . . , it} =
{j1, . . . , ĵs, . . . , jt+1} and 0 otherwise.

The complex C• is called the Čech Complex. The importance of this complex results
from the following theorem.

Theorem 4.4. Let M be an R-module. Then,

H i
m(M) ∼= lim

−→
H i(xl,M) ∼= H i(M ⊗R C•) for all i ≥ 0.

Proof. See [2], Theorem 3.5.6.

Recall that for any R-module M we have R ⊗R M = M , therefore, since each
component of C• is an R module, we can apply the previous theorem, and it follows
that

H i
m(R) ∼= H i(R⊗R C•m) ∼= H i(C•m) ∼= H i(C•)m,

where the last equivalence follows from the fact that localization commutes with the
homology group.

Now, since Supp H i(C•) = {P ⊂ R, prime ideal |H i(C•)P 6= 0}, implies that
Supp H i(C•) ⊂ {m}. Hence, we finally obtain the equivalence

H i
m(R) ∼= H i(C•).

Remember that R is a Zn-graded ring. Let a = (a1, . . . , an) ∈ Zn, then Ra =
{cxa|c ∈ k} ∼= k if a ∈ Nn and {vi ∈ V |ai > 0} ∈ ∆, otherwise we set Ra = 0.

Our interest is in defining a fine grading on C•. Since the components of Ci are
of the form Rx for some homogeneous element x ∈ R, then a grading on Rx induces a
grading on Ci.

One defines a Zn-grading on Rx by setting

(Rx)a =
{
y

xm
∣∣ y homogeneous, deg y −m · deg x = a

}
.

Extending this Zn-grading on the components of Ci, the complex C• becomes a
Zn-grading. This fine grading is passed on to the local cohomology modules Hm(R).

The following Lemma will also give us a Z-grading of the complex C• and the local
cohomology modules.

Lemma 4.5. Let ∆ be a simplicial complex, and k a field. Let

(Ci)j =
⊗
a∈Zn

|a|=j

(Ci)a.

Then C• is a complex of Z-graded modules. Moreover, endowing H i(C•) with the induced
Z-graded structure, then H i

m(k[∆]) ∼= H i(C•) and

H i
m(k[∆])j ∼=

⊗
a∈Zn,|a|=j

H i(C•)a for all i and j.
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Proof. Let R = k[∆] the Stanley-Reisner ring of ∆. To see that (Ct)j is a graded module
is just a checking of the definition. We can write,

(Ct)j =
⊕
a∈Zn

|a|=j

 ⊕
1≤i1<···<it≤n

(
Rxi1 ···xit

)
a

 . (11)

We can also do the same for the base ring R,

Rk =
⊕
b∈Zn

|b|=k

Rb.

Now, by writing the above expression in brackets in the expression (11), and using
the fact that the degree of a product of monomials is the sum of the degrees of each
monomial, we obtain that Rk(Ct)j = (Ct)j+k.

It remains to prove that the composition of two consecutive boundary maps vanishes.
Since we have boundary maps, dt, from

dt :
⊗
a∈Zn

|a|=j

(Ct)a −→
⊗
b∈Zn

|b|=j

(Ct+1)b,

as a restriction of the boundary maps of the Čech complex. Hence, by extending these
maps linearly, we obtain the vanishing condition.

For the second part of the the isomorphism H i
m(k[∆]) ∼= H i(C•) follows directly from

Theorem 4.4.
Now, the Zn-graded chain complex

C• : 0→
⊕
a∈Zn

(C0)a →
⊕
a∈Zn

(C1)a → · · · →
⊕
a∈Zn

(Cn)a → 0,

and the Z-graded complex

C ′• : 0→
⊕
j∈Z

(C0)j →
⊕
j∈Z

(C1)j → · · · →
⊕
j∈Z

(Cn)j → 0

are isomorphic. Hence, is obtained the desire isomorphism

H i
m(k[∆])j ∼=

⊗
a∈Zn,|a|=j

H i(C•)a for all i and j.

Now, we would like to analyse when (Rx)a 6= 0 for a ∈ Zn. For this we introduce some
further notations. Given x = xi1 , . . . , xir with i1 < · · · < ir, we set F = {vi1 , . . . , vir}
and define

Ga = {vi : ai < 0} and Ha = {vi : ai > 0}.

In the next two lemmas x represents a monomial as before, x = xi1 , . . . , xir .
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Lemma 4.6. Let ∆ be a simplicial complex, and (Rx)a as before.

(a) The Krull dimension, dimk(Rx)a ≤ 1 for all a ∈ Zn.

(b) (Rx)a ∼= k if and only if F ⊃ Ga and F ∪Ha ∈ ∆.

Proof. Let us start with the proof of (a). We will show that if (Rx)a 6= 0 then (Rx)a ∼= k.
Assume that (Rx)a 6= 0. Let y1/x

n1 and y2/x
n2 be non-zero elements in (Rx)a. Then

xn2y1 and xn1y2 are homogeneous of the same degree. Since (Rx)a is a vector space,
these two elements are linearly dependent over k. Then, there exists c ∈ k such that
c(xn2y1) = xn1y2. Therefore c(y1/x

n1
1 ) = y2/x

n2 , so (Rx)a has dimension at most 1 over
k as a vector space. Therefore (Rx)a ∼= k, as we desire.

For the proof of (b), first we will study the case when (Rx)a 6= 0. Hence, part (a)
implies that (Rx)a automatically is isomorph to k.

Now, observe that (Rx)a 6= 0 if and only if ∃v ∈ R, homogeneous, and l ∈ Z such
that

(i) xmv 6= 0 ∈ (Rx) for all m ∈ N \ {0}, and

(ii) deg v/xl = a.

Under condition (ii), condition (i) is equivalent to (i′) v/xl 6= 0 ∈ (Rx)a
From (i) we have that xmv 6= 0 if and only if Supp xmv ∈ ∆. Now since, m > 0,

Supp xm = Supp m = {vi|m > 0} = F , then the support of xmv is F ∪ Supp v.
Moreover, Supp a = Ga∪Ha and the condition (ii) implies that Supp (deg v−deg xl) =
Ga∪Ha, then Ga ⊂ F and Ha ⊂ Supp v. In particular, F ∪Ha ∈ ∆. Hence, if (Rx)a 6= 0
then F ⊃ Ga and F ∪Ha ∈ ∆.

Conversely, suppose F ⊃ Ga and F ∪Ha ∈ ∆. Set v =
∏
ai>0

xai
i and w =

∏
ai<0

x−ai
i .

SinceG ⊂ F , there exists an integer l ∈ Z and a monomial u with non-negative exponents
in xi, such that xl = uw.

Since F ∪Ha ∈ ∆, we get vu
xl
6= 0, and it follows that

deg vu
xl

= a,

so (Rx)a 6= 0.

From the previous lemma we can deduce a basis for (Ci)a. This follows from the fact
that dimk(Rx)a ≤ 1 for all a ∈ Zn, and the equality occurs when F ⊃ G and F ∪Ha ∈ ∆,
then let bF be the k-base of (Rx)a when it has dimension 1. Hence, the basis of (Ci)a is
formed by the set

{bF : F ⊃ Ga, F ∪Ha ∈ ∆, |F | = i}.

In order to prove Hochster’s theorem we need one more lemma.
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Lemma 4.7. For all a ∈ Zn there exists an isomorphism of complexes:

ϕi : (Ci)a −→ HomZ(C̃ (lkst HaGa)i−|Ga|−1, k).

Here we set lkst HaGa = ∅ if Ga /∈ st Ha, and let C̃ (∅) be the zero complex.

Proof. Let j = |Ga|. Consider the sets

B = {F ∈ ∆| F ⊃ Ga, F ∪Ha ∈ ∆, |F | = i}
B′ = {F ′ ∈ ∆| F ′ ∈ lkst HaGa, |F ′| = i− j}.

Observe that B is a basis of the complex (Ci)a, and B′ is a basis of C̃ (lkst HaGa)i−|Ga|−1.
We have a bijection between B and B′ given by

αi : ∆ −→ ∆
F 7−→ F ′ = F \Ga.

The injectivity is clear because if αi(F1) = αi(F2) then F1 \ Ga = F2 \ Ga, and this
implies Fa = F2.

For the exhaustivity take F ′ ∈ B′, and consider F = F ′ ∪ Ga. The condition
F ′ ∈ lkst HaGa ensure us that F ∪Ha ∈ ∆. Therefore, αi is bijective for all i.

Now, αi can be extended linearly to an isomorphism ϕi between vector spaces

ϕi : (Ci)a −→ HomZ(C̃ (lkst HaGa)i−|Ga|−1, k)
bF 7−→ ψF\Ga

,

where ψF ′ is defined by

ψF ′(F ′′) =
{

1 if F ′ = F ′′,
0 otherwise.

To ensure that αi is a complex homomorphism we can adjust the orientation of ∆
in such a way that elements in Ga are last in the linear order of the vertices set of ∆.
Furthermore, we give the subcomplex lkst HaGa the induced orientation.

Now, we are ready to prove the main result of this section.

Theorem 4.8. (Hochster). Let ∆ be a simplicial complex, and k a field. Then the
Hilbert series of the local cohomology modules of k[∆] with respect to the fine grading is
given by

HHi
m(k[∆])(t) =

∑
F∈∆

dimkH̃i−|F |−1(lk F ; k)
∏

j:vj∈F

t−1
j

1− t−1
j

.
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Proof. Let ∆ be a simplicial complex, and k a field. Now the isomorphism ϕi in the
previous Lemma induces an isomorphism

H i
m(k[∆])a ∼= H̃ i−|Ga|−1(lkst HaGa; k). (12)

Therefore,
dimkH

i
m(k[∆])a = dimkH̃

i−|Ga|−1(lkst HaGa; k),
since dimkH̃i−|Ga|−1(lkst HaGa; k) = dimkH̃

i−|Ga|−1(lkst HaGa; k).
If Ha 6= 0, then by Lemma 4.3 lkst HaGa is acyclic, and if Ha = ∅, then st Ha = ∆,

and so lkst HaGa = lk∆Ga.
Let Zn− = {a ∈ Zn|ai ≤ 0 for i = 1, . . . , n}, then Ha = ∅ if and only if a ∈ Zn− and it

follows that

HHi
m(k[∆])(t) =

∑
a∈Zn

dimkH
i(k[∆])ata =

∑
a≤0

dimkH
i(k[∆])ata

=
∑
F∈∆

 ∑
a≤0

Supp(a)=F

dimk H̃i−1−|Ga|(lk∆Ga; k)ta



=
∑
F∈∆

dimk H̃i−1−|Ga|(lk∆Ga; k) ·
( ∑

a≤0
Supp(a)=F

ta
) .

Now, since the sum on the right is a geometric one, we can proceed in the same way as
in the computation of the Hilbert series of the face ring (see Theorem 3.7). Hence, the
Hochster’s formula for the Hilbert series is

HHi
m(k[∆])(t) =

∑
F∈∆

dimkH̃i−|F |−1(lk F ; k)
∏

j:vj∈F

t−1
j

1− t−1
j

.

As we explained in the introduction of this section, Hochster’s theorem yields to the
Reisner criterion.

Theorem 4.9. (Reisner). Let ∆ be a simplicial complex, and let k be a field. The
following conditions are equivalent:

(a) ∆ is Cohen-Macaulay over k;

(b) H̃i(lk∆F ; k) = 0 for all F ∈ ∆ and all i < dim lk∆F .

Before starting the Reisner Theorem proof we need one more result.

Theorem 4.10. (Grothendieck). Let R be a finitely generated k-algebra. Then H i(R)
is equal to zero when i < depth R and when i > dim (R), while H i(R) is not zero for
i = depth R and i = dim R.
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Proof. See Theorem 3.5.6 [2].

Proof. (Reisner’s Theorem)
Let us start with the implication (b)⇒ (a).
Let ∆ be a (d−1)-dimensional simplicial complex. Then for F ∈ ∆ and i < dim lk∆F

we have H̃i(lk∆F ; k) = 0 by hypothesis.
First, we will show that such a simplicial complex is pure as all its facets are of the

same dimension.
Assume that ∆ is not pure. Let K1 be the sub-complex of ∆ consisting of all the

maximal dimension faces of ∆ and all sub-faces of these faces. LetK2 be the sub-complex
of ∆ consisting of all the maximal faces of ∆ that do not have maximal dimension, as
well as all the sub-faces of these faces.

Since ∆ is not pure, both K1 \K2 and K2 \K1 are non-empty. Moreover, {facets of
K1} ∩ { facets of K2} = ∅ and {facets of K1} ∪ {facets of K2} = {facets of ∆}, actually
this is a disjoint union since the intersection is empty.

Let G be a maximal face of K1 ∩K2 (if K1 ∩K2 = ∅, then G = ∅). Now consider
lk∆(G). The link is formed by faces that are in facets or the hole facet. Therefore,
since the facets of K1 and K2 are disjoint, we can write lk∆(G) as a disjoint union
lkK1(G) t lkK2(G).

Now, the dimension of lk∆(G) is the dimension of the maximal face of the link in
the maximal dimensional face of ∆, so

lk∆(G) = dim lkK1 = dim K1 − dim G− 1 = d− 1− |G|+ 1− 1 = d− |G| − 1.

On the other hand, any face in G is contained in some maximal face of non-maximal
dimension, therefore |G| ≤ d− 2. Hence, we obtain that dim lk∆(G) ≥ 1, and since the
link can be decomposed in a disjoint union (3.5) implies that lk G is disconnected. But
this is a contradiction with our assumption regarding ∆, H̃0(lk∆(G); k) = 0, and since

H0(lk∆(G); k) ∼= H̃0(lk∆(G); k)⊗ Z = Z

implies that lk∆(G) is connected.
Hence, ∆ must be pure, and we know that dim lk∆ = d − |F | − 1, so for i < d we

have dim kH̃i−|F |−1(lk∆(F ); k) = 0. By applying Hochster’s theorem, we obtain that
H i(k[∆], t) = 0 for i < d. Then, by Grothendieck’s theorem we know that the depth of
k[∆] is at least d.

Now, the Krull dimension of k[∆] is d and since depth k[∆] ≤ depth k[∆] = d implies
that ∆ is Cohen-Macaulay.

For the reverse implication we use an analogue argument. Assume that ∆ is Cohen-
Macaulay, then ∆ is pure, all of its facets have maximal dimension. Moreover, we know
that for a pure simplicial complex, dim lk∆F = d − |F | − 1 for all F ∈ ∆. Hence, for
i < d we have the strict inequality i− |F | − 1 < dim (lk∆(F ).

By applying Grothendieck’s theorem we obtain that H i(k[∆]) = 0 for all i < d,
and Hochster’s theorem implies that dimkH̃i−1−|F |(lk∆(F ); k) = 0 for all i < d. Hence
H̃j(lk∆(F ); k) = 0 for j < dimk(lk∆F ).
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5 The Upper Bound Theorem
Now we are on the final stretch on the proof of upper bound conjecture. We will separate
it into two steps.

One is to prove that any simplicial sphere is an Euler complex. We will show this
fact using a characterization of the Cohen-Macaulay complex in terms of the relative
singular homology and a use of Reisner’s criterion.

Secondly, we will show that the Euler complexes satisfy the Dehn-Sommerville equa-
tions.

Recall that the n-th singular homology group of a pair (X,Y ), where X is a topo-
logical space and Y a subspace of X, is the n-th homology group of the chain complex
C•(X, y) = C•(X)/C•(Y ). We will denote by H•(X,Y ; k) the relative singular homology
group.

Let us introduce first the concept of Euler complex.

Definition 5.1. The simplicial complex ∆ is an Euler complex if ∆ is pure, and the
reduced Euler characteristic χ̃(lk F ) = (−1)dim lk F for all F ∈ ∆.

Now, for any Euler complex ∆ and any face F ∈ ∆ with dim lk F = l, it follows
from the Reisner criterion that if ∆ is a Cohen-Macaulay complex then H̃l(lk F ; k) ∼= k
and 0 otherwise. But the opposite also holds. From this we observe the following.

Remark 5.1. Let ∆ be an Euler complex, and k a field. Then ∆ is Cohen-Macaulay
over k if and only if for all F ∈ ∆

H̃i(lk F ; k) ∼=
{
k for i = dim lk F,
0 otherwise.

In the next lemma we will connect the relative homology group with the reduced
homology group of a a simplex. We shall omit the proof of this lemma since is a complete
topological result.

Lemma 5.1. Let ∆ be a simplicial complex on the vertex set V , and k be a field. Suppose
that X is the geometric realization of ∆, and that F ∈ ∆ is a face of dimension j, and
p ∈ |F |. If lk F 6= ∅, then

Hi(X,X \ {p}; ; k) ∼= H̃i−j−1(lk F ; k) for all i,

and if lk F = ∅, then

Hi(X,X \ {p}; k) ∼=
{
k for i = j,
0 otherwise.

This lemma together with Reisner’s criterion allow us to prove an equivalence between
the Cohen-Macaulay property of ∆ and the vanishing property of the relative homology
group of |∆|.
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Theorem 5.2. (Munkres, Stanley). Let ∆ be a (d− 1)-dimensional simplicial complex.
Let X = |∆| be a geometric realization of ∆, and k a field. The following conditions are
equivalent:

(a) ∆ is Cohen-Macaulay over k;

(b) for all p ∈ X and all i < dimX one has

H̃i(X; k) = Hi(X,X \ {p}; k) = 0.

Moreover, if the equivalent conditions are satisfied, then ∆ is an Euler complex if
and only if

H̃d−1(X; k) ∼= Hd−1(X,X \ {p}; k) ∼= k for all p ∈ X.

Proof. First, observe that lk F = ∅ if and only if F is a facet, since a facet is not
contained in any other face of ∆.

Now, by the assumption (b) combined with Lemma 5.1 we obtain that Hi(X,X \
{p}; k) = 0 if i < dimX, and this is different from zero for i = dimF . This can happen
if and only if all the facets have maximal dimension, d− 1. Then ∆ is pure.

Now, assume that lk F 6= ∅. Recall that for a pure simplicial complex ∆, we have
dim lk F = d− 2− dimF = d− 2− j.Hence, if i < dim lk F , then i+ j + 1 < d− 1 and
so

H̃i(lk F ; k) ∼= Hi+j+1(X,X \ {p}; k) = 0.
Here, we apply assumption (b) and we change the role of i with i − j− in the Lemma
5.1.

Therefore, by applying again assumption (b) it holds that H̃i(lk F ; k) ∼= H̃i(X; k) = 0
for i < dim lk F .

Then, by Reisner’s criterion it follows that ∆ is Cohen-Macaulay over k.
For the reciprocal implication, (a) ⇒ (b), assume that lk F = ∅. Since ∆ is Cohen-

Macaulay by Reisner’s criterion H̃i(lk F ; k) = 0 for i < dim lk F . By repeating the
previous argument, and by applying Lemma 5.1 we conclude that ∆ is pure. Then,
all the implications in the previous argument can be reversed. Hence, the equivalent
conditions are proved.

For the second part of the Theorem, observe that we only have to check H̃d−1(X; k) =
k. By the Remark 5.1 we get the result.

Now, computing the relative singular homology of the sphere (a good reference work
about how to compute this homology group is Algebraic Topology, see [3]) we obtain

Hi(Sd−1, Sd−1 \ {p}; k) ∼=
{
k for i = d− 1,
0 otherwise.

Therefore, Sd−1 is an Euler complex.
Finally we will prove the symmetry of the h-vector of a sphere. In a more general

way:
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Theorem 5.3. (Dehn-Sommerville,Klee). Let ∆ be an Euler complex of dimension d−1
with h-vector (h0, . . . , hd). Then hi = hd−i for i = 0, . . . , d.

In order to prove this result, we shall see first a technical Lemma related to the
Hilbert series of k[∆].

Lemma 5.4. Let ∆ be a simplicial complex on the set of vertices V = {v1, . . . , vn}.
Then

Hk[∆](t−1
1 , . . . , t−1

n ) =
∑
F∈∆

(−1)dimF χ̃(lk F )
∏

i:vi∈F

ti
1− ti

.

Proof. Observe that we can write the equation (2) from the Theorem 3.7 in the following
way:

Hk[∆](t) =
∑
F∈∆

∏
i:vi∈F

ti
i− ti

.

Now, if we change the variables by replacing ti 7→ t−1
i and also grouping the term in

the previous product by the sub-faces of F we get

Hk[∆](t−1
1 , . . . , t−1

n ) =
∑
F∈∆

∏
i:vi∈F

1
ti − 1 =

∑
F∈∆

∏
i:vi∈F

(−1)dimF+1
(

1 + ti
1− ti

)

=
∑
F∈∆

(−1)dimF+1 ∑
G⊂F

∏
i:vi∈G

ti
1− ti

=
∑
G∈∆

( ∑
F∈∆
G⊂F

(−1)dimF+1
) ∏
i:vi∈G

ti
1− ti

,

where in the last equality we just change the order of the sums.
Finally we can express the sum in the brackets, on the above equation, in terms of

the reduced Euler characteristic,∑
F∈∆,G⊂F

(−1)dimF+1 =
∑

F∈lk G
(−1)dimF−dimG = (−1)dimGχ̃(lk G).

Therefore, the Hilbert series has the desired expression.

Proof. (Dehn-Sommervile-Klee Theorem). Let ∆ be an Euler complex, then χ̃(lk F ) =
(−1)dim lk F . Since ∆ is pure, we also have χ̃(lk F ) = (−1)d−dimF .

By the previous Lemma 5.4, the Hilbert series for an Euler complex holds that

Hk[∆](t1, . . . , tn) = (−1)dHk[∆](t−1
1 , . . . , t−1

n ).

Replacing ti by t, we get the identity Hk[∆](t) = (−1)dHk[∆](t−1). Now, from Theorem
2.14 we can express these Hilbert series as a quotient

Hk[∆](t) =
Qk[∆](t)
(1− t)d .
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Therefore, Qk[∆](t) = tdQk[∆](t−1), and by comparing coefficients on both sides we
obtain the Dehn-Somerville equations.

Finally we are ready to prove the upper bound theorem.

Theorem 5.5. (The upper bound theorem for simplicial spheres). Let ∆ be a simplicial
complex with n vertices and |∆| ∼= Sd−1. Then

fi(∆) ≤ fi(C(n, d)) for all i = 1, . . . , d− 1.

Proof. Let ∆ be a simplicial complex on the set of vertices V = {v1, . . . , vn}, such that
|∆| ∼= Sd−1. Let C(n, d− 1) be a cyclic polytope of dimension d− 1.

If i is such that bd2c < i ≤ d, then 0 ≤ d− i ≤ bd2c, therefore

hi(∆) (a)=hd−i(∆)
(b)
≤
(

n− d + d− i + i− 1
d− i

)

=
(

n− 1
d− i

)
(c)= hd−i(C(n, d)) (d)= hi(C(n, d)).

(a) Follows from Dehn-Sommerville-Klee equations, Theorem 5.

(b) Follows from Theorem 3.11.

(c) Follows from Corollary 3.23.

(d) Follows from Dehn-Sommerville equations for simplicial polytopes.

From this we get that hi(∆) ≤ hi(C(n, d)) for 0 ≤ i ≤ d+1. Therefore, we can apply
Proposition 3.9 for the expression of fk−1 in terms of hi to obtain the desired bound.

fk−1(∆) =
d∑
i=1

(
d− i
k − i

)
hi(∆) ≤

d∑
i=0

(
d− i
k − i

)
hi(C(n, d)) = fk−1(C(n, d))

for 1 ≤ k ≤ d.
So, the Upper Bound Theorem is proved.
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