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Abstract

We present and describe a proof due to Deuring of the Hilbert’s 12th problem in the
particular case of imaginary quadratic fields. This particular case consists in giving
explicit generators of the maximal abelian extension of an imaginary quadratic field. To
deal with abelian extensions of such fields, we study the classical formulation of Class
Field Theory and present the main statements without proofs. The other important
ingredient for the proof we will describe is the theory of elliptic curves with complex
multiplication. We will combine Class Field Theory with the notions of elliptic curves to
prove the desired construction.

2010 Mathematics subject classification: 11G35, 11G45, 14K22.
Keywords: Elliptic Curve, Complex Multiplication, Ray Class Field, Hilbert Class

Field, Existence Theorem, Lattice, Torsion Point, Weber Function, Abelian Extension.
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Introduction

In 1900, in the Paris International Congress of Mathematicians, Hilbert presented 10 un-
solved mathematical problems at that moment. Shortly after, he expanded this list to 23
problems about different areas of mathematics that influenced strongly the mathematical
research at the 20th century (see [1]). These problems are known as Hilbert problems.

We will focus our attention in the 12th problem of that list, which asks to extend
Kronecker-Weber’s theorem about abelian extensions of the field Q of rational numbers
to any base number field.

Let us understand this statement. An extension of fields L/K is said to be abelian
provided that it is Galois and the Galois group Gal(L/K) attached to it (i.e, the group
of authomorphisms of L that fix K) is abelian. Kronecker-Weber’s theorem asserts that
every abelian extension of Q is contained in a cyclotomic extension (i.e., an extension of
Q obtained by adjoining to Q a primitive root of unity).

A basic fact of Galois theory is that the compositum of any two abelian extensions of a
field K is again an abelian extension of K. It follows that the maximal abelian extension
of K is the compositum of all abelian extensions of K. Thus, Kronecker-Weber’s theorem
implies that the maximal abelian extension Qab of Q is obtained by adjoining to Q all
primitive roots of unity. Recall that for any given N ∈ N>0, the complex number

ω = e
2π i
N

is a primitive N -th root of unity. This is a value of the exponential function (which is a
trascendental function: it is defined by a series) that is an algebraic number (i.e, it is a
root of some polynomial with rational coefficients). This provides an explicit construction
of the field Qab in the sense that we obtain from here a Q-basis of Qab and then we know
the form of all elements of Qab.

Hilbert’s 12th problem asks about an explicit form (in the previous sense) of the
maximal abelian extension of any given number field K (i.e, a finite extension of Q).
It is often known also as Kronecker’s Jugendtraum. The German word Jugendtraum
means dream of youth. This problem was proposed by Kronecker in 1880, while he was
elaborating the theory of complex multiplication, in a letter to Dedekind. He talked about
the solution of the problem as his dream of youth (see [2], Page 79). It remains currently
unsolved, but we have complete solutions when K = Q, when K is an imaginary quadratic
field (i.e, a field of the form Q(

√
−n), n ∈ Z>0) and when K is a complex multiplication

field (see [3]).
In this thesis, we are going to describe Deuring’s proof of Hilbert’s 12th problem when

the base field K is imaginary quadratic. In that case, Kronecker’s Jugendtraum can be
solved by using elliptic curves or modular forms, but we will take the first approach. To
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be more accurate, we will use Class Field Theory and the theory of elliptic curves with
complex multiplication.

First, we will study Class Field Theory, which describes the structure of the Galois
group Gal(Kab/K) for any number field K. The description of Kab is not explicit in the
sense that it does not provide explicit generators of the extension Kab/K (in other words,
we do not know a K-basis of the K-vector space induced by the previous extension). The
maximal abelian extension can be described in terms of the Ray Class Fields Km for any
modulus m of K (which is a generalization of the notion of ideal in the ring of integers
OK). When we take m =< 1 >, the Ray Class Field K<1> is called the Hilbert Class
Field of K. The problem of describing the maximal abelian extensions is translated to
describe the extensions Km/K. We do not know explicit generators of Km for any number
field K. What we will do in this thesis is to give generators of Km in the cases that K = Q
and K is an imaginary quadratic field.

As we mentioned, we will present a solution to Kronecker’s Jugendtraum by using the
theory of elliptic curves. We will construct both the Hilbert Class Field and the Ray Class
Field for any modulus of an imaginary quadratic field K. Let us see a brief summary of
the basic notions of elliptic curves (see Chapter 4 for further details). An elliptic curve is
a non-singular algebraic curve over a field F with some F -rational point, or equivalently,
an algebraic curve with affine equation

y2 = x3 − g2 x− g3, g2, g3 ∈ F,

such that g3
2 − 27 g2

3 6= 0. The discriminant of E is defined as 4(E) = g3
2 − 27 g2

3 and the

j-invariant of E is j(E) = 1728
g32
4(E)

. The set E(F ) of solutions (x, y) of the equation
with x, y ∈ F can be endowed with a group structure in which the zero element is the
point at infinity of the curve E. This group is abelian, and in general its torsion part is
non-trivial.

Let K be an imaginary quadratic field. Using the notion of j-invariant of an elliptic
curve, we will introduce the j-function, which is a trascendental function. In Chapter 5,
we will prove that

L = K(j(τ))

is an abelian extension of K, where τ ∈ K is some complex non-real number. One
can observe the analogy with the cyclotomic case: in our construction, we adjoin to K
the trascendental function j evaluated at some τ ∈ C − R in such a way that j(τ) is
an algebraic number. In the cyclotomic case, we adjoin to Q the exponential function
evaluated at 2π i

N
∈ C − R in such a way that e

2π i
N is an algebraic number. In fact,

with an appropiate choice of τ (to be more accurate, if the lattice < 1, τ > has complex
multiplication by OK , see Section 4 of Chapter 4), the field L is the Hilbert Class Field
of K.

In Chapter 6 we will prove the mentioned Kronecker-Weber’s theorem and solve com-
pletely the Kronecker’s Jugendtraum for imaginary quadratic fields. Namely, if K is an
imaginary quadratic field, we will prove that if E is any elliptic curve with complex mul-
tiplication by the ring of integers OK of K and defined over the Hilbert Class Field of
K, then Kab is obtained by adjoining to K the j-function evaluated at some τ ∈ C− R
as before and all the first coordinates of torsion points of E(K).

v
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Chapter 1

Preliminary: Algebraic number
theory

In this chapter we recall the basic notions and results of basic algebraic number theory
that we will need in the exposition. We will give the definitions and basics about number
fields and their rings of integers. After that, we will review the unique-factorization
property of ideals in a number ring and the splitting of prime ideals in some extension.
Finally, we will introduce fractional ideals and use them in order to construct the ideal
class group of the ring of integers. This will be used in the particular case of class field
theory corresponding to Section 1 of Chapter 3. The main reference used in this chapter
is [4].

1 Number fields and number rings

Recall that a number field is a finite extension of Q which is subfield of C. We say that
n = [K : Q] is the degree of K. An algebraic integer is any α ∈ C such that there exists
a monic polynomial f ∈ Z[X] such that f(α) = 0. The ring of integers associated to K
is the set of all algebraic integers of K. It is an integral domain. We have a useful result
that relates a number field with its ring of integers.

Proposition 1.1. Given α ∈ K, there exists m ∈ Z, m 6= 0 such that mα ∈ OK.

With this, we see that K is isomorphic to the field of fractions of OK .
Let K be a number field of degree n and let σ1, ..., σn be the Q-embeddings of K in

C. The norm of an element α ∈ K is the number

N(α) =
n∏
i=1

(σi(α)).

The discriminant of the n-tuple (α1, ..., αn) ∈ Kn is the number

disc(α1, ..., αn) = det([σi(αj)])
2

Theorem 1.2. Let K be a number field of degree n. Then, the additive group of the ring
of integers OK is a free abelian group of rank n.
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An integral basis of OK is any basis of the additive group of OK . The discriminant is
an invariant for the integral basis, that is, if {α1, ...αn} and {β1, ..., βn} are two integral
basis of the number ring OK , then disc(α1, ..., αn) = disc(β1, ..., βn). This allows us to
define the discriminant of the number ring OK as

disc(OK) = disc(α1, ..., αn)

where {α1, ..., αn} is any integral basis of OK .
A basic example of number field is a quadratic field, which is a number field K such

that [K : Q] = 2, or equivalently, K = Q(
√
m), where m is a square-free integer.

If K is a quadratic field and dK = disc(OK), then we can always write:

OK = Z
[
dK +

√
dK

2

]
.

2 Prime factorization of ideals

A Dedekind domain is an integral domain R such that:

1. R is noetherian.

2. All non-zero prime ideal of R is maximal.

3. R is integrally closed in its field of fractions.

One can prove an important characterization: Dedekind domains are the integral
domains whose ideals factorize uniquely up to order as a product of prime ideals. Here
we will only state that Dedekind domains have the unique factorization property.

Lemma 1.3. Let K be a number field and let I be an ideal of OK. Then, OK/I is finite.

Theorem 1.4. Let K be a number field. Then, OK is a Dedekind domain.

Corollary 1.5. Any proper ideal of a number ring factorizes uniquely as a product of
prime ideals.

Lemma 1.3 allows us to define the norm of an ideal I of OK as N(I) = |OK/I|. We
list some properties of such norm.

Proposition 1.6. Let K be a number field.

1. If I and J are ideals of OK, N(IJ) = N(I)N(J).

2. If L is an extension of K such that [L : K] = n and I is an ideal of OK, then
N(I OL) = N(I)n.

3. If α ∈ OK, α 6= 0, then N(αOK) = |N(α)|.
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Now we consider L/K an extension of number fields. Let P be a prime ideal of OK
and let Q be a prime ideal of OL. We say that Q is over P or that P is under Q if
Q ∩OK = P . Then, one can prove that if P is a prime ideal of OK , there is some prime
ideal of OL over P , while if Q is a prime ideal of OL, there is an unique prime ideal of
OK over Q.

Let P be a prime ideal of OK . Then P OL is a proper ideal of OL, so it factorizes
uniquely as a product of prime ideals of OL. This factorization is called the splitting of
the prime ideal P in the number ring OL. Note that the prime ideals in this factorization
are the prime ideals of OL over P .

Let P be a prime ideal of OK and let Q be a prime ideal of OL over P .

1. The ramification index of Q over P , denoted by e(Q|P ), is the power of Q in the
factorization of P OL.

2. The inertia degree of Q over P is the positive integer f(Q|P ) = [(OL/Q) : (OK/P )].

Definition 1.7. Let L/K be an extension of number fields and let P be a prime ideal of
OK.

1. We say that P is ramified in OL if there exists a prime ideal Q of OL over P such
that e(Q|P ) > 1.

2. We say that P splits completely in OL if e(Q|P ) = f(Q|P ) = 1 for all prime ideals
Q of OL over P .

Let us assume that the extension L/K is Galois. The key result is that in this case
Gal(L/K) permutes transitively the prime ideals of OL over P . As a consequence, if Q
and Q′ are prime ideals of OL over P , then e(Q|P ) = e(Q′|P ) and f(Q|P ) = f(Q′|P ).
Then,

n = e f r,

where r is the amount of primes in the splitting of P .

The Artin symbol

Let L/K be a Galois extension of number fields. Let P be a prime of K which is
unramified in L and let Q be a prime of L over P . Then, there is an unique map
σ ∈ Gal(L/K) such that

σ(α) ≡ αN(P ) (modQ) for all α ∈ OL.

The map σ is called the Artin symbol of L/K over Q, and it is denoted by
(
L/K
Q

)
.

Given σ ∈ Gal(L/K), we have that
(
L/K
σ(Q)

)
= σ ◦

(
L/K
Q

)
◦ σ−1. We deduce that the

conjugacy class of
(
L/K
Q

)
does not depend on Q. The Artin symbol of L/K over P ,

denoted by
(
L/K
P

)
, is the conjugacy class of

(
L/K
Q

)
.

In particular, when the extension L/K is abelian, the Artin symbol
(
L/K
Q

)
does not

depend on Q, and we define the Artin symbol of L/K over P as
(
L/K
P

)
=
(
L/K
Q

)
.
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A basic property of the Artin symbol
(
L/K
P

)
is that the primes P for which it becomes

trivial are those that split completely at L.

Proposition 1.8. Let L/K be a Galois extension and let P be a prime of K that does
not ramify in L. Then,(

L/K

P

)
= 1⇐⇒ P splits completely at L.

Proof. the Artin symbol
(
L/K
P

)
is the conjugacy class of all Artin symbols

(
L/K
Q

)
with

Q prime of L over P . We want to prove that it is trivial (i.e, its unique element is the
identity). Using the definitions, it is easy to prove (see [6], Corollary 5.21) that for any
prime Q of L over P , (

L/K

Q

)
= 1⇐⇒ P splits completely at L.

Then the claim follows.

3 Fractional ideals

The introduction of fractional ideals has a double purpose: On the one hand, we will
prove a unique factorization property of fractional ideals as product of prime ideals of a
number ring, which will allow us to generalize the Artin symbol just introduced to any
fractional ideal of K. On the other hand, we will be able to construct the ideal class
group of OK . The theory of fractional ideals in a more general situation can be consulted
in [5].

Let K be a number field. Then OK acts on K with the product on K, so K has
structure of OK-module. A fractional ideal of OK is a non-zero finitely generated OK-
submodule of K. Obviously, the fractional ideals of OK that are contained in OK are the
ideals of OK . These are also called integral ideals of OK .

Theorem 1.9. Let a be a OK-submodule of K. Then, the following are equivalent:

1. a is a fractional ideal of OK

2. a = α I, where α ∈ K and I is an ideal of OK.

3. There exists x ∈ OK, x 6= 0 such that x a ⊂ OK.

Proof. Let us see that 1 implies 2. Assume that a is a fractional ideal ofK. Let α1, ..., αn ∈
K such that a =< α1, ..., αn >OK . Let a1, ..., an, b ∈ OK such that αi = ai b

−1 for all i ∈
{1, ..., n}. Let α = b−1 ∈ K and I =< a1, ..., an >OK . Since a1, ..., an ∈ OK , I is an ideal
of OK . Then,

a =< a1 b
−1, ..., an b

−1 >OK= α < a1, ..., an >OK= α I.
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Conversely, let us suppose that a = α I with α ∈ K and I an ideal of OK . Since
OK is a Dedekind domain, it is noetherian, so all its ideals are finitely generated. Let
a1, ..., an ∈ OK such that I =< a1, ..., an >OK . Then,

a = α I = α < a1, ..., an >OK=< a1 α, ..., an α >OK ,

where ai α ∈ K for all i ∈ {1, ..., n}. Then, a is a fractional ideal of K.
Let us see that 2 implies 3. Let α ∈ K and I ideal of OK such that a = α I. If we

apply Proposition 1.1 to α−1, we obtain that there exists a non-zero integer m such that
mα−1 ∈ OK . Let x = mα−1. Then, x 6= 0, x ∈ OK and x a = mα−1 α I = mI ⊂ OK .

Finally, we will prove that 3 implies 2. Let x ∈ OK , x 6= 0 such that x a ⊂ OK . This
condition says in fact that I = x a is an ideal of OK . In effect, if α ∈ I, then there exists
y ∈ a such that α = x y, and given β ∈ OK , we have that β α = β x y = x (β y) ∈ x a = I
because since β ∈ OK , y ∈ a and a is an OK-submodule of K, β y ∈ a.

Let IK be the set of fractional ideals of OK . We can define an operation in IK given
by the following: If a = α I, b = β J , we define

a b := αβ I J.

Proposition 1.10. The previous product is well defined.

Proof. First, we have to prove that it does not depend on the representatives. Let a, b
be fractional ideals and let α1, α2, β1, β2 ∈ K, and I1, I2, J1, J2 ideals of OK such that
a = α1 I1 = α2 I2 and b = β1 J1 = β2 J2. We have to prove that α1 β1 I1 J1 = α2 β2 I2 J2.

Since α1 I1 = α2 I2, we have that I1 = α−1
1 α2 I2. Similarly, I2 = β−1

1 β2 J2. Then,

α1 β1 I1 J1 = α1 β1 α
−1
1 α2 I2 J1 = β1 α2 I2 J1 = β1α2β

−1
1 β2 I2 J2 = α2 β2 I2 J2.

Finally, this product is clearly closed in IK .

The next goal is to prove that IK with this operation is a group. Note that it is
trivially associative and has identity element OK .

Proposition 1.11. Let K be a number field and let a be a non-zero fractional ideal of K.
Then there exists a fractional ideal b of K such that a b = OK (that is, a is invertible).

Proof. Let us define b = {α ∈ K |α a ⊂ OK}. Let us see that b is a fractional ideal. Let
x ∈ a such that x 6= 0 and x ∈ OK (such an element x exists because of Proposition 1.1).
Then, by definition of b, x b ⊂ OK . Then b is a fractional ideal.

Let us see that a b = OK . By definition of b, it is clear that a b ⊂ OK . Moreover,
since a is an ideal of OK , so is a b. Let us see the other inclusion. Let x ∈ a such that
x 6= 0. Then, x−1 x = 1 ∈ OK , so x−1 ∈ b. Hence 1 = x x−1 ∈ a b, and being a b an ideal,
we obtain that a b = OK .

Corollary 1.12. Let K be a number field. Then, the set IK of the fractional ideals of K
is a group under multiplication.

Using the property of unique factorization in number rings, we are going to prove the
mentioned unique factorization property in IK .

5



Proposition 1.13. Let K be a number field and let a ∈ IK. Then, there exist unique
prime ideals P1, ..., Pk in OK and unique integers r1, ..., rk ∈ Z such that

a = P r1
1 ... P rk

k .

Proof. Let α ∈ K and I ideal of OK such that a = α I. Since K is isomorphic to the field
of fractions of OK , there exist a, b ∈ OK such that α = a b−1. Hence, < b >OK a = a I.
Now, both < b >OK and a I are ideals of OK , so they factorize uniquely, say

a J = Qβ1
1 ... Qβr

r ,

< b >= Uγ1
1 ... Uγs

s ,

with Qi, Uj prime ideals of OK and βi, γj ∈ N. Then, from the previous equality we
obtain that

I = Qβ1
1 ... Qβr

r U−γ11 ... U−γss .

If we cancel the repeated primes, we obtain the desired factorization.

The ideal class group

Let K be a number field and let α ∈ K. Then

< α >OK= {λα |λ ∈ OK}

is clearly a fractional ideal. Such an ideal is called a principal fractional ideal.
Let < α >OK be a principal fractional ideal. We have that

< α >OK < α−1 >OK=< 1 >OK= OK ,

and hence < α >−1
OK=< α−1 >OK .

Given < α >OK , < β >OK principal fractional ideals, we have that

< α >OK < β−1 >OK=< αβ−1 >OK

is again a principal fractional ideal.
This proves that the set PK of principal fractional ideals is a subgroup of IK . Since

IK is abelian, PK is a normal subgroup of IK .

Definition 1.14. Let K be a number field. The ideal class group of K is the quotient
group

C(OK) = IK/PK .

We have the following useful result, whose proof can be found in [4] (Chapter 5).

Theorem 1.15. There are finitely many ideal classes of OK, that is, C(OK) is a finite
group.

The importance of this theorem lies in the fact that it allows us to establish quan-
titative results related to the ideals of a ring of integers. In Chapter 5, in the case in
which K is an imaginary quadratic field, we will relate also the ideal class group of OK
with the set of C-isomorphism classes of elliptic curves with complex multiplication (see
Chapter 4). Here the finiteness of the ideal class group will be crucial in order to prove
the finiteness of such classes of elliptic curves.

6



Chapter 2

Orders in quadratic fields

The theory of orders in number fields is introduced in order to obtain a family of rings
with similar properties as the ring of integers. This provides extra information of the
arithmetic structure of the number field. The theory of orders will be very useful in
part 2. For example, in Chapter 4 we will see that such orders allow us to classify the
endomorphism ring of an elliptic curve. The main reference used in this chapter is [6].

The first section is about orders in general number fields. After this, we will only deal
with orders in quadratic number fields. We could restrict ourselves to the quadratic case
at the begining, but the notions in the first section are exactly the same in the general
case.

We study the quadratic case in the second section. The study of orders in quadratic
fields has a great advantadge: such orders are uniquely determined by an integer number,
which is called the conductor of the order.

In the third section, we will generalize the theory of both ideals and fractional ideals
of the ring of integers introduced in the previous chapter to an order. We will also focus
on a special type of fractional ideals, that are proper fractional ideals. This is going to
be also a fundamental ingredient in the theory of elliptic curves introduced in the second
part. We will construct also the ideal class group of an order, which is the analog of the
ideal class group of the ring of integers introduced in the previous chapter.

Finally, we introduce the concept of ideals prime to the conductor and we use them
in order to construct another expression of the ideal class group of an order. This theory
will be applied in the next chapter in order to define the ring class field.

1 Generalities

We begin by defining and studying orders in a general number field K.

Proposition 2.1. Let K be a number field of degree n and let M be a finitely generated
subgroup of K. Then:

1. M is a free abelian group.

2. M has rank n if and only if M contains a Q-basis of K.

Proof. 1. It is trivial.

7



2. Assume that M has rank n. Let {α1, ..., αn} be a Z-basis of M . Then, {α1, ..., αn}
is linearly independent over Z. Let a1, ..., an ∈ Q such that a1 α1 + ...+ an αn = 0.
We can assume that ai = λi

µ
, i ∈ {1, ..., n} have the same denominator, so we have

that λ1 α1 + ...+ λn αn = 0, with λ1, ..., λn ∈ Z. Then λ1 = ... = λn = 0, and hence
a1 = ... = an = 0. This proves that {α1, ..., αn} is linearly independent over Q.
Since K is of degree n, < α1, ..., αn >Q= K. Then {α1, ..., αn} is a Q-basis of K
contained in M .

Conversely, let us suppose that {α1, ..., αn} is a Q-basis of K contained in M . Since
M is a subgroup of K, < α1, ..., αn >Z⊂ M . By the hypothesis, {α1, ..., αn} is
linearly independent over Q. Since Z ⊂ Q, it is linearly independent over Z. This
proves that rank(M) ≥ n. Moreover, we can prove as in the other implication that
any Z-basis of M is a Q-basis of K. Since the Q-vector space K has dimension n,
rank(M) ≤ n. We deduce that rank(M) = n.

Definition 2.2. Let K be a number field. We say that O ⊂ K is an order in K if it
satisfies:

1. O is an unitary subring of K.

2. O is a finitely generated abelian group.

3. O contains a Q-basis of K.

Remark 2.3. By the previous Proposition, conditions 2 and 3 together are equivalent to

2’. O is a (free) finitely generated subgroup of K of rank n.

Remark 2.4. Let O be an order of K. Since O contains a Q-basis of K, K is isomorphic
to the field of fractions of O.

Let K be a number field. Then, OK is an order of K. Indeed, it is known that it is a
unitary subring of K, and by Theorem 1.2, it is finitely generated of rank n. In fact, it
is the maximal order of K.

Theorem 2.5. Let K be a number field and let O be an order of K. Then, O ⊂ OK
Proof. Let α ∈ O. Let us define

mα : O −→ O
β 7−→ αβ

.

This map is an endomorphism. Since O is a free generated abelian group of rank n
and mα(O) ⊂ O = ZO, using Proposition 2.4 of [5], there exist a1, ..., an ∈ Z such that

mn
α + a1m

n−1
α + ...+ an−1mα + an = 0.

Since O is unitary, we can evaluate in 1, and then we obtain that

αn + a1 α
n−1 + ...+ an−1 α + an = 0.

That is, α is a root of a monic polynomial with integer coefficients. This proves that
α ∈ OK .
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2 The case of quadratic fields

Orders of quadratic fields have better properties and we can obtain stronger results about
them. Moreover, we will need the imaginary ones for characterizing endomorphism rings
of elliptic curves (see Chapter 4). Remember that if K is a quadratic field, then OK =<

1, ωK >Z, where ωK = dK+
√
dK

2
and dK = disc(K).

The key result is the following:

Theorem 2.6. Let K be a quadratic field and let O be an order of K. Let dK = disc(K)
and f = [OK : O]. Then f <∞ and

O = Z+ f OK =< 1, f ωK >Z .

Proof. Since both O and OK are free abelian groups of rank 2, we have that [OK : O] =
|OK/O| <∞.

Let x1, ..., xf−1 ∈ OK such that OK = O ∪ x1O ∪ ... ∪ xf−1O. Then f OK ⊂ O, and
hence Z+ f OK ⊂ O. On the other hand, since OK =< 1, ωK >Z, we have that:

Z+ f OK ={a+ f (b+ c ωK) | a, b, c ∈ Z}
= {(a+ fb) + cfωK | a, b, c ∈ Z}
= {a+ bfωK | a, b ∈ Z} =< 1, f ωK >Z .

Hence < 1, f ωK >Z⊂ O. Furthermore,

< 1, ωK >Z / < 1, f ωK >Z∼=< ωK >Z / < f ωK >Z= {b ωK | b ∈ {0, ..., f − 1}}.

Let us see that all these elements are different. Let b1, b2 ∈ {0, ..., f − 1} such that
b1 ωK = b2 ωK . Then, (b1 − b2)ωK ∈< f ωK >Z. This means that f divides b1 − b2,
but |b1 − b2| < f . We deduce that b1 − b2 = 0, that is, b1 = b2. Hence [< 1, ωK >Z:<
1, f ωK >Z] = | < 1, ωK >Z / < 1, f ωK >Z | = f .

Since < 1, f ωK >Z and O are subgroups of index f in OK and < 1, f ωK >Z⊂ O,
necessarily O =< 1, f ωK >Z.

Definition 2.7. Let K be a quadratic field and let O be an order of K. The conductor
of O is the number f = [OK : O].

Corollary 2.8. Let K be a quadratic field. Then, every order of K is uniquely determined
by its conductor.

This result in general does not hold for number fields of degree greater than 2.

3 Ideals of orders in quadratic fields

Let K be a quadratic field and let O be an order of K. Recall that O is, by definition,
a unitary subring of K, in particular we can consider its ideals. We have some similar
results that we stated for the ideals of OK but there is a main difference: O is not in
general integrally closed in its field of fractions, but it is almost a Dedekind domain.
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Lemma 2.9. Let I be a non-zero ideal of O. Then, there exists m ∈ Z, m 6= 0 such that
m ∈ I.

Proof. Let α ∈ I such that α 6= 0. Let σ be the non-trivial Q-automorphism of K and
let β = σ(α). We know by Theorem 2.6 that O =< 1, f ωK >Z. Then, there exist
a, b ∈ Z such that α = a+ b f ωK . Then, β = σ(α) = a+ b f σ(ωK). Since ωK ∈ OK and
σ ∈ Gal(K/Q), we have that σ(ωK) ∈ OK . Then, β ∈ O.

Let m = N(α). Since α is an algebraic integer, we have that m ∈ Z and m 6= 0
because α 6= 0. Moreover, m = αβ ∈ I.

Proposition 2.10. Let I be an ideal of O. Then O/I is finite.

Proof. Let m be a non-zero integer such that m ∈ I. Since O is a free abelian group of
rank 2, |O/mO| = m2. On the other hand, since m ∈ I, we have that mO ⊂ I, and
then by the third isomorphism theorem,

|O/I| ≤ |O/mO| = m2 <∞.

Theorem 2.11. Let K be a quadratic field and let O be an order of K. Then:

1. Every non-zero prime ideal of O is maximal.

2. O is noetherian.

Proof. 1. Let P be a prime ideal of O. Then O/P is an integral domain, and by the
previous result it is finite. Thus O/P is a field, that is, P is maximal.

2. Let I be an ideal of O. Then I can be seen as a subgroup of O, which is free finitely
generated of rank 2. Hence I is finitely generated.

Since all ideals of O are finitely generated, O is noetherian.

In general, an orderO in a quadratic field is not a Dedekind domain: If there is α ∈ OK
such that α /∈ O, then α ∈ K is a root of some monic polynomial with coefficients in Z
but it does not belong to O. That is, if O $ OK , then O is not integrally closed in its
field of fractions. The converse of this is clear, because OK is a Dedekind domain and it
is the maximal order. Hence, O is not a Dedekind domain if and only if the conductor
f of O is greater than 1. As a consequence, ideals of orders do not factorize uniquely as
product of prime ideals.

3.1 Fractional ideals of an order

We can generalize naturally the theory of fractional ideals of the ring OK to any order O
of a quadratic field.

Definition 2.12. Let K be a quadratic field and let O be an order of K. A fractional
ideal of O is a subset a of K which is a finitely generated O-submodule of K.
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As in the case of the ring of integers OK , the fractional ideals of O contained in O
are the ideals of O. Sometimes, we will refer to them as integral ideals of O.

Theorem 2.13. Let O be an order of a quadratic field K. Let a be a O-submodule of
K. Then, the following are equivalent:

1. a is a fractional ideal of O.

2. a = α I, where α ∈ K and I is an ideal of O.

3. There exists x ∈ O, x 6= 0 such that x a ⊂ O.

Proof. We will only prove that 2 implies 3, because the other implications are similar to
the case of OK . Let α ∈ K and I ideal of O such that a = α I. If we apply Proposition
1.1 to α−1, we obtain that there exists a non-zero integer m such that mα−1 ∈ OK . But
we also know that f OK ⊂ O, where f is the conductor of O. Let x = f mα−1. Then,
x 6= 0, x ∈ O and x a = f mα−1 α I = f m I ⊂ O.

Proposition 2.14. Let O be an order of a quadratic field K and let a be a fractional
ideal of O. Then, a is a free abelian group of rank 2.

Proof. Since a is a fractional ideal, it is an O-submodule of K, and then it is a Z-
submodule of K, that is, an abelian subgroup of the additive group of K. Moreover, by
the previous result, there are α ∈ K and I ideal of O such that a = α I. By Proposition
2.10, |O/I| < ∞. Since rank(O) = 2, necessarily we have that rank(I) = 2. This leads
to rank(a) = 2.

We can also define a product in the set of fractional ideals of an order O of a quadratic
field K in the same way we did for the number ring OK : If a = α I and b = β J are
fractional ideals of O, we define

a b = (αβ) (I J).

This product is well defined and the proof is the same as in the case of OK . Note also
that O is the identity for this product.

However, there are fractional ideals that are not invertible. If we want to establish a
group structure as in the case of the maximal order, we may restrict our set of fractional
ideals.

Definition 2.15. Let K be a quadratic field and let O be an order of K. We say that a
fractional ideal a of O is proper if

O = {β ∈ K | β a ⊂ a}.

We will prove that the set of proper fractional ideals

I(O) = {a ⊂ K | a is a proper fractional ideal of O}

is just the set of invertible fractional ideals of O. Then, it is a group under the natural
product of fractional ideals.
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Proposition 2.16. Let K be a quadratic field. Then:

1. All principal fractional ideals of an order of K are proper.

2. All fractional ideals of OK are proper.

Proof. 1. Let O be an order of K and let a =< α >O be a principal ideal of O. Given
β ∈ K, we have that

β I ⊂ I ⇐⇒ β α ∈ a⇐⇒ ∃a ∈ O | β α = aα⇐⇒ ∃a ∈ O | β = a⇐⇒ β ∈ O.

Hence O = {β ∈ K | β a ⊂ a}.

2. Let a be a fractional ideal of OK and let β ∈ K such that β a ⊂ a. We have to
prove that β ∈ OK . Then, β a a−1 ⊂ a a−1, that is, βOK ⊂ OK . This implies that
β ∈ OK .

Lemma 2.17. Let τ be an algebraic integer, K = Q(τ) and a x2+b x+c = irr(τ, x,Q) the
minimal irreducible polynomial of τ over Q, where gcd(a, b, c) = 1. Then, O =< 1, a τ >Z
is an order of K and < 1, τ >Z is a proper fractional ideal of O.

Proof. Since a τ is an algebraic integer, O is an order of K. Let β ∈ K. Then,

β < 1, τ >Z⊂< 1, τ >Z⇐⇒ β, βτ ∈< 1, τ >Z .

We have that
β ∈< 1, τ >Z⇐⇒ ∃m,n ∈ Z | β = m+ n τ.

Since aτ 2 + bτ + c = 0,

βτ = mτ + nτ 2 = mτ +
n

a
(−bτ − c) =

−c n
a

+ (
−b n
a

+ b)τ.

Now, using that gcd(a, b, c) = 1, we obtain that

β τ ∈< 1, τ >Z⇐⇒ a|n.

It follows that

{β ∈ K | β < 1, τ >Z⊂< 1, τ >Z} = {β ∈ K | β = m+nτ,m, n ∈ Z, a|n} =< 1, aτ >Z= O.

Remark 2.18. By the definition of proper ideal, this lemma gives us an useful property:
If a =< 1, τ >Z is a proper fractional ideal of an order O, then O =< 1, a τ >Z. Indeed,
a is a proper fractional ideal of O′ =< 1, a τ >Z, but a is proper, so

O = {β ∈ K | β a ⊂ a} = O′.

Theorem 2.19. Let O be an order in a quadratic field K and let a be a fractional ideal
of O. Then, a is proper if and only if a is invertible.
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Proof. Assume that a is invertible. Then, there exists some fractional ideal b of O such
that a b = O. Let β ∈ K such that β a ⊂ a. Then,

βO = β (a b) = (β a) b ⊂ a b = O.

Thus β ∈ O. This proves that

O = {β ∈ K | β a ⊂ a}

and then a is proper.
Now assume that a is proper. First, by Proposition 2.14, we know that a is a free

abelian group of rank 2. Let α, β ∈ K such that a =< α, β >Z. Denote τ = β
α

. Then,
a = α < 1, τ >Z. Let aX2 + bX + c be the minimal irreducible polynomial of τ over Q
with gcd(a, b, c) = 1 (it has integer coefficients because τ is an algebraic integer). Hence
< 1, τ >Z is a proper fractional ideal of O. By lemma 2.17, O =< 1, a τ >Z. Let ·
be the non trivial Q-automorphism of K, which is the complex conjugation. Similarly,
since τ is also root of aX2 + bX + c, we obtain that a = α < 1, τ >Z, and then
< 1, a τ >=< 1, a τ >= O.

We claim that

a a =
N(α)

a
O.

For proving this, first we note that

a a a = aαα < 1, τ >< 1, τ >= N(α) < a, a τ, a τ , a τ τ >Z .

But we know that the coefficients and the roots of the polynomial aX2 + bX + c of
degree 2 are related by τ + τ = − b

a
, τ τ = c

a
. If we put this in the previous expression,

we obtain that
a a a = N(α) < a, a τ,−b, c > .

Now, since a, b, c are coprime, they generate Z, so

a a a = N(α) < 1, a τ >= N(α)O.

and hence the claim. We deduce that

a (
a

N(α)
a) = O

and therefore a is invertible.

Let us consider
P (O) = {a ∈ I(O) | a is principal}.

It is easy to check that P (O) is a subgroup of I(O) (the proof is similar to that of the
case of OK), which is normal because I(O) is abelian.

Definition 2.20. Let K be a quadratic field and let O be an order of K. The ideal class
group of O is the quotient group

C(O) = I(O)/P (O).
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To close this section, we use Proposition 2.10 to generalize the concept of norm of an
ideal to ideals of an order of a quadratic field.

Definition 2.21. Let I be an ideal of O. The norm of I is the integer number

N(I) = |O/I|.

Proposition 2.22. Let O be an order of a quadratic field K.

1. N(αO) = |N(α)| ∀α ∈ O, α 6= 0

2. I I = N(I)O for all I proper ideal of O

3. N(I · J) = N(I) ·N(J) for all I, J proper ideals of O

Proof. 1. If f is the conductor of O and ωK = dK+
√
dK

2
, then O =< 1, u >Z with

u = f ωK . Let α ∈ O such that α 6= 0. First, we prove that N(α) = ad − bc. Let
a, b ∈ Z such that α = a+ bu. Then,

N(α) = αα = (a+ bu) (a+ bu) = a2 + a b (u+ u) + b2 uu.

Since αu ∈ O, there exist c, d ∈ Z such that αu = c + du. But we have also that
αu = au+ bu2, so b u2 + (a− d)u− c = 0, and then u2 + a−d

b
u− c

b
= 0. This proves

that the minimal irreducible polynomial of u over Q is f(X) = X2 + a−d
b
X − c

b
.

Since deg(f) = 2 and the roots of f are u and u, we deduce that u + u = d−a
b

and
uu = − c

b
. Hence,

N(α) = a2 + a (d− a)− b c = ad− bc.

On the other hand, one can prove that

|O/αO| = |ad− bc|.

We skip the proof because the techniques are not relevant for the contents in this
document (see [6], Exercise 7.14). Then the result follows immediately.

2. Let I be a proper ideal of O. Let us prove first that if α ∈ O, α 6= 0, then
N(α I) = N(α)N(I). Since α I ⊂ αO ⊂ O, there is a short exact sequence

0 −→ αO/α I −→ O/α I −→ O/αO −→ 0.

Then, by the first isomorphism theorem, |O/α I| = |O/αO| |αO/α I|.
On the other hand, the map O −→ αO multiplication by α induces an isomorphism

O/I −→ αO/α I
x+ I 7−→ αx+ α I

.

Hence, |αO/α I| = |O/I|. Then,

N(α I) = |O/α I| = |O/αO| |αO/α I| = |O/αO| |O/I| = N(αO)N(I).
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Using 1, we obtain that
N(α I) = N(α)N(I).

Since O/I is finite, I is a free abelian group of rank 2. Taking common factor, we
can write I = α < 1, τ >Z with α ∈ O and τ ∈ K. Then, by 2.17, O =< 1, a τ >Z,
where aX2 + X + c is the minimal polynomial of τ . Now, N(a < 1, τ >Z) = [<
1, a τ >Z:< a, a τ >Z] = a, so N(< 1, τ >Z) = 1

a
. Hence,

N(I) = N(α < 1, τ >Z) = N(α)N(< 1, τ >Z).

But we know from Theorem 2.19 that I I = N(α)
a
O, so 3 is proved.

3. Let I, J be proper ideals of O. Using 2,

N(I J)O = I J (I J) = (I I) (J J) = (N(I)O) (N(J)O) = (N(I)N(J))O.

So N(I J) and N(I)N(J) are equal up to an unit, and both are positive integers,
so they coincide.

3.2 Ideals prime to the conductor

We close our study of ideals of an order in an imaginary quadratic field K with the ideals
prime to the conductor of the order. This theory will give us an alternative expresion of
the ideal class group C(O) in terms of ideals prime to the conductor of O. After this, we
will introduce also the notion of ideal of the maximal order prime to any integer f . When
f is the conductor of some order O, we will prove a one-to-one correspondence between
both types of ideals. Finally, we will use this correspondence in order to express the ideal
class group C(O) in terms of the ideals of OK primes to f . This fact will be important in
order to define the ring class field of an imaginary quadratic field K in the next chapter.

To introduce the concept of ideal prime to the conductor, we use the analog of the
Bezout identity for integer numbers: If a is coprime to an integer number b, then aZ +
bZ = Z.

Definition 2.23. Let K be a quadratic field and let O be an order of K with conductor
f . We say that a non-zero (integral) ideal I of O is prime to f if I + f O = O.

We begin with two elementary properties of this kind of ideals.

Lemma 2.24. Let K be a quadratic field and let O be an order of K with conductor f .

1. An ideal I of O is prime to f if and only if N(I) is prime to f .

2. If I is an ideal of O prime to f , then I is proper.

Proof. 1. Let us define the map

mf : O/I −→ O/I
α + I 7−→ fα + I

.
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It is trivially well defined and it is a ring homomorphism. It follows from the
definition of mf that I+f O = O if and only if mf is an epimorphism. Since O/I is
finite, mf is an epimorphism if and only if it is an isomorphism. But the finiteness of
O/I also implies that O/I ∼= Z/n1 Z×...×Z/nr Z, where n1 ... nr = N(I). We know
that multiplication by f in Z/ni Z is an isomorphism if and only if gcd(f, ni) = 1.
Hence, mf is an isomorphism if and only if gcd(f,N(I)) = 1.

2. Let I be an ideal of O prime to f . Let β ∈ K such that β I ⊂ I. Then, β ∈ OK , so

βO = β (I + f O) = β I + β f O ⊂ I + f OK ⊂ O.

Let I be an ideal of O that is prime to f . Part 2 of the previous result says that
I is a proper ideal, that is, it lies in I(O). Moreover, using 1 and the third part of
Proposition 2.22, the product of two ideals prime to f is also prime to f . Let I(O, f)
be the subgroup of I(O) generated by the ideals of O that are prime to f . As usual,
we consider the subgroup P (O, f) of I(O, f) generated by principal ideals of O prime to
f . The next result gives us the mentioned expression of C(O): it is isomorphic to the
quotient of I(O, f) by the principal ideals prime to f .

Lemma 2.25. Let O be an order of an imaginary quadratic field K. If M is a non-zero
integer, any class of C(O) contains a proper ideal of O whose norm is comprime with M .

The proof of this result follows from a similar result in terms of quadratic forms (see
[6], Corollary 7.17).

Proposition 2.26. The map

Ψ: I(O, f)/P (O, f) −→ C(O)
[I] 7−→ [I]

.

induced by the inclusion is an isomorphism.

Proof. Let us consider
ψ : I(O, f) −→ C(O)

I 7−→ [I]
.

This map is clearly a group homomorphism and it is surjective: Given [I] ∈ C(O), by
Lemma 2.25, there exists a proper ideal J of O in the class of I such that N(J) is prime
with f . By part 1 of Lemma 2.24, this implies that J is prime to f , that is, J ∈ I(O, f).
Hence ψ(J) = [J ] = [I].

Now, let us compute Ker(ψ). Let I ∈ I(O, f) such that [I] is the trivial class in C(O).
This means that I is principal, so I ∈ I(O, f)∩P (O). Conversely, if I ∈ I(O, f)∩P (O),
trivially I ∈ Ker(ψ). This proves that Ker(ψ) = I(O, f) ∩ P (O).

We claim that I(O, f)∩P (O) = P (O, f). This implies by first isomorphism theorem
that Ψ is an isomorphism.

Note that any ideal of P (O, f) is in particular an ideal of O prime to f and also a
principal ideal of O. Thus, P (O, f) ⊂ I(O, f) ∩ P (O).
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Conversely, let a ∈ I(O, f) ∩ P (O). Since a ∈ I(O, f) there exist I, J ideals of O
prime to f such that a = I J−1. On the other hand, since a ∈ P (O), there exists α ∈ K
such that a = αO. Let m = N(J). By Proposition 2.22,

mO = N(J)O = J J.

Thus, mJ−1 = J . Then, mαO = I mJ−1 = I J ⊂ O. It follows that mαO belongs to
P (O, f). Now,

αO = (αO) (mO) (mO)−1 = (mαO) (mO)−1 ∈ P (O, f).

Now, we introduce the concept of ideals of the maximal order prime to an integer m.
The definition is similar to the definition prime to the conductor.

Definition 2.27. Let I be an ideal of OK. We say that I is prime to an integer m if
I +mOK = OK.

The procedure in this part will be analog to the one that we have just done. First,
let us choose an integer number m which is the conductor of some order O of K. Let f
be the conductor of O. We consider the subgroup IK(m) of I(O) generated by the ideals
prime to m and establish an isomorphism between C(O) and the quotient of IK(m) by
some subgroup PK,Z(m) of principal ideals. The main difference each principal ideals of
PK,Z(m) has not arbitrary generator: it is going to be congruent with a number coprime
to f modulo f OK .

As in the case of the ideals prime to the conductor of the corresponding order, we
have the result:

Proposition 2.28. Let I be an ideal of OK and let m be an integer. Then, I is prime
to m if and only if gcd(N(I),m) = 1.

The proof is similar to the proof of 1 of Lemma 2.24, because there we did not use
that f is the conductor of the order.

As in the case of ideals prime to the conductor, we deduce that the product of ideals
prime to m is again prime to m. Let us denote by IK(m) the subgroup of IK generated
by the ideals of OK prime to m.

When m is the conductor of some order O in K, ideals of OK prime to m are related
in a one-to-one correspondence with the ideals of O prime to m. This correspondence is
given by the contraction and the extension of ideals in the ring extension O ⊂ OK .

Proposition 2.29. Let O be an order of a quadratic field K.

1. If I ∈ IK(f), then I ∩ O ∈ I(O, f) and N(I ∩ O) = N(I).

2. If I ∈ I(O, f), then I OK ∈ IK(f) and N(I OK) = N(I).

3. The maps
φ : IK(f) −→ I(O, f)

I 7−→ I ∩ O ,
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ψ : I(O, f) −→ IK(f)
I 7−→ I OK

are group isomorphisms and inverses to each other.

Proof. 1. Let I ∈ IK(f). Let us define

ϕ : O −→ OK/I
α 7−→ α + I

.

This map is an homomorphism with kernel O ∩ I, so using the first isomorphism
theorem, O/I ∩ O is isomorphic to a subgroup of OK/I. Hence, N(I ∩ O) divides
N(I) in Z. Since gcd(N(I), f) = 1, we deduce that gcd(N(I ∩ O), f) = 1. Hence
I ∩ O ∈ I(O, f).

Let us prove that in fact N(I ∩ O) = N(I). Since f OK ⊂ O, we have that

OK/I = (I + f OK)/I

But (I + f OK)/I can be embedded in (I + O)/I ∼= O/I ∩ O. This implies that
N(I) divides N(I ∩O). Since both of them are positive integers, N(I) = N(I ∩O).

2./3. Let I ∈ I(O, f). Then,

I OK + f OK = (I + f O)OK = OOK = OK .

Thus, I OK ∈ IK(f). This proves the first part of 2.

Now, let us prove that φ and ψ are bijective and inverses to each other. Let
I ∈ I(O, f). We have to prove that (I OK) ∩ O = I. Indeed, I ⊂ (I OK) ∩ O is
trivial and conversely,

(I OK) ∩ O = ((I OK) ∩ O)O = ((I OK) ∩ O) (I + f O) ⊂
I + f((I OK) ∩ O) ⊂ I + I f OK ⊂ I + I O = I.

On the other hand, let I ∈ IK(f). We have to prove that I = (I ∩ O)OK . The
inclusion (I ∩ O)OK ⊂ I is trivial. Conversely, since I ∩ O ∈ I(f,O) by 1,

I = I O = I (I ∩ O + f O) ⊂ (I ∩ O)OK + f I

Now, f I ⊂ f OK ⊂ O and f I ⊂ I. Hence f I ⊂ I ∩ O, so

I ⊂ (I ∩ O)OK + I ∩ O ⊂ (I ∩ O)OK .

Next, let us prove that N(I OK) = N(I) for all I ∈ I(O, f). Indeed, if I ∈ I(O, f),
then I OK ∈ IK(f). Using 1, (I OK)∩O ∈ I(O, f) and N((IOK)∩O) = N(I OK).
But we have that (I OK) ∩ O = I by 2. Hence the required equality follows.

Finally, we prove that φ and ψ are group homomorphisms. This is trivial for ψ.
Since φ and ψ are inverses one to the other, we can prove it easily for φ:

φ(I J) = φ(ψ(φ(I))ψ(φ(J)) = φ(ψ(φ(I)φ(J))) = φ(I)φ(J).

That completes the proof.
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The next step is to identify the subgroup PK,Z(f) of IK(f) that we mentioned before.
Instead of choosing the subgroup generated by all principal ideals of OK prime to f , we
choose those of the form αOK with α ≡ a (mod f OK) for some a ∈ Z prime to f . All
this ideals are prime to f . Indeed, if α ≡ a (mod f OK) with a as before, then α−a = f x
with x ∈ OK . On the other hand, Bezout identity gives us that r a+s f = 1 with r, s ∈ Z.
Then 1 = (α − f x) r + f s = α r + f (s − r x) ∈ αOK + f OK , so OK = αOK + f OK .
The group generated of all principal ideals of this form is denoted by PK,Z(f).

At this point, we have all the ingredients to prove that C(O) is the quotient of IK(f)
by PK,Z(f). We need the following lemma:

Lemma 2.30. Let K be an imaginary quadratic field and let α, β ∈ OK such that α ≡
β (modmOK) for some m ∈ Z. Then N(α) ≡ N(β) (modm).

Proof. Since K is an imaginary quadratic field, N(α) = αα and N(β) = β β. Then,

N(α)−N(β) = αα− β β = αα− αβ + αβ − β β = α (α− β) + β (α− β).

Now, since α ≡ β (modmOK), there exists x ∈ OK such that α− β = mx. Then,

N(α)−N(β) = αmx+ β mx = m(αx+ β x),

where we have used that m is its own conjugate (because it is an integer number).
It remains to prove that αx + β x ∈ Z. Since α, β and x lie in OK , αx + β x ∈ OK

(note that x ∈ K because it is the conjugate of x and K is normal).
We claim that αx + β x ∈ OK is fixed by the complex conjugation. This will be

enough for proving the result, because since K is imaginary quadratic, OK ∩ R = Z.
Indeed, from the trivial identity mxx = mxx follows that (α− β)x = (α−β)x (we use
again that m is its own conjugate). From here, we deduce that αx − β x = αx − β x.
This is equivalent to

αx+ β x = αx+ β x,

which completes the proof.

Proposition 2.31. Let O be an order of an imaginary quadratic field K with conductor
f . Then, the map

Φ: IK(f)/PK,Z(f) −→ C(O)
[I] 7−→ [I]

.

induced by the inclusion is an isomorphism.

Proof. We proved in the previous proposition that

ψ : I(O, f) −→ IK(f)
I 7−→ I OK

is a group isomorphism. If we prove that ψ(P (O, f)) = PK,Z(f), then we compose the
inverse of the induced isomorphism I(O, f)/P (O, f) −→ IK(f)/PK,Z(f) with the map Ψ
of Proposition 2.26 and we are done.

We know that P (O, f) is generated by the ideals αO with α ∈ O and N(α) coprime
with f , and ψ(αO) = αOK . Then, we have to prove that for α ∈ O, gcd(N(α), f) = 1
is equivalent to α ≡ a(mod f OK) with a ∈ Z prime to f .
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Assume that α ≡ a (mod f OK) with a ∈ Z prime to f . By the previous lemma,
N(α) ≡ a2 (mod f). Hence gcd(N(α), f) = gcd(a2, f) = 1. Conversely, assume that
gcd(N(α), f) = 1. Now, O =< 1, f ωK >Z. Then there exist a, b ∈ Z such that α =
a+b f ωK , and hence α ≡ a (mod f OK). Since gcd(N(α), f) = 1 and N(α) ≡ a2 (mod f),
we obtain that gcd(a, f) = 1.

After this, we obtain that ψ(P (O, f)) is generated by the ideals αOK , where α ≡
a (mod f OK) for some a ∈ Z prime with f . That is, ψ(P (O, f)) = PK,Z(f).

Remember that an order in general is not a Dedekind domain and does not satisfy
the unique factorization property of ideals. We can use the relation given by the previous
result to prove that the ideals prime to the conductor of an order factorize uniquely as a
product of ideals of the order again prime to the conductor (see [6], Exercise 7.26).
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Chapter 3

Class field theory

In this chapter we present the classical formulation of Class Field Theory. As we men-
tioned before, the theorems of Class Field Theory provide the structure of abelian exten-
sions of a number field K by using the arithmetic of K. This formulation describes the
Galois groups of abelian extensions of K in terms of generalized ideal class groups. The
main reference used in this chapter is [6].

In the first section, we begin with a particular case of abelian extension, which is the
Hilbert Class Field. Concretely, the Hilbert Class Field of K is the maximal unramified
abelian extension of K. We are going to construct also the Artin map of the Hilbert
Class Field and state the Artin Reciprocity Theorem for the Hilbert Class Field. This
has a natural generalization via the modulus of a number field, that are formal products
of primes of the number fields.

In the second section we state the main results such as the general Artin Reciprocity
Theorem and the Existence Theorem. The last one allows us to obtain certain abelian
extensions of number fields, called class fields, in terms of modulus. The Hilbert Class
Field is nothing but a particular case of class field. Using this theory we will also introduce
the Ray Class Field of a number field K for a modulus of K.

After this, we will introduce the Dirichlet density and state the Chebotarev density
Theorem. This is an useful tool to prove the existence of primes with certain properties.
On that line, we apply this result to prove a Class-Field-Theory version of Dirichlet
Theorem in arithmetic progressions and to characterize a Galois extension of a number
field K in terms of the splitting primes of K.

Finally, we relate the theory of orders introduced in the previous chapter with the
class field theory in order to define the Ring Class Fields of an imaginary quadratic field
K, that depend on an order of K.

Both Hilbert Class Fields and Ray Class Fields are not given in an explicit form by
this theory. In Part 2 of this thesis we will give explicit constructions when K is an
imaginary quadratic field, which is fundamental to solve Kronecker’s Jugendtraum in the
imaginary-quadratic case.

1 The Hilbert Class Field

Recall that a field extension L/K is said to be abelian provided that it is Galois and
Gal(L/K) is abelian.

21



In this section we are going to introduce the Hilbert Class Field and study its main
properties. It represents a good particular case of the general situation in class field
theory. We will define the Hilbert Class Field of a number field K as the maximal
unramified abelian extension of K. But here ramification does not take into account
only the prime ideals of the ring of integers of K. These are called finite primes, but we
consider also infinite primes.

Definition 3.1. Let K be a number field. A real infinite prime is an embedding σ :
K −→ R and an imaginary infinite prime is a pair of conjugate embeddings σ, σ : K −→
C.

Once we have defined the concept of infinite prime, it would be logic to define a
ramified extension as an extension L/K where some prime of K ramifies in L. In Chapter
1 we established the meaning of a finite prime of K ramifying in L. Now, we proceed to
define the ramification for infinite primes.

Definition 3.2. Let L/K be an extension of number fields. We say that an infinite prime
σ of K ramifies in L if it is real and has some extension to L which is complex.

Remark 3.3. An infinite prime σ of K does not ramify in L if it is imaginary or all its
extensions to L are real.

With these new concepts, we can introduce ramified extensions.

Definition 3.4. Let L/K be an extension of number fields. We say that L/K is ramified
if some prime (finite or infinite) of K ramifies in L. Otherwise, we say that L/K is
unramified.

Unramified primes of an extension L/K of number fields have better properties that
the ramified ones. For this reason, it is easier to deal with unramified extensions.

Theorem 3.5. Let K be a number field. Then, there is an unique finite Galois extension
L of K such that:

1. L/K is abelian and unramified.

2. Any abelian unramified extension of K is contained in L.

This field L is called the Hilbert Class Field of K.

This result will follow from the results we will present in the next secion. The main
aim of this section is to obtain information about the Hilbert Class Field using the ideal
class group of the base number field K. This is a good example of the idea of class field
theory: to say something about an abelian extension just using the arithmetic of the base
field.

We can generalize the Artin symbol introduced in Chapter 1 for abelian unramified
extensions. Let L/K be an abelian unramified extension of number fields. Let a be a
fractional ideal of K. Then, a has an unique factorization

a = P r1
1 ... P rk

k ,
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where P1, .., Pk are prime ideals of OK and r1, ..., rk ∈ Z. Thus, we can define the Artin
symbol of a as (

L/K

a

)
=

k∏
i=1

(
L/K

Pi

)ri
,

where the product is that of the Galois group Gal(L/K).
Thus, we have a map (

L/K

·

)
: IK −→ Gal(L/K),

which is called the Artin map of the extension L/K.

Remark 3.6. We need the extension L/K to be unramified because the Artin symbol of
L/K over a prime P is only defined when P is unramified in L. In the next section we
remove this condition and consider the Artin map defined over the unramified ideals of
OK.

When we take L as the Hilbert Class Field of K, we obtain a very nice result for the
Artin map of this extension.

Theorem 3.7 (Artin Reciprocity Theorem for the Hilbert Class Field). Let K

be a number field and let L be its Hilbert Class Field. Then,
(
L/K
·

)
: IK −→ Gal(L/K)

is a group epimorphism with Ker(
(
L/K
·

)
) = PK. Thus, it induces an isomorphism

Φ: C(OK) −→ Gal(L/K)

[I] 7−→
(
L/K
I

)
.

This statement will be proved also in the next section. It allows us to establish a one-
to-one correspondence between the unramified abelian extensions of K and the subgroups
of C(OK).

Corollary 3.8. Let K be a number field and let L be the Hilbert Class Field of K. Then,
there is a one-to-one correspondence between the sets

L = {M ⊂ L |M abelian unramified extension of K},
S = {H ⊂ C(OK) |H is subgroup of C(OK)}.

Proof. It is a direct consequence of the fundamental theorem of Galois theory.

This illustrates the kind of results we obtain in class field theory: we classify some
class of extensions of K in terms of intrinsic information of K, which is the ideal class
group.

We have another useful consequence.

Corollary 3.9. Let K be a number field and let L be the Hilbert Class Field of K. Let
P be a prime ideal of OK. Then, P splits completely in L if and only if P is a principal
ideal.

Proof. We know by Proposition 1.8 that P splits completely in L if and only if
(
L/K
P

)
=

1. But
(
L/K
P

)
= Φ([P ]) and by Theorem 3.7, Φ is an isomorphism. Hence P splits

completely in L if and only if [P ] is the trivial class, which is equivalent to saying that P
is a principal ideal.
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2 The main statements

In this section we are going to present (without proof) the general statements of class
field theory that we will need.

We are going to define generalized ideal class groups for a number field K, which will
be quotients of modules described in terms of the primes of K. The main idea is that
these ideal class groups are the Galois groups of all abelian extensions of K and this
connection is provided by the Artin maps of the abelian extensions.

A basic object in the classical formulation of class field theory is that of modulus in
a number field.

Definition 3.10. Let K be a number field. A modulus in K is said to be a formal product

m =
∏
P

P nP

taken in the set of primes (finite or infinite) of K such that the powers nP are integers
that satisfy:

1. nP ≥ 0 for all P and nP = 0 for almost every P .

2. If P is a complex infinite prime, then nP = 0.

3. If P is a real infinite prime, then nP ≤ 1.

A modulus m can be written in the form m = m0 m∞, where m0 is the formal product
of all finite primes and m∞ is the formal product of all infinite primes.

Given a prime P with nP > 0 we will say that P divides m. Let m =
∏

P P
nP,m and

n =
∏

P P
nP,n be two modulus of K. We say that m divides n, denoted by m|n, if for all

prime P that divides m, we have that P divides n and nP,m ≤ nP,n. It is clear after the
defitions that

m|n =⇒ m0|n0 and m∞|n∞.

Note that given any modulus m of K, the modulus m0 can be naturally identified with
an (integral) ideal of OK , because the primes that divide m are all finite (that is, prime
ideals of OK) and there are finitely many.

Note that if K is an imaginary quadratic field, then it has one infinite prime: the pair
form by the identity and the complex conjugation. Thus, a modulus of K has no infinite
part because the only infinite prime is complex and it has power 0.

Let m be a modulus and let IK(m) be the group of all fractional ideals of OK which
are relatively prime to the finite primes dividing m. Let PK,1(m) be the subgroup of
IK(m) generated by the principal ideals αOK that satisfy:

1. For any prime ideal P such that nP > 0, we have that α ≡ 1 (modP nP ).

2. Given a real infinite prime σ with nσ > 0, it holds that σ(α) > 0.

Definition 3.11. A congruence subgroup for a modulus m is a subgroup H of IK(m) such
that PK,1(m) ⊂ H.
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Let H be a congruence subgroup for m. Since the group IK(m) is abelian, H is a
normal subgroup and the quotient IK(m)/H makes sense. Moreover, one can prove that
the index [IK(m) : PK,1(m)] is finite. Hence IK(m)/H is a finite group.

Definition 3.12. A generalized ideal class group for a modulus m is any group of the
form IK(m)/H, where H is a congruence subgroup of m.

Now, we proceed to define the Artin map of any abelian extension L/K. Let m be
a modulus of K divisible by all primes of K that ramify in L. Actually we will define a
map for each modulus m of this type. The procedure is completely analog to what we
do to define the Artin map of an abelian unramified extension. Let a ∈ IK(m). Then a
factorizes uniquely as a product of prime ideals

a = Pα1
1 ... Pαk

k ,

where α1, ..., αk ∈ Z. Then, it is natural to define the Artin symbol of L/K over a as(
L/K

a

)
=

k∏
i=1

(
L/K

Pi

)αi
.

We may make sure that this defition is correct. By defition of IK(m), a is prime with
m. Then, none of the primes P1, ..., PK divide m, that is, nPi = 0 for all i ∈ {1, ..., k}.
Since m is divisible by all primes of K that ramify in L, we deduce that P1, ..., PK are

unramified in L. Therefore, the Artin symbols
(
L/K
Pi

)
are defined.

When m =< 1 >, then IK(< 1 >) = IK , so this definition of the Artin symbol
coincides with the one we gave in the previous section.

Definition 3.13. Let L/K be an abelian extension of number fields and let m be a modulus
of K divisible by all primes of K that ramify in L. The Artin map of L/K for m is the
map

ΦL/K,m : IK(m) −→ Gal(L/K)

which sends each a ∈ I(m) to the Artin symbol
(
L/K
a

)
.

If L/K is an abelian unramified extension of number fields, the Artin map of L/K for

the modulus m =< 1 > sends every a ∈ IK to the Artin symbol
(
L/K
a

)
, so this definition

coincides with the definition of Artin map given in the previous section.
When we only deal with a single abelian extension L/K, it is usual to denote the

Artin map for L/K over m as Φm instead of ΦL/K,m.
Let L/K be an abelian extension of number fields. Let m, n be modulus of K such

that m|n and m is divisible by all primes of K that ramify in L (then so is n). Then any
fractional ideal coprime with n is also coprime with m, that is, IK(n) ⊂ IK(m). Since the
Artin map of L/K for a given modulus depends only on the Artin symbols of L/K over
the finite primes of K, we deduce that Φm|IK(n) = Φn.

Now, we state the general Artin Reciprocity Theorem for any abelian extension L/K
of number fields.
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Theorem 3.14 (Artin Reciprocity Theorem). Let L/K be an abelian extension of
number fields and let m be a modulus of K divisible by all the primes of K that ramify in
L. Then:

1. Φm is surjective, and as a consequence, we have a group isomorphism

IK(m)/Ker(Φm) −→ Gal(L/K)

[a] 7−→
(
L/K
a

)
2. If the powers of the finite primes dividing m are large enough, then Ker(Φm) is a

congruence subgroup for m, so Gal(L/K) is a generalized ideal class group of m.

As in the case of the Hilbert Class Field, this result allows us to characterize the
splitting primes of K in a given abelian extension.

Corollary 3.15. Let L/K be an abelian extension of number fields. Let P be a prime of
K which is unramified in L. Then,(

L/K

P

)
= 1⇐⇒ P is principal.

The proof is completely analogous to the proof of Corollary 3.9.
Fixed an abelian extension L/K of number fields, there is not an unique modulus m

divisible by all primes of K that ramify in L such that Ker(Φm) is congruence subgroup
for m. In fact, the following result gives us that there are infinitely many.

Proposition 3.16. Let L/K be an abelian extension and let m be a modulus of K divisible
by all primes of K that ramify in L such that Ker(Φm) is a congruence subgroup for m.
Let n be another modulus of K for which m|n. Then, Ker(Φn) is a congruence subgroup
for n.

Proof. Let us prove that PK,1(n) ⊂ Ker(Φn). Let a ∈ PK,1(n). First of all, recall that
since m|n, IK(n) ⊂ IK(m). By the definition of PK,1(m), we have that a =< α >, with
α ≡ 1 (mod n0) and σ(α) > 0 for all σ dividing n∞. Since m|n, we have that m0|n0

and m∞|n∞. The first of these facts imply that α − 1 ∈ n0 ⊂ m0, so we deduce that
α ≡ 1 (mod m0). From the second one we trivially obtain that σ(α) > 0 for all σ dividing
m0. This proves that a ∈ PK,1(m). Since Ker(Φm) is a congruence subgroup for m,
a ∈ Ker(Φm). Hence, using that the Artin symbol for n is the restriction of the Artin
symbol for m to IK(n), we obtain that

Φn(a) = Φm(a) = 1.

This says that a ∈ Ker(Φn), which completes the proof.

After this result, it is clear that if there is a modulus m divisible by all primes of
K that ramify in L for which Ker(Φm) is a congruence subgroup for m, then there are
infinitely many, because there are infinitely many modulus n such that m|n. The following
theorem asserts that indeed there is such a modulus and it is a minimal modulus for this
property.
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Theorem 3.17. Let L/K be an abelian extension. Then, there exists a modulus f of K
such that:

1. If P is a prime of K, then P ramifies in L if and only if P divides f.

2. If m is a modulus divisible by all primes of K which ramify in L, Ker(Φm) is a
congruence subgroup for m if and only if f divides m.

Remark 3.18. Fixed the abelian extension L/K, f is unique. Indeed, let f′ is another
modulus of K satisfying 1 and 2. Since f (resp. f′) is a conductor and it is divisible by
itself, Ker(Φf) (resp. Ker(Φf′)) is a congruence subgroup for f (resp. f′). Now, we use
that f is a conductor with m = f′. By 2, f divides f′. Similarly, using that f′ is a conductor
with m = f, we obtain that f′ divides f. Hence, f = f′.

Definition 3.19. The modulus f = f(L/K) is called the conductor of the abelian extension
L/K.

The key result of class field theory that we will need is the following.

Theorem 3.20. (Existence Theorem) Let m be a modulus of K and let H be a
congruence subgroup for m. Then, there is an unique abelian extension L of K such that
m is divisible by all primes of K that ramify in L and H = Ker(Φm), where Φm is the
Artin map of the extension L/K.

Remark 3.21. Under the conditions of the Existence Theorem, we have that the Artin
map Φm induces an isomorphism IK(m)/H ∼= Gal(L/K). Indeed, by Existence Theorem,
we have that H = Ker(Φm). On the other hand, m is divisible by all primes of K that
ramify in L, so the claim follows from Artin Reciprocity Theorem.

We can appreciate here again the idea of class field theory: This result allows us to
define abelian extensions of a number field and describe their Galois groups just by using
generalized ideal class groups of a modulus of the number field.

Proposition 3.22. Let K be a number field and let L,M be abelian extensions of K.
Then L ⊂ M if and only if there is a modulus m of K divisible by all primes of K that
ramify in either L or M such that

PK,1(m) ⊂ Ker(ΦM/K,m) ⊂ Ker(ΦL/K,m).

Proof. Let us assume that L ⊂ M . By the comment after Proposition 3.16 applied
separately to L/K and M/K:

• There is a modulus m1 of K divisible by all primes of K that ramify in L such that
Ker(Φm1) is a congruence subgroup for m1.

• There is a modulus m2 of K divisible by all primes of K that ramify in M such
that Ker(Φm2) is a congruence subgroup for m2.
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Let m = m1 m2. It is clearly a modulus of K. Since m1|m, an argument as in
the proof of Proposition shows that PK,1(m) ⊂ PK,1(m1). Moreover, we have also that
ΦL/K,m1 = ΦL/K,m|IK(m1), so Ker(ΦL/K,m1) ⊂ Ker(ΦL/K,m). Thus, we have the chain of
inclussions

PK,1(m) ⊂ PK,1(m1) ⊂ Ker(ΦL/K,m1) ⊂ Ker(ΦL/K,m),

which proves that Ker(ΦL/K,m) is a congruence subgroup for m. A similar argument shows
that it is also a congruence subgroup for Ker(ΦM/K,m).

Let r : Gal(M/K) −→ Gal(L/K) be the restriction homormorphism. A straight-
forward calculation shows that r ◦ ΦM/K,m = ΦL/K,m (see [6], Exercise 5.16). Then,
Ker(ΦM/K,m) ⊂ Ker(ΦL/K,m).

Conversely, let us assume that

PK,1(m) ⊂ Ker(ΦM/K,m) ⊂ Ker(ΦL/K,m).

Let H = ΦM/K,m(Ker(ΦL/K,m)), which is a subgroup of Gal(M/K). By the fundamental

theorem of Galois theory, H correspond to an intermediate field L̃ = MH of the ex-
tension M/K. Now, if we apply the first part of the proof to L̃ ⊂ M , we obtain that
Ker(ΦM/K,m) ⊂ Ker(ΦL̃/K,m), so Ker(ΦL̃/K,m) = Ker(ΦL/K,m).

Thus, both L and L̃ are abelian extensions of K such that Ker(ΦL̃/K,m) = Ker(ΦL/K,m)
and m is divisible by all primes of K that ramify in L. By the Artin Reciprocity Theo-
rem 3.14, Gal(L/K) ∼= IK(m)/Ker(ΦL/K,m). Hence, by the uniqueness in the Existence

Theorem, L = L̃ ⊂M .

Definition 3.23. Let m be a modulus of K and let H be a congruence subgroup for m.
The field L of the Existence Theorem is called the class field of H.

Now, we are ready to prove the existence and uniqueness of the Hilbert Class Field
and the Artin Reciprocity Theorem for the Hilbert Class Field.

Proof. (of theorems 3.5 and 3.7)
Let us consider the modulus m =< 1 > of the number field K. Then IK(m) = IK ,

and the subgroup PK of the principal ideals of IK is a congruence subgroup of IK . Now,
we apply the Existence Theorem to PK and m. Then, there exists an unique abelian
extension L of K such that m is divisible by all primes of K that ramify in L and
PK = Ker(ΦL/K,m).

Since m =< 1 >, no prime of K divide m, so no prime of K ramify in L. In other
words, L/K is an unramified extension.

Let M be another unramified extension of K. By the first part of Theorem 3.17, a
prime of K ramifies in M if and only if it divides the conductor f(M/K) of the extension,
and M is unramified, so f(M/K) = 1. Furthermore, m =< 1 > is a modulus divisible
by all primes of K that ramify in L, so by the second part of Theorem 3.17, we deduce
that Ker(ΦM/K,m) is a congruence subgroup for m. Then, PK ⊂ Ker(ΦM/K,m). Now,
PK = Ker(ΦL/K,m), so by Corollary 3.22, we obtain that M ⊂ L. This completes the
proof of 3.5.

Let us prove 3.7. This is a trivial checking: By the Existence Theorem,
(
L/K
·

)
is a

group epimorphism with Ker(
(
L/K
·

)
) = PK . By the remark after the Existence Theorem,

since C(OK) = IK/PK , the map Φ : C(OK) −→ Gal(L/K) is an isomorphism
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After this, it is clear that Theorem 3.14 is a generalization of Theorem 3.7.
Actually, there is a class of abelian extensions of a number field that generalize the

Hilbert Class Field. Let K be a number field and let m be a modulus of K. It is
automatic that PK,1(m) is a congruence subgroup for m. By the Existence Theorem
applied to PK,1(m) and m, there is an unique abelian extension Km of K such that m is
divisible by all primes of K that ramify in L and

PK,1(m) = Ker(ΦKm/K,m).

Definition 3.24. Given a number field K and a modulus m of K, the field Km is called
the Ray Class Field of K for m.

Note that the Ray Class Field of K for m =< 1 > is just the Hilbert Class Field of
K.

The Ray Class Field is essentially the maximal abelian extension K with a given
conductor. We could erase the word essentially if the conductor of Km were m, but this
is not true in general. What is true is that the conductor of Km divides m (this follows
from the definitions of Ray Class Field and conductor). More generally:

Proposition 3.25. Let K be a number field and let m be a modulus of K. Then, any
abelian extension L of K such that f(L/K) divides m is contained in Km.

Proof. The idea of the proof is to apply Proposition 3.22 in order to prove that L ⊂ Km.
Thus, we may check that m is divisible by all primes of K that ramify in either L or Km.
It is clear for Km because of the definition of Ray Class Field. Let us prove it for K. By
definition of conductor, f(L/K) is divisible by all primes of K that ramify in L, and by
the hypothesis, f(L/K) divides m. Hence, m is divisible by all primes of K that ramify
in L, as claimed. Then, Proposition 3.22 gives us the desired inclussion.

3 The Chebotarev Density Theorem

Let K be a number field. In this section we are going to introduce the notion of density
of a subset of finite primes of K, which is a function that assings non negative numbers to
certain subsets of primes of K. For such a subset S, one can think in the natural density

δ(S) = lim
N→∞

#{P |N(P ) ≤ N, P ∈ S}
#{P |N(P ) ≤ N, P prime}

.

This function indeed satisfies what we want. However, the limit may not exist, and in
that case the density of S is not defined. We will introduce the Dirichlet density for
subsets of finite primes of K. Again this density may not exist, but it is stronger than
the natural density in the sense that if the natural density of a set S exists, then also
does the Dirichlet density of S and there are subsets S for which the Dirichlet density of
S exists and the natural density of S does not.

After this, we will state the Chebotarev Density Theorem, which is the main result
of this section. Given some extension L of a number field K, the Chebotarev Density
Theorem gives us the Dirichlet density of the set of primes P of K that ramify in L
for which the Artin symbol of L/K over P is the conjugacy class of a given element of
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Gal(L/K). This theorem we will useful because a set with positive Dirichlet density is
infinite.

We will use the Chebotarev Density Theorem to prove a result a Class-Field-Theory
version of a theorem of Dirichlet: there are infinitely many primes in an arithmetic
progession in which the initial term and the difference are coprime. We will define degree
1 primes and prove that a number field has infinitely many of them. What the theorem
we want to prove says is that there are infinitely many degree 1 primes in each class of a
generalized ideal class group IK(m)/PK,1(m).

Finally, we will see another application of Chebotarev Density Theorem that charac-
terizes the Galois extensions of a number field K in terms of the primes of K that split
completely in the extension.

Definition 3.26. Let K be a number field and let us denote

PK = {P ⊂ K |P is a finite prime of K}.

The Dirichlet density of a subset S ⊂ PK is the number

δ(S) = lim
s→1+

∑
P∈S N(P )−s

− log(s− 1)
,

whenever this limit exists.

We begin by studying several basic properties of the Dirichlet density that are listed
in [6] (Page 169).

Proposition 3.27. 1. δ(PK) = 1.

2. If S ∩ T = ∅ and δ(S), δ(T ) exist, then δ(S ∪ T ) = δ(S) + δ(T ).

3. If S ⊂ PK is finite, then δ(S) = 0.

4. Given SPK, δ(S) = δ(S ∩ PK,1)

The second statement of last proposition says also that if δ(S) > 0, then S is infinite.
This suggests the following strategy: If we want to prove that there exists a finite prime
of K satisfying certain properties, we could show that the set of finite primes of that
type has positive Dirichlet density, and then there are infinitely many. We will use this
strategy in order to prove the Dirichlet Theorem for degree 1 primes, that we proceed to
define.

Let us define
PK,1 = {P ∈ PK |N(P ) is prime}.

The elements of PK,1 are called degree 1 primes in K. The reason is that if P ∈ PK,1 and
p ∈ Z is the prime number of Q under P , then p has inertia degree 1 in K.

We can proof easily that there are infinitely many degree 1 primes in K. Indeed, since
δ(PK) = 1, using Property 4 of Proposition 3.27,

0 < δ(PK) = δ(PK ∩ PK,1) = δ(PK,1),

which proves that PK,1 is infinite.
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We have a stronger result, the Dirichlet Theorem for degree 1 primes: There are
infinitely many degree 1 primes in every ideal class of IK(m)/PK,1(m), where m is a
modulus in K. For proving this, we need the Chebotarev density Theorem.

Let L/K be a Galois extension. Given a finite prime P in K which is unramified in

L and a prime Q in L over P , recall that
(
L/K
P

)
is the conjugacy class of

(
L/K
Q

)
.

Theorem 3.28 (Chebotarev density Theorem). Let L/K be a Galois extension and let
σ ∈ Gal(L/K). Let us denote by [σ] the conjugacy class of σ. Set

S = {P ∈ PK |P is unramified in L,

(
L/K

P

)
= [σ]}.

Then, the Dirichlet density of S is

δ(S) =
|[σ]|

[L : K]
.

This gives us the following:

Corollary 3.29. Let L be an abelian extension of K and let m be a modulus divisible by
all the primes of K that ramify in L. Given σ ∈ Gal(L/K),

δ({P ∈ PK |P does not divide m,

(
L/K

P

)
= σ}) =

1

[L : K]
.

Proof. It is enough to note that a prime which does not divide m is unramified in L since
m is divisible by all primes that ramify in L, and apply the previous theorem.

We are ready to prove the result we wanted.

Theorem 3.30. [Dirichlet Theorem for degree 1 primes] Let K be a number field and let
m be an integral ideal of OK. Given a ∈ IK(m)/PK,1(m),

#{P ∈ PK |P = a, P ∈ PK,1} =∞.

Proof. The Existence Theorem with the congruence subgroup PK,1(m) for m gives us
that there is an unique abelian extension L of K such that Ker(ΦL/K,m) is a congruence
subgroup for m.

By the previous corollary with σ =
(
L/K
a

)
, the set

S = {P ∈ PK |P does not divide m,

(
L/K

P

)
= σ}

has Dirichlet density δ(S) > 0.

Let P ∈ S. Then,
(
L/K
P

)
=
(
L/K
a

)
. Since C(OK) ∼= Gal(L/K) and the isomorphism

is induced by the Artin map, this equality implies that P = a. Hence, it is enough to
find infinite degree 1 primes in S.
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Let T = S − PK,1. We have that

δ(T ) = lim
s→1+

∑
P∈T N(P )−s

− log(s− 1)
≤ lim

s→1+

∑
p

1
(p2)s

− log(s− 1)
= 0

because the series
∑

p
1

(p2)s
is convergent.

Since δ(S) > 0 and δ(T ) = 0, necessarily δ(S − T ) > 0. But S − T is just the
complementary of T in S, which is the set of degree 1 primes in S. Then, such a set is
infinite, which concludes the proof.

Now, we study another application of the Chebotarev Density Theorem. Let K be a
number field and let L be a Galois extension of K. Let us denote

SL/K = {P ∈ PK |P splits completely in L}.

The aim is to prove that L is determined by SL/K up to a finite number of primes.
In other words, we want to prove that if M is another Galois extension of K, then the
primes of SL/K are the primes of SM/K up to a finite number if and only if L = M .

Fix a Galois extension L/K. We can prove without difficulty that the set SL/K is
infinite. Indeed, given a modulus m of K divisible by all primes of K that ramify in L,

#{P ∈ PK |P does not divide m,

(
L/K

P

)
= 1} =∞.

But by Proposition 1.8, given P ∈ PK ,(
L/K

P

)
= 1⇐⇒ P splits completely at L.

In particular, if
(
L/K
P

)
= 1 then P does not ramify in L, so it does not divide m. Then,

#{P ∈ PK |P splits completely at L} =∞,

as claimed.
In order to state the mentioned result, we introduce the following notation: For any

subsets S, T , we say that S⊂̇T if there is some finite subset Σ such that S ⊂ T ∩ Σ. We
say that S=̇T if S⊂̇T and T ⊂̇S.

Theorem 3.31. Let L,M be Galois extensions of K. Then:

1. L ⊂M if and only if SM/K⊂̇SL/K.

2. L = M if and only if SM/K=̇SL/K.

We need the Chebotarev Density Theorem in order to prove this result. The proof
of 1 is in [6] (Theorem 8.19), and the proof of 2 follows immediately from 1. This result
is very strong: the second part says that if two Galois extensions of K have the same
splitting primes up to a finite number, then they coincide. This will be so useful in part
2, where we want to prove an explicit form of class fields of imaginary quadratic fields.
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4 Ring class fields

In this section we are going to apply the theory of orders in order to construct a special
type of abelian extensions of a imaginary quadratic field, which are the ring class fields.

Let K be an imaginary quadratic field and let O be the order of K of conductor f . We
know by Proposition 2.31 that C(O) ∼= IK(f)/PK,Z(f). Let m = f OK . It is a modulus
of K because it has a factorization as a product of prime ideals of OK , and m0 = m,
m∞ = 1.

We claim that
PK,1(m) ⊂ PK,Z(f) ⊂ IK(f) = IK(f OK).

Let I be a generator of PK,1(m). That is, I = αOK with α ∈ OK , α ≡ 1 (mod f OK).
Since a = 1 is trivially prime to f , we conclude that I ∈ PK,Z(f). This proves the first
inclusion. The second one follows by definition, and the last equality follows from the
fact that the ideals prime to f are just the ideals prime to f OK .

Hence, PK,Z(f) is a congruence subgroup for m, and we deduce that C(O) is a gener-
alized ideal class group of K for m = f OK . By the Existence Theorem applied to PK,Z
and m, there is an unique abelian extension L of K such that Ker(ΦL/K,m) = PK,Z(f) and
Gal(L/K) ∼= C(O). Recall that L is called the class field of PK,Z(f)

Definition 3.32. Let K be an imaginary quadratic field and O the order of conductor f
of K. The ring class field of O is the class field L of PK,Z(f).

The Ring Class Fields are not important in our main purpose, which is to solve the
Kronecker’s Jugendtraum when K is an imaginary quadratic field. However, they allow
us to give a complete information in the explicit construction that we will do in Chapter
5.
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Part II

Construction of class fields via
elliptic curves
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Chapter 4

Elliptic curves

In this chapter we study the main notions and properties of elliptic curves. The theory
of elliptic curves is interesting by itself and appears in many problems related with arith-
metic geometry, but we will need it to obtain class fields of an imaginary quadratic field
K and to give an explicit construction of such class fields.

The explicit construction is obtained by adjoining to K a trascendental function j
evaluated at some purely imaginary complex number. This function j is going to be
defined in terms of the j-invariant of an elliptic curve with complex multiplication, and
the number in which we evaluate j is given by the C-isomorphism class of the elliptic
curve.

First, we will introduce the definition and basic notions of elliptic curves defined over
general fields and the j-invariant of an elliptic curve. In our explicit construction we will
only deal with elliptic curves defined over C, so in this chapter we pay special attention
to that case. Such elliptic curves have a very nice relation with lattices in C: we can
parametrize the elliptic curve by a complex torus. This also allows us to characterize the
homothety classes of lattices and the C-isomorphism classes of elliptic curves in terms of
the j-invariant.

We are specially interested in elliptic curves defined over C with complex multipli-
cation. This has a natural definition for lattices by means of their endomorphism rings,
and we will relate it to endomorphism rings of elliptic curves. This will allow us to define
complex multiplication for elliptic curves. Elliptic curves with complex multiplications
are related to orders in quadratic fields and their proper fractional ideals. Concretely, the
endomorphism ring of such an elliptic curve is an order in an imaginary quadratic field.
We will exploit this fact in Chapter 5.

The next section is about torsion points of elliptic curves. For defining such torsion
points we use the group structure of the C-rational points of an elliptic curve. We will
need the torsion points in order to construct the maximal abelian extension in Chapter
6. In that section we will also introduce the Tate module and the Weil pairing.

To close the chapter, we will study elliptic curves over finite fields. Althought we will
work on fields of characteristic zero, we will need elliptic curves over finite fields because
sometimes we reduce the equations of elliptic curves to a residue field.
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1 Elliptic curves over a field

The main purpose in this section is to introduce the basic definitions and properties of
elliptic curves. We will assume in the sequel that K is a field with char(K) 6= 2, 3. This
is no problem for us, because we will usually work in charasteristic zero.

Definition 4.1. An elliptic curve E over K is an algebraic curve given by the affine
equation

y2 = 4x3 − g2 x− g3,

where g2, g3 ∈ K and g3
2 − 27 g2

3 6= 0. This equation is called the Weierstrass equation of
E.

In this definition, we used affine coordinates. The Weierstrass equation of an eliptic
curve E in projective coordinates (X : Y : Z) is

E : Z Y 2 − 4X3 − g2X Z2 − g3 Z
3 = 0.

A point that satisfies the equation of E is said to be a K-rational point provided
that it has coordinates on K. Note that the infinity point ∞ = (0 : 1 : 0) satisfies this
equation, so it is a K-rational point of the curve. We can also define an elliptic curve
in an intrinsic way: it is a non-singular algebraic curve with genus 1 with a K-rational
point.

Remark 4.2. Looking at this intrinsic definition, an elliptic curve has general equation

E : Y 2 Z + a1XY Z + a3 Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6 Z

3,

where ai ∈ K. If K has not charasteristic 2 or 3, we can apply transformations to
the affine version of the previous equation in order to obtain the Weierstrass equation
presented in Definition 4.1.

Definition 4.3. Let E be an elliptic curve over a field K with equation as in the previous
definition.

1. The set
E(K) = {(x, y) ∈ K ×K | y2 = 4x3 − g2 x− g3} ∪ {∞}

is called the set of K-rational points of the elliptic curve E.

2. The discriminant of E is defined as

∆(E) = g3
2 − 27 g2

3.

3. The j-invariant of E is defined as

j(E) = 1728
g3

2

∆(E)
.

Next, we are going to define a group structure in the set E(K).
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Definition 4.4. Let E be an elliptic curve over a field K. Let P1, P2 ∈ E(K).

1. If P1 =∞, we define P1 + P2 := P2, and similarly for P2 =∞.

2. Otherwise, put P1 = (x1, y1), P2 = (x2, y2).

2.1. If x1 6= x2, we define P1 + P2 := (x3, y3), where

x3 = −x1 − x2 −
1

4

(
y1 − y2

x1 − x2

)2

,

y3 = −y1 − (x3 − x1)

(
y1 − y2

x1 − x2

)2

.

2.2. If x1 = x2, the Weierstrass equations imply that y1 = ±y2. If y1 = −y2, we
define P1 + P2 :=∞. Otherwise, we define P1 + P2 ≡ 2P1 := (x3, y3), where

x3 = −2x1 −
1

16

(
12x2

1 − g2

y1

)2

,

y3 = −y1 − (x3 − x1)

(
12x1 − g2

2 y1

)
.

It can be proved that this gives us a well-defined binary operation in E(K) and endow
it with an abelian group structure with identity ∞. This algebraic definition of the sum
of points of an elliptic curve looks strange, but it has a very nice geometric interpretation.

We define now the meaning of two elliptic curves over K being K-isomorphic. This
is necessary because two isomorphic elliptic curves have similar properties.

Definition 4.5. Let E,E ′ be elliptic curves defined over the same field K with Weier-
strass equations

E : y2 = x3 − g2 x− g3,

E ′ : y2 = x3 − g′2 x− g′3.

We say that E and E ′ are isomorphic if there exists c ∈ K, c 6= 0 such that

g′2 = c4 g2,

g′3 = c6 g3.

Note that if E and E ′ are isomorphic elliptic curves, then the map

E(K) −→ E ′(K)
(x, y) 7−→ (c2 x, c3 y)

is a group isomorphism.
The following result gives us that isomorphic elliptic curves have the same j-invariant.

Proposition 4.6. Let E and E ′ be isomorphic elliptic curves over K. Then, j(E) =
j(E ′).
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Proof. We consider the Weierstrass equations of E and E ′ as before. Then,

j(E ′) = 1728
(g′2)3

(g′2)3 − 27 (g′3)2
= 1728

c12 g3
2

c12 g3
2 − 27 c12 g2

3

= 1728
g3

2

g3
2 − 27 g2

3

= j(E).

If K is algebraically closed, the converse is true (see [9], Chapter III, Proposition
1.4.b). In particular, the j-invariant of an elliptic curve defined over C characterizes
completely its C-isomorphism class. This allows us to classify C-isomorphism classes of
elliptic curves by using the arithmetic of such elliptic curves. In the next chapter we
will use this fact to prove that the j-invariant of a complex elliptic curve is an algebraic
number.

We will need also the following result, which says that all the elements of the algebraic
clossure of a field are the j-invariant of some elliptic curve.

Proposition 4.7. Given j0 ∈ K, there is an elliptic curve E defined over K(j0) such
that j(E) = j0.

The proof can be found in [9] (Chapter III, Proposition 1.4.c).

2 Lattices and elliptic curves

In this section we study elliptic curves defined over C. We introduce lattices and study
their main properties. As we mentioned at the begining of the chapter, lattices can be
used to obtain elliptic curves defined over C. We will see also a result that allows us to
characterize homothety classes of lattices in terms of C-isomorphisms classes of elliptic
curves. We will omit the proofs and only give the main notions (see [8] for a detailed
lecture).

Lattices

Definition 4.8. A lattice in C is a Z-submodule of C of the form

Λ =< w1, w2 >Z,

where w1, w2 ∈ C are R-linearly independent as vectors in the complex plane.

Observe that a lattice can be represented in the complex plane as a grid whose lines
are determined by the direction and the module of the vectors w1, w2.

We have two basic objects related to a lattice.

Definition 4.9. Let Λ be a lattice in C.

1. The fundamental parallelotope associated to Λ is the set∏
Λ = {aw1 + bw2 | a, b ∈ R, 0 ≤ a, b ≤ 1}.

2. The torus associated to Λ is
TΛ = C/Λ.
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Doubly periodic functions

Definition 4.10. Let Λ be a lattice in C. A meromorphic function f : C −→ C ∪∞ is
said to be elliptic or doubly periodic with respect to Λ if f(z+ l) = f(z) for all z ∈ C and
l ∈ Λ.

The meaning of the name doubly periodic is very natural: the function has the same
values in two points when they differ by any of the generators of the lattice. Then, a
doubly-periodic function factors through the complex torus of the lattice.

The set ξΛ of all elliptic functions with respect to Λ is a field with the pointwise sum
and product. Since any complex constant function is trivially elliptic, ξΛ is an extension
of C.

Our meromorphic functions are holomorphic in all the domain of definition up to
poles. This directly gives us the following.

Proposition 4.11. Let f ∈ ξΛ. If f has no poles in
∏

Λ, then it is constant.

The Weierstrass ℘-function

Definition 4.12. Let Λ be a lattice in C. The Weierstrass ℘-function associated to Λ is

℘(z,Λ) =
1

z2
+

∑
w∈Λ−{0}

(
1

(z − w)2
− 1

w2

)
, z ∈ C− Λ

The Weierstrass ℘-function will allow us to establish some important notions and
results about elliptic curves related especially with lattices. It is well defined because
the series that appears in its definition converges absolutely and uniformly over compact
subsets of C− Λ. The idea for proving this is to prove first that the series

Gk(Λ) =
∑

w∈Λ−{0}

1

wk

converges absolutely (see [8], Page 23).
We commented that ξΛ is an extension of C. In fact, it can be obtained by adjoining

to C the Weierstrass ℘-function and its derivative, that is, ξΛ = C(℘(z,Λ), ℘′(z,Λ)). A
proof of this result can be found in [8]. What we actually prove is that the field of even
elliptic functions equals to C(℘(z,Λ)) (see [8], Chapter I, Proposition 9) by giving an
explicit expression of each even elliptic function in terms of ℘(z,Λ), and from here we
obtain easily the desired result (see [8], Chapter I, Proposition 8).

Let us fix a lattice Λ in C. The Weierstrass ℘-function ℘′(z,Λ)2 is an even elliptic
function. Using the explicit expression in terms of ℘(z,Λ) (see [8], Page 22), we obtain
that

℘′(z)2 = 4℘(z)3 − g2(Λ)℘(z)− g3(Λ),

where
g2(Λ) = 60G4(Λ),

g3(Λ) = 140G6(Λ).

It is also true that g2(Λ)3 − 27 g3(Λ)2 6= 0, because the polynomial f(x) = 4x3 −
g2(Λ)x − g3(Λ) has distinct roots (see [8]). Thus, this is just the equation of an elliptic
curve.
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Definition 4.13. The elliptic curve associated to a lattice Λ in C is the curve given by
the affine equation

EΛ : y2 = x3 − g2(Λ)x− g3(Λ).

Complex elliptic curves

We can define the discriminant and the j-invariant of a lattice Λ by using the elliptic
curve over C that induces Λ.

Definition 4.14. Let Λ be a lattice in C and let EΛ be the elliptic curve associated to Λ.

1. The discriminant of Λ is defined as

∆(Λ) = ∆(EΛ).

2. The j-invariant of EΛ is defined as

j(Λ) = j(EΛ).

The relation between complex elliptic curves and lattices is given by the following
result.

Theorem 4.15. Let Λ be a lattice in C and let EΛ be the elliptic curve associated to Λ.
Then, the map

ξ : C/Λ −→ EΛ(C)
z + Λ 7−→ (℘(z), ℘′(z))

Λ 7−→ ∞
is an analitic isomorphism and a group isomorphism if we consider the additive structures
in both sets.

With the notation of the previous theorem, we say that ξ is an analytic parametriza-
tion of EΛ. Since this map is a group isomorphism when we consider in EΛ(C) the defined
group structure, we can find easily the sum of two points P1 = (x1, y1), P2 = (x2, y2) of
an elliptic curve associated to a lattice by identifying the corresponding z1, z2 ∈

∏
such

that xi = ℘(zi), i ∈ {1, 2} and adding them in C/Λ. That is,

(x1, y1) + (x2, y2) = (℘(z1), ℘′(z1)) + (℘(z2), ℘′(z2)) = (℘(z1 + z2), ℘′(z1 + z2)).

Homothety of lattices

Definition 4.16. We say that two lattices Λ, Λ′ in C are homothetic, denoted by Λ ∼ Λ′

if there exists α ∈ C− {0} such that Λ′ = αΛ.

The j-invariant of a lattice characterizes the homothety class of the lattice. This is
closely connected with the analogous property for elliptic curves.

Proposition 4.17. Let Λ,Λ′ be lattices in C. The following are equivalent:

1. EΛ and EΛ′ are isomorphic over C.
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2. Λ and Λ′ are homothetic.

3. j(Λ) = j(Λ′).

By definition, elliptic curves associated to lattices are defined over C, but in fact there
are no other elliptic curves over C.

Theorem 4.18 (Uniformization Theorem). Let g2, g3 ∈ C such that g3
2−27 g2

3 6= 0. Then,
there is an unique lattice Λ in C up to homothety such that g2 = g2(Λ) and g3 = g3(Λ).

A proof of this result is in [9] (Chapter VI, Theorem 5.1).
An immediate consequence of the Uniformization Theorem is the following.

Corollary 4.19. Let E be an elliptic curve defined over C. Then, there is an unique
lattice Λ in C up to homothety and an analitic isomorphism ξ : TΛ −→ C such that
ξ(z) = (℘(z), ℘′(z)). Thus, E ∼= EΛ.

3 Maps between elliptic curves

When we introduce an object with some structure, it is natural to ask for the morphisms
between this kind of objects. In that section we are going to define the morphisms in the
category of elliptic curves, and we will focus on a special kind of these morphisms, the
isogenies.

3.1 Morphisms of elliptic curves

Let E be an elliptic curve defined over K. Then, the set

I(E) = {f ∈ K[x, y] | f(P ) = 0 for all P ∈ E}

is a prime ideal of K[x, y] (see [9], Chapter I, Section 1). The field of the restrictions of
rational functions to the curve E is the field

K(E) := Frac(K[x, y]/I(E)).

Let us consider the field K(E), where K denotes the algebraic closure of K. An
element f ∈ K(E) is a class

[f(x, y)] = {f(x, y) + g(x, y) | g ∈ K[x, y], g(P ) = 0 for all P ∈ E},

so it can be seen as a function f : E −→ K.
We will first define rational maps between elliptic curves and from this we will in-

troduce morphisms between elliptic curves. This can be done in general for algebraic
varieties (see [9], Chapter I, Section 3). Let E1, E2 be elliptic curves defined over the
same field K. Let us consider E1 and E2 as projective curves. A rational map from E1

to E2 is a map of the form

φ = [f0, f1, f2] : E1 −→ E2,
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where fi ∈ K(E1) and for each P ∈ E1, f0, f1, f2 are defined at P and

φ(P ) = [f0(P ), f1(P ), f2(P )] ∈ E2.

If φ : E1 −→ E2 is a rational map and σ ∈ Gal(K/K), then

φσ = [fσ0 , f
σ
1 , f

σ
2 ] : E1 −→ E2

is also a rational map. By using the definition of homomorphism, it holds that

(φ(P ))σ = φσ(P σ) for all P ∈ E1.

We say that a rational map φ : E1 −→ E2 is defined over K if there exists a non-zero
number λ ∈ K such that λ f0, λ f1, λ f2 ∈ K(E1). This is equivalent to the condition
φσ = φ for all σ ∈ Gal(K/K).

Definition 4.20. Let φ : E1 −→ E2 be a rational map. We say that φ is defined at a
point P ∈ E1 if there exists g ∈ K(E1) such that g fi is defined at P for every i ∈ {0, 1, 2}
and there is some fi0 for which g fi0(P ) 6= 0.

Now, we can establish the definition of morphism of elliptic curves.

Definition 4.21. A morphism of elliptic curves is a rational map φ : E1 −→ E2 which
is defined at every point of E1.

When we take affine coordinates, a morphism of elliptic curves φ : E1 −→ E2 is of
the form

φ(x, y) = (R(x, y), S(x, y))

where R(x, y), S(x, y) ∈ K(E1). Moreover, given σ ∈ Gal(K/K), we have that

φσ(x, y) = (Rσ(x, y), Sσ(x, y)).

Theorem 4.22. Let φ : E1 −→ E2 be a morphism of elliptic curves. Then, φ is constant
or surjective.

This result is in [9] (Chapter II, Theorem 2.3).
Let φ : E1 −→ E2 be a morphism of elliptic curves over K. Then φ induces a

monomorphism of fields
φ∗ : K(E2) −→ K(E1)

f 7−→ f ◦ φ .

Definition 4.23. Let φ : E1 −→ E2 be a morphism of elliptic curves over K.

1. We say that φ is finite (resp. separable) if so is the field extension K(E1)/K(E2).

2. The degree of φ is
deg(φ) := [K(E1) : K(E2)].

Let us study two representatives examples of morphisms of elliptic curves: the first
one is the called multiplication-by-m morphism, where the elliptic curves are defined over
a field of charasteristic 0, and the other one is the Frobenius morphism, where the elliptic
curves are defined over a finite field.
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Multiplication-by-m morphism

Let K = C and let E be an elliptic curve defined over C with equation

E : y2 = 4x3 − g2 x− g3.

Let us define the map

[2] : E(K) −→ E(K)
(x, y) 7−→ 2 (x, y)
∞ 7−→ ∞

.

By the duplication formula in definition 4.4, this map is a morphism of elliptic curves
[2] : E −→ E from E to itself.

Let m ∈ N. By induction and the formula of the sum of two points in definition 4.4,
we can show that the map

[m] : E(K) −→ E(K)
(x, y) 7−→ m (x, y)
∞ 7−→ ∞

defines a morphism of elliptic curves [m] : E −→ E.

Frobenius morphism

We proceed to introduce the Frobenius map. Let us consider a finite field K of charas-
teristic p > 0. Take an elliptic curve E over K with equation

E : y2 = x3 + a x+ b.

Let q = pr be any power of p. Let us define an algebraic curve E(q) over K given by
the equation

E(q) : x3 + aq x+ bq.

Since char(K) = p, ∆(E(p)) = ∆(E)p 6= 0, so E(q) is an elliptic curve defined over K.
The q-th power Frobenius map of E is

Frobq : E(K) −→ E(p)(K)
(x, y) 7−→ (xq, yq)
∞ 7−→ ∞

.

First of all, let us see that it is well defined. Given (x, y) ∈ E(Fq), since char(Fq) = p,
we have that:

(yq)2 − ((xq)3 + aq xq + bq) = (y2 − (x3 + a x+ b))q = 0.

Thus, (xq, yq) ∈ E(q)(K). Moreover, R(x, y) = xp and S(x, y) = yp are rational
functions over K.

Hence, the previous map defines a morphism Frobq : E −→ E(q) of elliptic curves.
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3.2 Isogenies

Definition 4.24. Let E1, E2 be elliptic curves over K. An isogeny from E1 to E2 is a
morphism of elliptic curves φ : E1 −→ E2 such that φ(∞) = ∞. If φ(E1) 6= {∞}, we
say that E1 and E2 are isogenous.

It is automatic that the multiplication-by-m and Frobenius morphisms are isogenies.
We restrict our morphisms of elliptic curves to isogenies because they behave well

with the group structure of the sets of K-rational points of the elliptic curves.

Theorem 4.25. If φ : E1 −→ E2 is an isogeny, then

φ(P +Q) = φ(P ) + φ(Q) for all P,Q ∈ E1.

In other words, the corresponding map φ : E1(K) −→ E2(K) is a group homomor-
phism.

We have also an easier expression of the degree of a separable isogeny.

Theorem 4.26. Let φ : E1 −→ E2 be a non-constant isogeny. If φ is separable, then
deg(φ) = |Ker(φ)|.

A morphism of elliptic curves defined over a finite field factors through a reduction of
the elliptic curve that depends on its degree.

Proposition 4.27. Let Φ : E1 −→ E2 be a morphism of elliptic curves over a finite
field of charasteristic p > 0. Then, there is a power q of p for which there is a unique
separable morphism of elliptic curves λ : E

(q)
1 −→ E2 such that Φ = λ ◦ Frobq.

The proof can be found in [9] (Chapter II, Corollary 2.12). We can use this result to
determine the order of the kernel of an isogeny when the isogeny is not separable.

Definition 4.28. Let φ : E1 −→ E2 be an isogeny between elliptic curves over a finite
field. Let λ : E

(q)
1 −→ E2 be the separable morphism of elliptic curves and q the power

of p such that φ = λ ◦ Frobq.

1. The separable degree of φ is defined as degs(φ) = deg(λ).

2. The inseparable degree of φ is degi(φ) = q.

After this, one can prove that for every isogeny φ : E1 −→ E2 in charasteristic 0,
deg(φ) = degs(φ) degi(φ) (see [7], Page 32).

Theorem 4.29. Let K be a field of charasteristic p > 0 and let q be any power of p.
Then, Frobq is purely inseparable of degree q.

The proof of this result can be found in [9] (Chapter II, Proposition 2.11).
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Dual isogenies

To close this section, we introduce the notion of dual isogeny. The proofs of the corre-
sponding results can be found in [9] (Chapter III, Section 6).

Theorem 4.30. Let φ : E1 −→ E2 be a non-constant isogeny of degree m. Then, there
exists an unique isogeny φ̂ : E2 −→ E1 such that

φ̂ ◦ φ = [m].

Definition 4.31. If φ : E1 −→ E2 is a non-constant isogeny of degree m, the dual
isogeny of φ is defined as the isogeny φ̂ : E2 −→ E1 of the previous result.

Proposition 4.32 (Properties of the dual isogeny). Let φ : E1 −→ E2 be a non-constant
isogeny of degree m. Then:

1. φ̂ ◦ φ = [m] on E1 and φ ◦ φ̂ = [m] on E2.

2. deg(φ) = deg(φ̂).

3.
ˆ̂
φ = φ.

4 Elliptic curves with complex multiplication

Complex multiplication of elliptic curves is a fundamental ingredient in the explicit con-
struction of abelian extensions of imaginary quadratic fields. In this section we are going
to study the definition of complex multiplication for elliptic curves over C, which involves
the concept of endomorphism ring of an elliptic curve. We will also see a connection
with the theory of orders in quadratic fields in which we see proper fractional ideals as
lattices. This new point of view allows us to define the j-function that appears in our
explicit construction.

We know that C-isomorphisms classes of elliptic curves correspond to homothetic
classes of lattices, so we begin with complex multiplication of lattices.

Definition 4.33. Let Λ ⊂ C be a lattice. The endomorphism ring of Λ is the set

End(Λ) = {α ∈ C |αΛ ⊂ Λ}.

By definition of lattice, Z ⊂ End(Λ).

Definition 4.34. We say that a lattice Λ ⊂ C has complex multiplication if Z $ End(Λ).

We are going to translate this concepts to elliptic curves defined over C by means of
analytic parametrizations introduced in this chapter.

Definition 4.35. Let E be an elliptic curve defined over a field K. The endomorphism
ring of E is

EndK(E) = {φ : E −→ E |φ is an isogeny}.
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It has ring structure with the sum and the composition of isogenies (which means
composition of the corresponding maps from E(K) to itself). This definition is general,
but in this section we particularize to elliptic curves defined over C. For such an elliptic
curve, there is a lattice Λ such that E = EΛ, so one can think that the rings of endo-
morphisms of E and Λ may be related. What we are going to prove is that they are
isomorphic.

Theorem 4.36. Let E1, E2 be elliptic curves defined over C and let Λ1,Λ2 be lattices such
that Ei = EΛi, i ∈ {1, 2}. Let ξi : C/Λi −→ Ei, i ∈ {1, 2}, be analytic parametrizations.

1. There is a bijection

{α ∈ C |αΛ1 ⊂ Λ2} −→ {φ : C/Λ1 −→ C/Λ2 holomorphic, φ(0) = 0}
α 7−→ φα(z + Λ1) = α z + Λ2

.

2. The following map is bijective:

Hom(E1, E2) −→ {φ : C/Λ1 −→ C/Λ2 holomorphic, φ(0) = 0}
λ 7−→ ξ−1

2 ◦ λ ◦ ξ1
.

Proof.

1. Let α, β ∈ C with αΛ1 ⊂ Λ2 and β Λ1 ⊂ Λ2 such that φα = φβ. Then, α z ≡
β z (mod Λ2) for all z ∈ C. This implies that (α − β) z ∈ Λ2 for all z ∈ C. Then, the
function z 7→ (α−β) z is continuous in C and has image contained in Λ2, which is discrete.
We deduce that (α− β) z = 0 for all z ∈ C, so α = β. Then, the map is injective.

Let φ : C/Λ1 −→ C/Λ2 be holomorphic such that φ(0) = 0. Since C is simply
connected, we can lift φ to an holomorphic map f : C −→ C such that the following
diagram commutes.

C f //

��

C

��
C/Λ1

φ // C/Λ2

The vertical maps are the corresponding projections. This means that

φ(z + Λ1) = f(z) + Λ2, z ∈ C.

Let z ∈ C, w ∈ Λ1. Then

f(z + w) + Λ2 = φ(z + w + Λ1) = φ(z + Λ1) = f(z) + Λ2 z ∈ C.

We deduce that f(z + w) − f(z) ∈ Λ2 for all z ∈ C and w ∈ Λ1. Hence, for fixed
w ∈ Λ1, the continuous function z 7→ f(z + w)− f(z) has image contained in Λ2. Since
Λ2 is discrete, we conclude that f(z + w) = f(z) for all z ∈ C. Taking derivatives,
f ′(z + w) = f ′(z) for all z ∈ C. Then, f ′ ∈ ξΛ1 . But f ′ is entire, so it is constant.

Since f ′ is constant, there are α, γ ∈ C such that f(z) = α z + γ. But 0 = f(0) = γ,
so f(z) = α z. This gives us that

φ(z + Λ1) = α z + Λ2

for all z ∈ C. Since f(Λ1) ⊂ Λ2, we conclude that αΛ1 ⊂ Λ2. This proves the surjectivity.
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2. Let us see that the map is well defined. Let λ ∈ Hom(E1, E2). Then, the coordinates of
λ(x, y) are given by rational functions on x and y. Since ξ1 and ξ2 are analytic and both
the Weierstrass ℘-function and its derivative are holomorphic, ξ−1

2 ◦λ◦ ξ1 is holomorphic.
Moreover, ξ−1

2 ◦ λ ◦ ξ1(0) = 0.
The map is clearly injective. Let us check the surjectivity. Let φ : C/Λ1 −→ C/Λ2

such that φ(0) = 0. By part a, there exists α ∈ C with αΛ1 ⊂ Λ2 such that φ = φα.
Let λ = ξ2 ◦ φα ◦ ξ−1

1 : E1 −→ E2. Let (x, y) ∈ E1. Then, there is an unique class
z + Λ1 ∈ C/Λ1 such that (x, y) = ξ1(z + Λ1) = (℘(z,Λ1), ℘′(z,Λ1)). We have that

λ(x, y) = λ(℘(z,Λ1), ℘′(z,Λ1)) = ξ2 ◦ φα(z) = ξ2(α z) = (℘(α z,Λ1), ℘′(α z,Λ1)).

Let w ∈ Λ1. Since αΛ1 ⊂ Λ2, we have that αw ∈ Λ2. Using that ℘ and ℘′ are doubly
periodic,

℘(z + w,Λ2) = ℘(α z + αw,Λ2) = ℘(α z,Λ2),

℘′(α (z + w),Λ2) = ℘′(α z + αw,Λ2) = ℘′(α z,Λ2).

Then, ℘(α z,Λ2), ℘′(α z,Λ2) ∈ ξΛ1 = C(℘(z,Λ1), ℘′(z,Λ1)) = C(x, y). Hence the coordi-
nates of λ(x, y) are rational functions on x and y. This means that λ ∈ Hom(E1, E2).

Corollary 4.37. With the conditions of the previous theorem, there is a bijection

{α ∈ C |αΛ1 ⊂ Λ2} −→ Hom(E1, E2)
α 7−→ ξ2 ◦ φα ◦ ξ−1

1

.

Corollary 4.38. Let E be an elliptic curve defined over C and let Λ be a lattice such
that E = EΛ. Then, there is a bijection

End(Λ) −→ End(E)
α 7−→ ξ ◦ φα ◦ ξ−1 .

This gives rise naturally to the following definition.

Definition 4.39. Let E be an elliptic curve defined over C and let Λ be a lattice such
that E = EΛ. We say that E has complex multiplication if so has Λ.

The meaning of complex multiplication looks strange for elliptic curves, but it is
natural for lattices: a lattice has complex multiplication if it has some dilation by a
complex non-integer number which is inside the lattice itself.

Remark 4.40. At this point, we can identify explicitely the elements of End(EΛ) that
correspond to integer numbers in End(Λ). Let m ∈ Z. Then, the corresponding endo-
morphism is given by

ξ ◦ φm ◦ ξ−1(℘(z,Λ), ℘′(z,Λ)) = ξ ◦ φm(z + Λ) = ξ(mz + Λ) =

(℘(mz + Λ), ℘′(mz + Λ)) = [m](℘(z,Λ), ℘′(z,Λ)).

Hence, ξ◦φ◦ξ−1 = [m]. Then, E has complex multiplication if it has some endomorphism
different from multiplication-by-m morphisms.
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As we mentioned before, elliptic curves with complex multiplication have a surprising
connection with orders in imaginary quadratic fields. These orders appear in the classifi-
cation of the ring of endomorphisms of elliptic curves with complex multiplication, given
by the following result.

Theorem 4.41. Let Λ be a lattice in C. Then, End(Λ) is Z or an order O in an
imaginary quadratic field. In the last case, Λ is homothetic to a proper ideal of O.

Proof. If End(Λ) = Z, there is nothing to prove. Let us assume that Z $ End(Λ) (that
is, Λ has complex multiplication). By the definition of endomorphism ring, End(Λ) is
invariant by homothety, so we can assume that Λ =< 1, τ >, τ ∈ C− R.

Given α ∈ End(Λ), αΛ =< α, α τ >⊂ Λ. This says that α ∈ Λ. Hence End(Λ) ⊂ Λ.
Let α ∈ End(Λ) − Z. Then α ∈ Λ, so there exist a, b ∈ Z with b 6= 0 such that

α = a + b τ . On the other hand, by the definition of α, we have that α τ ∈ Λ, so there
exist c, d ∈ Z such that α τ = c+ d τ . Multiplying the previous equality by τ , we obtain:

c+ d τ = a τ + b τ 2 =⇒ b τ 2 + (a− d) τ − c = 0.

Let f(X) = β X2 + (a − d)X − c ∈ Q[x]. Since b 6= 0, we have that deg(f) = 2.
Moreover, the previous equality says that τ is a root of f . Since τ /∈ Q, f is irreducible
over Q. Hence f is the minimal polynomial of τ , which implies that [Q(τ) : Q] = 2. We
have also that τ ∈ C − R, so K = Q(τ) is an imaginary quadratic field. Note that the
equality α = a+ b τ implies that K = Q(α).

Now, we have End(Λ) ⊂ Λ ⊂ K, and both End(Λ) and K are subrings of C. Then,
End(Λ) is an unitary subring of K. Furthermore, the previous chain of inclusions also
implies that End(Λ) is a subgroup of Λ, so it is finitely generated as Z-module. Finally,
it follows from the definition that {1, τ} is a Q-basis of K, and it is contained in End(Λ).
We conclude that O = End(Λ) is an order of K.

It remains to prove that Λ is homothetic to a proper ideal of O. First, we observe
that End(Λ) has finite index as subgroup of Λ because it is an order in K, so it has rank
2 as Z-module, and Λ has also rank 2. Then, since τ ∈ Λ and End(Λ) is a subgroup of
Λ, there exists γ ∈ Z such that γτ ∈ End(Λ). Since Λ =< 1, τ >Z, this implies that
γ Λ ⊂ End(Λ). Given β ∈ K, we have that β(γΛ) ⊂ γΛ if and only if βΛ ⊂ Λ, which is
equivalent to β ∈ End(Λ). In other words,

{β ∈ K | βγΛ ⊂ γΛ} = End(Λ) = O.

This proves that γ Λ is a proper ideal of End(Λ), and it is clearly homothetic to Λ.

In the sequel, K will always denote an imaginary quadratic field.
We can precise a bit more this connection. The following theorem characterizes

whether a complex non-integer number lies in the endomorphism ring of a lattice in
terms of the Weierstrass ℘-function of the lattice and an order in a imaginary quadratic
field. Thus, it characterizes the complex multiplication property of the elliptic curve.

Theorem 4.42. Let Λ be a lattice and let α ∈ C − Z. The following statements are
equivalent:

1. There is a rational function R(x) ∈ C(x) such that P(α z) = R(P(z))
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2. αΛ ⊂ Λ.

3. There is an order O in a imaginary quadratic field K such that α ∈ O and Λ is
homothetic to a proper fractional ideal of O.

The proof of this result can be found in [6] (Theorem 10.14).
Let K be an imaginary quadratic field and letO be an order of K. Once we have estab-

lished the connection between complex multiplication and orders in imaginary quadratic
fields, we can relate it to fractional ideals of O (or homothety classes of such ideals, to
be more accurate). Namely, let a be a fractional ideal of O. By Proposition 2.14, a
is a free Z-module of rank 2. But O contains a Q-basis of K, so the two generators
of a are R-linearly independent. This says that a itself is a lattice. It is not true that
different lattices correspond to different fractional ideals of O. Instead of this, we have
the following.

Proposition 4.43. Let a, b be fractional ideals of O. Then,

a = b⇐⇒ a ∼ b,

where ∼ denotes the homothety relation of lattices (see Definition 4.16).

Proof. We have that a and b are homothetic if and only if there exists a non-zero α ∈ C
such that a = α b =< α > b. Since < α > = 1 for all α ∈ C− {0}, this is equivalent to
a = b.

We can define the j-invariant of a non-real complex number in the following way.

Definition 4.44. Let τ ∈ C− R. The j-invariant of τ is

j(τ) = j(< 1, τ >Z).

We have a function j : C − R −→ C which is trascendent (it is given by some
arithmetic operations with series).

Let α, β ∈ C such that a =< α, β >Z. Since α and β are R-linearly independent, at
least one of them is not real. Hence

a = α < 1, τ >Z, α ∈ C, τ ∈ C− R.

Thus, a and < 1, τ >Z are homothetic. By Proposition 4.17, j(τ) = j(a).
Let us denote R = {Λ ⊂ C |Λ lattice, End(Λ) ∼= O}. By the previous proposition,

there is a well defined and bijective map

C(O) −→ R/ ∼
a 7−→ [a]

,

where [Λ] denotes the homothety class of the lattice Λ.

Proposition 4.45. Let O be an order of K. A lattice Λ in C is homothetic to a proper
fractional ideal of O if and only if End(Λ) = O.
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Proof. The implication to the left side follows immediately from Theorem 4.41. Con-
versely, let a be a proper fractional ideal of O such that Λ ∼ a. Then, there exists β ∈ C
such that Λ = β a. Now, by the definition of proper fractional ideal:

End(Λ) = {α ∈ C |αΛ ⊂ Λ} = {α ∈ C |αβ a ⊂ β a} = {α ∈ C |α a ⊂ a} = O.

Let E = EΛ be an elliptic curve defined over C and let ξ : C/Λ −→ E be an analytic
parametrization. To close the section, we see an application of Theorem 4.42 in order
to compute the explicit expression of the image of a point P ∈ E by the endomorphism
ξ−1 ◦ φα ◦ ξ induced by an element α ∈ End(Λ) (see Corollary 4.38).

Corollary 4.46. Let E = EΛ be an elliptic curve over C with complex multiplication and
let α ∈ End(Λ), α /∈ Z. Let ξ : C/Λ −→ E be an analytic parametrization. There is a
rational function R(x) ∈ C(x) such that

ξ ◦ φα ◦ ξ−1(x, y) = (R(x),
1

α
R′(x) y), (x, y) ∈ E(C).

Proof. Since αΛ ⊂ Λ and α /∈ Z, by the previous theorem, there exists R(x) ∈ C(x) such
that ℘(α z) = R(℘(z)) for all z ∈ C. If we derivate at both sides of the equality with
respect to z,

℘′(α z) =
1

α
R′(℘(z))℘′(z).

Let (x, y) ∈ E(C). By Theorem 4.15, there exists z ∈ C such that (x, y) = (℘(z), ℘′(z)).
Then,

ξ ◦ φα ◦ ξ−1(x, y) = (℘(α z), ℘′(α z)) = (R(℘(z)),
1

α
R′(℘(z))℘′(z)) = (R(x),

1

α
R′(x) y).

5 Torsion points of elliptic curves

Let E be an elliptic curve defined over a field F . We know that we can endow its set of
points E(F ) with a group structure. The points of finite order of this kind of groups are a
very useful tool in algebraic number theory. We will also construct the Tate module and
the Weil pairing. If F = K is an imaginary quadratic field, this will play an important
role in order to make the explicit construction of the ray class field of K.

Definition 4.47. Let E be an elliptic curve and let m ∈ Z≥0. The m-torsion subgroup
of E is the set

E[m] = {P ∈ E(F ) | [m]P =∞}
of the points of E that have order dividing m.

After this definition, it is automatic that E[m] = Ker([m]).

Definition 4.48. The torsion subgroup of an elliptic curve E is the set

Etors =
∞⋃
m=1

E[m].

It is interesting to mention that E[m] ∼= (Z/mZ) × (Z/mZ) whenever m is coprime
to char(K). The proof of this fact can be found in [9] (Chapter III, Corollary 6.4).
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The Tate module and the Weil pairing

Let E be an elliptic curve defined over a field F . Let l be a prime number and m ≥ 2
prime to char(F ) if char(F ) 6= 0. Let us consider the group

E[lm] = {P ∈ E(F ) | lm P =∞} ∼= Z/(lmZ)× Z/(lmZ).

Note that the collection of the groups E[lm] together with the morphisms multiplica-
tion by l

E[lm] −→ E[lm−1]
P 7−→ l P

form a inverse system.

Definition 4.49. The l-adic Tate module associated to E is the inverse limit

Tl(E) := lim
←−

E[lm].

If Zl is the ring of l-adic numbers, then Zl = lim←− Z/(lmZ). Moreover, E[lm] ∼=
Z/(lmZ)× Z/(lmZ). Then,

Tl(E) ∼= Zl × Zl.
The idea to define the Weil pairing is to construct a collection of pairings eE,m :

E[m] × E[m] −→ µm, where m is a non-negative integer µm is the group of m-th roots
of unity. Taking inverse limits, we obtain a pairing eE : Tl(E)× Tl(E) −→ Tl(µ) called
the Weil pairing. Here the latter module is the inverse limit

Tl(µ) = lim
←−

µlm

with respect to the multiplication by l morphisms. We will only state the existence result
of the Weil pairing, but this strategy can be consulted in [10].

Proposition 4.50. There exists a pairing

eE : Tl(E)× Tl(E) −→ Tl(µ)

which is:

1. Bilinear, i.e,

eE(P1 + P2, Q) = eE(P1, Q) eE(P2, Q) for all P1, P2, Q ∈ Tl(E),

eE(P,Q1 +Q2) = eE(P,Q1) eE(P,Q2) for all P,Q1, Q2 ∈ Tl(E).

2. Alternating, i.e, eE(P, P ) = 1 for all P ∈ Tl(E).

3. Non-degenerate, that is,

eE(P,Q) = 1 for all P ∈ E[m] =⇒ Q =∞.

4. Galois invariant, that is,

eE(P,Q)σ = eE(P σ, Qσ) for all σ ∈ Gal(K/K).

We will need another property of the Weil pairing: if φ : E1 −→ E2 is an isogeny and
φ̂ is its dual, then φ and φ̂ are adjoint for the Weil pairing, that is,

eE2(φ(x), y) = eE1(x, φ̂(y)).
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6 Elliptic curves over finite fields

In this section we are going to present the main notions and results about elliptic curves
over finite fields. First, we will revise a few notions about such elliptic curves and after
that we will study the reduction of elliptic curves, which will be fairly used in the second
part of the thesis. The idea is to reduce the coefficients of an equation to some residue
field of the number ring by a prime ideal in such a way we obtain an elliptic curve.

Recall that if K is a finite field with q elements, then q = pr, where p is prime and
r ∈ N. We denote K = Fq.

Let E be an elliptic curve over a finite field Fq. It is immediate that E(Fq) is finite.
As we classified the endomorphism ring of lattices (or equivalently, of elliptic curves

defined over C), we can also classify the endomorphism ring of elliptic curves defined over
finite fields. To understand this classification, we introduce quaternion algebras.

Definition 4.51. A quaternion algebra is an algebra over Q with a basis {1, α, β, α β}
such that α2, β2 ∈ Q− and αβ = −β α.

The concept of order in a quaternion algebra is a natural generalization of the case of
number fields.

Definition 4.52. An order in a quaternion algebra H is a subring O of H such that
O ⊕Q = H.

Now, the following theorem gives us the possibilities for the ring of endomorphisms
of an elliptic curve defined over a finite field.

Theorem 4.53. Let E be an elliptic curve defined over Fq. Then, EndFq(E) is either an
order in an imaginary quadratic field or an order in a quaternion algebra.

The proof is in [9] (Chapter V, Theorem 3.1).

Reduction of elliptic curves

Let K be a number field and let E be an elliptic curve defined by the Weierstrass equation

y2 = 4x3 − g2 x− g3, g2, g3 ∈ K.

Let us fix a prime ideal P of OK . Assume that P is not over g2 and g3. Since K is
the field of fractions of OK , gi = αi

βi
, with αi, βi ∈ OK , βi /∈ P . Hence, we can define

[gi] := [αi] [βi]
−1,

where [·] is the class in OK modulo P . Thus, we can define an algebraic curve Ẽ of
equation

y2 = 4x3 − [g2]x− [g3].

The discriminant of this curve is

∆ = [g2]3 − 27[g3]2.

If ∆ 6= 0, then Ẽ is an elliptic curve over OK/P , and we say that E has good reduction
at P . Otherwise, we say that E has bad reduction at P .
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Proposition 4.54. Let E be an elliptic curve defined over K, P a prime of K such that
E has good reduction at P and let Ẽ be its reduction. Let m ∈ Z be a positive integer
coprime with char(k), where k = OK/P is the residue field. Then, the restriction of the
projection map to E[m],

E[m] −→ Ẽ(k),

is injective.

As we mentioned at the beginning of this chapter, reduction of elliptic curves is a
very important tool for us because we will need to reduce equations of elliptic curves to
a residue field. But we will also deal with isogenies, so we may define the reduction of an
isogeny.

Definition 4.55. Let φ : E1 −→ E2 be an isogeny between elliptic curves defined over
a finite field F . Let R(x, y), S(x, y) ∈ K(E1) such that φ(x, y) = (R(x, y), S(x, y)). Let
P be a prime of F such that both E1 and E2 have good reduction at P . We define the
reduction of φ as the isogeny

φ̃ : Ẽ1 −→ Ẽ2

(x, y) 7−→ (R̃(x, y), S̃(x, y))

The reduction of an isogeny is indeed an isogeny because the reduction of the infinity
point of an elliptic curve is the infinity point of the reduction of the elliptic curve. Hence,
the reduction map

Hom(E1, E2) −→ Hom(Ẽ1, Ẽ2)

φ 7−→ φ̃

is well defined. Using the results studied in this section, we can prove that this map is
injective.

Proposition 4.56. Let L be a number field and let Q be a prime ideal in L. Let E1, E2

be elliptic curves defined over L with good reduction at Q. Then, the map

Hom(E1, E2) −→ Hom(Ẽ1, Ẽ2)

φ 7−→ φ̃

is injective and deg(φ) = deg(φ̃).

Proof. Let φ ∈ Hom(E1, E2) such that φ̃ is the zero isogeny. If p is the prime number un-
der Q, then char(OL/Q) = p. Given a positive integer m coprime with p, by Proposition
4.54, we have that the reduction map

E2[m] −→ Ẽ2

is injective. Let P ∈ E1[m]. Then,

φ̃(P ) = φ̃(P̃ ) = ∞̃,

so φ(P ) lies in the kernel of the previous reduction map, and then φ(P ) = ∞. This
proves that E1[m] ⊂ Ker(φ) for all m positive integer coprime with p. Now, the set of
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such m is infinite, so Ker(φ) is infinite. But the kernel of a non-zero isogeny is finite (see
[9], Chapter III, Corollary 4.9). We conclude that φ is the zero isogeny, which proves
that the reduction map is injective.

It remains to prove that deg(φ) = deg(φ̃). Let l be a prime number such that l 6= p.
Let x, y ∈ Tl(E1). Then, using the properties of the dual isogeny and the Weil pairing,

eE1(x, y)deg(φ) = eE1(deg(φ)x, y) = eE1(φ̂ ◦ φ(x), y) = eE2(φ(x), φ(y)).

Using the same argument,

eẼ1
(x̃, ỹ)deg(φ̃) = eẼ2

(φ̃(x̃), φ̃(ỹ)).

Let n ∈ N. Since the reduction E[ln] −→ Ẽ is injective and its image is Ẽ[ln], we

have that E[ln] ∼= Ẽ[ln]. Since n is arbitrary, Tl(E) ∼= Tl(Ẽ). Then, by the construction
of the Weil pairing,

˜eE(x, y) = eẼ(x̃, ỹ) for all x, y ∈ Tl(E).

Now, for all x, y ∈ Tl(E1),

eẼ1
(x̃, ỹ)deg(φ) = ˜eE1(x, y)

deg(φ)

= ˜eE2(φ(x), φ(y)) = eẼ2
(φ̃(x̃), φ̃(ỹ) = eẼ1

(x̃, ỹ)deg(φ̃).

By the linearity of the Weil pairing, this implies that

eẼ1
((deg(φ)− deg(φ̃))x, y) = 0

and by the non-degeneracy of the Weil paring, (deg(φ)−deg(φ̃))x = 0 for all x ∈ Tl(E1),

that is, deg(φ) = deg(φ̃).
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Chapter 5

Class fields of imaginary quadratic
fields

The theorems of class field theory provide us information about class fields in a strictly
theoretical sense, but the proofs are quite technical and the isomorphisms are highly non-
canonical. It is very hard to give an explicit description of class fields of general number
fields.

Once we have introduced the theory of elliptic curves, we can precise what we men-
tioned at the Introduction. If the number field we take is imaginary quadratic, then
we can use the theory of elliptic curves with complex multiplication to obtain abelian
extensions of an imaginary quadratic field K, and this is the main object of this chapter.
For each order O of K, we will obtain an abelian extension of K. We will provide an
explicit construction when the order we take is the ring of integers and we will present
without proof a generalization for the situation in which we take any given order.

Recall that the m-th cyclotomic field is

L = Q(e
2π i
m ).

This means that the abelian extension L of Q is obtained by adjoining to Q the
exponential function, which is a trascendental function, evaluated at some complex non-
real value. The result we are going to obtain has the same flavor. Concretely, we will
see that if K is an imaginary quadratic field, for each order O in K we can construct an
abelian extension of K by adjoining to K the j-function introduced in Definition 4.44
evaluated at some complex non-real number, i.e,

L = K(j(τ)), τ ∈ C− R,

in such a way that the homothety class of the lattice Λ =< 1, τ >Z corresponds to any
elliptic curve E with complex multiplication by O.

We will see that if we choose O = OK , then L is the Hilbert Class Field of K. It is
true also that for the order O of conductor f , L is the Ring class field of conductor f of
K.
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1 The space of differential forms

We begin by defining and stating the main properties of the space of differential forms of
an elliptic curve.

Certainly, the following definitions work with general algebraic curves, but we will
restrict to the situation of elliptic curves because we only deal with such curves.

Definition 5.1. Let E be an elliptic curve defined over a field F . The space of differential
forms on E, denoted by ΩE, is the F (E)-vector space generated by the symbols of the form
dx, x ∈ F (E), with the relations:

1. d(x+ y) = dx+ dy, x, y ∈ F (E).

2. d(x y) = x dy + dx y, x, y ∈ F (E)

3. da = 0, a ∈ F

The space ΩE has dimension 1 over F (E). The proof of this result can be seen in [9]
(Chapter IV, Section 4).

Let φ : E1 −→ E2 be a non-constant morphism of elliptic curves. Then the map

φ∗ : F (E2) −→ F (E1)

induces another map

φ∗ : ΩE2 −→ ΩE1∑n
i=1 fi dgi 7−→

∑n
i=1 φ

∗(fi) d(gi ◦ φ)
.

In other words, we extend φ∗ to ΩE2 by defining φ∗(df) = d(f ◦ φ) for df ∈ ΩE2 and in
such a way that the diagram

F (E2)× ΩE2
//

��

ΩE2

��
F (E1)× ΩE1

// ΩE1

is commutative, where the vertical maps are given by (f, dg) 7→ (φ∗(df), φ∗(dg)) and the
top and bottom maps are given by (f, dg) 7→ (f dg). This map is called the pull-back of
φ.

Proposition 5.2. Let φ : E1 −→ E2 be a non constant morphism of elliptic curves.
Then, φ is separable if and only if the pull back φ∗ : ΩE2 −→ ΩE1 is injective.

The proof is in [9], Chapter II, Section 4.
Note that, in particular, when E1 and E2 are defined over C, φ∗ is injective.
Let E be an elliptic curve over a field F . Let Q ∈ E(F ). Then, the map

τQ : E −→ E
P 7−→ P +Q

is an isomorphism of algebraic curves (it is not an isogeny unless Q =∞). Its pull-back
is

τ ∗Q : ΩE −→ ΩE

df 7−→ d(f ◦ τQ).

56



Definition 5.3. We say that a differential ω ∈ ΩE is invariant if τ ∗Q(ω) = ω for all
Q ∈ E(F ).

Let ω = dx
2y
∈ ΩE (here x and y denote the first and second coordinate functions

from E to F , respectively). Then τ ∗Q(ω) = ω for every Q ∈ E (see [9], Chapter III,
Proposition 5.1). The differential ω is an invariant differential of E. This differential is
usually called the invariant differential of E. The reason is that the invariant differentials
from a K-vector space of dimension 1 (see [7], Page 32).

Remark 5.4. For the general form of the equation of an elliptic curve, the invariant
differential is

ω =
2x

2y + a1 x+ a3

.

We use these notions to introduce an important tool: the normalized identification
of the endomorphism rings of elliptic curves with complex multiplication. The idea is
the following: If EΛ is an elliptic curve defined over C with complex multiplication by
O, by Theorem 4.41, End(Λ) = O. Then, there is a one-to-one correspondence between
O and End(E), in which an integer number m corresponds to the multiplication-by-m
endomorphism [m]. We explore this correspondence for any element α ∈ O.

Proposition 5.5. Let E be an elliptic curve defined over C with complex multiplication
by a subring R of C. Then, there is an unique isomorphism

[·] : R −→ End(E)

such that for all non-zero invariant differential ω ∈ ΩE, we have that

[α]∗(ω) = αω for all α ∈ R.

Proof. Let Λ be a lattice such that E = EΛ and let ξ : C/Λ −→ EΛ be the corresponding
analytic parametrization. By Corollary 4.38, there is a bijection

End(Λ) −→ End(E)
α 7−→ ξ ◦ φα ◦ ξ−1.

Since E has complex multiplication by R, given α ∈ R, we have that αΛ ⊂ Λ. Let us
define the map

[·] : R −→ End(E)
α 7−→ [α] := ξ ◦ φα ◦ ξ−1 : E −→ E.

In other words, [α] is the map that makes the following diagram commutative:

C/Λ
ξ

��

φα // C/Λ
ξ

��
EΛ

[α] // EΛ

Let us check that [·] is a ring homomorphism. Given α, β ∈ R,

[α] ◦ [β] = ξ ◦ φα ◦ ξ−1 ◦ ξ ◦ φβ ◦ ξ−1 = ξ ◦ φα ◦ φβ ◦ ξ−1 = ξ ◦ φαβ ◦ ξ−1 = [αβ].
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Let us prove that [·] is bijective. Let α, β ∈ R such that [α] = [β]. Since ξ is bijective,
we arrive immediately to the equality φα = φβ. Using the first statement of Theorem
4.36, we obtain that α = β. This proves that [·] is injective. For the surjectivity, let
φ ∈ End(E). Then, by the second statement of Theorem 4.36, ρ = ξ−1 ◦ φ ◦ ξ : C/Λ −→
C/Λ is an holomorphic map such that ρ(0) = 0. Now, using again Part 1 of the same
result, there is an unique α ∈ C with αΛ ⊂ Λ such that ρ = φα. Hence, we obtain that
φ = ξ ◦ φα ◦ ξ−1, which proves the surjectivity. This proves that [·] is an isomorphism.

Now, we have to prove that [α]∗ (ω) = αω for all ω ∈ ΩE. We consider the pull-
back ξ∗ : ΩE −→ Ω(C/Λ) where the latter is the space of 1-forms of C/Λ. Since ξ is
an analytic isomorphism, ξ∗ is a linear isomorhism. Thus, given ω ∈ ΩE, there is an
invariant differential dz ∈ Ω(C/Λ) such that ξ∗(ω) = c dz. Then:

[α]∗ (ω) = (ξ ◦ φα ◦ ξ−1)∗(ω) = (ξ−1)∗ ◦ φ∗α ◦ ξ∗(ω) =

(ξ−1)∗ ◦ φ∗α(c dz) = (ξ−1)∗(c α dz) = α (ξ−1)∗(c dz) = αω.

The map [·] is an identification between End(E) and R whose pull-back has a very
simple expression. This will be a notable advantage for succesive computations. Note
also that given α ∈ R, [α] is the multiplication-by-α morphism in the analytic sense.
This means that, fixed a parametrization ξ : C/Λ −→ E, [α] sends a point P = ξ(z) to
the point that corresponds to ξ(α z). Indeed,

[α](ξ(z)) = ξ ◦ φα ◦ ξ−1 ◦ ξ(z) = ξ ◦ φα(z) = ξ(α z).

In particular, when we choose an integerm, we recover the multiplication-by-mmorphism.
We give a name to this identification.

Definition 5.6. With the notation of the proposition above, we say that [·] is the nor-
malized identification and the pair (E, [·]) is normalized.

Corollary 5.7. Let (E1, [·]E1
) (E2, [·]E2

) be normalized elliptic curves defined over C with
complex multiplication by a subring R ⊂ C. Let φ : E1 −→ E2 be an isogeny. Then,

φ ◦ [α]E1
= [α]E2

◦ φ.

Proof. Let ω ∈ ΩE be a non-zero invariant differential. Then,

(φ ◦ [α]E1
)∗(ω) = [α]∗E1

(φ∗(ω)) = αφ∗(ω) = φ∗(αω) = φ∗([α]∗E2
(ω)) = ([α]E2

◦ φ)∗(ω).
(5.1)

Since both E1 and E2 are defined over C, which has charasteristic zero, any isogeny
φ : E1 −→ E2 is separable. Let us consider the map

Φ : Hom(E1, E2) −→ Hom(ΩE2 ,ΩE1)
ψ 7−→ ψ∗

We have that Hom(E1, E2) is a Z-module (see [9], Chapter III, Corollary 7.5), and
Hom(ΩE2 ,ΩE1) is also a Z-module because it is the set of linear maps between the vector
spaces ΩE2 and ΩE1 . Now, by Theorem 5.2 of Chapter III in [9], Φ is a homomorphism
of Z-modules.
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Given ψ ∈ Hom(E1, E2) non-zero, since ψ is separable, we have by Proposition 5.2
that ψ∗ is injective, so ψ∗ 6= 0. Equivalently, ψ∗ = 0 =⇒ ψ = 0. This says that Φ is
injective.

Applying this fact to the equality (5.1), we obtain that φ ◦ [α]E1
= [α]E2

◦ φ.

Let E be an elliptic curve defined over a field F . By Section 3 of the previous chapter,
Gal(F/F ) acts over End(E) in such a way that for σ ∈ Gal(F/F ) and φ ∈ End(E), we
have the endomorphism φσ ∈ End(E). When we take the normalized identification, this
action is related to the usual action of the Galois group over the elements of the extension.

Proposition 5.8. Let E be an elliptic curve with complex multiplication by a subring R
of C. Let us take the normalized identifications [·]E : R −→ End(E) and [·]Eσ : R −→
End(Eσ). Given σ ∈ Aut(C),

[α]σE = [ασ]Eσ for all α ∈ R.

Proof. Fix a Weierstrass equation for E

E : y2 = 4x3 − g2 x− g3.

Let ω = dx
2 y

be the invariant differential of E. By Proposition 5.5,

[α]∗(ω) = αω for all α ∈ R.

Let σ ∈ Aut(C). Then, we have a Weierstrass equation for Eσ

Eσ : y2 = 4x3 − gσ2 x− gσ3 .

Thus, ωσ = dx
2σ y

= dx
2 y

is the invariant differential of Eσ. Again by Proposition 5.5,

[β]∗Eσ(ωσ) = β ωσ for all β ∈ R.

Let α ∈ R and σ ∈ Aut(C). Then,

[ασ]∗Eσ(ωσ) = ασ ωσ = (αω)σ = ([α]∗E(ω))σ = ([α]σE)∗(ωσ). (5.2)

By using the same argument as in Corollary 5.7, we have that the map

End(Eσ) −→ End(Ωσ
E)

φ 7−→ φ∗

is injective. Applying this to the equality (5.2), we obtain that

[α]σE = [ασ]Eσ .
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2 The set of elliptic curves with complex multiplica-

tion

Let K be an imaginary quadratic field and let O be an order in K. Let ∼=C be the relation
isomorphism over C of elliptic curves. We denote

ELL(O) = {E/C elliptic curve | End(E) ∼= O}/ ∼=C .

The set ELL(O) is the set of C-isomorphisms classes of elliptic curves with complex
multiplication by O. Recall that we want to construct an abelian extension of K by
adjoining to K the j-invariant of an elliptic curve with complex multiplication by O. It
is natural to think that a good knowledge of the set of classes of such curves will be so
useful for our purposes. What we are going to do is to define an action of C(O) over this
set, in order to prove that it is finite. This will allow us to prove that there are finitely
many classes, which will be the key to prove important results in the next section.

In the sequel, we will write the elements of ELL(O) as simply elliptic curves, but we
will keep in mind that in fact we are working with isomorphism classes of elliptic curves.

Let a be a proper fractional ideal in O. As we know by the previous chapter, a is a
lattice in C. Hence, we can consider the corresponding elliptic curve Ea defined over C.
By Proposition 4.45,

End(Ea) ∼= End(a) = O.

Hence Ea ∈ ELL(O). Thus, we have a well defined map

C(O) −→ ELL(O)
a 7−→ [Ea].

Let a be a proper fractional ideal of O and let EΛ ∈ ELL(O). We denote

aΛ := {α1λ1 + ...+ αrλr |αi ∈ a, λi ∈ Λ}.

The following result asserts that aΛ defined on this way is a lattice in C and establishes
its main properties.

Proposition 5.9. Let EΛ ∈ ELL(O) and let a, b be proper fractional ideals of O. Then:

1. aΛ is a lattice in C.

2. End(EaΛ) ∼= O.

3. EaΛ
∼= EbΛ ⇐⇒ a = b.

Proof. 1. By definition of ELL(O), we have that End(EΛ) ∼= O. This implies that
OΛ = Λ. Indeed, the inclusion Λ ⊂ OΛ is trivial because 1 ∈ O. Conversely, if
α ∈ O, since O ∼= End(EΛ), we have that αΛ ⊂ Λ. Hence, OΛ ⊂ Λ.

Since a is a fractional ideal, there exists d ∈ Z, d 6= 0, such that da ⊂ O. Then,

aΛ ⊂ 1

d
OΛ =

1

d
Λ,
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which proves that aΛ is a discrete subgroup of C.

Since |O/a| <∞, there exists d′ ∈ Z such that d′O ⊂ a. Then,

d′Λ = d′OΛ ⊂ aΛ.

This implies that the two generators of the lattice d′Λ lie in aΛ. Since aΛ is a
discrete subgroup of C, this says that it is a Z-module of rank at least 2. But C is
a Z-module of rank 2, so the rank of aΛ is exactly 2, that is, it is a lattice.

2. Given α ∈ C,
αaΛ ⊂ aΛ⇐⇒ a−1αaΛ ⊂ a−1aΛ⇐⇒ αΛ ⊂ Λ.

Hence, the set of endomorphisms of EaΛ is

End(EaΛ) ∼= {α ∈ C |αaΛ ⊂ aΛ} = {α ∈ C |αΛ ⊂ Λ} = End(EΛ) = O.

3. Using the two equivalent definitions of ELL(O), two elliptic curves are isomorphic
if and only if their corresponding lattices are homothetic. Hence:

EaΛ
∼= EbΛ ⇐⇒ aΛ = cbΛ, c ∈ C∗

⇐⇒ OΛ = ca−1bΛ, c ∈ C∗

⇐⇒ Λ = ca−1bΛ, c ∈ C∗

In a similar way, we prove that

EaΛ
∼= EbΛ ⇐⇒ Λ = c−1ab−1Λ.

Assume that EaΛ
∼= EbΛ. Then we have the two previous equalities, and in partic-

ular, ca−1bΛ ⊂ Λ and c−1ab−1Λ ⊂ Λ, so they are both contained in O. But each of
these two ideals are inverse of each other, so they also coincide with O. From here,
we deduce that a = cb, that is, a = b.

The converse is automatic: If a and b are homothetic, then so are aΛ and bΛ, so
the corresponding elliptic curves EaΛ and EbΛ are isomorphic.

As a consequence of this result, we can define a group action

C(O)× ELL(O) −→ ELL(O)
(a, EΛ) 7−→ a ∗ EΛ := Ea−1Λ.

It is, indeed, a well defined action:

a ∗ (b ∗ EΛ) = a ∗ Eb−1Λ = Ea−1b−1Λ = E(ab)−1Λ = (ab) ∗ EΛ.

This action will be very useful because of its properties.

Proposition 5.10. The action previously defined is simple and transitive. That is, for
all EΛ1 , EΛ2 ∈ ELL(O) there is an unique class a ∈ C(O) such that a ∗ EΛ1 = EΛ2.
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Proof. Let us prove that the action is transitive (existence of a). Take a non-zero element
λ1 ∈ Λ and let a1 = 1

λ1
Λ1. Then a ⊂ K and is a finitely generated O-module, so it is

a fractional ideal of O. Similarly, if we take λ2 ∈ Λ2 non-zero, a2 = 1
λ2

Λ2 is a fractional
ideal of O. Then,

λ2

λ1

a2a
−1
1 Λ1 =

λ2

λ1

(
1

λ2

Λ2)(λ1Λ−1
1 )Λ1 = Λ2.

Let a := a−1
2 a1. Then,

a ∗ EΛ1 = Ea−1Λ1
= Eλ1

λ2
Λ2

∼= EΛ2 .

This proves the transitivity.
Now, we have to prove that the action is simple. Let us take a, b ∈ C(O) and

EΛ ∈ ELL(O) such that a ∗ EΛ = b ∗ EΛ. Let us prove that a = b.
By definition of the action, Ea−1Λ

∼= Eb−1Λ. Now, using the second part of the previous
proposition, we obtain that a−1 = b−1, and this gives us that a = b.

Corollary 5.11. With the previous notation, #C(O) = #ELL(O). In particular, ELL(O)
is finite.

3 Elliptic curves over the algebraic numbers

We are going to prove that we can see the classes in ELL(O) as classes of elliptic curves
defined over the field of the algebraic numbers Q. We will need another result which is
interesting by itself: the j-invariant of an elliptic curve with complex multiplication by
an order O in an imaginary quadratic field is an algebraic number. These two facts will
allow us to define an homorphism which will be the key ingredient for proving the main
result of this chapter.

First of all, fix an elliptic curve E ∈ ELL(O). Let φ : E −→ E be a morphism of
elliptic curves. Take also σ ∈ Aut(C). Clearly, φ : E −→ E is an isogeny if and only if
φσ : Eσ −→ Eσ is an isogeny. This implies that End(E) ∼= End(Eσ).

Proposition 5.12. If E ∈ ELL(O), then j(E) ∈ Q.

Proof. Let σ ∈ Aut(C). Let us fix an equation

E : y2 = x3 + ax+ b

of E and consider the elliptic curve Eσ of equation

Eσ : y2 = x3 + aσx+ bσ.

We claim that
#{j(E)σ |σ ∈ Aut(C)} <∞.

Since j(E) is a rational combination of the coefficients of the equation of E, we have
that j(Eσ) = j(E)σ. But we know that two elliptic curves are isomorphic if and only if
they have the same j-invariant, so

#{j(E)σ |σ ∈ Aut(C)} = #{j(Eσ) |σ ∈ Aut(C)} = #{Eσ |σ ∈ Aut(C)},
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where this last set refers to the isomorphism classes of elliptic curves instead of elliptic
curves. Note that by the previous comment, End(Eσ) ∼= End(E) ∼= O, so Eσ ∈ ELL(O)
for all σ ∈ Aut(C). Hence the last set is a subset of ELL(O), and then it is bounded
by its cardinal #ELL(O). By Corollary 5.11, this number is finite, and hence we have
proved the claim.

Now, assume that j(E) is trascendental. Given a trascendental number r, let us define
a Q-inmersion

σr : Q(j(E)) −→ C
j(E) 7−→ r

and extended by linearity. Since Q(j(E)) is a subfield of C, it can be extended to an
automorphism σr ∈ Aut(C) such that j(E)σr = r.

Since Q is countable and C is not, the set of trascendental numbers is not countable.
Hence, by the previous argument, we obtain an infinite subset {j(E)σr | r trascendental}
of {j(E)σ |σ ∈ Aut(C)}, which is a contradiction.

Now, we can use the Theorem 5.12 to prove the other mentioned result. We will
denote (only in the next theorem) ELL(O) by ELLC(O) and

ELLQ(O) = {E/Q elliptic curve | End(E) ∼= O}/ ∼=Q .

Theorem 5.13. The natural map

ε : ELLQ(O) −→ ELLC(O)
E 7−→ E

is a bijection. In particular, every class of elliptic curves in ELL(O) has some elliptic
curve defined over Q.

Proof. Let us prove that ε is surjective. Let E/C ∈ ELLC(O). Since j(E) is an algebraic
number, by Proposition 4.7, there exists an elliptic curve E ′/Q(j(E)) such that j(E ′) =
j(E). If we regard this equality as an equality of complex numbers, we obtain that
E/C = E ′/C = ε(E ′/Q).

Now, let us see that ε is injective. Let E1/Q, E2/Q ∈ ELL(O) such that ε(E1/Q) =
ε(E2/Q). This says that E1

∼=C E2, so j(E1) = j(E2). Since both E1 and E2 are
defined over Q, j(E1) = j(E2) ∈ Q, so E1

∼=Q E2. This means that E1/Q = E2/Q as

Q-isomorphism classes.

4 Construction of abelian extensions

In this section, we will make the explicit construction of an abelian extension of an
imaginary quadratic field K by means of the j-invariant of an elliptic curve with complex
multiplication by a fixed order O of K. That is, for each order in K we will have an
abelian extension of K. Eventually, we will state that this abelian extension is just the
ring class field of O.

Let us fix, as usual, an imaginary quadratic field K and an order O in K. Let
E ∈ ELL(O). By Theorem 5.13, we can choose an elliptic curve defined over Q which
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is isomorphism over C to E, so we can assume that E itself is defined over Q. Let
σ ∈ Gal(K/K). Since K = Q and E is defined over Q, the curve Eσ is well defined.

Now, let σ ∈ Gal(K/K) and E ∈ ELL(O). By Proposition 5.10, the action

∗ : C(O)× ELL(O) −→ ELL(O)

is simple and transitive, so for the elliptic curves E and Eσ there is an unique class of
ideals aσ ∈ C(O) such that aσ ∗ E = Eσ. Thus, we have a map

F : Gal(K/K) −→ C(O)
σ 7−→ aσ

which is obviously caracterized by the equality

F (σ) ∗ E = Eσ.

Actually, we have to prove that it does not depend on the representative E of the
class of elliptic curves we have chosen. We need the following lemma:

Lemma 5.14. Let E ∈ ELL(O) with E defined over Q. Let a ∈ C(O) and let σ ∈
Gal(Q/Q). Then,

(a ∗ E)σ = aσ ∗ Eσ.

The proof can be found in [9] (Section 2, Proposition 2.5).

Proposition 5.15. The map F is well defined and it is an homomorphism.

Proof. Let E1, E2 ∈ ELL(O) and let σ ∈ Gal(K/K). Put Eσ
1 = a1 ∗ E1, Eσ

2 = a2 ∗ E2.
We have to prove that a1 = a2.

Since the action is simple, we have that a1
−1 ∗ Eσ

1 = E1. On the other hand, by the
transitivity of the action *, we have that there exists b ∈ C(O) such that E2 = b ∗ E1.
Then,

(b ∗ E1)σ = Eσ
2 = a2 ∗ E2 = a2 ∗ (b ∗ E1) = (a2 b a1

−1) ∗ Eσ
1 .

By the previous lemma, the left-hand side of the equality coincides with b
σ ∗Eσ

1 . But
bσ = b because b ⊂ K (because it is a fractional ideal of O) and σ ∈ Gal(K/K). Hence,

b ∗ Eσ
1 = (a2 b a1

−1) ∗ Eσ
1 .

Now, we cancel b from both sides of the equality, obtaining that

Eσ
1 = (a2 a1

−1) ∗ Eσ
1 .

Since the action is simple and

Eσ
1 = 1 ∗ Eσ

1 ,

we deduce that (a2 a1
−1) = 1, and then a1 = a2, as we wanted.

Let us prove that F is an homomorphism. Fix an elliptic curve E ∈ ELL(O) and let
σ, τ ∈ Gal(K/K). Then,

F (στ) ∗ E = Eστ = (Eσ)τ = (F (σ) ∗ τ)τ = F (τ) ∗ (F (σ) ∗ E) = (F (σ)F (τ)) ∗ E.

Using again the simplicity of the action, F (στ) = F (σ)F (τ).
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Since F is a group homomorphism, we can consider its kernel. Let L = K
Ker(F )

, that
is, the fixed subfield of K by Ker(F ). Since Ker(F ) is a normal subgroup of Gal(K/K),
by the Fundamental Theorem of Galois Theory, L/K is a normal extension. This theorem
also gives us that Ker(F ) = Gal(K/L).

Proposition 5.16. Let E ∈ ELL(O). Then, L = K(j(E)).

Proof. We have the chain of equalities:

Gal(K/L) = Ker(F ) = {σ ∈ Gal(K/K) |F (σ) = 1}
= {σ ∈ Gal(K/K) | 1 ∗ E = E}

= {σ ∈ Gal(K/K) |Eσ = E}
= {σ ∈ Gal(K/K) | j(Eσ) = j(E)}
= {σ ∈ Gal(K/K) | j(E)σ = j(E)}

= Gal(K/K(j(E)))

By the Fundamental Theorem of Galois Theory, L = K(j(E)).

Proposition 5.17. The map F : Gal(L/K) −→ C(O) is injective.

Proof. Since K/K is a normal extension, so is K/L. Moreover, Gal(K/L) is a normal
subgroup of Gal(K/K) because it is the kernel of the homomorphism F , so the extension
L/K is normal. By the first isomorphism theorem,

F : Gal(K/K)/Gal(K/L) −→ C(O)
σ Gal(K/L) 7−→ F (σ)

.

is a monomorphism. By the Fundamental Theorem of Galois Theory,

Gal(K/K)/Gal(K/L) −→ Gal(L/K)
σ Gal(K/L) 7−→ σ|L

is an isomorphism. Hence, the map

F : Gal(L/K) −→ C(O)
σ 7−→ F (τ), τ |L = σ

is injective.

Since the group C(O) is abelian, the last two results give us what we want.

Corollary 5.18. L = K(j(E)) is an abelian extension of K.

This fullfils the first goal of this chapter: Given an imaginary quadratic field K and
an order O in K, we have obtained an abelian extension L of K by adjoining to K the
j-invariant of an elliptic curve with complex multiplication by O.

Recall that an elliptic curve defined over C is defined by a lattice Λ (unique up to
homothety), which is homothetic to the lattice < 1, α > for some α ∈ C − R. Then,
j(E) = j(τ). Thus, we have actually that

L = K(j(τ))

is an abelian extension of K.
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5 Construction of the Hilbert Class Field

Let K be an imaginary quadratic field. From now on, we will consider only the maximal
order OK instead of an arbitrary order O. The main aim in this section is to prove that,
in that case, the abelian extension constructed in the last section is the Hilbert Class
Field of K.

We begin by introducing the group of a-torsion points of an elliptic curve, for a an
integral ideal of OK . This is a generalization of the group of m-torsion points of the
curve, for m a non-negative integer number. All we need to generalize such group is to
replace the multiplication-by-m endomorphism by other endomorphism related with a.
What we do is to choose the image of all elements of a by the normalized identification
[·].

Definition 5.19. Let E be an elliptic curve with complex multiplication by OK and let [·]
be the normalized identification. Let a be an integral ideal of OK. The group of a-torsion
points of E is

E[a] = {P ∈ E | [α]P = 0 for all α ∈ a}.

We have that Λ ⊂ a−1 Λ. Using the one-to-one correspondence in 1 of Theorem 4.36,
1 is associated to the holomorphic map

C/Λ −→ C/a−1 Λ
z 7−→ z

.

Now, using the bijection in 2 of Proposition 4.36, this map induces a natural isogeny
EΛ −→ a ∗ EΛ. This isogeny allows us to obtain information of the group of a-torsion
points.

Proposition 5.20. Let E ∈ ELL(OK) and let a be an ideal of OK. Then,

E[a] ∼= Ker(E −→ a ∗ E).

Proof. By definition,
E[a] = {P ∈ E | [α]P = 0∀α ∈ a}.

Let Λ be a lattice such that E = EΛ and let ξ : C/Λ −→ E be an analytic
parametrization. Then,

E[a] ∼= {z ∈ C/Λ |α z = 0 for all α ∈ a}/Λ.

Let us consider the restriction of ξ

{z ∈ C/Λ |α z = 0 for all α ∈ a} −→ E[a]
z 7−→ ξ(z)

.

It is well defined: If z ∈ C/Λ satisfies α z = 0 for all α ∈ a, then [α](ξ(z)) = ξ(α z) = 0
for all α ∈ a. Then this map is an isomorphism.

Now, it is clear that the map

{z ∈ C |α z ∈ Λ for all α ∈ a} −→ {z ∈ C/Λ |α z = 0 for all α ∈ a}
z 7−→ z + Λ

.
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is an epimorphism with kernel Λ. By the first isomorphism theorem,

{z ∈ C/Λ |α z = 0 for all α ∈ a} ∼= {z ∈ C |α z ∈ Λ for all α ∈ a}/Λ.

Observe that the condition α z ∈ Λ for all α ∈ a means that z a ⊂ Λ. Then,

{z ∈ C |α z ∈ Λ for all α ∈ a} = {z ∈ C | z a ⊂ Λ} = a−1 Λ.

Joining the equalities and isomorphisms obtained, we have proved that

E[a] ∼= a−1 Λ/Λ.

But this last quotient is just the kernel of the holomorphic map C/Λ −→ C/a−1 Λ that
sends a class z ∈ C/Λ to the class z ∈ C/a−1 Λ. By using the one-to-one correspondence
in 2 of Theorem 4.36, this map coincides with E −→ a ∗ E. Hence,

E[a] ∼= Ker(E −→ a ∗ E).

Proposition 5.21. With the conditions of the previous proposition, E[a] is a free OK/a-
module of rank 1.

The OK/a-module structure of E[a] is given by the operation

(α + a)P = [α](P ).

We skip the proof of this result because it is quite technical and uses techniques of
commutative algebra that would take us too far afield. This proof can be found in [10]
(Chapter II, Corollary 1.5).

Corollary 5.22. Let E ∈ ELL(OK).

1. Given an ideal a of OK, deg(E −→ a ∗ E) = N(a).

2. If α ∈ OK, deg([α]) = |N(α)|.

Proof. 1. Since E and a ∗ E are defined over C, the natural isogeny E −→ a ∗ E is
separable. By Theorem 4.26,

deg(E −→ a ∗ E) = |Ker(E −→ a ∗ E)|.

Now, by Proposition 5.20, we have that |Ker(E −→ a ∗ E)| = |E[a]|. Finally,
by Proposition 5.21, E[a] is a free OK/a-module of rank 1, so E[a] ∼= OK/a. In
particular, |E[a]| = |OK/a| = N(a). Joining the equalities obtained, we conclude
that

deg(E −→ a ∗ E) = N(a).

2. Let α ∈ OK . Then

deg([α]) = |Ker([α])| = |E[αOK ]| = N(αOK) = |N(α)|.
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To close the section, we see a result related to the field of definition of isogenies defined
over fields of charasteristic 0.

Theorem 5.23. Let E1, E2 be elliptic curves defined over a subfield L ⊂ C. Then, there
is a finite extension L′ of L such that every isogeny from E1 to E2 is defined over L′.

The proof can be found in [10] (Chapter II, Theorem 2.2.c).
Now, let us prove the mentioned explicit construction of the Hilbert Class Field.

Theorem 5.24. Let E be an elliptic curve with complex multiplication by OK. Then,
the Hilbert Class Field of K is

H = K(j(E)).

Proof. Let L = K(j(E)). We proved that L is an abelian extension of K by using the
group homomorphism

F : Gal(K/K) −→ C(OK).

Let f be the conductor of the abelian extension L/K. Recall that C(OK) ∼= IK/PK .
We claim that

F

((
L/K

a

))
= a for all a ∈ IK(f), (5.3)

where a denotes the class of a in IK/PK .
Eventually, we will prove that L is the Hilbert Class Field of K. Then, Artin Reci-

procity Theorem gives us that
(
L/K
a

)
runs through Gal(L/K) as a runs through C(OK).

Hence, if we complete the proof, automatically we will obtain that the claim (5.3) deter-
mines completely F .

We will first prove that the equality (5.3) holds for a special class of finite primes of
K. What we will do is to establish a set S of bad rational primes (see conditions 1, 2 and
3 bellow) and to choose the finite primes P of K for which the rational prime under P
does not lie in S.

We proved that ELL(OK) is finite and all its classes have some representative which is
defined over Q. Then, there are representatives E1, ..., En defined over Q for the distinct
Q-isomorphism classes in ELL(OK). We can also assume that every isogeny from Ei to
Ej with i 6= j is defined over L. Otherwise, we replace L by a finite extension L′ given
by Theorem 5.23. This is not a problem because the restriction of the Artin symbol of
L′/K over a finite prime P of K to L is the Artin symbol of L/K over P . Let S be the
set of prime numbers that satisfy any of the following three conditions:

1. p ramifies in L.

2. There is i ∈ {1, ..., n} such that Ei has bad reduction at some prime L over p.

3. p divides either the numerator or the denominator of any one of the numbers

NL
Q(j(Ei)− j(Ek)), i 6= k.

The third condition means that if p is a prime number and Q is a prime in L over p,
then, for i 6= k, j(Ei) 6≡ j(Ek) (modQ), so Ẽi � Ẽk.

In the sequel, S will denote the set of rational primes we have just defined. Now, we
need another technical lemma.
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Lemma 5.25. Let E ∈ ELL(OK) be an elliptic curve defined over a subfield L of C.
Given a finite prime P of K over a rational prime p /∈ S that splits completely at K, the
natural isogeny

φ : E −→ P ∗ E
has degree p and its reduction

φ̃ : Ẽ −→ P̃ ∗ E
modulo a prime Q of L over P is inseparable of degree p.

Proof. Fix a finite prime P of K over p /∈ S. Since p splits completely at K, P is a degree
1 prime. Let Q be a prime in L which lies over P . Let a be an ideal of OK such that
aP =< α >, α ∈ OK .

Let Λ be a lattice in C such that E = EΛ. Since P Λ ⊂ Λ, we have that Λ ⊂ P−1 Λ.
Now, using part 1 of Theorem 4.36, there is a holomorphic map associated to 1

C/Λ −→ C/P−1 Λ
z + Λ 7−→ z + P−1 Λ

Using part 2 of 4.36, this map is associated to an isogeny φ : E −→ P ∗ E.
Similarly, using these two results with the inclusion P−1 Λ ⊂ a−1 P−1 Λ, we obtain an

holomorphic map
C/P−1 Λ −→ C/a−1 P−1 Λ
z + P−1 Λ 7−→ z + a−1 P−1 Λ

,

and this map is associated to an isogeny ψ : P ∗ E −→ a ∗ P ∗ E.
Now, recall that aP =< α >, so a−1 P−1 =< α−1 >. Using parts 1 and 2 of Theorem

4.36 with the inclusion α < α−1 > Λ ⊂ Λ, we obtain an holomorphic map

C/a−1 P−1 Λ −→ C/Λ
z + a−1 P−1 Λ Λ 7−→ α z + Λ

,

We obtain the commutative diagram

C/Λ //

��

C/P−1 Λ //

��

C/a−1 P−1 Λ

��

// C/Λ

��
E

φ // P ∗ E ψ // a ∗ P ∗ E λ // E

Let us take a Weierstrass equation for E/L that is minimal over Q (see [9], Chapter
VII, Section 1). Let ω = dx

2 y+a1 x+a2
be the associated invariant differential on E. If we

consider on E the normalized identification, by Proposition 5.5 and its corollary, since the
composition of the pull-backs of top maps is z 7→ α z, the composition of the pull-backs
of botton maps satisfies

(λ ◦ φ ◦ ψ)∗(ω) = αω.

Since the equation of E/L is minimal over Q, we can reduce the coefficients of the

equation modulo Q to obtain an equation for the reduction Ẽ of E modulo Q (see [9],
Chapter VII, Section 2), and

ω̃ =
dx

2̃ y + ã1 x+ ã3
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is also a non-zero invariant differential on Ẽ. Since < α >= aP and P lies under Q,

(λ̃ ◦ ψ̃ ◦ φ̃) ∗ (ω̃) = ( ˜λ ◦ ψ ◦ φ)∗(ω̃) = α̃(ω̃) = 0̃.

Then (λ̃ ◦ ψ̃ ◦ φ̃)∗ is not injective. By Proposition 5.2, the map λ ◦ φ ◦ ψ is inseparable.
Using the Proposition 4.56 and Corollary 5.22, we obtain that

deg(φ̃) = deg(φ) = NK(P ) = p,

deg(ψ̃) = deg(ψ) = NK(a),

deg(λ̃) = deg(λ) = 1,

where the last equality is due to

deg(λ) = |Ker(λ)| = |E[aP ]| = |E[< α >]| = 1.

Since a is coprime with p, NK(a) is coprime with p. Then, ψ̃ is non-zero, so it is

injective. Hence, ψ̃ is separable. Furthermore, the equality deg(λ̃) = 1 says that λ̃ is
separable. Necessarily,

φ̃ : Ẽ −→ P̃ ∗ E

is inseparable.

Now, by Proposition 4.27, there is a separable map ϕ : Ẽ(p) −→ P̃ ∗ E such that
φ̃ = ϕ ◦ Frobp. Since φ̃ is inseparable, deg(φ̃) = degi(φ̃). But

p = deg(φ̃) = degi(φ̃) degs(φ̃) = p deg(ϕ),

so deg(ϕ) = 1. This says that Ker(φ) has a single element. Since ϕ is separable, it is
non-constant. Then, ϕ is an isomorphism.

Since Frobp is purely inseparable of degree p and ϕ is an isomorphism, we obtain that

φ̃ is purely inseparable of degree p.

After this, to determine F
((

L/K
P

))
for P finite prime of K over p /∈ S is nothing but

a corollary.

Corollary 5.26. If p /∈ S splits completely at K and P is a finite prime of K over p,

then F
((

L/K
P

))
= P .

Proof. Let P be such a prime and let φ : E −→ P ∗E be the natural isogeny. First of all,

note that the Artin symbol
(
L/K
P

)
is defined in this case because p splits completely in K

and then it is unramified. Moreover, we know by the previous lemma that its reduction

φ̃ : Ẽ −→ P̃ ∗ E is inseparable and has degree p. Looking at the proof of the previous

lemma, we know that Ẽ(p) ∼= P̃ ∗ E. Let us call σP =
(
L/K
P

)
. From this, we deduce that

j(P ∗ E) ∼= j(E)p = j(E)N(P ) = j(E)σP = j(EσP ) = j(F (σP ) ∗ E).
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Since p /∈ S, the third condition (for primes in S) implies that P ∗E ∼= F
((

L/K
P

))
∗E.

Now, we use that the action ∗ is simple, obtaining that

F

((
L/K

P

))
= P .

Now, we are ready to prove the claim (5.3). Let a ∈ IK(f) and let S be the set of
prime numbers of the previous proof. By Dirichlet Theorem 3.30, there are infinitely
many degree 1 primes in the same class as a. But we know also that S is a finite set,
because it is contained in the set of ramified number primes in K, which is finite (see [4],
Theorem 34). Then there is a degree 1 prime P with P = a such that the prime number
p under P is not in S. Since the conductor f is divisible by all primes of K that ramify in
L, the Artin map of L/K for f induces an isomorphism, and then the previous equality

implies that
(
L/K
P

)
=
(
L/K
a

)
.

On the other hand, p does not ramify in L because p /∈ S. Since the ramification index
is multiplicative by towers (see [4], Chapter 3, Exercise 10), it follows that p does not
ramify neither in K. Moreover, P is a degree 1 prime, so it holds that p splits completely
at K. Thus, we can apply Corollary 5.26, obtaining that

F

((
L/K

a

))
= F

((
L/K

P

))
= P = a.

This proves the claim.
Let < α >∈ IK(f) be a principal ideal (non-necessarily such that α ≡ 1 (mod f). Then,

the claim 5.3 in this case becomes

F

((
L/K

< α >

))
= 1.

But F : Gal(L/K) −→ C(OK) is injective, so(
L/K

< α >

)
= 1 for all < α >∈ IK(f). (5.4)

Using this equality, we can prove that L ⊂ H. With the notation used in Chapter 3,
Corollary 3.9 gives us that PK = SH/K . Now, let P ∈ PK . If P ∈ IK(f), by the equaility

(5.4),
(
L/K
P

)
= 1, and by Proposition 1.8, P ∈ SL/K . Otherwise, we have that P and f

are not coprime, so P divides f. By definition of conductor, this says that P is ramified
in L. Thus, we have proved that

SH/K ⊂ SL/K ∪ {P ∈ PK |P is ramified in L}.

But the set of primes of K that ramify in L is finite (see [4], Corollary 3 of Page 73).
Hence, SH/K⊂̇SL/K . By Theorem 3.31, we have that L ⊂ H.

Moreover, the map
IK(f) −→ C(OK)
a 7−→ a
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is surjective. Indeed, if a ∈ IK/PK , we obtain by Corollary 3.29 with m = f (which is

divisible by all primes of K that ramify in L) and σ =
(
L/K
a

)
that there exists P ∈ PK

such that P does not divide f and
(
L/K
P

)
=
(
L/K
a

)
. By Artin Reciprocity Theorem 3.14,

this last equality imply that P = a. Since P is a prime and does not divide f, this means
that P is coprime to f. Hence P ∈ IK(f) and the image of P by the natural map is P = a.

Then, given a ∈ C(OK), we can choose a representative a ∈ IK(f). By the claim 5.3,

F
((

L/K
a

))
= a, which proves that F is surjective.

We have obtained that F is bijective. Then, Gal(L/K) ∼= C(OK). Using this isomor-
phism and the isomorphism C(OK) ∼= Gal(H/K) given by Theorem 3.7,

[L : K] = |Gal(L/K)| = |C(OK)| = |Gal(H/K)| = [H : K].

Since L ⊂ H, this equality says that L = H, which finishes the proof.

To close the chapter, we state the result that identifies the abelian extension obtained
K(j(E)) when E is an elliptic curve with complex multiplication by any order O.

Theorem 5.27. Let K be an imaginary quadratic field and let O be an order of K with
conductor f . Let E be an elliptic curve with complex multiplication by O. Then, the Ring
Class Field of conductor f of O is

L = K(j(E)).

The proof can be found in [7]. We will not give it in this thesis because we will not
need this result in the next chapter, in which we will finish the proof of the Kronecker’s
Jugendtraum for the imaginary-quadratic case. The importance of this result is that it
allows us to identify the abelian extension that we obtain when we adjoin to an imaginary
quadratic field the j-invariant of an elliptic curve E.

As in the case of the Hilbert Class Field, we can rewrite the equality obtained as
L = K(j(τ)) where τ ∈ C − R. We can observe again the analogy with the cyclotomic
case.
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Chapter 6

The maximal abelian extension

Let K be an imaginary quadratic field. The main aim in this chapter is to give an explicit
construction of Kab, that is, to solve the Kronecker’s Jugendtraum in the imaginary-
quadratic case. We will prove that, essentially, we have

Kab = K(j(E), x(Etors)),

where E is an elliptic curve defined over the Hilbert Class Field H of K and with complex
multiplication by OK (in the cases K = Q(

√
−1) and K = Q(

√
−3) the expression is a

bit different). For a given non-zero point P ∈ E, x(P ) denotes the first coordinate of P .
Eventually, we will prove that Kab is the compositum of all Ray Class Fields of K.

This is an important reduction in our problem: we have nothing to compute but, for each
modulus m of K, the Ray Class Field of K for m and then compute the compositum of
all of them.

For computing the Ray Class Field of K for each modulus, we will need the main result
of the previous chapter: the Hilbert Class Field of K (i.e, the maximal abelian unramified
extension of K) is K(j(E)), where E is any elliptic curve with complex multiplication by
OK . Recall that the Hilbert Class Field of K is the Ray Class Field of conductor < 1 >.
Thus, the Ray Class Field for a given modulus contains the Hilbert Class Field of K.
This suggests that in order to obtain the Ray Class Field of K for m we have to adjoin
to K(j(E)) more elements. Indeed, we will prove that

Km = K(j(E), h(E[m])),

where h is what we call a Weber function for E (see Definition 6.8). When j(E) 6= 0, 1728,
this function is essentially the first-coordinate function.

The main reference used in this chapter is [10].

1 The cyclotomic case

Before proving the mentioned result, we will illustrate our theory with the well known
cyclotomic case. We are going to construct the Ray Class Field of any conductor of Q
and use this result to prove the Kronecker-Weber theorem.

Since we are going to use Class Field Theory in the case of Q we will deal with primes
of Q. The finite ones are the prime ideals of Z (which is the ring of integers of Q). Those
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ideals are of the form pZ with p a rational prime. To ease notation, we will consider the
rational prime p instead of pZ. On the other hand, the unique infinite prime of Q is the
inclusion Q ↪→ C, which is a real infinite prime.

Set N ∈ Z>0. Using the previous identification, we can consider N as a modulus of Q.
Let ω = e

2π i
N and consider the N -th cyclotomic field Q(ω). Then, Q(ω)/Q is an abelian

extension. Indeed, we have the isomorphism

(Z/N Z)∗ −→ Gal(Q(ω)/Q)
k +N Z 7−→ ω 7→ ωk

.

Theorem 6.1. Q(ω) is the Ray Class Field of Q for N .

Proof. For a given rational prime p unramified in Q(ω), let us denote σp =
(
Q(ω)/Q

p

)
. It

is enough to prove that
σp = 1⇐⇒ p ≡ 1 (modN) (6.1)

for all rational primes p that are unramified in Q(ω).
If we prove this, for all unramified rational primes p we have the following:

p splits completely in Q(ω)⇐⇒ σp =

(
Q(ω)/Q

p

)
= 1

⇐⇒ p ≡ 1 (modN)

⇐⇒ p ∈ PQ,1(N)

⇐⇒
(
QN/Q
p

)
= 1

⇐⇒ p splits completely in QN .

Since there are finitely many ramified primes of Q (see [4], Corollary 2 of Theorem 24),
the equivalence (6.1) holds for all but finitely many rational primes. With the notation
of Chapter 3, this proves that SQ(ω)/Q=̇SQN/Q. By Part 2 of Theorem 3.31, this equality
implies that Q(ω) = QN , as we wanted.

Let us prove the equivalence (6.1). Let p be a rational prime unramified in Q(ω).
For proving the previous equivalence, we will determine the action of σp over a primitive
N -th root of the unity ξ. By definition of σp, if P is a prime of Q(ω) over p, we have that

ξσp ≡ ξN(p) (modP ).

But N(p) is nothing but the order of the additive group Z/pZ, which is p. Then,

ξσp ≡ ξp (modP ).

Let us consider the polynomial f(X) = XN − 1 ∈ Q(ω)[X]. Then, the set of roots of
f is {1, ω, ..., ωN−1} (the N -th roots of unity). But all of them are algebraic integers, so
f ∈ Z[ω][X]. Now, we consider the polynomial f ∈ (Z[ω]/P )[X] obtained by reducing
the coefficients of f modulo P . If f is not separable, then it has some multiple root, so
its formal derivative

f
′
(X) = N XN−1 ∈ (Z[ω]/P )[X]
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has some non-zero root. But gcd(p,N) = 1, so N 6= 0 and then the unique root of f is 0,
which is a contradiction. This says that f is separable.

Since f is separable, 1, ξ, ..., ξN−1 are distinct modulo P . Hence, the previous congru-
ence is actualy an equality, that is,

ξσp = ξp.

Then,
σp = 1⇐⇒ ξp = ξ ⇐⇒ p ≡ 1 (modN).

The uniqueness of Existence Theorem gives us that QN = Q(ω).

Note that in that case the multiplicative group C∗ plays the role of the elliptic curve
E ∈ ELL(OK) in the imaginary-quadratic case in the following sense: In order to generate
abelian extensions of K, we adjoin to K(j(E)) some coordinates of the torsion points of
E. In that case, in order to generate abelian extensions of Q, we adjoin to Q the roots
of unity, that are the torsion points of C∗. This parallelism is far from being exact: if
we adjoin to K(j(E)) both first and second coordinates of torsion points of E, in general
we do not obtain an abelian extension of K. This situation will be discussed in the next
section.

Now, the Kronecker-Weber Theorem is an easy consequence of this result.

Corollary 6.2 (Kronecker-Weber Theorem). Let L be an abelian extension of Q. Then,

there is some N ∈ Z≥0 such that L ⊂ Q(ω), where ω = e
2π i
N .

Proof. Let N be the conductor of L/Q. By the previous theorem, the Ray Class Field of
Q for N is QN = Q(ω). By definition of Ray Class Field, this means that

PQ,1(N) = Ker(ΦQ(ω)/Q,N).

By definition of conductor, N is divisible by all primes of Q that ramify in L. By
Artin Reciprocity Theorem, Ker(ΦL/Q,N) is a congruence subgroup for N . Then,

PQ,1(N) = Ker(ΦQ(ω)/Q,N) ⊂ Ker(ΦL/Q,N).

Finally, by Corollary 3.22, we obtain that L ⊂ Q(ω).

2 Abelian extensions of the Hilbert Class Field

Let K be an imaginary quadratic field. We know that the Ray Class Field of Q for N ≥ 0
is obtained by adjoining to Q the N -torsion points of C∗ (that is, the primitive N -th roots
of the unity in C). As a first approximation to the problem of constructing the maximal
abelian extension of K, we would try to adjoin to K(j(E)) all coordinates of torsion
points of E. This will not work in general: the field K(j(E), Etors) is not in general an
abelian extension of K. What we are going to prove is that it is an abelian extension of
the Hilbert Class Field H = K(j(E)). We need the following technical lemma.

Lemma 6.3. Let M be an imaginary quadratic field and let L be subfield of C. Let E
be an elliptic curve defined over L and with complex multiplication by OM . Then, every
endomorphism of E is defined over LM .
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Proof. Let σ ∈ Aut(C) be an automorphism that fixes L. Since E is defined over L, we
have that Eσ = E. Let α ∈ OM . By Proposition 5.8,

[α]σE = [ασ]Eσ = [ασ]E.

Let σ ∈ Aut(C) that fixes LM . Then ασ = α for all α ∈ OM , so the previous equality
becomes

[α]σE = [α]E for all α ∈ OM .

Let φ ∈ End(E). Then, there is an unique α ∈ OM such that φ = [α]E. Then, φσ = φ.
This proves that φ is defined over LM .

Now, we are ready to prove the mentioned result.

Theorem 6.4. Let K be an imaginary quadratic field and let E ∈ ELL(OK). Then,
L = K(j(E), Etors) is an abelian extension of the Hilbert Class Field H = K(j(E)),
where Etors denotes the set of all coordinates of the torsion points of E.

Proof. Let m be a non-negative integer and let Lm = K(j(E), E[m]). It is enough to
prove that Lm is an abelian extension of K, because L is the compositum of all Lm for
m ∈ Z≥0.

Let σ ∈ Gal(K/H) and T ∈ E[m]. By definition, [m](T ) = ∞. Then, [m](T σ) =
([m](T ))σ = ∞, so T σ ∈ E[m]. Since σ is bijective, it follows that the map T 7→ T σ is
an automorphism of E[m]. Thus, there is a representation

ρ : Gal(K/K) −→ Aut(E[m])
σ 7−→ T 7→ T σ

.

The group E[m] of m-torsion points has structure of OK/mOK-module with the
external product

(α +mOK)T = [α](T ) for all α +mOK ∈ OK/mOK , T ∈ E[m].

Note that for each α + mOK ∈ OK/mOK and T ∈ E[m], [α](T ) is also a m-torsion
point because [m] ◦ [α](T ) = [mα](T ) = [α] ◦ [m](T ) =∞. This proves that the previous
external product is well defined.

Now, we claim that Im(ρ) ⊂ Aut(E[m]) is a OK/mOK-module. Since E is defined
over H and has complex multiplication by OK , the previous lemma gives us that every
endomorphism of E is defined over KH = H. Hence,

([α](T ))σ = [α]σ(T σ) = [α](T σ) for all σ ∈ Gal(Lm/H), T ∈ E[m] and α ∈ OK . (6.2)

Given ρ(σ) ∈ Im(ρ) and α +mOK ∈ OK/mOK ,

ρ(σ)((α +mOK)T ) = ρ(σ)([α](T )) = ([α](T ))σ = [α](T σ) = [α](ρ(σ)(T )),

which proves that the automorphism ρ(σ) is OK/mOK-linear. Thus, the claim follows.
Now, let us compute Ker(ρ). Given σ ∈ Gal(K/H), ρ(σ) is the identity if and only

if σ fixes all points of E[m], which is the same as σ fixing all the coordinates of points
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of E[m]. Then, σ lies in the kernel of ρ if and only if it also fixes E[m], that is, it fixes
H(E[m]) = K(j(E), E[m]) = Lm. This proves that Ker(ρ) = Gal(Lm/H).

The Fundamental Theorem of Galois Theory gives us that

Gal(K/H)/Gal(K/Lm) ∼= Gal(Lm/H).

By using the First Isomorphism Theorem, we have that ρ induces a monomorphism

φ : Gal(Lm/H) −→ AutOK/mOK (E[m]).

Now, by Proposition 5.21, E[m] is a free OK/mOK-module of rank 1. Then

AutOK/mOK (E[m]) ∼= (OK/mOK)∗,

which proves that Gal(Lm/H) is abelian. Hence, Lm/H is an abelian extension.

We note here the analogy with the cyclotomic case: In order to obtain abelian exten-
sions of K(j(E)), what we do is to adjoin the coordinates of the torsion points of E. The
previous proof says also that we obtain an abelian extension of K(j(E)) by adjoining to
it the m-torsion points of E for fixed m. In the cyclotomic case, we replace the elliptic
curve E by the multiplicative group C∗ and the torsion points of E by the roots of unity.
We obtain an abelian extension of Q by adjoining the m-th roots of unity for fixed m (in
that case it is enough to adjoin any of these roots because all of them are conjugate and
generate the same extension).

3 Construction of the maximal abelian extension

Let K be an imaginary quadratic field. We proved that the field K(j(E), Etors) is an
abelian extension of K(j(E)) but in general it is not an abelian extension of K. To
construct the maximal abelian extension of K, we may give additional restrictions to
that field. What we will do essentially is to restrict the set of coordinates of rational
points that we consider.

3.1 Lifting isogenies

Let E be an elliptic curve with complex multiplication by OK . We know that H =
K(j(E)) is the Hilbert Class Field of K. In particular, j(E) ∈ H. By Proposition 4.7,
we can assume that E is defined over H.

Let P be a finite prime of K and let Q be a prime of H that lies over P and such
that E has good reduction at Q. Let p be the rational prime under P . We begin with an
important result which says that we can lift the p-th Frobenius map Frobp : Ẽ −→ Ẽ(p)

in charasteristic p to an isogeny λ : E −→ EσP in charasteristic 0. Before proving this,
we need the following lemma.

Lemma 6.5. Let E ∈ ELL(OK) defined over a number field L. Let Q be a prime of L
such that E has good reduction over Q and let us consider the restriction morphism

θ : End(E) −→ End(Ẽ)

φ 7−→ φ̃
.

Then, the centralizer CEnd(Ẽ)(Im(θ)) of Im(θ) inside End(Ẽ) coincides with Im(θ).
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Proof. Since E has complex multiplication by OK , we have that End(E) ∼= OK . By
Proposition 4.56, θ is injective, so Im(θ) ∼= OK . In particular, Im(θ) is a commutative
ring. This means that Im(θ) ⊂ CEnd(Ẽ)(Im(θ)).

We have that the reduction Ẽ is defined over a finite field. By Theorem 4.53, End(Ẽ)
is either an order in an imaginary quadratic field or an order in a quaternion algebra.

In the first case, we have that

Im(θ) ⊂ End(Ẽ) ∼= O ⊂ OK ∼= End(E) ∼= Im(θ).

We conclude that Im(θ) = End(Ẽ). Since we have also that

Im(θ) ⊂ CEnd(Ẽ)(Im(θ)) ⊂ End(Ẽ),

necessarily Im(θ) = CEnd(ẼσP )(Im(θ)).

Let us assume that End(Ẽ) is an order in a quaternion algebra H. Since the reduction
behaves well with the sum and the product, θ is a monomorphism of rings. Hence, it is a
monomorphism between the additive groups. Now, the isomorphism End(E) ∼= OK gives
us that End(E) is a Z-module of rank 2. Since θ is a monomorphism of groups, Im(θ)
is a Z-module of rank 2. Then K := Im(θ) ⊗ Q is isomorphic to a quadratic subfield
of H. Let {1, α} be a Q-basis of K with α2 ∈ Q. Then, there exists β ∈ H such that
β2, (αβ)2 ∈ Q, αβ = −β α and {1, α, β, α β} is a Q-basis of H (see [9], Chapter III, proof
of Theorem 9.3).

We are going to compute the commutator of K in order to compute that of Im(θ).
Let γ ∈ H. Then, there exist a, b, c, d ∈ Q such that γ = a+ b α + c β + dα β. Hence,

γ ∈ CH(K)⇐⇒ γ α = α γ

⇐⇒ dα + aα2 + b β α + c α β α = dα + aα2 + b α β + c α2 β

⇐⇒ 2(b α β + c α2β) = 0

⇐⇒ b = c = 0

⇐⇒ γ = d+ aα ∈ K

This proves that CH(K) = K.
Let δ ∈ CH(K). Since Q is a commutative ring, δ ∈ CH(K) = K. But δ belongs

to an order in a quaternion algebra, so is integral over Z. Moreover, Im(θ) ∼= OK , so
δ ∈ Im(θ).

Let us denote S the set described in the proof of Theorem 5.24. Note that the field L
used in that definition is actually the Hilbert Class Field H, but this fact was what we
were proving at that moment.

Now, we are ready to prove the mentioned result.

Proposition 6.6. Let K be an imaginary quadratic field. Let H be the Hilbert Class
Field of K and let E ∈ ELL(OK) defined over H. Let P be a degree 1 prime of K such
that the rational prime p that lies under P does not belong to S. Let Q be a prime of H

over P . Let us call σP =
(
H/K
P

)
. Then, there is an isogeny λ : E −→ EσP that makes
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the following diagram commutative:

E
λ //

��

EσP

��

Ẽ
Frobp// Ẽ(p)

where the vertical maps are the correspoding reductions modulo Q.

Proof. First of all, note that E has good reduction over Q because p /∈ S and we use the
definition of S.

Next, let us consider the natural isogeny φ : E −→ P ∗E. By using Lemma 5.25, we

obtain that its reduction φ̃ : Ẽ −→ P̃ ∗ E is purely inseparable of degree p.
On the other hand, in the proof of Corollary 5.26, we proved that P ∗E ∼= F (σP )∗E =

EσP . If we reduce modulo Q, we obtain an isomorphism P̃ ∗ E ∼= ẼσP . The composition
of φ̃ with this isomorphism is an isogeny

ψ : Ẽ −→ ẼσP

which is also purely inseparable of degree p. Since the reduction behaves well with
the composition of isogenies, we find that ψ is the reduction modulo Q of the isogeny
λ : E −→ EσP which is the composition of φ with the isomorphism P ∗ E ∼= EσP , that
is, ψ = λ̃.

By Proposition 4.27, there is a separable isogeny ε : Ẽ(p) −→ ẼσP such that λ̃ =
ε ◦ Frobp. Using the same argument as in the proof of Lemma 5.25, we obtain that
deg(ε) = 1, that is, ε is an isomorphism.

Let us take a model for E

E : y2 = x3 + a x+ b.

If we apply σP , we obtain the elliptic curve

EσP : y2 = x3 + σP (a)x+ σP (b).

But by definition of σP , given x ∈ L, σP (x) ≡ xN(P ) (modQ). Since P is a degree 1

prime, N(P ) = p. Then, σ̃P (x) = x̃p in the residue field. Thus, the reduction of Eσ

modulo Q is
ẼσP : y2 = x3 + ãp x+ b̃p,

which is a model for Ẽ(p). This proves that ẼσP = Ẽ(p), and hence ε is an automorphism.
The next task in the proof is to find ε0 ∈ Aut(EσP ) such that ε̃0 = ε. This will be

enough because then the isogeny ε−1
0 ◦ λ satisfies

ε̃−1
0 ◦ λ = ε−1 ◦ λ̃ = Frobp .

Actually, it is enough to prove that if θ : End(EσP ) −→ End(ẼσP ) is the reduction
map, then ε ∈ CEnd(ẼσP )(Im(θ)). By the previous result, this means that ε ∈ Im(θ),

so there is an endomorphism ε0 ∈ End(Eσ) such that ε̃0 = ε. By Proposition 4.56,
deg(ε0) = deg(ε) = 1, so ε0 ∈ Aut(EσP ) and we are done.
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Let us prove that ε ∈ CEnd(ẼσP )(Im(θ)). We take the normalized identifications

[·]E : OK −→ End(E) and [·]EσP : OK −→ End(EσP ). By applying Corollary 5.7 to the
isogeny λ : E −→ EσP , we have that

λ ◦ [α]E = [α]EσP ◦ λ for all α ∈ OK .

We claim that Frobp ◦[̃α]E = [̃α]σE ◦ Frobp. Indeed, recall that [̃α]E is a rational map,

so [̃α]E = [f0, f1, f2], where fk are polynomials with coefficients in the residue field, say

fk(x, y) =
∑

i,j ã
(k)
ij x

i yj. Then,

Frobp ◦fk(x, y) = fk(x, y)p = (
∑
i,j

ã
(k)
ij x

i yj)p =
∑
i,j

ã
(k)
ij

p

xi p yj p = fσPk (xp, yp) = fσPk ◦Frobp(x, y),

which proves the claim.
Now, by Proposition 5.8, we have that [α]σPE = [ασP ]EσP . But α belongs to K and

hence is fixed by σP . Using this fact, we obtain that

Frobp ◦[̃α]E = [̃α]σPE ◦ Frobp = [̃α]EσP ◦ Frobp .

Hence, we have the following chain of equalities:

[̃α]EσP ◦ ε ◦ Frobp = [̃α]EσP ◦ λ̃ = ˜[α]EσP ◦ λ

= λ̃ ◦ [α]E = λ̃ ◦ [̃α]E

= ε ◦ Frobp ◦[̃α]E

= ε ◦ [̃α]EσP ◦ Frobp .

Applying the uniqueness in Theorem 4.27 to this equality, we deduce that [̃α]EσP ◦ε =

ε ◦ [̃α]EσP , which finishes the proof.

When we take P a principal prime ideal, then σP = 1 and λ is an endomorphism.
The following corollary describes the form of this endomorphism.

Corollary 6.7. With the conditions of Theorem 6.6, assume that P is a principal degree
1 prime. Then, there is an unique element π ∈ OK such that P = πOK and the diagram

E
[π] //

��

E

��

Ẽ
Frobp // Ẽ

is commutative.

Proof. First, by Theorem 6.6, there is a commutative diagram

E λ //

��

EσP

��

Ẽ
Frobp// Ẽ(p)

.
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By the hypothesis, P is a principal ideal, so σP = 1. This says that EσP = E and

Ẽ(p) = ẼσP = Ẽ. In particular, λ ∈ End(E). By using the normalized identification
[·]E : OK −→ End(E), there exist an unique π ∈ OK such that [π] = λ. Then, the
commutative diagram above is

E
[π] //

��

E

��

Ẽ
Frobp // Ẽ

.

Now, since P is a degree 1 prime,

NK(P ) = p = deg(Frobp) = deg([π]) = |NK(π)|,

where we have used Corollary 5.22.
But both NK(πOK) and NK(πOK) coincide with |NK(π)| = p, so πOK and πOK

are prime ideals of OK over p. Since P is also a prime ideal of OK over p and there are
exactly two prime ideals of OK over p, we have that either P = πOK or P = πOK .

Let us take a model for E/H such that E has good reduction over Q. Let ω ∈ ΩE be
a non-zero invariant differential such that its reduction ω̃ ∈ ΩẼ is a non-zero invariant
differential. Then,

π̃ ω̃ = π̃ ω = ˜[π]∗(ω) = [̃π]∗(ω̃) = Frob∗p(ω̃) = 0,

where the last equality is due to the inseparability of Frobp. But ω̃ generates the K-vector

space ΩE, so π̃ = 0̃. This means that π ∈ Q. Hence, π ∈ Q ∩K = P , so P = πOK .
We have proved the existence of π. Let us see the uniqueness. We mentioned before

that π is the unique element in OK such that [π] = λ. Now, we have by Proposition 4.56

that the reduction map End(E) −→ End(Ẽ) is injective and λ̃ = Frobp. Then, π is the

unique element of OK such that [̃π] = Frobp.

3.2 Construction of Ray Class Fields

As usual, let K be an imaginary quadratic field and let E ∈ ELL(OK) defined over the
Hilbert Class Field H = K(j(E)) of K. We used torsion points in order to generate
abelian extension of H. In this section, we will give the explicit construction of the
Ray Class Field of K for a modulus m. Before doing this, we will introduce the Weber
function h : E −→ P1 attached to E, which will be an essential ingredient in our explicit
construction. After this, we will prove a corollary that gives us the explicit form of the
maximal abelian extension of K.

Definition 6.8. Let E ∈ ELL(OK). We will say that a map h : E −→ E/Aut(E) ∼= P1

is a Weber function for E provided that it is finite (i.e, for all Q ∈ P1, the set h−1(Q) is
finite) and defined over H.

By E/Aut(E) we mean the quotient set corresponding to the equivalence relation
(x, y)Rφ(x, y), φ ∈ Aut(E). To understand why this quotient is isomorphic to P1, we may
determine Aut(E). Since E has complex multiplication byOK , this means that End(E) ∼=
OK . Hence, Aut(E) ∼= O∗K , where the isomorphism is the normalized identification. The
explicit expression of O∗K is proved in [9] (Chapter III, Corollary 10.2):
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1. If j(E) 6= 0, 1728, Aut(E) ∼= {1,−1}.

2. If j(E) = 1728, Aut(E) ∼= {1,−1, i,−i}.

3. If j(E) = 0, Aut(E) ∼= {1,−1, ω,−ω, ω2,−ω2}.

In the first case, it is clear that [−1](x, y) = (x,−y). One can check easily that
[i](x, y) = (−x, iy) in the second case and [ω](x, y) = (ω x, y) in the third case (by
computing the pull-back evaluated at the invariant differential and using Proposition
5.5). This determines completely Aut(E).

After this, it is not difficult to establish the isomorphism between E/Aut(E) and P1

in each of the previous three cases. We consider homogeneous coordinates [x0, x1] in P1 in
such a way that the point of infinity in P1 has homogeneous coordinates [1, 0]. The class of
the point∞ ∈ E in E/Aut(E) (which only contains the point∞ itself) is identified with
the point of infinity in P1. If j(E) 6= 0, 1728 (resp. j(E) = 1728, resp. j(E) = 0), each
class (x, y) ∈ E/Aut(E) is identified with the point of P1 with homogeneous coordinates
[x, 1] (resp. [x2, 1], resp. [x3, 1]).

Note that the non-trivial points of the curve correspond to points on P1 that are
different from the point of infinity. Thus, these points can be given in a single affine
coordinate. Namely, [x0, x1] ∈ P1 with x1 6= 0 is identified with x0

x1
∈ A1. We can give the

definition of a Weber function on that way when it sends the point ∞ ∈ E to the point
of infinity in P1. For example, if we take a model for E

E : y2 = x3 + Ax+B,

the following is a Weber function:

h(x, y) =


x if AB 6= 0

x2 if B = 0

x3 if A = 0

.

Indeed, it is clearly finite and defined over H. When A,B 6= 0, note that h is the
first-coordinate-function for points of E.

In the sequel, h will be this example of Weber function.
We will need the following lemma, which says that the Weber function E is Aut(E)-

invariant. It can be consulted in [11].

Lemma 6.9. Let E be an elliptic curve over C and let P, P ′ ∈ E. Then, h(P ) = h(P ′)
if and only if there is some ε ∈ Aut(E) such that P ′ = ε(P ).

Proof. Let us fix a model
E : y2 = x3 + Ax+B

and write P = (x, y) and P ′ = (x′, y′). We will only prove it for j(E) 6= 0, 1728 (the
other cases are analogous). In that case, h(P ) = h(P ′) if and only if x = x′. Now, since
P, P ′ ∈ E, we have that

x = x′ ⇐⇒ y2 = x3 + Ax+B = x′3 + Ax′ +B = y′2,
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and the latter is equivalent to y′ = ±y. Hence,

h(P ) = h(P ′)⇐⇒ (x′, y′) = (x,±y).

Now, we are ready to give the explicit construction of the Ray Class Field of K for
any modulus m.

Theorem 6.10. Let K be an imaginary quadratic field, E ∈ ELL(OK) and h : E −→ P1

be a Weber function for E/H as before. Let m be a modulus of K. Then, the Ray Class
Field of K for m is

Km = K(j(E), h(E[m])).

Proof. Let L = K(j(E), h(E[m])).
It is enough to prove that(

L/K

P

)
= 1⇐⇒ P ∈ PK,1(m) (6.3)

for all but finitely many of the degree 1 primes P of K. Indeed, let us assume that we
have proved this. Then, for all but finitely many primes of L/K, we have the following
equivalences:

P splits completely in L⇐⇒
(
L/K

P

)
= 1

⇐⇒ P ∈ PK,1(m)

⇐⇒
(
Km/K

P

)
= 1

⇐⇒ P splits completely in Km

With the notation of Chapter 3, SL/K=̇SKm/K . Then, Theorem 3.31 gives us that
L = Km and we are done.

Let us assume that P ∈ PK,1(m) satisfies that the rational prime p that lies under P
does not belong to S and does not divide #E[m]. Note that the set of primes that do not
satisfy some of these conditions is finite, so there is no problem with these assumptions.
By definition, P = µOK , where µ ∈ OK and µ ≡ 1 (modm). Let H be the Hilbert

Class Field of K and σP =
(
H/K
P

)
. Since P is principal, by Artin Reciprocity Theorem,

σP = 1. By Corollary 6.7, there is an unique π ∈ OK such that P = πOK and the
diagram

E
[π] //

��

E

��

Ẽ
Frobp // Ẽ

is commutative.
Since µOK = P = πOK , there is a unit β ∈ O∗K such that π = β µ. Now, we have

that [β] ∈ Aut(E) because β is a unit and [·] is an isomorphism. Moreover, we have that

[π] = [β µ] = [β] ◦ [µ].
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We want to prove that
(
L/K
P

)
fixes L. First, we show that it fixes H = K(j(E)).

Since j(E) ∈ H and the restriction of
(
L/K
P

)
to H is σP = 1, j(E)(

L/K
P ) = j(E), and this

gives us what we wanted.

Now, let us prove that
(
L/K
P

)
fixes h(E[m]). Let T = (x, y) ∈ E[m]. In order to prove

that h(T )(
L/K
P ) = h(T ), it is enough to prove

T (L/KP ) = [π](T ). (6.4)

Indeed, since h is defined over H, h(T )(
L/K
P ) = h(T (L/KP )). Now, by using (6.4),

we have that h(T (L/KP )) = h([π](T )). But we also proved that [π] = [β] ◦ [µ]. Then,
h([π](T )) = h([β] ◦ [µ](T )). Since [β] ∈ Aut(E), by the previous lemma, h([β] ◦ [µ](T )) =
h([µ](T )). Finally, since T ∈ E[m] and µ ≡ 1 (modm), we have that µ − 1 ∈ m, so
[µ− 1](T ) =∞. Then µ(T ) = T , which implies that h([µ](T )) = h(T ). This proves the
desired equality.

So let us prove (6.4). Since P is a degree 1 prime,

T (L/KP ) = (xN(P ), yN(P )) = (xp, yp).

Reducing modulo Q,
˜
T (L/KP ) = Frobp(T̃ ). By using the commutative diagram, the latter

equals to [̃π](T ).

Let us prove that the reduction E[m] −→ Ẽ[m] is injective. By Proposition 4.56,

given an integer number m coprime with p, the reduction E[m] −→ Ẽ is injective. Given
P ∈ E[m], the order of P divides #E[m]. Since p does not divide #E[m], we deduce that
the order of P is coprime with p. Let d = lcm({ord(P ) |P ∈ E[m]}). Then, d is again

coprime with p and clearly E[m] ⊂ E[d]. Thus, the reduction E[d] −→ Ẽ is injective and

its restriction E[m] −→ Ẽ[m] is also injective, as we claimed.

Since
˜
T (L/KP ) = [̃π](T ) and the reduction E[m] −→ Ẽ[m] is injective, we obtain that

T (L/KP ) = [π](T ). (6.5)

Since
(
L/K
P

)
fixes both H and h(E[m]), it coincides with the trivial automorphism.

Conversely, let us assume that
(
L/K
P

)
= 1. Again, the restriction of this automor-

phism to H is σP , which equals 1. We use Corollary 6.7, obtaining that there is an unique
π ∈ OK such that P = πOK and the diagram

E
[π] //

��

E

��

Ẽ
Frobp // Ẽ

is commutative.
Let σ ∈ Gal(K/K) be an extension of the Artin symbol(

Kab/K

P

)
∈ Gal(Kab/K).
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Then, the restriction of σ to L is the trivial automorphism. In particular, the restriction
of σ to H is also the trivial automorphism.

Let T ∈ E[m]. Then the coordinates of T lie in Kab. Let us consider the reduction of
h modulo Q

h̃ : Ẽ −→ Ẽ/Ãut(E).

Let us show that h̃([̃π](T̃ )) = h̃(T̃ ). By using the commutative diagram, h̃([̃π](T̃ )) =

h̃([̃π](T )) = h̃(Frobp(T̃ )). Since σ restricts to
(
Kab/K
P

)
∈ Gal(Kab/K), h̃(Frobp(T̃ )) =

h̃(T̃ σ). This trivially coincides with h̃(T σ). Now, since h is defined over H and σ|H = 1,

h̃(T σ) = h̃(T )σ. But h(T ) ∈ L and also σ|L = 1, so h̃(T )σ = h̃(T ) = h̃(T̃ ). Then, the
desired equality holds.

Since the reduction behaves well with sum and product and the image of h lies in

Ẽ/Ãut(E), we have a version of the previous lemma in charasteristic p: given P̃ , P̃ ′ ∈ Ẽ,

h̃(P̃ ) = h̃(P̃ ′) if and only if there is ε̃ ∈ Ãut(E) such that P̃ ′ = ε̃(P̃ ). Thus, there is

an automorphism [β] ∈ Aut(E) such that [̃π](T̃ ) = [̃β](T̃ ). Since the reduction map

E[m] −→ Ẽ[m] is injective, [π − β](T ) =∞.
Note that β might depend on T , so the last equality holds for that concrete T . Recall

that by Proposition 5.21, E[m] is a OK/m-module of rank 1. Then, given T ′ ∈ E[m],
there is α ∈ OK such that T ′ = (α + m)T = [α](T ). Thus,

[π − β](T ′) = [π − β]([α](T )) = [α]([π − β](T )) =∞.

We have proven, then, that [π− β](T ) =∞ for all T ∈ E[m]. By definition of E[m], this
means that π − β ∈ m, so π ≡ β (modm). Equivalently,

β−1 π ≡ 1 (modm).

Since β is a unit, P = πOK = β−1πOK , which proves that P ∈ PK,1(m). This finishes
the proof.

We have constructed the explicit expression of the Ray Class Field of K for any
modulus m. After this, the construction of the maximal abelian extension of K is nothing
but a corollary.

Corollary 6.11. Let K be an imaginary quadratic field and let E ∈ ELL(OK). Then,
Kab = K(j(E), h(Etors)).

Proof. Recall that Kab is the compositum of all abelian extensions of K. Given a modulus
m of K, by Proposition 3.25, Km contains all the abelian extensions of K whose conductor
divides m. Hence, it is the compositum of such abelian extensions. For any abelian
extension L/K there exist a modulus m such that L ⊂ Km (indeed, it suffices to take a
multiple of f(L/K)). By rearrenging the fields in the compositum Kab, we obtain that
Kab is the compositum of all Ray Class Fields Km of K.

But by the previous theorem, Km = K(j(E), h(E[m])). Since
⋃

mE[m] = Etors, we
deduce that

Kab = K(j(E), h(Etors)).
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We deduce that in the case where j(E) 6= 0, 1728, the maximal abelian extension
of K is obtained by adjoining to K the j-invariant j(E) and the first coordinates of
the torsion points of E. This completes the proof of Kronecker’s Jugendtraum in the
imaginary-quadratic case.

3.3 Examples of computation of Hilbert and Ray Class Fields

Let K be an imaginary quadratic field. We know explicitely the form of the Hilbert Class
Field and the Ray Class Field for any conductor of K, in the sense that we know their
generators. However, this is a theoretical answer and we would like to compute explicitely
these class fields for a concrete field K. In this section we will see how to do this.

We begin with the Hilbert Class Field H of K. We proved at the end of Chapter
5 that H = K(j(E)), where E ∈ ELL(OK). If we know the exact value of j(E), then
the problem will be solved. We could compute the elliptic curve E and then compute
its j-invariant. But then we get an approximation of j(E) and we look for an algebraic
description of H. We may take another approach. What we will do is to compute the
irreducible polynomial f of j(E) over K. This is enough because H is the splitting field
of f over K. In other words, H = K(z) where z has minimal polynomial f .

Let N ∈ Z>0 such that K = Q(
√
−N). Put C(OK) = {a1, ..., an}. Let us denote

T = {j(a1), ..., j(an)}. Now, there is a one-to-one correspondence

C(OK) −→ T
a 7−→ j(a)

.

In the proof of Theorem 5.12, we proved that j(a1), ..., j(an) are the conjugates
roots of the same polynomial. Then, the polynomial f we want to compute has roots
j(a1), ..., j(an). Thus, it is just

f(X) =
n∏
i=1

(X − j(ai)).

Thus, the procedure we follow in order to compute the Hilbert Class Field of an
imaginary quadratic field is the following:

1. We compute a system of representatives a1, ..., an of the classes in the ideal class
group C(OK) of K.

2. We compute the j-invariant of each one of the representatives of C(OK).

3. We use the values obtained in order to compute the coefficients of the polynomial
f =

∏n
i=1(X − j(ai)).

We can implement these steps easily in some mathematics software. The values
obtained for the coefficients may not be exact, but we can get the correct values by
using that the j-invariant of an elliptic curve with complex multiplication is an algebraic
integer (see [10], Chapter II, Theorem 6.1). This implies that the coefficients of the
irreducible polynomial are integer numbers (see [4], Theorem 1).

In the following examples, we use Sage to do the computations.
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Example 6.12. Let us compute the Hilbert Class Field of K = Q(
√
−13). A system of

representatives of C(OK) is given by

a1 =< 1,
√
−13 >,

a2 =< 2, 1 +
√
−13 > .

The j-invariants we obtain are

j(a1) ≈ 6.89696230631497 · 109 − 9.56731793025273 · 10−6 i,

j(a2) ≈ −82306.3149816314 + 5.79305787577049 · 10−11 i.

Actually, both values are real (see [10], Exercise 2.9), and this is the reason because
of which the approximations have imaginary parts very close to 0.

The next step is to use the previous values to compute f(X) = (X−j(a1))·(X−j(a2)).
By the previous comment, we can erase the imaginary parts in this computation. Then,
we obtain the polynomial

X2 − 6.89687999999999 · 109X − 5.67663551999999 · 1014

whose coefficients are approximations of the coefficients of f . Using that f has integer
coefficients, we obtain that

f(X) = X2 − 6896880000 ·X − 567663552000000.

Using the same procedure to compute the Hilbert Class Field of K = Q(
√
−34), we

obtain 4 classes of ideals and from here the irreducible polynomial

f(X) = X4 − 8151279336430848X3 + 735960027609078992953344X2

− 1834607111282472051029311488X + 2422829169428572504087521656832.

Note that the degree of the polynomial obtained coincides with the number of classes
of ideals. This fact is general and follows from Artin Reciprocity Theorem, which gives
us that |C(OK)| = [H : K] = deg(f).

Finally, we explain how to compute the Ray Class Field of an imaginary quadratic
field K for a modulus N OK , N ∈ Z>0. This is enough in order to compute Kab.
Indeed, given an arbitrary modulus m of K, then mm = N(m)OK , and hence m divides
N(m)OK , which implies by Proposition 3.25 that Km ⊂ KN OK . We deduce that Kab is
the compositum of all Ray Class Fields KN OK , N ∈ Z>0.

We proved that KN OK = K(j(E), h(E[N ])), where E is an elliptic curve defined
over H and with complex multiplication by OK . We only deal with elliptic curves such
that j(E) 6= 0, 1728, so h is the x-coordinate function. We saw that H is the splitting
field of an irreducible polynomial f over K and we computed explicitely this polynomial.
Now, for obtaining the Ray Class Field of K for the modulus N , we may add all the
x-coordinates of N -torsion points of E.

Fixed N and a model of E, there is a polynomial DN , called the N -th division
polynomial, defined recursively in terms of the coefficients of the model fixed for E (see
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[9], Exercise 3.7). This polynomial has the property that its roots are the x-coordinates
of the N -torsion points of E. Then, computing this polynomial solves the problem.

Note that this involves computing some elliptic curve E with the required properties.
Remember that the roots of the polynomial f we computed are the j-invariants of the
representatives of the different classes of ideals. What we do is to take some of them and
compute an elliptic curve whose j-invariant is that value.

Then, the steps we follow are:

1. We compute the polynomial f whose roots generate the Hilbert Class Field of K
by using the previous procedure.

2. We take some root α of f and compute an elliptic curve E whose j-invariant is α.

3. We compute the N -th division polynomial associated to E.

Example 6.13. Let us compute the Ray Class Field of K = Q(
√
−13) for the modulus

3OK. In the previous example, we computed the polynomial f whose roots generate the
Hilbert Class Field H of K. Fix z ∈ H with minimal polynomial f , so H = K(z).
We do all computations in terms of z, this is no problem because we can compute an
approximation of its value. We obtain that α = −z+ 6896880000 is a root of f in H. An
elliptic curve E with j(E) = α is the following:

E : y2 =x3 + (20690634816 z − 142702528440430080000)x

+ (95134995124675411968 z − 656142475386344700342435840000).

Once we have computed E, we can compute the third division polynomial D3 associated
to E, which is

D3(x) =3x4 + (124143808896 z − 856215170642580480000)x2

+ (1141619941496104943616 z − 7873709704636136404109230080000) x

+ 2952641139238551151540961280000 z

− 20364254641403212557712246714662912000000.

Then, K3OK = H(a), where a has minimal polynomial D3.

Let K = Q(
√
−15). Let z ∈ H such that H = K(z). Then z has minimal polynomial

f(x) = x2 + 191025x− 121287375.

Now, K2OK = H(a), where a has minimal polynomial

D2(x) = 4x3 + (−2313036 z − 443303150400)x+ 298200051072 z + 57152369475847800.
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