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Introduction

The object of this Master Thesis is the study of

1) sieve theory

2) a theorem due to J. Chen (1966) stating that every even large enough number is the
sum of an odd prime and a product of at most two primes.

The proof of said theorem makes great use of sieving techniques. Thus, this Master
Thesis’ purpose is to introduce the required sieving methods in order to fully understand
their application in said theorem’s proof, as well as providing a proof of the theorem.

Section 1 introduces basic notations and methods of sieve theory. An upper bound is
found for the prime counting function using elementary sieving methods, which is by no
means comparable to the Prime Number Theorem, but is interesting on its own nonethe-
less. Moreover, a sieve due to Selberg is described and then applied to bounding above the
twin prime counting function and the number of representations of any given even number
as the sum of two primes. The references for this Section are mainly §7.2 of [1], §1.2 of [4]
and §7 of [5].

Section 2 focuses on combinatorial sieves, which are in a sense a generalisation of the
sieve shown in Section 1. In particular, it centers on linear sieves, that is, combinatorial
sieves of dimension one. Finally, a theorem due to Jurkat and Richert on linear sieves is
stated and proved for it will later be used in the proof of Chen’s Theorem in Section 4.
This section roughy follows §8 of [3] and §9 of [5].

Section 3 briefly presents large sieves due to the fact that a large sieve inequality will
be needed in the proof of Chen’s Theorem in Section 4. For more details, see §27 of [2]
and §8 of [1].

Section 4 is exclusively dedicated to state and prove Chen’s Theorem. Said proof is
predominantly extracted from §10 of [5] and §11 of [3] to a lesser extent.
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Notation

The letters p and ¢ denote prime numbers. Similarly, n, m, d, IV, among others, are always
used for natural numbers. The set of natural numbers is denoted by

N=1{1,2,3,...}

Given m and n two natural numbers, write (m,n) to denote the greatest common divisor
and [m,n] the lowest common multiple of m and n. Moreover, d” || n means the greatest
power of d dividing n, that is, the greatest > 0 such that d” | n and d"*! { n.

Given two functions f and g, write f << g if there exists A > 0 such that |f| < Ag, the
same as f = O(g). Similarly, write f >> g if there exists B > 0 such that |f| > Byg.
Finally, f <<, g means there exists A = A(C) > 0 such that |f| < Ag.

m(x) is the prime counting function:

m(z) = Zl

p<z

7(z,amodn) is the number of primes up to z congruent to a modulo n:

m(x,amodn) = Z 1

p<w
p=a(mod n)

w(n) is the prime divisor function:
w(n) = Z 1
pln

©(n) is Euler’s totient function:

pln)= > 1

d<n

(d,n)=1

v is Euler’s constant, and multiplicative functions are not identically 0.



1 Introduction to Sieve Theory

Given a finite set A of natural numbers, a set of primes P and a real number z > 1, the
question is how many elements of A are not divisible by any prime in P smaller than z.
Finding the answer to the previous question is what sieve theory seeks to accomplish.

The set A is referred as the sieving set, and P and z are often named the sieving range
and sieving level, respectively. Together they define the sieving function

S(AP )= Y 1
a€A
(a,P(2)=1

where

P(z)=[]»

peP
p<z

Thus, sieve theory tries to produce optimal upper and lower bounds for S(A, P, z).

Perhaps the most famous of sieves is the one due to Eratosthenes, who based the sieving
of primes on the following remark:

FEvery natural number between 2 and N not divisible by any prime smaller or equal than
the square oot of N is a prime number.

Proof. Let 2 < n < N. Write n = p;...p, as product of primes, where r > 0. If n
is not divisible by any prime smaller or equal than N %, then p; > N %, for all i. Hence
n> N2 >n%. Therefore, 1 > 5, which implies r = 1. O

In the above setting, Eratosthenes’ sieve consists in sieving the set
A={neN:n<N}

with sieving range P = P and sieving level z = [N 3 4 1]. The value of z cannot simply be
1

set to equal N2z because of technical reasons with P(z) being the product of primes p < z

rather than p < z. Anyhow

Yoo1= Y 1=xa(N)-n(N?%)

1 1
NZ<n<N N3 <p<N
(n,P(2))=1

and therefore

SAP)= > 1=1+ Y 1+ Y 1=1+a(N)-a(N?)
n<N

1 1
(n.PCo))=1 1<n<NZ2 N2<n<N

(n,P(2))=1 (n,P(z))=1

since there is no 1 < n < N2 coprime with P(z). An upper bound for S(A, P, z) will be
found in order to estimate 7(N).
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In a general setting, a way to find an upper bound for a sieving function, is to make use
of the Mobius function (see Appendix B). By Theorem B.1

SAP2)= Y 1=) Y wd=) > pd= D ud) 1

acA a€A d|(a,P(z a€A dla d|P(z acA
(. BE)=1 |(a,P(2)) d\P‘(z) |P(2) i

Given d € N square-free, define
Aj={a€c A : d|a}

Then

S(A,P,z) = Y u(d)|Adl
d|P(z)

since d | P(z) implies d square-free. The above identity is known as Legendre’s identity,
and will be used in upcoming sections.
In the particular case of Eratosthenes’ sieve

- g -5

n<N
d|n

Hence ()
_ pd) N
saps)-n Y M0 {T}
d|P(2) d|P(2)
By Theorem B.1 with f(n) = %, rewrite the first sum as
pd) _ 1
S AT (1
d|P(z) plP(2)
Therefore
1
S(A,P,z) =N 1--)+R
ara=v 1 (1-)
pIP(2)
where

R=- Y u(d){g}z > O(1)=0(2”<Z>)

d|P(z) d|P(z)

since the number of divisors of P(z) is exatcly 2¢(F(*)) = 27(*) The problem is that the
error term R is too big for the chosen value of z (which is of order N %) and thus very
little can be said of S(A,P,z). A solution appears itself by reducing the size of z. Set
z =log N. In this case

R=0 <27r(logN)) — O(NlogQ)
since 27(log N) < glog N _ clogNlog2 — Nlog2 \[greover

S(A,P,z) > 1+n(N)—n(z) >n(N) -z
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since S(A, P, z) certainly counts the number one and every prime between z and N. Then

7(N)<z+4+ S(A,P,z) =logN + N H (1—;>+R:N H (1_1>+O<N10g2)

p|P(z) p|P(2)

where

1\ A 1 1 [*d

H <1_> :H<1_) ZH - > *>/—$zlogz

p|P(z) p p<z p p<z mZOp nez 1 7z

Hence
H 1_ 1 < 1 _ 1
P logz loglog N

and therefore
N

N << ——
m(N) loglog N
This result is much weaker than the Prime Number Theorem. Nonetheless it serves the
purpose of showing how sieve theory can be applied.

1.1 Selberg’s Sieve
In Selberg’s sieve one replaces the Mdobius function in

SAPz= Y 1=> > ud
a€A d|(a,P(z))

acA
(a,P(2))=1

with a sequence of real numbers {\;}, where d is square-free and \; = 1, carefully chosen
to minimise the final estimates. The reason being that

Z p(d) < Z Ad

d|(a,P(2)) d|(a,P(2))

for any arbitrary sequence of numbers {\;}, with A\; = 1. The choice of Ay = 0 for every
d # 1 produces the trivial and useless bound

S(A,P,2) <Y 1=|A]

a€A

Theorem 1.1 (Selberg Sieve). Let A be a sieving set, P a sieving range and z a sieving

level. Let
Pz =]]p

pEP
p<z

and consider the sieving function
S(APz)= Y 1

acA
(a,P(z))=1
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Let Ay={a € A : d|a}, for any d € N square-free and f a multiplicative function such
that 0 < f(p) < 1, for every p € P. Define

r(d) = |Aq| = [Alf(d)
Let g be the completely multiplicative function defined by g(p) = f(p) for every p € P and

Glz)= Y g

n<z
pln=peP

Then

| w(

d\P(Z)

Proof. For every divisor d of P(z), define A\; = 1 and Aq = 0, for every d > z. Then, by
Lemma A.5

2
S(A,P,Z): Z ].SZ Z )\d :Z Z Z )\dl)\dg
acA a€A \d|(a,P(z)) a€A di|a ds|a
(a,P(z))=1 di|P(z) d2| P(2)
= > e Z L= > AaAalAu 6]
dy,d2|P(z) dy,d2|P(z)
[dl,d2]|a
= |A| Z )‘dl)\dzf([dla d2]) + Z )‘d1>\d2T([d17 dQ])
d1,d2|P( dl,dz‘P(z)
=14 Y )\dlAd2 ) ;i)) R=|AT+R
dy,da| P(2)
where Fld) ()
T= Ay Agy ot 20
dl%;g f((d1, dz))
dl,d2|P(z)

is to be minimised by choosing appropriate values for Ay, and

R= Z >‘d1)‘dzr([d17d2])
d1,d2<z
dl,dg \P(z)

is the error term.
Let

(d)
F(n) = (% % n) =
(n) = (5 *p)(n) dEnf(Z)

Then F' is multiplicative, since both % and p are multiplicative functions and the Dirichlet
convolution preserves multiplicativity. By Mobius inversion formula (Theorem B.2)

=> F(d)
d|n
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Therefore
d d
T= 3 g ) sy Ranfd) S F)
dyda<z f((ds, d2)) dy,da<z d|(dy,ds)
dl,dz‘P(Z) dl,d2|P(z)
2
= Y Fd) D AAafd)f(d)= Y Fd)| > Asf(d)
d<z dy,do<z d<z i<z
d|P(2) dy,d2|P(2) d|P(z) 5|P(2)
d|(dy,d2) d|é
Let
wq = Z Asf(9)
60<z
5|P(2)
ds

By the dual Mébius inversion formula (Theorem B.3)

Aaf(d) = Z 1% (3) ws

0<z
5P (2)
d|s

since wy and Ay f(d) are defined in the divisor-closed set {§ < z : § | P(z)}. In particular,

ford=1
L=Mf(1)= ) pO)ws
6<z
5|1P(2)
Let d | P(z). Then d is the product of distinct primes. This implies that F(d) > 0, since
1 1
F(p):u()+u(p): 150

fip)  f(1)  f»)

for all primes in P, and F is multiplicative. Moreover, u?(d) = 1. Let

1
V(Z)_ d<z m
d|P(z)
Then ( ) ,
— w2 = v — d 1
T= 2 Fdwi= 2, F@ ( ‘ F<d>v<z>> Ve
d|P(z) d|P(z)
d \*_ 1*(d) pi(d)wa
; F(d) <wd - F( )V(Z)) =T+ ; F(d)V2(Z) - V(Z)
d|P(2) d|P(z) d|P(2)
1 1 2 1 2 1
"It 2 Fa v 2 TG v T g
d|P(z) d|P(z)
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It is therefore manifest that the minimum value of T is

1
V(z)
attained at
)
T FV(z)
since F'(d) > 0. Substitute these values of wy in the expression previously found for A4, to
obtain (
1 NG p(d) 1
A= —— — = I
@ 52 g (d) FOV(E) ~ fV() 62 F()
8| P(2) 5|P(2)
d|s d|s
since )
d w2 (9) 1
(&) 0= = s =@

for every § | P(z) such that d | 4, for in this case, § and d are both products of distinct
primes. Moreover

3 L L L 3 L
6<z F((S) dl<z F(dg) A<z F(dﬁ) (d) dl<z F(e)
5| P(z) dl|P(z) dl|P(z) dl|P(z)
dls (d,0)=1 (d,0)=1

Hence

dl<z pld dl<z
dl|P(z) dl|P(z)
(d,0)=1 (d,0)=1
u(d) 17 F() + F(p) L () ( I ) i
mg o 2 T vwE ) 2 T
df|P(2) de|P(z)
(d,0)=1 (d,0)=1

since d is product of distinct primes, and therefore, f(d) and F(d) are completely multi-
plicative. By Theorem B.1

1 1(h) 1 1 1 1
E L] <
M= V5 |2 Fm) | 2 F@ S V0 2 T 2 FO
at|P(=) at|P(=)
(d,0)=1 (d,0)=1

1 1 1 1 1 1
T V() 2 F(WEF({) ~ V(z) 2 o) = V(o) 2. ey

Rt ht he<z
h|d h|d he|P(z)
al<z dl<z

de|P(z) de|P(z)

(d,0)=1 (d,0)=1
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Thus

RI< > r(lduda)l= > > @< > Ir@ > 1

dy,do<z dy,da<z [dl ,d2]=d d<22 dy,ds
dy,d2|P(2) di,d2|P(2) d|P(z) [d1,d2]=d

= Y 3°Wir(a)

d<z?
d|P(z)

since the amount of ordered pairs (dy,ds) such that [dy, ds] = d, where d is the product of
distinct primes, say d = p; ... p,, is exactly 3", because of the fact that dy = [],_, p{* and
dy = Hz:1 pf * where o, B; are nonnegative integers, and

T

P1...Dr = d= [dladQ} = Hp?lax(aivﬂi)

i=1

which implies that the amount of ordered pairs (d,ds) such that [d;,ds] = d is equal to
the amount of ordered pairs («;,3;) such that max(a;, ;) = 1, which is 3 for every 4,
corresponding to the pairs (1,0), (0,1) and (1,1).

Hence

| w(d)
d\P(Z)

To conclude, it is enough to prove that V(z) > G(z). Let d | P(z). Then, d is the product
of distinct primes. Thus, (h, %) = 1, for every h | d. Hence f(d) = f(h2) = f(h)f($).

Therefore
M 1

é
h|d h h|d pld

by Theorem B.1. Then

1
V() = Z Z US H f(p) B Z g<d)H1*g(p)

d<z pld d<z pld

d|P(z) dIP(Z) d|P(z)
= > g @[[D o= > 9@]]D 9™

d<z pld n>0 d<z pld n>0

d|P(z) d|P(z)
=D 9 > gm= > > gldm)= 3 >

d<z m>1 d<z m>1 d<z k>1

d|P(z) plm=-p|d d|P(z) plm=-p|d d|P(z) dlk

plE=pld
= > 9 Z 1> > gk =G
k<z k<z
plk=peP dIP( ) plk=peP
dlk
plE=pld
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where the last inequality follows from the fact that

DIRES
d<z
d|P(z)
dlk
plE=pld

since the sum certainly includes d equal the product of all distinct primes that divide k.
Thus

| w(

d\P(z)

1.2 Twin Primes and Sums of Two Primes

Selberg’s sieve can be applied to provide an upper bound for the number of twin primes
up to a given number and for the number of representations of an even number as the sum
of two primes.

The twin prime conjecture states that there exist infinitely many primes p such that
p+ 2 is prime. Let my(z) be the number of twin primes up to . Then, the twin prime
conjecture is equivalent to lim,_, 1 o, ma(z) = +00. Selberg’s sieve will provide the following
upper bound for ms(z):

m(r) << —5—
2() logzx

Goldbach’s conjecture states that every even natural number greater than 2 can be
written as the sum of two primes. Equivalently, R(N) > 1, for every even N > 2, where

R(NV) is the number of representations of N as the sum of two primes. Using Selberg’s
sieve, one can find the following upper bound for R(N):

N
) < 1+
H< )logN

Before proving either of the above, a lemma.

Lemma 1.2. Let N be an even natural number and f the completely multiplicative function
defined by

ifp| N

otherwise

B W=

10
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Proof. Let n < z. Write
w(N) k
n=[]r]le’
i=1 j=1

where p1, ..., p,(n) are the distinct primes that divide N, and qi, . . ., gx are distinct primes
not dividing N, with k, a; and 8; nonnegative integers. Then

w(N) w(V) 1 <k 98 72ﬁ1+~u+ﬂk

k
f(n) = H f(pi)ain(Qj)ﬁj = H w5 =

1

Let d(s) = 3_4, 1 be the divisor function and

d(s,N)= Y _ 1

d|s
(d,N)=1
Then
k k k
d(n,N)=d qjj = (1+8)) < H 98i — 9Bt 4Bk
Jj=1 J=1 j=1

since d | H?Zl qu if and only if
k
- 117
j=1

where 0 < v; < 3y, for every j, that is, 1 + 3; possible different values for v;, for every j.

Hence ( )
d(n, N
G(x) =) fn) =) =
n<z n<z
Rewrite
1\ ! 1 1
Ii-3) -OX .- % ;
p|N p|N m>0 r>1
p|lr=p|N
to get

G(z)H(ll) R SR S GO S

p|N p n<z r>1 n<z r>1
plr=p|N plr=p|N
1 1
= g d(n,N) g - = g - E d(n,N)
n<z s>1 5 s>1 5 n<z
n|s nls
plE=p|N pl5=p|N
1
2 § - E d(n7N)
S
s<z n|s
plm=pIN

11



1.2 Twin Primes and Sums of Two Primes 1 INTRODUCTION TO SIEVE THEORY

Let s < z and n be such that n | s and p | N for every p | . Write

w(N)

- H qu

=1

and
w(N) k
v d;
n= ]I »Ila’
i=1 j=1
where p1, ..., p,(n) are the distinct primes that divide N, and ¢y, . . ., gy are distinct primes

not dividing N, with k, a;, b;, ¢; and d; nonnegative integers. Then

w(N)

ai—ci T bi—di
=117 qu

where a; —¢; > 0 and b; — d; > 0, since n | s. In fact, b; = dj, since p | N for every p | 2
In particular

H'z»

k
d(n,N) =[]0 +d)) =
Jj=1

Furthermore, the number of divisors n of s such that P \ N for every p | % is exactly

w(N)

H (1 —|—6Li)

i=1
since the exponents d; are completely determined by s and there are as much as 1+ a;
possible different values for ¢;, for every i, because 0 < ¢; < a;, for every 7. Thus

k w(N)
Z d(n,N) H(1+bj) Soa=]JJa+b) [T @ +a)=d(s)
j=1 nls 7j=1 i=1

Pl épIN pla=pIN

Finally, by Lemma A.2

G [] (1—1>1 22@ >> log? 2

p|N p s<z
which implies
1 1 1 +1 1 +1
G(Z)<<102,z pfl:IOQZ p]gg—l)zlozznp—lnp
8 p|N & p|N & p|N pIN
-1
1 1 1 1 1
S0 5) T() = ()
log 2N D DIN D log 2N D

where, in the last inequality, one uses that fact that

H(1—;2)1<H(1—12>1=<(2)<+oo

p|N P p

12



1 INTRODUCTION TO SIEVE THEORY 1.2 Twin Primes and Sums of Two Primes

After the lemma, both previously stated results can be proved.

Theorem 1.3. Let > 1 be a real number and mo(x) the number of twin primes up to x.

Then
T

m(r) << —5—
2(v) log® ©
Proof. Consider the sieving set

A={nn+2) : n<z}

of [z] elements. Let P = P be the sieving range and z = 2% the sieving level. Then

S(A,P,z) = > 1
n<z
(n(n+2),P(2))=1
Let z < n < z. Assume that p | n(n +2), for some p < z. Then, p | n or p | (n + 2), which
implies, n ¢ Por n+2 ¢ P, since n+2 > n > z > p. This means that (n(n+2), P(z)) =1
if both n € P and n+ 2 € P, with 2 < n < . Therefore

mo(x) = Z 1=ma(z) + Z 1<m(2)+ S(AP2) <z+ S(APz2)

psz z<p<z
p+2€P p+2€P

In order to apply Selberg’s sieve, consider the sets Ay = {a € A : d|a}, foralld € N
square-free. Let f the completely multiplicative function defined by

% ifp| N
fp) =4, .
> otherwise
Define
r(d) = |Aq| — [2]f(d)
and
G(z) =) f(n)
n<z

Then, by Selberg’s sieve (Theorem 1.1)

[] w
S(A,P,2) < B + Z 39D p(d)|

d<z?
d|P(z)

and by Lemma 1.2 with N =2

! <<H<1+1> ! —<1+1>64 <!
G(z) o2 p) log’z 2) log?z log? z

To find an upper bound for the error term, let d | P(z). Write d as d = p;...p, or
d=2py...p, with 2 < p; < z distinct primes and r > 0, and consider

[Ad = > 1

n<zx
d|n(n+2)

13



1.2 Twin Primes and Sums of Two Primes 1 INTRODUCTION TO SIEVE THEORY

which equals the number of solutions to the congruence n(n+2) =0 (mod d), forn < z. It
is enough to solve this congruence for primes only and then apply the Chinese Remainder
Theorem, since d is product of distinct primes. Let p = 2. Then n(n + 2) = 0 (mod 2) if
and only if n = 0 (mod 2), which corresponds to only 1 residue class modulo 2. Let p > 2.
Then n(n + 2) = 0 (modp) if and only if n = 0 (modp) or n + 2 = 0 (mod p), which
corresponds to 2 different residue classes modulo p. Hence, by the Chinese Remainder
Theorem, n(n 4+ 2) = 0 (modd) if and only if n lies on any of some 2" different residue
classes modulo d. Therefore

2" 2"
S
n=a;(mod d) -

where «; are the said 2" different residue classes modulo d. Thus
T
=2 (B o) = s + o)

since f(d) = %, whence
r(d) = 0(2") = 0(2°%)

since w(d) equals either r or r + 1 (depending whether d is odd or even). This bound for
r(d) allows the proof to be concluded, because

3 @) < 3 3@ = 37 el < 37 D < 3T 2R < 2R

d<z? d<z? d<z2 d<z? d<z?
d|P(z) d|P(z) d|P(z)
7.2 9
< 2;7'2 = 8 — g1lio
sice d log 6 d d log 6 log 6 2 log 6
6“(@ = 91029(d) = (99(d)) 1552 < glosz < ;2Tos2

for any d < 22, and therefore

mo(z) < 25 4+ S(A,P, 2) << x5 + logxzx +al < longa:
O

Corollary 1.4. The sum of reciprocals of twin primes converges.
Proof. Let p, be the n-th twin prime. Then, by Theorem 1.3

n = malpn) < loé);pn = lo];gn
for every n > 1. Hence

1 1 1 1

p%;e@p _nzz:lpn = 3 +T§nlog2n s e

since p; = 3. O

14
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Finally, the second application of Selberg’s sieve, whose proof is very similar to that of
Theorem 1.3.

Theorem 1.5. Let N > 2 be an even natural number and R(N) denote the number of
representations of N as the sum of two primes. Then

1 N
R(N) < 1+- | ——
() H( p)log2N

It has to be made clear that the number of representations of N as the sum of two
primes is to be understood as the number of ordered pairs of primes whose sum is N.
Hence 12 = 5+ 7 = 7+ 5 are considered different representations of 12 as sum of two
primes. This can be adjusted by a factor of 2.

Proof. Consider the sieving set
A={n(N—-n) : n< N}

of N elements. Let P = P be the sieving range and z = N % the sieving level. In particular

S(A,P,z) = > 1

n<N
(n(N—n),P(z))=1

Let z <n < N — z. Assume that p | n(N —n), for some p < z. Then, p | n or p| (N —n),
which implies, n ¢ Por N —n ¢ P, since n > z > p and N —n > z > p. This means that
(n(N —n),P(z)) =1if bothn € Pand N —n € P, with z <n < N — z. Therefore

RN)= > 1+ > 1+ > 1<z+8(AP2)+2=2:+S5(AP,2)
p<z z<p<N-—z p>N—=z
N—peP N —peP N—peP

Similarly to the proof of Theorem 1.3, consider the sets A3 = {a € A : d | a}, for all
d € N square-free, and f the completely multiplicative function defined by

% ifp| N
f) =1,
= otherwise
p
Let
r(d) = |Aaq| = Nf(d)
and

G(z)=)_ f(n)

n<z

By Selberg’s sieve (Theorem 1.1)

N
< w(d)
SAF.2) <y + 2 3701)
d<z
d|P(z)



1.2 Twin Primes and Sums of Two Primes 1 INTRODUCTION TO SIEVE THEORY

and by Lemma 1.2

( >logz:}|:[v<1+l>logN <H< )loglN

The same bound for the error term will be found as in Theorem 1.3. Write d | P(z) as
d=gqi...qep1...pr, with ¢; | N and p; { N all distinct primes and k&, > 0. Now

Adl = D 1

n<N
d|n(N—n)

which equals the number of solutions to the congruence n(N —n) = 0 (mod d), for n < z. It
is enough to solve this congruence for primes only and then apply the Chinese Remainder
Theorem, since d is product of distinct primes. Let ¢ | N. Then n(N —n) = 0 (mod q) if
and only if n = 0 (mod ¢), which corresponds to only 1 residue class modulo ¢q. Let p{ N.
Then n(N —n) = 0 (modp) if and only if n = 0 (modp) or N —n = 0 (mod p), which
corresponds to 2 different residue classes modulo p. Hence, by the Chinese Remainder
Theorem, n(N —n) = 0 (modd) if and only if n lies on any of some 1¥2" = 2" different
residue classes modulo d. Therefore

o7
wi=y 3 =y [ [d]
n<N i=1

nal(modd)

where «; are the said 2" different residue classes modulo d. Thus
s N T
|Agl =2 "l +O0(1) | =Nf(d)+0(2")

since f(d) = %, whence

since 7 < w(d). Finally

Z gw(d d)| < Z gw(d)gu(d) _ Z 6 < Z 6w Z S2Tens <22+2}g§g

d<z? d<z? d<z? d<z2 d<z2
d|P(2) d|P(z) d|P(z)

since
log 6 log 6

6W(d) — Qlogz“’(d) (2W(d))1og2 < d10g2 < Zzlo"

for any d < 22, and therefore

1\ N 1\ N
SR(N)<2N8+S(A]P’z)<<2N8+H<1+ ) +NT <<H<1+ ) 3
DIN log® N oIV p) log® N

O

16



2 Linear Sieve

Given a sieving set A, a sieving range P and a sieving level z, the sieving function

S(AP2)= > 1
acA
(a,P(2))=1

2=1[r

peP
<z

where

can be rewritten as

S(A,P,2)= Y pu(d)|Adl

d|P(z)
as seen in Section 1, known as Legendre’s identity, where
Ag={ac A : d|a}

for any square-free d € N. Let f be a multiplicative function such that

0< flp)<1
for every p € P. Define
r(d) = |Aq| = [Alf(d)
Then, by Theorem B.1

S(A,Pz) = Al Y wl + > udr@ =14 T @=rw)+ > wdr)

dIP(2) d|P(2) PIP(2) d|P(2)
= [A[V(z) + R(2)

where

and

d|P(z)

The sum that defines the error term R(z) has as much as 2¢(P(*)) = 27(2) addends, which
makes it bigger than the non-error terms in many occasions.

In a combinatorial sieve, the Mébius function is replaced by two arithmetic functions
with similar properties to those of u with the objective of reducing the size of R(z). Two
functions AT and A~ are respectively called upper and lower bound sieves if

and

17



2.1 Combinatorial Sieve 2 LINEAR SIEVE

for every n > 1.
Moreover, assume there exists D > 0 and a set of primes Py, such that

A~ (d) = 0= AH(d)

for all d > D and for all d | p with p ¢ Py. Then A* are said to have support level D and
sieving range Pj.
A combinatorial sieve is said to have dimension n > 0 if

1 logz\"
1 =7 = (i)
LT 7 = \logu
ulp<z

for some C' > 1 and for all 1 < u < z. The case n = 1 is called linear sieve.

The Jurkat-Richert Theorem is a result on linear sieves that provides upper and lower
bounds for sieving functions. This theorem makes use of a general combinatorial sieve and
a particular upper and lower bound sieves, which are to be studied in Section 2.1, and

some bounds for
> AE@ (@)
p|P(2)

involving two functions ® and ¢ defined in Section 2.2.

2.1 Combinatorial Sieve

Theorem 2.1. Let A be a sieveing set, P a sieving range and z a sieving level. Let
Py be a subset of P such that Q = P\ Py is finite. Let A\* be upper and lower bound
sieves with support level D and sieving range Po, such that |A*(d)| < 1, for all d. Let

P(Z) = HP3p<zp; PO(Z) = HP09p<Zp7 Q(Z) = HQ9p<zp CLTLd Q = Hpegp' L@t f be a
multiplicative function such that 0 < f(p) < 1, for every p € P. For every square-free d,
define

r(d) = |Aal = [Alf(d)

where Ag ={a € A : d|a}. Finally, let

F(zA%)= Y A (d)f(d)

d|Py(2)
Then
S(A,P,2) <|AIF(z,A%) [ - f@)+R
p|Q(2)
and
S(A,P,2) = [AIF(z,A7) [ 0= f@) - R
p|Q(2)
where
R= Y [r(d)
d<DQ
d|P(z)

18



2 LINEAR SIEVE 2.1 Combinatorial Sieve

Proof. Let d € N be square-free. There exist unique d; and ds such that d = dyds with
(d1,Q) =1 and ds is divisible only by primes in Q. Define

A*(d) = X (d1)u(da)

Then A= (1) =1 = A*(1), since A=(1) = 1 = AT (1). Moreover, for every n € N, there
exist unique n; and ng such that n = nyny with (n1,Q) = 1 and ns is divisible only by
primes in Q. Hence

YA = > M(d)u(da) = Y AE(dr) Y p(da)

dln dida|nine dy|ny da|na

By Theorem B.1

S AT <0< AT
d|n d|n

for every n > 1, since A* are upper and lower bound sieves. Thus, A* are upper and lower
bound sieves.
Let p | d where p ¢ P. Then, p ¢ Py and p ¢ Q. Write d = dyds, for some unique d
and dy with (di,Q) = 1 and d» divisible only by primes in Q. It follows that p | d1, since
(p,d2) = 1. Let d; = pds. Then d = pdsds, where (pds, @) = 1 and ds is divisible only by
primes in Q. Therefore

A= (d) = A (pds)pu(da) = 0

since A*(pd3) = 0, because AT are upper and lower bound sieves with sieving range P
and p ¢ Py. This implies that A* have sieving range P.

Let d > DQ. Write d = dyds, for some unique d; and dy with (dy, Q) = 1 and ds divisible
only by primes in Q. Then, either dy < @, which implies d; > D and in particular,
AE(dy) = 0, since A* have support level D; or dy > @, which implies dy is not square-free,
and hence, j(dz) = 0. In either case, A*(d) = 0. Therefore, A* have support level DQ.
Finally

SN A=) AE@ D 1= ) AF(d)| A4

a€Ad|(a,P(z)) d|P(z) adEIA d|P(z)
= > AE@AIf(d)+ > A*(d = |4 Z A=) f(d)+ Y AF(d)r(d)
d|P(z) d|P(z) d|P(z d<DQ
d|P(2)
where
Z AF(d) f(d) = Z Z AF(dvdy) f(dydy) = Z XE(dy) f(dy) Z p(dz) f (d2)
d|P(z) d1|Po(z) d2|Q(%) d1|Po(z) d2|Q(z)

since P(z) = Py(2)Q(2) and (Py(2),Q(z)) = 1, because Py and Q are disjoint, and
f(dida) = f(d1)f(d2) by multilicativity of f. By Theorem B.1

Yo Y AM@=IAFEN) T a-fe)+ Y A @)r(d)

a€Ad|(a,P(z)) plQ(z) d<DQ
d|P(z)

19



2.1 Combinatorial Sieve 2 LINEAR SIEVE

Use the fact that —1 < A*(d) < 1 to obtain

S(AP)= D 1> Y MA@ <|AFEN) [[ A=)+ Y @)

acA a€Ad|(a,P(z z d<DQ
(a.BE)=1 [(a,P(z)) plQ(2) YT
and
SAP2) = Y 12> > A @=AFEA) [[ A=f@) - > r@
ac a€A di(a,P(2)) PlQ(2) 1<DQ
(a,P(z))=1 d|P(z)

O

Next, two functions will be defined and proved to be upper and lower bound sieves with
both support level and sieving range at choice, and such that they are always bounded by
1 in absolute value.

Lemma 2.2. Let D > 0 and P be a set of primes. Let

r)=1]]r
peEP
p<D

Define the sets

DY ={p1...p; : §>0,p;<...<p1 <D, p1...pi—1p} < D, Vi odd}
and

D ={p1...p; : 720,p;<...<p1 <D, p1...pic1ps < D, Vi even}
Then, the functions )\B’P and Ap p defined by

M (d) = wu(d) ifd e DF and d| P(D)
b,p 0 otherwise

are upper and lower bound sieves, respectively, with support level D and sieving range P.
In particular, |\5 »(d)| < 1, for all d.

Proof. Both D* are finite sets of square-free natural numbers smaller than D. Moreover,
1 € D*.

Let d € DF. Write d = p; ... pua) With pygy < ... < p1. If w(d) happens to be odd, then
d<p;.. .pi’)(d) < D. If w(d) is even, then d < p; .. .pi(d)_l <pp.. .pi(d)_l < D. In either
case, d < D, for every d € DT. Analogously, d < D, for every d € D~.

It it therefore enough to prove that )\373 are upper bound sieves, for it is plain to see that
their support level is D and sieving range P, by construction.

First

A5 p(1) = pu(l) =1

since 1 € D*. It remains to be proved that

d|n d|n

20



2 LINEAR SIEVE 2.1 Combinatorial Sieve

for every n > 1. Without loss of generality, assume n | P(D), since A}, p(d) = 0, for all
dt P(D).

Let n | P(D). Then, n is the product of distinct w(n) primes in P and smaller than D.
The proof goes by induction on w(n).

Let w(n) = 1. Then n = p, with D > p € P. In particular, n € D~. Hence

D App(d) =p(1) +pup)=1-1=0
d|n

and
N Abp(d) = p(1) + Xhp(p) > 1-1=0
d|n

which proves the case w(n) = 1.
Assume the result holds for every n with w(n) =r > 1. Let n be such that w(n) = r + 1.
Write
n=4qoq1---Qr

with ¢ < ... < gy < D and ¢; € P, for every i. Let

n

N=—=q...q

do

Then N | P(D) and w(N) = r. By induction hypothesis
D App(d) S0 NS p(d)

d|N d|N

Every divisor of n is either of the form d or qod, where d | N. Thus

Z )‘E,P<d> = Z /\Bp(d) + Z )‘E,P(qod) > Z )‘BJD(QOd) = Z 11(qod)

d|n d|N d|N d|N d|N
qodeDT
== > u(d)
d|N
qodeDt

and likewise

S Aop@ =D A p@+ D> Applaod) <D Applaod) = Y plqod)
d|n

d|N d|N d|N d|N
qodeD™

=— > ud

d|N
qodeD™

Let d | N. Write d = py...ps, with ps < ... <p1 < ¢1 < ¢go < D and p; € P, for every i.

Let D
E=—
do

Consider the sets £F be the sets D* with E instead of D, respectively. Then god € DF

if and only if g5 < D and p;...p} < E for every even i. Hence, assuming ¢3 < D, the
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2.1 Combinatorial Sieve 2 LINEAR SIEVE

condition god € DV is equivalent to d € £~. Similarly, god € D~ if and only if d € £,
provided that g3 < D. Moreover

0= Y pd)= D pd=> pld=>Y ud

d|N d|N d|N d|N
qodeD™ qodeDT de&~ deet
ag>D a3>D qg>D qg>D

since all the above sums are empty. Therefore

Soopd)= > pld)=> pd) =Y ud<0

d|N d|N d|N d|N
qodeD™ qodeDT deE~ deE~
qg<D qg<D

where the inequality hold by induction hypothesis. Hence

> Abpd) =0

d|n
Analogously
S o= Y )= Y wld = X uld) 20
d|N d|N d|N d|N
qod€D™ qod€D™ dee™ deet
¢@3<D a3<D
whence

> App(d) <0

dln
O

The objective is to bound 3, p(. Aﬁﬂd)f(d)7 where f is a multiplicative function.
The following lemma, expresses this sum in terms of a sum of some other functions T,
and in the next subsection, a bound for 7;, will be found.

Lemma 2.3. Let 2 <z < D and P be a set of primes. Let

2=1]r

peEP
p<z

and f be a multiplicative function such that 0 < f(p) < 1, for everyp € P. Let

F(z,050)= > M\p

d|P(z)

where )\ﬁ p are the upper and lower bound sieves with support level D and sieving range
P, deﬁned in Lemma 2.2. Then

F(z,A}p) = + ) Tu(D,2)
n odd
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2 LINEAR SIEVE 2.1 Combinatorial Sieve

and
F(z,App) =V(2) = Y Tu(D,2)
where
Viz)= [T @-ro)
p|P(z)
and
To(D, z) = > f(o1.. )V (pn)

Pm <Wm,Ym<n,m odd
where wy, which depend on D and py,...,pn, are defined by
pr...powy, =D
Proof. By definition of the sets D+
F(zXpp) = D Mppld)f(d)= ) ud)f(d)
d|P(2) d|P(z)
deD™

Let d | P(z) such that d € D*. Then d is product of distinct primes in P smaller than
z < D such that p; ...p} < D for every odd i, which is equivalent to p?ng < D, that is,

p; < w;. Therefore

F(zXhp)= > (Df(r...py)
P1,--sD; EP
pi<..<p1<z

Pm <Wm,Vm odd

By Theorem B.1

Hence

P1,--,P; EP P1,.-P; EP
p;<...<p1<z p;<...<p1<z
Pm <Wm,¥Vm odd dm odd : pm >wm,
_ + j
*F(ZJ\D,P)WL E E (=1 fp1---pj)
n odd P1,---,D; EP
pi<..<p1<z
Pm <Wn,,Ym<n,m odd
Pn >Wn

The inner sum

> (=17 f(p1--.p))

P1,.--p; EP
pi<...<p1<z
P <Wp ,Ym<n,m odd
Pn>Wn
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2.2 The Functions ® and ¢ 2 LINEAR SIEVE

equals, for any fixed n

> (=1)"f(p1---pn) > (g py)

P1y--,Pn€P Pnt1;---P; EP
Wy <pp<...<p1<2 Pj<...<Pn+1<Pn
P <Wm

Vm<n,m odd

which in turn, the above inner sum can be rewritten as

> T arap) = Y ppesr 9 f(asr - ps) = Via)

pn+1;-<-7pj€7) pn+17---apjep
Pi<...<Pn4+1<Pn Pj<...<Pn+1<Pn
Hence
V(z)=F(z,A\hp) — > S forepa)V(p) =F(zNhp) = Y Tu(D,2)
n odd Plye-ny pn€EP n odd
Wy, <pp<...<p1<2
Pm <Wm

Vm<n,m odd

By an analogous argument

V() =F(z,App)+ Y Tu(D,2)

n even

2.2 The Functions ® and ¢

Lemma 2.3 characterizes the functions F'(z, )\373) used to bound the sieving function in a
combinatorial sieve (Theorem 2.1) in terms of a sum of functions 7T}, (D, z). Two functions
® and ¢ are to be introduced, to further bound T;,.

Let

O(z) =€ (u(m) + v(;))
and

o) = (ate) - )

x
for > 0, where ~ is Euler’s constant and u(z) = 1 and v(z) =1 for 0 <z < 2 and
(wu(@))’ = u(z - 1), V()= -0
z —

for x > 2. From this definition, it follows that ®(z) = % and ¢(z) =0 for 0 <z < 2.
Moreover, for x > 2
2(®(x) + d(x)) = 2¢7wu(z)

and

2(®(z) — ¢(z)) = 2¢7v(x)
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2 LINEAR SIEVE 2.2 The Functions ® and ¢

Whence
(2®@(2)) + (vd())" = 2¢7 (vu(z))" = 27 u(z — 1)
and
(20(2))' — (20(x))' = 2670/ (a) = ~2? "I
for x > 2. Therefore
(z®(x)) = o(x — 1), (z¢(x)) = (x — 1)

for x > 2. Hence
/ﬂﬁ d(s—1)ds = x®(x) — 20(2) = 2P(z) — 2¢”
2

for all z > 2. Then, ®(z) = %, for 2 < x < 3, since [, ¢(s — 1)ds = 0, because
#(s—1) =0 when s — 1 < 2. Hence

Lemma 2.4. Let 0 <z < 3. Then

Similarly .
| #ls = s = ao(a) - 20(2) = ao(a)

for all > 2, since ¢(2) = 0. Then, for 2 < z < 4, by Lemma 2.4

1 /7 27 (71 2e71 -1
o(x) = f/ D(s—1)ds = -“ ds = =5 os(z — 1)
z Jy z Jy s—1 x

Thus
Lemma 2.5. Let 2 < x <4. Then

b(z) = 267 log(xz — 1)

Lastly, ® and ¢ are expressed as sums of the functions f, defined in pages 245—246 of
[5], in the following way:

n even

The functions f,, are used to bound the functions T;, defined in Lemma 2.3, whenever
the sieve is linear, as follows:

Lemma 2.6. Let z > 2 and P be a set of primes. Let f be a multiplicative function such
that 0 < f(p) < 1, for every p € P, and such that

1 log z
I ——<a+o
L T7) log u

u<lp<z
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2.3 The Jurkat-Richert Theorem 2 LINEAR SIEVE

for some 0 < e < W%O and for all 1 <u < z. Then,

log =z

To(D,2) < V(2) (fa((E2) + 0,970~ BE7 )
for every odd n and D > z, and for every even n and D > 2*, where
V)= IT = 1))
p|P(z)

A detailed proof of the above can be found in pages 253—256 of [5].

2.3 The Jurkat-Richert Theorem

The Jurkat-Richert Theorem provides both an upper and lower bound for sieving functions
when the sieve is linear. The bounds depend on the functions ® and ¢, previously detailed.

Theorem 2.7 (Jurkat-Richert). Let A be a sieveing set, P a sieving range and z > 2 a

sieving level. Let
Piz)=]]»

peP
p<z

and [ a multiplicative function such that 0 < f(p) < 1, for every p € P. For every
square-free d, define

r(d) = |Aal — |Alf(d)
where Ag ={a € A : d|a}. Let Q be a finite subset of P, with Q = Hpegp, such that

1 log z
I —— <@+
AT log u

ulp<z
for some 0 < e < W%O and for all 1 < u < z. Then, for any D > z
log D
Tog =

S(A, P, 2) < (@(l°gD) +5614_7) IA|V(2) + R

log =z

and for any D > 2>

S(A,P,2) > (o(RED) — e ~852 ) [A|V(2) — R

log z
where the functions ® and ¢ are the ones defined in Section 2.2,

Viz)= [ @ -sw)

pIP(2)

R= Y |r(d)

d<DQ
d|P(z)

and
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2 LINEAR SIEVE 2.3 The Jurkat-Richert Theorem

Proof. Let Py =P\ Q. By Lemma 2.2, the functions )\jf,,po there defined, are upper and
lower bound sieves with support level D and sieving range Py and such that \)\E’P(dﬂ <1,
for every d. Let

PEPo
p<z

2=]]r

peEQ
p<z

F(z )\:[t) 7)0 Z )\D 730 (d)
p|Po(z)

and

Define

and

Volz) = [ (1= f)
plPo(2)

By Lemma 2.3 and Lemma 2.6

F(z0hp) =Vol2) + 3 Tu(D,z) < Volz <1+ 3 fa(BEL) e Y 0.99”)

n odd n odd n odd

log 2z

< Vo(2) (cp(logD) +eelt 2

for any D > z, since >, _,40.99" = 9900 < ¢*. Again, by Lemma 2.3 and Lemma 2.6

199
F(2App) = Vo) = 3 Tu(D,2) > Vo(z (1 37 fa(lED) 0 Y 0.99”>
n even n even n even
° _logD
> Vo(2) (9(152) — eeM~BEF)
for any D > z, since >, .., 0.99" = % < e*. Hence, by Theorem 2.1

S(A,P,2) <|AIF(z,Mh ) [ 0= fp)+R

plQ(2)
log D
<Al (@(E2) +ee =52 TT (- f@) [T - fo) + R
p|Po(z) p|Q(2)
- (@(lgggf) +eel4fﬁ%’) IA[V(2) + R

for any D > z, and similarly

S(A,P,z) 2 |AIF(z0p0) ] (1-f@) - R

p|Q(2)
> 14| (6(RE2) —ee 5 ) T (=) [T - 7)) - R
p|Po(z) plQ(2)
— (6(4BL) — e B2 AV (2) - R
for any D > 22. O
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A relevant remark on Theorem 2.7 is that the hypothesis

1 1
H 1 a4 og z

pero 1 ) log
u<p<z

for all 1 < u < z, implies the linearity of the sieve, since

1 1
It <][— <1
o 1= f) T S 1 f(p)
ulp<z p<z

for all 1 < u < z, because Q is finite, and hence
1 1 1 log 2z
— = <
11 1—f(p) 11 1—f(p) 11 1—f(p)  logu

peP pEP\Q peEQ
u<p<z u<lp<z u<p<z

for all 1 < u < z, which means the sieve is linear. In particular

1 1
— = H — < logz
Ve e T 1)
p<z

by setting u = 2 whenever z > 2.
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3 Large Sieve

All previous sieves rely on the Mébius function. In this brief section, however, a com-
pletely different type of sieve is introduced. Given a sequence (a, ), of complex numbers, a
sequence (b,.), of rational numbers and R,z > 1, a large sieve is an inequality of the form

2
Z Z ane27rinbr < C Z |an|2

r<R [n<z n<zx

where C is to depend on R and z only and hence not on b, nor a,,.

One of the most advanced applications of large sieves is the Bombieri-Vinogradov The-
orem. This is a result on the average distribution of primes in congruence classes of large
moduli. To be precise, on the error term in approximating the number of primes up to
x of any single class modulo d by %, on average, where ¢ is Euler’s totient function.
Under a generalised Riemann hypothesis, the error term of the above approximation is
O(y/zlogx), before averaging, which is exactly the same bound Bombieri-Vinogradov’s
Theorem provides, after averaging, that is.

Theorem 3.1 (Bombieri-Vinogradov). Let > 1, n € N and A > 0. Then, there exists
B(A) > 0 such that

()

o(d)

m(x,nmodd) —

max <
Z (d,n)=1 A

d<+/z (logz)—A(A)

1ogA z

where w(x,nmodd) is the number of primes up to x congruent to n modulo d.

Proofs of the above theorem can be found in section 9.2 of [1] or in section 28 of [2] for
a slightly different version. Two main ingredients are needed to prove Theorem 3.1. The
first are advanced large sieving techniques nowhere to be found in this Thesis whatsoever.
The second is the Siegel-Walfisz Theorem:

Theorem 3.2 (Siegel-Walfisz). Let x > 1, n € N and A > 0. Then

() x

m(x,nmodd) — <y

logA T

where w(x,nmodd) is the number of primes up to x congruent to n modulo d.

3.1 A Large Sieve Inequality

Back to large sieve for beginners, consider a differentiable function f : [0,1] — C with
continuous derivative and extended by periodicity to all R (with period one). Let R > 1
and u € [0, 1]. For every natural numbers r < R and h < r with (h,r) = 1, one has

1 = s+ [ or

by the Fundamental Theorem of Calculus. Take absolute values on either side of the above

to obtain
U

I+ [ Ir ol

kb
r
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3.1 A Large Sieve Inequality 3 LARGE SIEVE

Consider now the family of intervals (% — L5 % + -L.) where h and r are natural numbers
with h < T < R and (h,r) = 1. Then, the union of them all is contained in [0, 1], since

@f— > 5 11%2 > 0 and h+211%2 < T’1+ 11%2 < lf%Jr# < 1, since R > 1. Moreover,

r =

! ’
said mtervals are nonoverlappmg, since given z € (f - ﬁ, % + ﬁ) N (IL - T}%g, T ﬁ)

r’

with 2 # I then |z — bl < 75z and |z — T,| < 5gz- On the one hand, by the triangular

,r.IV

inequality

R N T T |
ror | ST ! 2R?  2R?  R?
On the other hand, hr’ — h'r # 0 since 0 # 2 X hT;;,h/T. Hence |hr' — h'r| > 1, since

h,h',r,7" are natural numbers. Therefore

h n

r

|hr! — h'r| 1 1
L L B
rr’ —rr’ T R2?

which is a contradiction. Before integrating the previous inequality over the interval (% —

#, % ﬁ) with respect to u and adding over all such intervals, take into account that

h 1
22 22 1 7+ﬁ
/ R/ \dtdu</ " / ()] dtdu= 7 | IR (1)) dt
T 2RZ T 2RZ

Hence, integrating and adding all intervals, one obtains

1

D MNCIEDY Z/ ) du

r<R h<r r<R h<r T 2R
(h,r)=1 (h,r)=1
<> ¥ / Wldu+>" Y / /|f’(t)\dtdu
r<R h<r G 21? r<R h<r e 2 T
(h,r)=1 (h,r)=
‘f ﬁ
SRV IOy z/ 0 a
r<R h<r ‘%3z <R h<r ‘%oz
(h,r)=1 (h,r)=1

/|f du+ - /|f (t)] dt = /|f )l du + lz/ollf’(u)ldu

Given z > 1 and a sequence (a,), of complex numbers, let

f(u) = S(u)?

— E an 627rznu

n<z

where

Then f clearly is a differentiable function f : R — C with continuous derivative and
flu+1) = f(u), for every u € [0,1]. Moreover

f'(u) = 28(u)S'(u)
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3 LARGE SIEVE 3.1 A Large Sieve Inequality

Therefore, by the above reasoning

72 X IS < [ sk gz [ 1S@ISs ) d

r<R h<r
(h,r)=1

First

1 1
/ |S(u)|2 du = / Z ane27rinu Z @6727rimu du
0 0

n<lz m<zx
1
_ Z Z an@/ eQm’(n—m)u du = Z anly = Z ‘an‘Q
n<zx m<z 0 n<x n<x

And second, by the Cauchy-Schwarz inequality

/ 1SS ) < (f Ok du)é (/ 1 ') du)

where the squared of the first factor has just been dealt with above, and the squared of
the second similarly equals

1
2

1 1
/ 1S (u))? du = / Z 2minay, e Z 2mima, e 2T | du
0 0

n<z m<z
1
=47 E E nmanam/ e2mHn=m)u go — A2 E nla,a, < 4drz? E \an\2
n<r m<x 0 n<z n<x

Whence

™
[N

1
DD DEECIED SN b DITALE I Pt DIt

r<R h<r n<z n<x n<x
(h,r)=1

Multiplying by R?
Theorem 3.3. Let (a,)n be a sequence of complex numbers and R,z > 1. Then

2

Z Z Z ane?™ iy | < (R? + 47x) Z lan|?

r<R h<r |n<lz n<z
(h,r)=1

The next step is to improve the above result by introducing Dirichlet characters (see
Appendix C).
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3.1 A Large Sieve Inequality 3 LARGE SIEVE

Theorem 3.4. Let (a,)n be a sequence of complex numbers and R,z > 1. Then

2

Z Zanx < (R? + 4rz) z:|an|2

Xmodr n<lx n<x

Z

where Y

ymodr denotes the sum over primitive characters x modulo r.

Proof. Let r < R and (n,r) = 1. Let x be a primitive character modulo r. Then, by

Lemma C.2

Z X 271'177,7

h<r
Multiply by a,, sum over n < z, apply modulus and square it all out to obtain

2 2 2

Z anX(n) — |2 Z an ZX 27rzn7 ZX Z anBZﬂin%

n<x n<x h<r h<r n<x

by Lemma C.3. Sum over all primitive characters modulo r

2 2
* 1 *
_ inh
E § anX(n) - ; E E X(h) E an€2ﬂ'znr
xmodr |n<z xmodr |h<r n<zx
2
1 b
— 2min &
S; 2 E X(h)§ :ane Tin
x modr |h<r n<x
_ 1 v(h 2rinll h — _orinl2
= E E X(h1) E ant " E x(h2) E ané "
xmodr \ hi<r n<lz ho<r n<lz
_ 1 2‘11'z'nh —_— —27rinhf2 — h h
=22 2 | e [ 2 @me | > X()x(he)
h1<r ho<r \n<z n<lz x mod r
r im, PL _ _opin h
_ 50( ) E z :ane27r7,n - E a,e 2min = —_ E E ane 27Tzn
r
h1<r n<x n<z h<r [n<lz
(h1,r)=1 (h,m)=1

since, by Lemma C.1

S shxt) = 3 x(hllhg):{@(” i hy = ha and (b, 1) = 1

0 otherwise
x mod r x mod r

for all Ay, ho < r. Hence

2 2
*
r h
LS S| £ T[S mer
¥ xmodr |n<z h<r |n<z
(h,r)=1
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3 LARGE SIEVE 3.1 A Large Sieve Inequality

Sum over 7 < R and apply Theorem 3.3

2

> z 3" anx(n) gz Y et < (B 4 dr) 3 a2

7‘<R Xmodr n<z r<R h<r
(h,r)=1

n<z n<x

In the following Section, a particular inequality will have to be used at one point in the

proof of Chen’s Theorem. The above result is used to prove said inequality, presented in
the following Theorem.

Theorem 3.5. Let (a,), be a sequence of complex numbers such that |a,| < 1, for all
n€N. Let A, X,Y,Z > 1 such that X > (logY)?4. Set

Then

1 XY (log XY)?
- s, D %772 «, XY (og XV)?
n<X

A
n<X Z<p<Y Z<p<Y log™ Y’
pn=h(mod d) (pn,d)=

Proof. Let (h,d) =1, p a prime and n € N. By Lemma C.1

S ) = 3 X(h—lpn):{%”(d) if pn = h (mod d)

iodd iodd 0 otherwise

Then

ooy w=> Y a" Z X(h)x(pn)

n<X Z<p<Y n<X Z<p<Y Xmodd
pn=h(mod d)
1 _
= 2D > oxm)Y  anx(n) > x(p)
¥ x mod d n<X Z<p<Y

where the principal character xo modulo d contributes in the above sum in

DY X aem =5 Y Y

n<X Z<p<Y n<X Z<p<Y
(pn.d)=

33



3.1 A Large Sieve Inequality 3 LARGE SIEVE

Hence

Sans T oweapE %o

n<X Z<p<Y n<X Z<p<Y

pn=h(mod d) (pn,d)=1
_Z Z WD anxm)|| > x(p)
d<S’ Xmodd n<X Z<p<Y
XF#X0
< Z T 2 |2 || 3 )
d<S Xmodd n<X Z<p<lY

Every Dirichlet character y modulo d factors into a product of a primitive Dirichlet char-

acter modulo a divisor r of d and the principal Dirichlet character modulo s = %, meaning

x=x""xo
where X’ is a primitive Dirichlet character modulo r and x{ is the principal Dirichlet
character modulo s. Therefore

Z Z > anx(m)|]| > x(p)

d<s <P Xmodd n<X Z<p<Y
1 *
=y © DD e mxgm)|| D X (P)xo(p)
rs<S ¢ x' modr |n<X Z<p<lY
1 *
Y S S )| S w
rs<S ¥ xmodr | n<X Z<p<lY
(n,5)=1 (p.s)=1
where E; mod » Means the sum over primitive Dirichlet characters modulo r. Moreover,

o(rs) > @(r)p(s). Hence

Z Z > anxm)|| > x(p)

d<S Xmodd n<X Z<p<lY

Z Z Z > ax)]| > xp)

S<S r<S Xmodr n<X Z<p<Y
(n,s)=1 (p,s)=1

On the one hand, by the Siegel-Walfisz Theorem (Theorem 3.2)

Zx(p): Z x(a) Z 1= Z x(a)m(Y,amodr)

p<Y a (modr) p<Y a (modr)
p=a(modr)

= = x@ (57 +0 (myim)) < vy

a (modr)
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3 LARGE SIEVE 3.1 A Large Sieve Inequality

since

due to

a (modr)

which follows from the fact that there exists a natural number b coprime with r and such
that x(b) # 1, for which

x(0) Y x@= > x@)= Y x(

a (modr) a (modr) a (mod )
Analogously
> x| < A
= (log Z)*4 " (logY)*4

By the triangular inequality

doxm| =D x) =D xm)| < Do x|+ D] xp)| < (105;};)“

Z<p<Y p<Y p<Z p<Y p<Z

The number of terms removed in the above sum by adding the condition (p, s) = 1 is less
than or equal to w(s), which by Lemma A.4 is bounded above by 2logs << log .S, since
s < S. Hence

rY
—— +log S
> x| < (logv)ia T 108
Z<p<lY
(p,s)=1

On the other hand

> axm| < Y ekl < Y 1<X

n<X n<X n<X
(n,s)=1 (n,s)=1 (n,s)=1

Now, the sum

) (lr) Dol axm|| Yo x

r<S ¥

xmodr | n<X Z<p<lY
(n,s)=1 (p,s)=1
will be counted dividing the range » < S into r < Sy = logAY and a second range

So < r < S which is to be partitioned into pairwise disjoint subintervals S; < r < 25;,
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3.1 A Large Sieve Inequality 3 LARGE SIEVE

where S; = 275; and 0 < j << log S (since 21855, = elog Floe2g, = Glog2G, ~ G Thus

1 *
S5 Y X )| ¥ 5> X< o +logs
T<SOSO xmodr | n<X Z<p<Y 7"<So Xmodr
(n,s)=1 (p,s)=1
X rY
r<Sp (p(?") (10g Y) x mod r r<Sp
- XSOYlogS SoXYlogS o (1ogY)3AXYlogS _ XYlogS
(log V)44 (logY)44 70— (log V)44  log?y
r<So
and
1 *
> o S axm)|]| Y. x(p)
S;<r<2S; xmodr | n<X Z<p<Y

r<S (n,8)=1 (p,s)=1

> s Z (QPZT)>é > anx(n) < - >é > x

S;<r<2S; " x mod r n<X %0(7“) Z<p<Y
r<S (n,s)=1 (p,s)=1
! i i
T T
<1y <> S anx(n) ( ) S )
Sj r<28; p(r) n<X p(r) Z<p<y
x mod r (n,s)=1 (p,s)=1
X primitive
2 H 2\?
1 r r
J r<28,; ¥ n<X r<285; ¥ Z<p<Y
x mod r (n,s)=1 Xx mod (p,s)=1
X primitive X primitive
2\ 3 2\ 3
1 T - r -
A Dy DTN N DO ol St
J r<28; xmodr | n<X r<2S; xmodr | Z<p<Y
(me)=1 (p,5)=1

by Cauchy-Schwarz’s inequality. Both the first and second factors are to be bounded
applying Theorem 3.4. When it comes to the first factor, use Theorem 3.4 with R = 25},
x = X and the sequence of numbers equal to a,, when (n,s) = 1 and 0 otherwise, to obtain

2

*

3 Zr) ST Y anm)| @2 44rX) Y aul? < (452 +47X) > 1

r<2S; xmodr | n<X n<X n<X
(n,s)=1 (n,s)=1 (n,s)=1

< (4587 +4nX)X
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3 LARGE SIEVE 3.1 A Large Sieve Inequality

since |a,| < 1. As for the second factor, apply Theorem 3.4 this time with R = 25;, z =Y
and the sequence of numbers equal to 1 when n is a prime, n > Z and (n,s) = 1, and 0
otherwise, to obtain

*

> zr) Yool DD xp)| <@SF+4ry) Y0 17 < (4S] +4nY)Y

r<28S; ® xmodr | Z<p<Y Z<p<Y
(p,s)=1 (p,s)=1
Therefore
* 1 9 1 9 1
Z o) Z Z anx(n) Z x(p)| < S—((4S +4n X)X F (457 + 47Y )Y )?
S;<r<28S; xmodr | n<X Z<p<lY
r<S (n,s)=1 (p,s)=1

: z XY :
= gj((S? +mSHX +Y)+ P XY)XY P =4 ((gjz FrX 1Y)+ W2>XY>

Xy : . L (XY)2 .
<<52+X+Y+ & )XY) S(Sj+Xz+Yz+( S) >(XY)2

J

Stxtyysy &Y (XY)%=< S 11+1+1)XY
So (XY)z Y=z

2 1 1 XY
= <A+1+1>XY<<A
log™Y Yz Xz log”™ Y

since the square root of a sum is less than or equal to the sum of square roots, and using
that Y2 > logA Y and X2 > logA Y, by hypothesis. Whence

1 - XY XY log S
Z Z o) Z Z anx(n) Z x(p)| < AY%:1<<logA§’

7 s,<r<28;, PV \nodr | nex Z<p<Y log
r<S (n,8)=1 (p,s)=1

The contribution of the sum in the range r < Sy and Sy < r < S are both bounded by a

certain constant times ﬁg;f@s. Hence their sum is too, which means

S YT || )| A

T<S(p xmodr | n<X Z<p<lY
(n,s)=1 (p,s)=1
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3.1 A Large Sieve Inequality 3 LARGE SIEVE

By Lemma B.4

1
Z@ DD axm|| D x(p)

d<$S x modd |[n<X Z<p<lY

*

1 1
SZ@Z ) Z Z anx(n) Z x(p)

xmodr | n<X Z<p<lY
(n,8)=1 (p.s)=1

_ XY log S Z L XY log?$ - XY (log XY)?
log? Y =t o(s) log Y log? Y

since S < XY. O
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4 Chen’s Theorem

The chinese mathematician Jingrun Chen proved in 1966 (although did not publish his
result until 1973 due to political turmoil in China) that there is a lower bound on the
number of representations of even numbers as sums of an odd prime and a product of at
most two primes.

Theorem 4.1 (Chen, 1966). Let N be an even large enough natural number and R(N)
denote the number of representations of N as the sum of an odd prime and a product of at

most two primes. Then
N

R(N) > G(N)IO?N

where

In particular, every even large enough natural number is the sum of a prime and a
product of at most two primes, since §(N) >> 1 in view of the fact that

1o t) o0

p>2
and )
p—
_— > 1=1
p—2 H
p>2 p>2
p|N p|N

A couple of remarks ought to be made before starting with the proof.

First, representations are to be understood as ordered pairs, meaning that a 4+ b and
b+ a are considered different respresenations of a number as the sum of two other. This
affects SR(IV) only by a factor of at most 2.

The second remark to make is the fact that 1 is considered a product of at most two
primes (for it is the product of no primes at all). This consideration does not alter the
result, since R(V) is increased by 2 when N — 1 is prime and left unaffected otherwise.

Finally, the result has been deliberately stated in a simple form. One can be more
precise in the prime decomposition of the product of at most two primes that occurs in
the statement. In fact, said product is either 1 or a prime greater than N S ora semiprime
product of a prime greater than N 5 and another prime greater than N 3, Moreover,
representations of the form N = p + (N — p), where p divides N are not counted. This
implies that the representation 3+3 for 6 or 24 = 2422 = 3+ 21, for instance, are excluded.

To motivate Chen’s strategy for the proof of the theorem, consider first the following
elementary remark:

Every natural number between 2 and N — 1 not divisible by any prime strictly smaller
than the k-th root of N is the product of at most k — 1 primes.
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4.1 Three Sieving Functions 4 CHEN’S THEOREM

Proof. Let 2 < n < N. Write n = py...p, as product of primes, where r > 0. If n
1 1

is not divisible by any prime strictly smaller than N*, then p; > N%, for all .. Hence

n > N% > n%. Therefore, 1 > &» which implies k < 7. O

Initially, one may consider sieving the set
{N-peN: p<N}

with sieving range P and sieving level z = N 3 to count how many N — p in said set are
product of at most two primes. The reason for it being that said amount equals the number
of representations of N as the sum of a prime and a product of at most two primes, since
N=p+ (N —p).

However, it will be made clear in the upcoming proof that in this case, lower bounds
for the sieving function when applying Jurkat-Richert’s Theorem turn out to be negative,
and thus useless.

Hence, the strategy is to consider a larger initial set, and sieve out all numbers which
are product of three or more primes. The way of doing this is by assigning weights to the
elements of the set in a way that these are positive when such elements are at most product
of two primes.

Finally, three main ingredients are to be used in the proof: the Jurkat-Richert Theorem
(Theorem 2.7) to find upper and lower bounds for sieving functions and either the large
sieve inequality in Theorem 3.5 or the Bombieri-Vinogradov Theorem (Theorem 3.1) to
bound the error term the linear sieve produces.

4.1 Three Sieving Functions
Let N be an even integer. Consider the sieving set
A={N-p:p<N, (p,N)=1}

the sieving range
P={peP: (p,N)=1}

and the sieving level

=

z=N
where k£ > 3 is to be later established. Let

Pz = I »

p<z
(p,N)=1
Therefore the sieving function
S(A,P2)= > 1
p<N
(p,N)=1
(N—p,P(2))=1

counts all primes less than N that do not divide N and such that N — p is not divisible
by any prime smaller than z that does not divide N. Let n € A. Then n = N — p where
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4 CHEN’S THEOREM 4.1 Three Sieving Functions

p<Nand (p,N) =1. Let d = (n,N). Then, d | (N —p) and d | N. Hence, d | p, which
implies d = 1 or d = p. The latter is impossible since (p, N) = 1. Hence the former must
hold. Thus, any n € A such that (n, P(z)) =1 can be written as

n=PpP1---PrPr+1---Pr+s

where
1 1
Z:NESPIS---SPT<N§Spr—i—lg---gpr-i-s

since n < N, (n,N) =1 and (n, P(z)) = 1. In particular
N3 <pry1...prys <n<N
whence § < 1, which implies s € {0,1,2}. Let
y=N3

The way to proceed is to assign to any n = N —p € A with (n, P(2)) = 1 a positive
weight if and only if either:

(i) N—p=1,or

(i) N — p is a prime greater or equal than z, or

(7it) N — p is the product of exactly two primes, both greater or equal than y, or
)

(iv) N —p is the product of exactly two primes, one of them greater or equal than z and
smaller than y, and the other greater or equal than y

Let
1 1
an=1-75 E ji—= E 1
z2<q<y n=p1p2p3
i z2<p1<y<p2<p3

be the weight assigned to n € A such that (n, P(z)) = 1. The only positive values taken
by «, are 1 and % By the factorization of n above, the first sum equals

2 i=r
22q<y
a’[In

Moreover, the second sum

o1
n=pip2p3
2<p1<y<p2<p3

only takes the values 0 or 1.

Hence a,, > 0 if and only if » = 0, or » = 1 and the second sum equals 0. Assume
r = 1. Then the second sum equals 0 if and only if s = {0,1}. Therefore «,, > 0 if and
only if r=0and s € {0,1,2}, or r =1 and s = {0, 1}. The case r = s = 0 corresponds to
(7). The case r + s = 1 (meaning r = 0 and s = 1 and vice versa) refers to (ii). The case
r =0 and s = 2 is exactly (i4¢). Finally, » = s = 1 corresponds to (iv).
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4.1 Three Sieving Functions 4 CHEN’S THEOREM

In any of the above cases, r + s < 2. With all these considerations, a lower bound for
R(N) can be found as follows

RN)= Y. 1= Y 1= Y 1= > 1

N=p+n n=N-—p neA neA
ne{l,p1,p1p2} p<N ne{l,p1,p1p2} ne{l,p1,p1p2 : p1,p2>2}
(p,N)=1

ne€{l,p1,p1p2}

- 3 1> > an,

neA neA
(n,P(2))=1 (n,P(z))=1
ne{l,p1,p1p2 : p1,p2>2} n€{l,p1,p1p2 : p1,p2>2}

where the last inequality trivially holds, since c,, < 1. Therefore

R(N) > Z Qn > Z an

neA neA
(n,P(2))=1 (n,P(2))=1
n€{l,p1,p1p2 : p1,p2>2}

1 . 1
= X -3l X Xi|l-3| X > 1
neA neA 2<q<y neA n=pi1p2p3
(n,P(z))=1 (n,P(2))=1 g4i|n (n,P(z))=12<p1<y<p2<p3

since n € A with (n, P(z)) = 1 such that n ¢ {1,p1,p1ip2 : p1,p2 > 2z} means r + s > 2,
which implies a,, < 0, by the above considerations.

Now the first sum is exactly the sieving function

> 1=S(A,P,2)
necA
(n,P(2))=1

The second sum equals

PRI DD IR Bl B SRR DY AL

necA 2<q<y necA 2<q<y ncA 2<q<y
(n,P(z))=1 ln (n,P(2))=1 ¢|n (n,P(z))=1 ln

where in turn, the first sum equals

2. 2 1= > 1= SUP

necA 2<q<y 2<q<y necA 2<q<y
(n,P(2))=1 gq|n (n,P(2))=1
qln

where Ay is the usual

Ag={ne A : d|n}
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4 CHEN’S THEOREM 4.1 Three Sieving Functions

and the second sum turns out to be

oo d G-n="> > G-H= > Zrl o1

neA 2<q<y neA 2<q<y neA 2<q<y

(nP(2)=1 gi|n (nP()=1 gi|n (n,P(2))= v’ Pln
i>1
. . J— 1
2. 2.G-D 3 1= ) 3 G-DY 1SN Yy
2<q<y j>1 neA 2<q<y j>1 n<N 2<g<y j>1
(n,P(z)):l q’|n
¢’ |In
since the amount of n < N divisible by ¢/ adds up to [qﬂj] < ﬂj For any |z| < 1
1 j—2
Ao =2 =) G-
7>0 7>1
Therefore
j—1 J— 1 1
Y X -nsN Y Yien Y 23 L N2 aaoie
ncA z<q<y z<g<y j>1 z§q<y J>1 2<q<y q

(.P()=1 g/|n

1 1 *® dz N
—NZ Zi(q_1)2:NZ_q—2<N ==

2
Z<q<y q>z g>z—1 =2
N 2N
= <2 _oNl-%
N% -2 N*%

since N% — 2 > %N %, for big enough values of N. Hence

S Y i< Y 84, P2 +2NE

neA 2<q<y 2<q<y
(n,P(z))=1 4i In

>, >

ncA n=pi1pP2p3
(n,P(2))=12<p1<y<p2<p3

Finally, for the third sum

consider the set

B ={N —pipaps : pipaps < N, 2 <p1 <y < ps <ps, (p1p2ps, N) =1}

Let N — pipeps € BNP. Then, p = N — pipops € B. Hence, pipeps = N — p € A,
since p < N and (p, N) = 1. Let now pipsps € A with z < p; < y < pa < p3. Then,
N — pipops is prime, and in particular, pipaps < N. Moreover, (pi1p2ps, N) = 1, since
otherwise pipaps ¢ A. Therefore, N — p1paps € BN P if and only if pypaps € A and
z<p1 <y <p2 < ps Thus

S S D D P DI SR o)

n=p1P2P3 p1p2p3€A P1p2p3€A neBNP pEB
(n, P(Z)) 125p1<y<p2<p3 2<p1<y<p2<ps 2<p1<y<p2<ps

(p1p2p3,P(2))=1

=31+ > 1<y+ Y 1<y+ > 1<y+ > 1=Ni+S(B.Py)

pEB pEB pEB pEB nEB
p<y P>y P>y (p,P(y))=1 (n,P(y))=1
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4.2 Linearity of the Sieves 4 CHEN’S THEOREM

Therefore, putting all the above together
Theorem 4.2.

R(N) > S(A,P,z) - % > S(Ag,P,2) - %S(B,P,y) ~ N=% —

z<q<y

N |

4.2 Linearity of the Sieves

The following step is to apply the Jurkat-Richert Theorem for each of the above three
sieving functions. To do so, one must choose a suitable multiplicative function. For all the
sieves to come, let

where p(d) is Euler’s totient function. Then, clearly 0 < f(p) < 1, for all p € P, since
o(p) =p—1and 2 ¢ P because N is even. The linearity of a sieve does not depend on
the sieving set, but rather on the multiplicative function, the sieving range (which is P in
all three cases) and the sieving level (either z or y).

Consider both cases z and y simultaneously, since both are of the form w = N % with
K > 3. The only thing yet to be defined is the finite subset Q of P in such a way that

1 log w
[I ——=<t+9—=—

pervo LT Ew log u
up<w

holds for some 0 < & < ﬁ and for all 1 < u < w. By Lemma A.7, for any € > 0, there
exists ny(g), such that

-1
P 1 log w

= = 1- = 14 £
]._.[ p—1 ]._.[ ( p) <( +3)logu

u<p<w u<p<w

for every ni(e) < u < w, independently of w = N*. Moreover, there exists ny(e), such
that

(p—1)2 .
I =g <t+s

p>na2(e)

since the product ], I(f(’;_l)f) =[[(1+ p(Tl—Q)) converges. Let n3(e) = max{ni(g),na2(e)}.

Then, for any u > ns(e)

1 - p—1_ (p—1)2 p
ugplj]éwl_ﬁ ugpllwl_P%l ugplj]éwp_Q u§1;[<wp(p_2) H 1

slogw log w

<(1+%) oz <(l+¢)

log u
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4 CHEN’S THEOREM 4.2 Linearity of the Sieves

for any 0 < ¢ < 3, and in particular, for any 0 < € < ﬁ. Let Q. be the set of primes not
exceeding ng(e). Define the finite subset @ = P N Q. of P. Then
1 log w
— < (1+4¢)

peP\Q ~ »®)
u<p<w

log u

holds for 0 < € < 2—(1)0 and for all 1 < u < N%, for all w. Hence, all hypothesis of Jurkat-

Richert’s Theorem (Theorem 2.7) are verified, since moreover w = N% > 2 because N is
big enough. By the remarks after said theorem, one concludes that the three sieves are

linear and V(w) << ﬁ, where
viw) = ][] (1—1 >— 11 (1—1 )
p|P(w) #(p) 2<p<w p—1
(p,N)=1

Let Q. = HpeQE pand QQ = Hpegp. Then

Q< Qc <logN
for sufficiently large IV, since Q). does not depend on N. Finally
Theorem 4.3. Let w = N%, with K > 3. Then

Proof. Let N > 4%, Then w = N% > 4. First, compute

v 1 (1-4) = 0 (-5) T (%)

for large enough N.

2<p<w 2<p<w 2<p<w
(p,N)=1
—1 —1
) ~I0-5) -5
2<p<w < p= 1 p>2 p= 1 p>w p= 1
p|N p|N p|N

Secondly, 0 < p—il < ﬁ < %, for all p > w. Use the fact that 1 — 2 > ™2, certainly for
0<a< %, and that e=® > 1 — x, for all real z, to obtain

pw pw pZw pw
p|N p|N p|N p|N
- —2w(N) —4log N
> _c
exp —3 Z 1 < 7 > > ( 1
p|N
— N log N log N
>exp< o8 ) 1—80g =1—80gL
K



4.2 Linearity of the Sieves 4 CHEN’S THEOREM

since w(N) < 2log N, by Lemma A.4. Whence

o I () I o (5)

p>2
p|N
-2 1
1573 (o0(i2)
p>2p_ 0og
p|N
Next
Z 1 </°° dx _l/oo dx _l/oodi?
n>w 77,(’/7,72) w—1 I(‘T*2) B 2 w—lx*Q 2 w—1 L
1 1 1 -1
:—§log(w—3)—&—ilog(w—1):ilogzi3
Hence

11 (Hp(pl—?)) <pgueXp <p(pl—2)) —o (p;up(pl—w) =T <;log5—;>

p=w
1\ 2 2 \*? 2 1
w—
(w—?)) < +w—3) < +w—3 +O(w>

since 1 + z < e® for all x > 0. Therefore

TC-FR) L0 = L0t (00) = I 5
MR =21 ) L)

:2pr>[2(1—@_11)2> (+o(3))

Thus, by Theorem A.6

L0520 o) (o) IC )




4 CHEN’S THEOREM 4.3 The Sieve of S(A, P, z)

which finally implies

V(w)=V(w) ] (1pi1>1 II <1pil)

2<p<w 2<p<w

i1 (0 (o) 0 =) (0 (i)
1122 (140 270 L NV (1vo Lo
el 1 log N log w s (p—1) log N
pIN
o I L0 520) (0 ()
S22 (- L Y (140

_ —1)2

1ogwp|>2p 1p>2 (p—1) log N

p|N

_ e;ijv) (1 +0 (IO;N» = Kekﬁ\;m <1 o <log1N>)

As a side note, recall that V(w) < 1og1N' Then, by Theorem 4.3, not only is S(N) >> 1
as evidenced when first introducing G(N), but also 6(N) < 1.

With that, all is set to be begin sieving.

O

4.3 The Sieve of S(A,P, z)
Jurkat-Richert’s Theorem (Theorem 2.7) provides the following lower bound for S(A, P, z)

log =z

S(A,P,2) > (¢>(1°gD) n 0(5)) IA|V(z) — R

for any D > 22 = N%, where ¢ is the function defined in Section 2.2, and

R= Y |r(d)

d<DQ

d|P(z)
where A
r(d) = |Agq| — —=

The size of A and a bound for R are to be found and a value of D is to be fixed. First

A= Y 1= > 1==(N)-w(N)

p<N p<N
(p,N)=1 (p,N)=1

since p < N is equivalent to p < N, because N is even (and p # 2), and where w(N) is the
number of distinct prime divisors of N. By Lemma A.4

w(N)=0(logN)

Hence, by the Prime Number Theorem

N 1 N 1 N
A= oo v <1+0 <IOgN>) +0(log N) = (1+O (1ogN>> = gy 1 H0E)
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4.3 The Sieve of S(A, P, z) 4 CHEN’S THEOREM

Secondly

Agl= > 1= > 1=nr(N,Nmodd)+O(w(N))=(N,Nmodd)+ O(log N)

N—peA p<N
d|(N—p) (p,N)=1
p=N mod d
Then
4] m(N) | w(N)
r(d) = |A4| — — = 7(N, Nmodd) + O(log N) — —
=14 =y = )+ 00eN) =@ * @
m(N)
= m(N, Nmodd) — + O(log N)

¢(d)

Bombieri-Vinogradov (Theorem 3.1) is to be applied to bound

N
R= > |rd)|= > W(N,Nmodd)“(d)‘+ > O(logN)
d<DQ d<DQ (‘O( ) d<DQ
d|P(2) d|P(2) d|P(2)
m(N)
< Y |7(N,Nmodd)— |+ DQO(log N)
550 o(d)
(d,N)=1

The bound of R to seek is O(@Nﬁv). Hence, apply Theorem 3.1 with N = z = n and
A = 3. Choose

Nz
- (log N)1+8(3)

for, by doing so, D > 2% = N%, provided that k& > 4, for N big enough. Moreover

N3
D oAV
@< (log N)A(3)

since ) < log N for N big enough. Then, by Theorem 3.1

R< ——
log” N
since )
N2z N
DQlog N < <
@log (log N)B(3)—1 log® N
Finally
logD LlogN — (14 3(3))loglog N & loglog N
1g _ 2 (1 :f—k(1+ﬁ(3))i
0og z 7 log N 2 log N
Hence, if 4 < £ < 8
< log D < E <4
logz 2
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4 CHEN’S THEOREM 4.3 The Sieve of S(A, P, z)

for big enough values of N. By Lemma 2.5

o(lal) = 2e7log = log (182 _ 1) = % L0 (bglogN)

Tog = log D log = L log N
- ‘W’kgkf L0
Hence
S(A,P,z) > (W + O(s)) N (1+0()V(z)+ 0 (f)
k log N log® N
Therefore

Theorem 4.4. Let 4 < k < 8. Then

4e7 log £=2 N N
A > 2 -
S(A,P,z) > ( 3 +O(s)> logNV(Z)+O(log3N)

for large enough N.

An intermediate result can be obtained at this point by setting k& = 5 momentarily.
The number of representations of N as the sum of an odd prime and a product of at most
1
four primes is bounded below by S(A,P, N5). In other words:

Corollary 4.5. Let N be an even large enough natural number and R4(N) denote the
number of representations of N as the sum of an odd prime and a product of at most four
primes. Then

N

Ri(N) > S(N)—5—
4() ( )log2 N
Proof. By Theorem 4.4 with k=5

1 4e7 log% N
Ra(N) > S(A,P,N) > (5 + 0(5)) el

S

()

T N 1 N
= (4log3 +0(e) = ——V(N#) + 0 [ ——
( 0g2+ (6)) 5 IOgN ( 5)+ <10g3N)
Choose 0 < e < ﬁ small enough such that

4log 2 +O(e) = 1.6218... + O(e) > 1

Then, by Theorem 4.3

N 1 N N
Ry(N)>SN)—— ([1+0 | —— +O0 —— ] > 6(N)——
4(V) > & )logQN( (ng)) (log3N> ey
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4.4  The Sieve of 3 S(Ag, P, 2) 4 CHEN'S THEOREM

2<q<y
4.4 The Sieve of >, ..., S(Ay, P, 2)

Let ¢ be a prime such that z < ¢ < y. Jurkat-Richert’s Theorem (Theorem 2.7) provides
the following upper bound for S(A4,, P, 2)

S(4,,P.2) < (2(5522) +0()) 4,V (=) + B,

for any Dy > z = N%, where @ is the function defined in Section 2.2, and

Ry= Y Irg(d)|

d<D,Q

d|P(z)
where A
rq(d) = |(A S
o) = (Al = 7%

First, assume ¢ | N. If ¢ | (N — p), where N — p € A, then ¢ | p, which implies ¢ = p
and contradicts the fact that N —p € A, since (p, N) = 1. Thus, |A4| = 0 for every ¢ | N.
From now on, assume ¢ 1 N, that is, (¢, N) = 1. In other words

E S(Ay,P,2) = g S(Ay, P, 2)
2<q<y 2<q<y
(¢,N)=1

Let d | P(2). Then (q,d) =1, since ¢ > z. Then

[(Ag)al = lezlzzlzlAqd\

n€A, neA neA
d|n qln qd|n
d|n

Therefore

A AL A A1 (A
rald) = aal = 20y = Wadl =200 ~ o) T ot ~ "9 T S (A w(@)
r(q)
©(d)

since ¢(gd) = p(q)¢(d). Hence

Ry= 3 Irg@l< Y Irlad) +Ir(@) Y %

4<DyQ d<DyQ 4<D,qQ ¥
d|P(2) d|P(2) d|P(2)

= r(qd) —

For any z < ¢ < y, let
Nt
D NP
q(log N)1+5()
which is greater than z = NV %, provided that k > 6, for in this case

D N3 N3 Nt
= kE =
"7 Ylog N)FHD ~ (log Nyr+s®m ~ 0 =

50



4 CHEN’S THEOREM 4.4 The Sieve of ) S(Aq,P,2)

2<q<y

for N big enough. Instead of estimating R, alone, a bound for

S R< Y Y e+ Y ol Y ﬁ

z2<q<y z<q<y d<D4Q 2<q<y d<D4,Q

(q,N)=1 (q¢,N)=1 d|P(2) (g,N)=1 d|P(z)
1
< Y o+ Yl Y
s<qDeQ 2<q<y d<nN ¥
(s,N)=1 (g,N)=1

is found using Bombieri-Vinogradov (Theorem 3.1) once again. As a matter of fact, apply
Theorem 3.1 with N = 2 =n and A = 4, to obtain

N
> b= Y |r v N mods) - )\ + > O(logN)
s<qDqQ s<qDqQ 90(8) s<qDqQ
(s,N)=1 (s,N)=1 (s,N)=1
N N
< Z m(N, Nmods) — TF()‘ +¢D,QO(log N) < —5—
<D0 ¢ (s) log™ N
(s,N)=1
since X
N2
D,Q < ————+
q qQ (IOgN)B(4)
because @ < log N for N big enough. In particular
N
Z Ir(q)| < Z Ir(q)| < Z Ir(s)] < od N
2<q<y <y 8<¢D,Q °8
(a,N)=1 (g,N)=1 (¢,N)=1
since y < gDy < ¢D,Q. Moreover, by Lemma B.4
1
Z T < 10gN
= e(d)
Then N N N
Y Ry« ——+—5—logN < ——
2Say log" N  log™ N log® N
(QﬁN):l
On the one hand
logD, 3logN —logq— (1+p3(4))loglogN k o loglog N
gDy _ 3log gql( p4))loglog N _ &k B9 11 4 (a)) 08108
log 2z 7 log N 2 log N log N
where, if 6 < k <8
kK k log q k
1<=-<-=--k - -1
< 6 < 2 log N < 2 <3
since %log]\f <logq < %log N. Hence 1 < legzq < 3, for N big enough. By Lemma 2.4
2¢eY loglog N 2¢e7
cI)(l?oggqu) = k ]:logq +O ( Oi O]g\f ) = k 1 elogq +O(€)
2 MogN & <§_logN)
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4.4 The Sieve of .., S(Aq,P,2) 4 CHEN'S THEOREM

On the other hand, by the Prime Number Theorem

=T mo (0] = w s mo — w O
|A,| = (N, Nmod q) + O(log N) oot (N, N mod q) e + O(log N)

N . ™ mod q) — m(N)

~ plg)log N (HO (1ogN)> N, Nmodg) ©(q)

Therefore

2 (q’(l?fggq“o(f))lflql: > (k(lkjogq)jLO(E))N(Ho(W))

Iy 2<q<y “logN »(q) log N
(Q7N):1 (q,N):l
2e” N
T Z ( 1 log ¢ + O(€)> <7T(N, N mod q) — (()>
z<q<y (5 - logN) q)
(¢,N)=1
The factor
2e7 2¢eY
ozas T0() < +0(e) = O(1)
k(5 — o) k(5 —3)

since £ < 505 = O(1). Hence the second sum is

)| N O\ N
W(N,Nmodq)—(p(q)’ _O<1og2N)_O(€)logN

ol X

q<y
(¢,N)=1

after applying Bombieri-Vinogradov (Theorem 3.1) with N = = n and A = 2, since
1

y=N i< W for big enough values of N. The first sum is equal to
2e"N ( 1 1 N 1
140 () +0()
k log N qu;y ¢(q)(3log N —logq) log Nzgq;y ¢(q)
(q,N)=1 (g,N)=1
By Lemma A.3
1 1 1 1
Z — = Z jg Z —1<< Z — =loglogy — loglog z + O(1)
2<q<y #(4) 2<q<y 4 2<q<y 4= 2<q<y q
(a,N)=1 (a:N)=1
=log(3 log N) —log(# log N) 4+ O(1) = log & + O(1) = O(1)
Hence
N 1 N
O(e) > =0(e)
log Nz§q<y v(q) log N
(g,N)=1
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and
kN 1
logN Z logN logg)  log* N Z o) (5 — higEk)
(q N) 1 (q,N):l
N 1 N N
<oy 2 < 5= =0(e)
log™ N 2<q<y ¢(q) log® N log N
(¢,N)=1
since 1 < & — kll(fgg L < 3. This means, by all the above, that
2¢7N 1 N
S (2(E2) +06) 44l < > L oG)
gz 1 —
2<q<y k 2<q<y ¢(q)(5log N —logq) log N
(@)=l (a.N)=1
To bound the above sum, write
1112
ole) q¢-17"q ¢
Then
> 1 3 ! ) 2
2<q<y #(9)(3 log N — log q) 2<q<y q(5 log N —log q) 2<q<y (3log N —logq)
(¢g,N)=1
where

2 2 2
< — N
Z;q;yqz(% log N —log q) qu;y ¢2(3log N —logy) qu;y ¢*(3 — 3)log N
12 1 12 < d 12 1 1 1
= > =< 3= =0 —=x
log N ¢® " logN ). 2% logN z— 1 zlogN log® N

2<q<y

Consider next the continuous, positive and increasing function

1
@) = %logN —logx

defined for z < x < y. Then, by twice integrating by parts and using Lemma A.3 in the
form

1 1
Zzloglogm—i—a—f—O( )
p log x

p<z
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4.4 The Sieve of .., S(Aq,P,2) 4 CHEN'S THEOREM

for some constant a > 0

St B I
5 y L _/qud(q;q)

q($log N —logq)

2<q<y 2<q<y
1 1 Y 1
=fw) -—fz)) -- —df(x)

:f(y)(loglogy+a)—f(z)(loglogz+a)_/Zy(loglogx+a) df @)+
#0(15) 0 (g2) + [ 0 (g ) 7

— [ s atostogs +a) + 0 (120) o (12 o (["11)

f) FEN _ A (W)Y _ 1
X <logy> o (10g2> -¢ <log2> —¢ <log2N>
since f is increasing and
fly) 1 6k

logz  LlogN(LlogN —LlogN) log? N

First

Second

Vdf(x) Y dx Y dx

/Z log x _/Z zlogz(3log N — log x)? </Z zlog z(1log N — logy)?
7 1 Ydr slogN —flogN ( 1 )
~ tlogN(3logN —LlogN)2 J. = Llog® N \log? N

Third, using the change of variables x = N

/yf( ) dlogl /y dx /‘7 N%¥log Ndu
r)dloglogx = =
. 8708 . wlogz(3log N —logz) Nvuulog N(3log N — ulog N)

1 /é du 2 / du , du
~ logN 1 u(3 —u) ~ logN 1 \u i-u
2

_ 2log(k —2)

ol

==

W=

(log i —log 4 —log & +log(2 — 1)) =

- log N log N
Whence , Dosh 1
Z 1 < og(k — )—1—0(2)
52, pla)(zlog N —logq) log N log®> N
(‘LN):]-
Finally
2¢"N 2lo (k — 2) 27N 1 N
log Dy g
> (0(552) +00) 14 < EEEEED L 2080 () o
2<q<y
(qu)zl

_ 4e"Nlog(k —2) 0 N
n klog N
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Thus
log Dy
> S(ALP ) = Y S(ALP) < D (2(ER) +00) 4V + Y R,
z2<q<y 2<qg<y 2<q<y 2<qg<y
(¢,N)=1 (¢,N)=1 (¢,N)=1
4e7log(k —2) N N N
< p 1OgNV(z) +0(e) logNV(Z) +0 (log3 N)
Therefore

Theorem 4.6. Let 6 < k < 8. Then

S S(4,.P.2) < (Mk’gk(’“‘?) ¥ o<s>> ey V()0 (logN)

2<q<y

for large enough N.

Another intermediate result can be obtained at this point. Having studied the two
first terms of the weight «,, allows one to produce an upper bound for the number of
representations of IV as the sum of an odd prime and a product of at most three primes,
say PR3(V), which is obtained by assigning the weights

~ 1 .

an=1-35 >
2<q<y
q’[In

to n € A such that (n, P(z)) =1 instead of

an:&n—% Z 1

n=pip2ps3
2<p1<y<p2<ps

This implies, that &, > 0 if and only if n is such that a,, > 0, or a;,, = 0 and the above
sum equals 1. Now, if said sum is 1 exactly, then «, = 0. Hence, &, > 0 if and only
if n is of the case (4), (ii), (4ii), (iv), or the product of three primes, n = pipap3, with
z<p1 <y <p2 <ps. Thus

Ry(N) > S(A, P, 2) —% S S(4,,P,z) - NI

2<q<y

and by Theorem 4.4 and Theorem 4.6, with k = 7 (or similarly with k£ = 8)

S(A,P,2) - ZSAq,Pz N#
z<q<y
4e7log 2  14eVlogh N 1 N
- = 0] V(N7 O|——
>< 7 27 0@ N VWO ey
Whence
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Corollary 4.7. Let N be an even large enough natural number and R3(N) denote the
number of representations of N as the sum of an odd prime and a product of at most three
primes. Then

N
R3(N) > S(N)——5—
$(N) > SN
Proof. By Theorem 4.4 and Theorem 4.6 with k =7
2¢7 N 1 N
R3(N) > (2log 3 —log5 +0(e)) - —=V(N7) + O | —5—
(V) > (2108 § ~log5 + 00) " v (vh +0 (5 )
Choose 0 < € < 55 small enough such that
- 1
2log 2 —log5+ O(e) =log 2 + O(e) = 0.2231... + O(e) > :

Then, by Theorem 4.3

2 N 1 N N
Ry(N) > =6(N)—— (1+0( —= | | +O0 [ —— | > 6(N)—5—
3(N) > 6( )1og2N( (logN)> <10g3N) ( )1og2N

4.5 The Sieve of S(B,P,y)

Bombieri-Vinogradov will no longer be of any use when bounding the error term. Instead,
this is accomplished by large sieving techniques and particularly Theorem 3.5.
The set

B ={N — pipaps : pipaps < N, z <p1 <y < p2 < ps, (p1p2ps, N) =1}

is far too restrictive. Instead, a new set B’ is defined containing B. Divide the interval
z <z <y into pairwise disjoint subintervals z; < z < (14 ¢)z;, where

z;j=(1+e)z
and 0 < j < %, since zo = z and

log y—log z logy

(1 + 5) Tog(1te) 5 — elos(i+e) 10%(1+5)610gz — elosy — y

This implies that for every z < p; < y, there exists a unique j, such that z; < p; < (1+¢)z;.
Define the sets B7 by

{N =pipaps © 2 <p1 <y <p2<p3, z; <p1 < (L+e)z;, xjpaps <N, (p2ps, N) = 1}
The number of sets B7 is bounded above by

11
logy — log 2 _ (g—E)logN+1<< log N log N
log(1+¢) log(1+¢) log(1+¢) €

since k>3 and 0<e< ﬁ. Define

B’:UBJ’
J
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4 CHEN’S THEOREM 4.5 The Sieve of S(B,P,y)

Then _
B = |B]
7
since BJ are pairwise disjoint. Furthermore
BC B
Hence

S(B,Py) <SB,Py)= > 1=> Y 1=) SB Py
beB’ J beB J
(b,P(y))=1 (b,P(y))=1

The estimate of S(B7,P,y) is once again provided by Jurkat-Richert’s Theorem (Theo-
rem 2.7), by means of

S(B,P,y) < (2(EL) + 0(e)) IB'|V(y) + R,

logy

forany D >y = N3, where @ is the function defined in Section 2.2, and

Rj= Y Irj(d)

d<DQ
d|P(y)
where 5|
. J
ri(d) = |B)| — —
J( ) ‘ d @(d)

and Bé ={be B : d|b}, for all d | P(y). Then, for any j and any d | P(y)

1 1
rj(d)=21——d)21: > 1—m > 1

o(

beBJ beBJ 2<p1<y<p2<p3 2<p1<y<p2<p3
d|b z;<p1<(1+e)z; z;<p1<(1+e)z;
zjp2p3<N, (p2ps3,N)=1 zjp2p3<N, (p2p3,N)=1

p1p2p3=N(mod d)

A prime p; either divides d or is coprime with d. Hence, the second sum can be written as

> 1= > 1+ > 1

2<p1<y<p2<ps 2<p1<y<p2<ps 2<p1<y<p2<ps
z;<p1<(l4e)z; z;<p1<(l4e€)z; z;<p1<(l4e)z;
z;p2p3<N, (p2p3,N)=1 z;p2p3<N, (p2ps3,N)=1 z;p2p3<N, (p2ps3,N)=1
(p1,d)=1 p1ld
where
1
E 1< g ].ZE E 1§(1+€)NE —
1
2<p1<y<p2<ps P>z P1>2 paps<(lte) &L pr>z
z;<p1<(l+e)z; p1p2p3<(l+e)N p1ld ! p1ld
z;p2p3<N, (p2p3,N)=1 pild
p1ld

2N , .
<Y reatuto =0 (v e
<= Y 1<2N'kw(d) =0 (N'" ¥ logd
p12>%2
p1ld
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by Lemma A.4. For any d dividing P(y), the condition (p;,d) = 1 is equivalent to
(p1p2ps,d) = 1, since (paps,d) = 1 is already implied by d | P(y), since both ps and
ps are greater or equal than y. Therefore

o 1 N'=%logd
nd= > - 2 ”O< o) )

2<p1<y<p2<p3 2<p1<y<p2<p3

z;<p1<(l+4e)z; z;<p1<(l4e)z;
x;p2p3<N, (p2ps,N)=1 x;p2p3<N, (p2ps,N)=1

p1p2p3=N (mod d) (p1p2ps3,d)=1

Let (a,)n be the sequence defined by

o =1 ifn=pps, y<py<ps (p2p3,N) =1
" 0 otherwise

Then
1 N'=% logd
= Y a——m Y an+0<dg>
2<p1<y 90( ) 2<p1<y SO( )
z;<p1<(1+e)x; z;<p1<(1+e)z;
z;n<N z;n<N
p1n=N(mod d) (pimn,d)=1
Let
N .
Xj :;a Y] :mln(y7(1+€)xj)7 Zj :max(z,a:j)::rj
J
Then
N'=%logd
CED VD W Do o(@
n< z2<p1<y z<p1<y v
“j z;<p1<(l+4e)z; i xj<p1<(1+£)x]
pin=N(mod d) (pin,d)=1
1 N'=%logd
DI W TP D DR L
n<X; Z;<p1<Yj n<X Zj <p1<Y
p1n=N(mod d) (pin,d)=
Let
Nz
log" N

which is greater than y = N 3. Then

DQ< T 6 A7 6<min (y71+5>) = 5 (J) — ( J6J> S ( jGJ)
log” N log T log’y \ T log® y 10g° Y;

since @ < log N for N big enough and both £ and 1+4¢ are greater than 1. By Theorem 3.5,
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with X = X;, Y =Y;, Z=Z;, h=N and A=6

Ri= > |ri(d)| =

d<DQ
d|P(y)

EE LT A R T e R ()

d<DQ |n<X; Z;<p1<Y; i Z; <p1<Y d<DQ
d|P(y) pin=N(mod d) " (pind)= d|P(y)
1 N'=% logd
Y Y Y Y ¥ al ¥ oM )
VXY n<X;  Zj<p1<Y; n<X Z; <P1<Y VXY
d< logbYy; pin=N(mod d) (pln d)= d< logOlY;
d|P(y) d|P(y)
1
o XYios XV | pei gy (Y5)2 v L
log”Y; log” Y; W@(d)
d<1omv,
d|P(y)

In addition

N
X,Y; =~ min(y, (1 +£)a;) <
Lj

-(1+¢e)z;=N(1+¢e)<2N <N

Sl=

and
logY; > log N

since clearly logy = log N >> log N and log((1 + €)x;) > logz; > logzg = logz =
1 i log N >>log N. Moreover by Lemma B.4

1 1 X,Y;)? Nz
Z —— < Z <<10g( 5Yi)? << log 62
raC) i) log° Y; log” N
d logbY d loglY;
d|P(y)
Therefore ) .
Nlog” N Nz N
<< o8 NI-% log ’
log” N log® N log N
Hence N
S(B7,P,y) < (@(ﬁ‘fg’j) +O(s)) |B7|V(y) + O ( 4N>
where

logD  $logN —TloglogN 3 op loglog N

logy %logN 2 log N
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By Lemma 2.4
2e7 4e” loglog N 4e”
(I)(lloqu): loglog N 9 O( >+O(5)
ogy 2 217()5);]%, 3 log N 3
Next, by Theorem 4.3
3¢~ 7 S(N)
V(y) log N 1 1 3 3
= 1 - 1 °n b
V(z)  Ee_sm) O o FO (g )) = 5 1 H0E) =5 +06)
og

S(B',P,y) < <+O > |BY |( s)) V(z)+0 <logJ>IN)

= ( rom) oo ()

N). Thus

Recall that the amount of sets B7 is O(loga

S(B7P,y)<ZS(Bj,P73/)<<+O )ZB”V +ZO<1gN)

_ (4; +0(e )) 1BV(2) + 0 <glozgv3N>

Finally, |B’| is to be estimated. From the definition of B’ it follows that

B C{N —pipaps : 2 <p1 <y < pa <p3, prpaps < (L+¢)N}
since, given N — p1pops € B7, for any j
pip2ps < (L+e)zjpops < (1 +e)N

Bl< >, 1

2<p1<y<p2<p3
p1p2p3<(l+e) N

Then

Let p1 <y < pa < p3 such that p1paps < (1 +€)N. Then, p;p3 < (1 +¢)N and
1 N
_(+9)
b1p2

which implies ﬂ'(%) > 7(p3) > 1. By the Prime Number Theorem

1 N N 1 1 N 1
(UYL (o 1Y) 00 (1)
P1D2 p1ps log LN log LY pip2log =2 log N

P1P2 P1p2 pPip2

where the error term was bounded as follows

LR SR S
N 2 1
log (11:;)2]\[ log p1p2 log N'1~3 slog N
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2

= N5. There exists N(g) > 0 such that the error term 1+O(logN) <
which case

since p1ps < 173 < %

1+¢,for N> N(e

1
1 1 — l+e)P=1+2e+e*<1
( +6)< +O<logN>><( +e) +2+e” <1+ 3¢

Thus

7r((1—|—5)N> - (1+35)N

D1p2 p1p2 log X Dips

for N big enough. Therefore

Bl< > 1< Y 1< Y 7r<(1p+1;)N)

2<p1<y<p2<p3 z2<p1<y<p2 ZSfp1<ysz
p1p2p3<(l4+e)N p1pi<(1+e)N p1p2<(l+e)N
1
<(1+3)N Y = (1+3)N ) >
o)
2<p1<y<p2 p1p2 108 P1p2 z2<p1<y p y<p2 <w log P1P2
p1pa<(l4+e)N

where w = ((1+¢)N, pfl)% for convenience purposes only. In a similar way as in the the

bound of >~ <q<y S(Ay, P, 2), consider the continuous, positive and increasing function

1
log X~

p1x

fz) =

defined for 0 < x < pﬂl. Then, by twice integrating by parts and using Lemma A.3 in the

form
1 1
Zzloglogm—i—a—f—O( )
P log x

p<x

for some constant a > 0

> - ¥ M (X))

polog
y§P2<wp2 S pips Plpz y<ps<w

f<w>zf<y>§j;/w2;df<x>

p<w p p<z

— f(w)(loglogw +a) — f(y)(loglogy + a) — /y “(loglogz + a) df (z)+
vo (i) 7o (o) [ 0 (o) 1
_ /yw f(z)d(loglog z + a) + O ({(fgfl) 4O (1{2’;) 4O (/yw ‘fﬁg)
o (1) 70 (ogn) = (og) = (o)
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4.5 The Sieve of S(B,P,y) 4 CHEN’S THEOREM

since f is increasing and

fw) 1 1 S 1 1
logy  logylog pllw log y3 log ﬁ log y log % slogN2 logN log N
Second
/wdf(x)_/w dz </w dx B 1 /“’dj
y logx y mlogwlogQP% —Jy xlogylog%ﬁ% %1ogN(%1ogﬁ)2 y
12(logw —logy) _ 12(5log N — 3 log N) log N 1
T g Nl = logNlogE— logNlog?X  (ZlogN)?
OgN og m OgN og m OgN og v (g og )
1
=0 (2)
log® N
Third
w (23 w
/ f(m)d(loglogx—l—a):/ f(x)dloglogx+/ . f(z)dloglogz
y y ()2
where, using the change of variables x = (pﬁl)%u
w w Vite pﬂldu
/ , f(x)dloglogz = /
()2 (X )2 xlog;vlog 1 /N ulog( /N )log N_
p1 o U

P1

/\/ 1+4¢ du
1 u(%logpﬂl—&—logu) (%bgp—]\i —logu)

/VHE du 1 /V”E du
= < — —
1w (i log” X log? u) log® N' /1 u

slog(l+¢e)  ilog2 - 1
log® N log? N log? N

since
(i log? pﬂl — log® u) > (% log? % —log? V1 —|—5> = (i (2 logN)2 — log? 2) > log? N

Whence

1 (52 1
y<pa<w P2198 5p; Y 0g
Therefore
FO* f(z)dlogl
P glogx (14+3¢)N 1
Bl <(1+3N 3 +0(1 Ny L
2<pi<y Y P 08 z2<p1<y P
B dlogl N
=(1+3)N Y / ' Ogoffu)( k )
ey Y P1 IngTm log® N
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since, by Lemma A.3

1

Z ) =log(3log N) —log(z log N) 4+ O(1) = log & + O(1) = O(1)
1

2<p1<y

Finally, consider the function
1
()2 dloglogx
g(t) = e X
y 08 i
defined for z <t < y. Then, once again, by twice integrating by parts and Lemma A.3

> /,,1) dloglogz _ 3 g(p /yg(t)d<211?>

log =
2<p1<y P gpw 2<p1<y p<t

=9(y) Z};*g Z**/Z dg(t)

p<y p<z Z p<t

= g(y)(loglogy + a) — g(z)(loglog z + a) — /y(loglogt +a) dg(t)+

z

o) 0(22)" Fole)oe
_ /zyg(t) d(loglog + a) + O (fjg;) 40 (f;;l) 1o (/y ‘fgg)

(3)% v
v’" dloglogx dloglogx
g(y) = N TN 0
Y log o y log o

First

and, by the change of variable x = N*

1 k—1 .
g(z) 1 /<f)2d10glogx ! /N ™ dloglogz 1 /k du
logz logz J, log & logz J, log N'-%  logz 1ou(l - 1 —u)log N

B / du 1 1
~ logzlog N 1 u(l—%— ) logzlogN log N

Second, by the chain rule

\/ 1og1/ log
and therefore

Y dg(t) Y 2dt Y 2dt 2 Y dt
logt | oy S N T 1 2 2 | 7
. logt » tlogtlog” 5 . tlogzlog ” rlogN(5logN)? J, t

9k(log N — Llog N 1
(3 g . % 108 )<< =
2log” N log® N
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Last but not least, by the changes of variables xt = N* and t = N

/ g(t)d(loglogt + a) = // legIngdl g logt

/ / 7 du dw / / L
uw(l—w—u)logN logN u(l —w—u)

where
1w 1—w
‘/T du 1 ‘/T 1 n 1 d
= —+———du
1 ul—w—u) 1—-w 1 u l—w-—u
_ log 5% —log § —log(1 —w — 35%) +log(1 — w — 3)
B 1—w
_log 5% +log3 —log 5% +log(3 —w)  log(2 — 3w)
B 1—w o l-w
whence
Y log(2 —
/ g(t)d(loglogt + a) /3 og 3w dw
P g N
Let .
3 log(2 —
I = / log(2 = 3w)
1 w(l—w)
Then .
()2 dloglog x Iy, 1
> =y O\
z<p1<y Y P IngTw 08 log” N
Therefore
I N 1
B’ 1+3e)N O|——)=(I,+0 0
[B] < (1 +3¢) logN (log2N> (k+ €+ (108;N)>10g
N
= +0
(5 + 0

to finally deduce

4e”

S(B,P,y) < (k +0(e )) (I + O(s))%V(@ +0 (5102[3]0

Whence

Theorem 4.8. Let k > 3. Then

4e7 I, N N
B L -
S(B,P,y) < ( A +O(s)> logNV(Z)+O<slog3N>

for large enough N.
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4 CHEN’S THEOREM 4.6 Completion of the Proof

4.6 Completion of the Proof
Let N be big enough and 6 < k < 8. Recall Theorem 4.4, Theorem 4.6 and Theorem 4.8

4e” log % N N
4e7 log(k — 2) N N

z2<q<y
47T, N N
S(B,P,y) < +0 Vi)+O0 | ——=—
(B.P) < (M7 +00)) V) +0 (o)

Thus, by Theorem 4.2 and Theorem 4.3

1 1 R
R(N) > S(A,P.2) =5 D S(A.P,2) = 5S(B.Py) = N7k — oN3
2<q<y
_ 287 N N
> (2log 132 —log(k — 2) = I + O()) T V() + 0 <slog?’N>

— (log £52 — I + O(2)) S(N) —o— (1 o <loglN>

since

)+o ()
)

O(N> _Nli_1N§—0< N
log® N 2 elog® N

The above bound becomes of any use when

j(k):log’%?—f,e:log%—/g
®
Set k = 8. Then

1
3 3 log(2 —3
3(8) = log - — / de — 0.04238... > 0

8

L

Pick a small enough value of 0 < & < 555

in a way that
J(8) + O(e) > 0.04

For said fixed value of ¢

N N N)N N 1
o) ol o () -1
elog® N log® N log® N log“ N log N

since §(N) >> 1. Therefore

R(N) > 0.08 6<N)1Og]§N (1 +0 <1g11v)>
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Thus, for big enough NV
N

log® N
which completes the proof of Theorem 4.1. O

R(N) > &(N)

Nevertheless, k = 8 is not the best choice for k. Of course, the statement of Theorem 4.1
cares not about its specific value. However, it has been made clear throughout the proof
that the closer z = N* is to y=N %, the more information it is given about the range
where the prime p and the prime factors of N — p lie.

This now turns out to be a problem of finding a zero of J(k) as a function of k. Its
derivative is positive whenever 6 < k < 8, meaning J(k) is increasing with k. Moreover

3(7) = —0.06761... < 0

This is the reason why k£ = 8 is finally used to conclude Theorem 4.1, since it is the only
possible integer value of k. The ideal value for k lies between 7.585 and 7.586. Take

k = 7.586

Then
3(7.586) = 1.0126...-107* > 0

and
1
N 7586 = N0.1318...

Thus, the complete and unabbreviated statement of Theorem 4.1 ought to be:

Let N be an even large enough natural number and 9R(N) denote the number of rep-
resentations of N as N = p+ (N — p), where p < N is a prime not dividing N and
(i) N—p=1,or
(ii) N — pis a prime greater or equal than N-1319 or
(7it) N — p is the product of exactly two primes, both greater or equal than N%, or
)

(iv) N —pis the product of exactly two primes, one of them greater or equal than N©-1319
1
and smaller than N3, and the other greater or equal than N 3

Then

N 1
R(N) > 2.025-1074 S(N)——— 1+0< ))
(V) ( )10g2N< log N

N
1 2
og” N

In particular
R(N) > &(N)
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Appendices

A Arithmetic Functions

Lemma A.1 (Abel’s Summation Formula). Let {a,}n>1 be a sequence of real numbers,
A(x) =3, <. an, and f a function with continuous derivative on [1,00). Then

S anf0) = A@)f(@) - [ A7 () du
for any x > 1.

Proof. Let & > 1 and set k = [z] and ag = 0. Then

Y an(f(@) = f(n)) = Y _(A(n) — A(n = 1))(f(z) = f(n))

n<z n<k

= S AW (F@) — f0) = S Am)(f(@) - fln+ 1))

n<k n<k—1
= > AW)(f(n+1) = f(n) + A(k)(f(z) — f(k))

n<k—1

n+1 T
=nSZk_1A(n)/” f(u)du+A(k)/k £ (u) du
n+1 T z

:ngzk_l/n A(u) f'(u) du—i—/k A(u) f'(u) du:/1 Au) f'(u) du

Lemma A.2. Let d(n) = }_,,, 1 be the divisor function. Then

Z M > log?a
n

n<lzx
Proof. Let
A =Y dm =Y Y11= Y 1= [F] =23 % + 0w
n<z n<z dn dSmTﬁir d<z d<z
where

1 1 T du
ZEZH > E<1+/1 —=1+loga

d<z 2<d<z
which implies

Z é =logz + O(1)

d<z

Then
A(z) = xzlogx + O(x)
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By Lemma A.1 with a, = d(n) and f(z) = 1

1

n<lz
log? 9
=logz + O(1) + + O(logx) > log” x
O
Lemma A.3. Let x > 1. Then
1
Z — =loglogx + O(1)
p<x
In fact
1 1
Zloglogm+a+0(l )
P ogx
for some constant a > 0.
Proof. Let 7(x) be the prime counting function. By the Prime Number Theorem
T 1
= 1+0
() log z ( + (log:r))
Then
p<z p n<z n n<x n n<zr—1 n+ 1
-y (-mhion- v o
2<n<z—1 n n+ 2<n<z—1 n(n + )
1 1
= ¥ L(Z) +o()= Y 1 <1+1 ) +0O(1)
2<n<e—1 2<nc—1 VOB ogn
1
= Z +O(1) =loglogz + O(1)
nlogn
2<n<z—1
since
1 < /°° du 1
ey nlog?n o wulog?u log2
and ) s g
Z </ Y = loglog x — log log 2
ey nlogn 5 ulogu
O

Lemma A.4. Let w(n) =5 1 be the prime divisor function. Then

pln

w(n) <2logn

for allm € N.
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Proof. Assume there exists n with w(n) > 2logn. Then
n> Hp > H2 _ guw(n) 5, g2logn _ 2lognlog2 - Jogn _
pln pln
which is a contradiction. Thus, no such n can exist. O
Lemma A.5. Let f be a multiplicative function. Then
f(lmyn)) f((m,n)) = f(m)f(n)
for every m,n € N.

Proof. Let p1,...,p, be the primes dividing m or n. Then, write m = [[;_; p{" and
n= H;l pf ¢ where oy, B; are nonnegative integers. Then

r
Pn n]: pmaﬂanﬁﬂ
’ i
=1
and
s . )
(ai,Bi
(m,n) = [ p™
=1

If max(ay, 8;) = @, then min(«;, 8;) = B;, and vice versa. Therefore

Fm.n) £ (mm) =TT 7 (7)) T 7 (o) = T TL £
e} i=1 i=1 i=1

= f(m)f(n)
O

For brevity’s sake, the following result will not be proved. For a detailed proof see
pages 165-166 of [5] and pages 65-67 of [1], for instance.

Theorem A.6 (Mertens’ formula). Let z > 2. Then

()= (00 ()
I1(t-5) = ()

p<z

-1
H(l—l) :eﬂog:c<1+0< ! )):e”logchrO(l)
D log x

p<x

Lemma A.7. Let x > 2 and € > 0. Then, there exists nq(g) such that

1\ ! log x
I1 (1—) <(l4e)2
P log u

u<p<z

In particular

for every ni(e) <u < x.
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Proof. Let s = 26155 Then

eV+s (24¢e)e+ele 242 -
= = = £
eV —s (24¢e)eY —ele 2

By Mertens’ formula (Theorem A.6), there exists ni(s) = ny(e) such that

(" —s)logz < [ <1 _ 1>_1 < (& +5)logz

p<x b

for all x > nqy(e). Let > u > nq(e). Then

H <1 1)—1 _ Hp<:c (1*%) < (7 + s)logx _ (1+€)10g3€

T -1
P 1 (e7 — s)logu
Hp<u (1 - 5) )

ulp<xz

B The Mobius and Euler’s Totient Functions
The Mobius function, defined by

1 ifd=1
p(d) = ¢ (=1)*) if d > 1 is square-free
0 otherwise

is a multiplicative function with many interesting and useful properties is number theory.
Theorem B.1. Let f be a multiplicative function with f(1) = 1. Then
> _ud)f(d) =]~ )
d|n pln
for every n € N. In particular
1 ifn=1
> uld) = .
i 0 otherwise

Proof. The result trivially holds for n = 1. Assume n > 1. Let n = pi*...pI'", where
D1, .., are distinct primes, n; > 0 and r = w(n) > 0. Let N = p;y...p,. Then

S owld)f(d) = uld)fd)=F)=> F)+ D fop)— D, floipipk) + -

d|n d|N Pi<pj Pi<p; <Pk

=1= fp)+ Y fe)fe)— D, fo)fe)fee)+-..=[[(1 - fp)

pi<pj Pi<p; <Pk pln

In the particular case that f is identically 1, then de p(d) = 0 for n > 1, and clearly
S 1ld) = (1) = 1. O
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The Dirichlet convolution of two arithmetic functions f and g is defined by
n n
(f * 9)(n }jf (d)——gjf(d)gw)

Therefore f * g = g * f. Moreover, the Dirichlet convolution is associative, meaning
fx(gxh) = (f*g)=*h, for all arithmetic functions f, g and h, and preserves multiplicativity,
that is, f * g is multiplicative if both f and g are multiplicative. Let

5(n):{1 ifnzl'

0 otherwise

Then, for every arithmetic function f
n
=§jfww(d)=fm>

Finally, let 1(n) = 1. Then, Theorem B.1 can be stated as follows
pxl=29

Theorem B.2 (Mobius inversion). Let D be a divisor-closed set of natural numbers and
f and g two arithmetic functions defined on D. Then

f(n) = (gxpm)(n)=>>_g(d) ()

d|n

g(n) = (f*1)(n }jf

Proof. Assume first f = g % p. Then

if and only if

frl=(gxp)xl=gx(uxl)=gxd=yg
Assume now that g = f * 1. Then
grp=(fx1)sxp=[fx1lxp)=fxd=f
O

Theorem B.3 (Dual Mdbius inversion). Let D be a divisor-closed set of natural numbers
and f an arithmetic function defined on D. Let

=3 f(d)
dne|dD

for alln € D. Then
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Proof. Let n € D. Then

Su( @) o= u(5) X fm) = X ut) X sim)

deD deD meD nreD meD
n|d n|d dlm nrim
= > ulr) Y flrs)= Y f(na) Y p(r)= Y f(na)d u(r) = f(n)
nreD nrs€D na€D ’I"G‘D na€D rla
by Theorem B.1. O

Euler’s totient function is a multiplicative function defined by

1
p(n) = g lzn”(l—)
d<n pln p
(d,n)=1

and hence p(p) = p(1 — %) = p — 1. Moreover

Lemma B.4. Let x > 1. Then

1
Z — < logx
¢(n)

n<x

Proof. Given any r € N, let

plr
Then
1 1 1 1 1 1 1 1 1
EORDIETI FESED IED SLED SEDIEED LD St-
n<x n<x pln P n<x r>1 r>1 TIL%<‘J‘ r>1 h<f
R|n n
1 1 1
= — - <« —
R 2 p Slsrd p
r>1 h<i r>1
since ) J
1 xT
— <1+ —<1+/ —u:1+1oga:<<1og:z:
h h 1ou
h<Z 2<h<z
Finally
1 1 ( 1 1 1 1
—= > —=]J(1+ 2+3+...>:H(1+2(1++...>)
rleR m>1 D P D p p
p*lm.,Vp|m
1 1
=[Il1+= 1)H<1+ )<+oo
; ( rPl-4) plp—1)
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C Dirichlet Characters

A Dirichlet character modulo d € N is a completely multiplicative function y : N — C
such that x(n+d) = x(n), for all n € N and it is supported on coprimes of d only, meaning
x(n) # 0 if and only if (n,d) = 1.

This implies that x(1) = 1, since x(1) = x(1)x(1) = x(1)? and x(1) # 0 because
(1,d) = 1. Moreover, x(n1) = x(ns2), for every n; = ny (modd). In particular, given n
such that (n,d) =1

X()#D = x(n#1P) = x(1) =1
since n¥(¥ =1 (mod d) by Euler’s Theorem. Hence, x(n) is either a ¢(d)-th root of unity
when (n,d) =1, or 0 otherwise. In particular, |x(n)| = 1, for every (n,d) = 1.
The principal character modulo d is denoted by xo and defined by

1 if(n,d)=1
XO:{ (n,d)

0 otherwise

The total number of different characters modulo d is ¢(d), since x are completely
determined by the value at a single n such that (n,d) = 1 (for which there are ¢(d)
possible values), because of complete multiplicativity.

Lemma C.1.

S o) = {@(d) if n =1 (modd)

iodd 0 otherwise

Proof. Let m be such that (m,d) = 1. Then

doxm) = > x(nm)=x(m) > x(n)

x mod d x mod d x mod d
Assume ) qqX(n) # 0. Then, x(m) =1, for all (m,d) = 1, which implies x = Xo, and
in this case }2 044 X(1) = 22, moaa 1 = ¢(d). O

AT

Let n be such that (n,d) = 1. Then x(n) = e*@  for some r, since x(n) is some (d)-th
root of unity. Then

X(n) = x(n) = % = x(n)~' = x(n7")
where x(n~!) is to be understood as x(a), where n~! = a (mod d).

Dirichlet characters modulo d are not defined to be d-periodic, but rather that the value
at any n and n + d coincide. A Dirichlet characters modulo d is said to be primitive when
it is in fact d-periodic, restricted to coprimality with d. Otherwise, the character is said to
be imprimitive, meaning it has period strictly less than d.

Define the Gauss sum associated to a Dirichlet character x modulo d by

i
(0 = 3 x(h)e2it
h<d
Lemma C.2. Let x be a primitive Dirichlet charatcer modulo d. Then
1 o h
x(n) = —= ) x(h)e’™d
7(X) hzg;

for allm € N.
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Proof. Assume first (n,d) = 1. Then

ZX 27rzd_ZX —lh 27r1d

h<d h<d

Let a = n~'h (modd). Then y(n~'h) = y(a) and €27 = e2i"% Therefore

7(X) = Y_ x(a)e’"i

a<d

where the condition x primitive is left unused.
Assume now (n,d) > 1 and x primitive. Then x(n) = 0. It is therefore needed to be

proved that
Z X(h)e%rin% =0
h<d

Write the fraction % as an irreducible fraction Z—g. Then, (ng,dp) = 1 and dy divides d.

Moreover dg < d, since (n,d) > 1. If dy = 1, then n is a multiple of d and the result
trivially holds since both x(n) and e2™"% are zero. Assume then dy > 1. Let d’ = d— and
write h = sdg + 7, where 0 < s < d’ and 1 < r < dy. Then, if h runs from 1 to d, then s
and r range from 0 < s < d’ and 1 < r < dg, respectively. Hence

d -1 do
Z x(h p2mink x(h)ez’””“% _ Z Z)Z(Sdo + ,r)e27rings€2ﬂ'in0%
h<d h<d 5=0 r=1
do S d-1
= Z e2minoag Z X(sdo + 1)
r=1 s=0
It is therefore enough to prove that the inner sum, say f(r), is zero. That is
d -1
F(r) =" X(sdo+r) =0
s=0
for every 1 < r < dy. Note that
d'—1 d'—1
flr+do) = )Z(sdo—l—r—&-do):Z)Z(( Ddo+71r) = szdo—i—r
s=0 s=0
d—1

= X(sdo +1) = f(r)

@
I
o

since x(d'dg + r) = x(d +r) = x(r). However, x is primitive. Thus, x is d-periodic.
In particular, x is not dp-periodic. Hence, there exist m; and mgo such that (mq,d) =
(ma,d) = 1 and my = mg (moddy), such that x(mq) # x(ms); since otherwise, x would
be dg-periodic. Let m = mlmgl =1 (moddy). In particular (m,d) =1 and m = 1 + kd,.
Then

d'—1 d' —1 d'—1

X(m)f(r) =Y x(smdo +rm) =Y X(sdo + 1+ (sdo + r)kdo) = > X(sdo +1) = f(r)

s=0 s=0 s=0
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whence f(r) = 0, since y(m) # 1.

O
Lemma C.3. Let x be a primitive Dirichlet charatcer modulo d. Then
[T =d
Proof. If x is primitive, then so is . By Lemma C.2
Z X 27r1nd
h<d
for all n € N. Hence
T0)Pe(d) =170 D 1= 0P Y Ix(m)P =Y Ix(m)Plr(0)?
1<n<d n<d n<d
(n,d)=1
- h . ho _ in hLh
— Z Z Z (hl)i(h )627”n716_27”n 2 Z Z X(hl)X(hQ) 262 1ok
X(h hlzl—dZm =d )y 1=dp(d)
hi<d n<d h<d 1<h<d
(h,d)=1
O
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