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Abstract

Spurious regression analysis in panel data when the time series are cross-section dependent
is analyzed in the paper. We show that consistent estimation of the long-run average parameter
is possible once we control for cross-section dependence using cross-section averages in the spirit
of the common correlated effects approach in Pesaran (2006). This result is used to design a
panel cointegration test statistic accounting for cross-section dependence. The performance of
the proposal is investigated in comparison with factor-based methods to control for cross-section
dependence when strong, semi-weak and weak cross-section dependence may be present.

Keywords: panel cointegration, cross-section dependence, common factors, spatial econo-
metrics
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1 Introduction

During the last twenty years the analysis of macroeconomic panels has experienced a vast and
rapid development. This has been primarily due to two reasons: first, the easy availability of
statistical information concerning panels of data where the time dimension is augmented by
the use of cross-section variation (for example, across countries, regions or industrial sectors),
and, second, the belief that combining these two sources of information would lead to better
statistical inference.

The recent literature has seen many efforts, in particular to design procedures aimed at
estimating long-run relationships among economic variables using macro-panel data techniques.
Testing for cointegration in panel data has been a particular area of focus, since it constitutes
the analysis that needs to be conducted prior to estimating long-run relationships. The early
papers in this area such as the ones in Kao (1999) and Pedroni (2000) assumed cross-section
independence among the units of the panel data, a situation that is rarely found in empirical
economic analyses. Cross-section dependence appears naturally when studying economic data
due to, for instance, market integration processes, globalization of economic activity, offshoring
processes or because of the presence of common shocks like oil price shocks. More recent papers
have therefore devoted considerable attention to devising procedures relaxing the assumption
of cross-section independence — see, for example, Breitung and Pesaran (2008) for an overview.

There may be different sources of cross-section dependence, exerting different degrees of
dependence intensity. On the one hand, we may have pervasive cross-section dependence due
to the presence of a dominant unit in the panel data setup, a situation that can be interpreted
as if there were common factors affecting all the time series in the panel. On the other hand,
cross-section dependence may be important only among some neighbours. The notion of ‘neigh-
bour’ does not of course necessarily need to be defined in terms of physical contiguity, such as
neighbouring regions or cities, but may also be defined inter alia in terms of economic distance,
usually, trade partnerships. This characterization of cross-section dependence has given rise to
the notions of weak and strong dependence as discussed prominently by Chudik, Pesaran and
Tosetti (2011).

In this paper we investigate the performance of panel cointegration tests in the presence of
weak and/or strong cross-section dependence in the sense to be defined below. In particular,
our contribution is to develop the theory of a panel cointegration test based on the common
correlated effects (CCE) estimation procedure proposed by Pesaran (2006). Holly, Pesaran
and Yamagata (2010) use a CCE-based procedure in their investigation without developing a
formal test for cointegration. Our proposal fills this gap. We show, drawing upon arguments
developed by Phillips and Moon (1999) and Kao, Trapani and Urga (2011) that in a panel
spurious regression, the pooled CCE estimator provides a consistent estimate of the long-run
average coefficient. The Kao et al. (2011) paper is particularly useful for the theoretical
derivations since it allows us to work with the invariant o-field generated by the factors which
drive the cross-section dependence. Once consistency is proved, this result can then be used as
the basis for a panel cointegration test.

Two other papers are worth mentioning to put our work in context. First, Urbain and West-

erlund (2011) look at the asymptotics of least squares regressions in spurious and cointegrated



panels with cross-section dependence driven by common and idiosyncratic stochastic trends or
factors which may be integrated or stationary. Second, Gengenbach, Urbain and Westerlund
(2016) study a panel cointegration test based on the error correction model approach where the
cross-section dependence is modelled via the use of cross-section averages. While the techniques
used are similar, neither paper deals with the estimation of a long-run average coefficient a la
Phillips and Moon (1999) in the construction of a cointegration test based on this estimator.

An important feature of our test is that it can be linked directly to the Pesaran (2007) and
Pesaran, Smith and Yamagata (2013) panel data unit root tests with which it is asymptotically
equivalent depending upon the number of integrated common factors.

The procedures that are proposed in the paper are investigated through Monte Carlo sim-
ulations to evaluate the potential benefits of using the new proposal compared to alternative
approaches existing in the literature. In this respect we compare the size and power properties
of the pooled CCE-based test with the factor-based cointegration testing procedure developed
in Banerjee and Carrion-i-Silvestre (2015). Factor-based approaches to model dependence are
typically thought of as being an alternative to the use of CCE estimators. The advantages of the
latter method include the ability to allow for a more detailed look at the nature of the depen-
dence, notably their decomposition into I(1) and I(0) components. This allows for cointegration
not only among the variables themselves but also between the variables and the non-stationary
factors. The disadvantages include the potential inconsistency of the factor estimates and their
loadings when the dependence is weak, and of the difficulty of estimating both the number
of factors and the factors themselves especially when the cross-section dimension is relatively
small. The convenience of using CCE-based tests is also an advantage that needs to be taken
into account.

Having developed the theory, we explore these trade-offs through Monte Carlo simulations
in order to evaluate the potential benefits of using the newly proposed test is one of the main
purposes of our paper. The simulation experiments cover a wide spectrum of cross-section
dependence patterns. First, we consider strong, semi-strong and weak cross-section dependence
through a factor model specification. Second, weak dependence is also analyzed using the typical
spatial econometrics configurations to control for the presence of cross-section dependence. It
is not our purpose here to offer a broad evaluation of the size and power properties of a range
of panel tests for cointegration. Rather this paper is intended to propose and evaluate our new
test and to compare its performance with a factor-based competitor.!

The application of the procedures proposed in this paper is illustrated using two different
empirical examples, emphasizing different forms of dependence. In both cases, we find that
cross-section dependence is present among the units of the panels. First, we focus on the
estimation of a model to explain the behaviour of house prices in 48 US states and the District
of Columbia, complementing the analysis carried out in Holly et al. (2010). Second, we proceed
to estimate a production function for a set of OECD developed countries which represents a
typical macro panel. Here the likely presence of an I(1) productivity trend puts it within the

framework of models with strong dependence among the units of the panel. Both these examples

!The only other paper we are aware of that makes this direct comparison is by Urbain and Westerlund (2015).
However, since their framework is entirely stationary, they do not deal with issues relating to cointegration,
focusing instead only on cross-section dependence.



serve to illustrate and interpret further the results of the simulation analysis.

The paper is organized as follows. Section 2 describes the model upon which the panel
cointegration test statistic proposed in the paper is based. We derive consistency results for the
pooled CCE estimator under different specifications of the deterministic terms. Next, Section
3 defines the panel cointegration test statistic using the CCE estimator. The finite sample
performance under different sources of cross-section dependence is investigated in Section 4.
Section 5 presents the results of two empirical applications. Finally, Section 6 concludes. All

the proofs are contained in the appendix at the end of the paper.

2 The model

Let Yi: = (yit, 7i,)" a (1 + k)-vector of I (1) stochastic processes with the following data gen-
erating process (DGP):

Yie. = D+ miF,+U;, (1)
(I — L) Ft = Ut = C(L)U}t (2)
(I—-L)Uiy = eir=Hj(L)eiy, (3)

where D;; denotes the deterministic part of the model that is given by either the absence
of deterministic elements D;; = 0 Vi (Model 0), a vector of constant terms, D;; = p; =
(ui’o,ui’l,...,ui’k)/ (Model 1), or a vector linear time trends, D;; = d;(1,t)", with §; =
(8700505 -- - ;,k)/’ 8ij = (,uivj,m,j)/, j=0,1,...,k (Model 2). The F; component denotes a
(r x 1)-vector of common factors and m; the ((k 4+ 1) x r) matrix of factor loadings, and denote
by K an invariant o-field generated by F; so that, conditionally on K, U;; = (in7t,Ug’Ci7t)/
are independent across 7. The disturbance terms v; and e;; are assumed to be I(0) stationary
processes, t =1,..., N, t=1,...,T,5=1,...,r.

Our analysis is based on the same set of assumptions as in Bai and Ng (2004) and Banerjee
and Carrion-i-Silvestre (2015). Let M < oo be a generic positive number, not depending on T'
and N. Further, the Euclidean norm of a generic matrix A is defined as ||A|| = trace (A’A)I/Q.
Then:

Assumption A: (i) for non-random 7;, ||m|| < M; for random m;, E||m|* < M, (i)
i SN 7w B B, a (1 x r) positive definite matrix.

Assumption B: (i) v, = C (L)wy, wy ~ iid (0,y), E ||lw||* < M, and (i) Var (AF,) =
> 520 0B} >0, (ifi) 37207 |05l < M; and (iv) C' (1) has rank 71, 0 <7y <7

Assumption C: (i) for each i, e;y = H; (L) €4, €54 ~ tid (O, aii), E |£i,t]8 <M, Z;’;Oj |H; ;| <
M, w? = H; (1)* 02, > 0; (i) E (cie50) = 7ij with Y0 |735] < M for all j;
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(i) B | kg £ [iseis = B (eiszia)l| < M, for every (t,5).

Assumption D: The errors €; 4, w; and the loadings 7; are three mutually independent groups
across i, t and (1 + k) dimensions.

Assumption E: E ||Fy|| < M, and for every i =1,...,N, E|| Uil < M.

The model specification considers the case where the stochastic regressors x;; are assumed



to be either cross-section independent — imposing all, but the first, rows of 7; to be equal to zero
— or cross-section dependent with dependence driven by a set of observable common factors Fj.
Furthermore, it is possible to assume that the set of common factors affecting the endogenous
variable y; ; is different from those affecting the stochastic regressors wz;;, a situation that is
covered if we define 7; to be a block-diagonal matrix.

Despite the presence of the operator (I — L) in equation (2), F; does not have to be I(1). In
fact, Fy can be I(0), I(1), or a combination of both, depending on the rank of C(1). If C(1) =0,
then F; is I(0). If C(1) is of full rank, then each component of F; is I(1). If C(1) # 0, but not
full rank, then some components of F; are I(1) and some are I(0).

Note that although this framework is very flexible, it implies a change in the standard defin-
ition of cointegration. The usual definition of cointegration among Y;+ = (vi s, x;t)’ requires Fy
to be I(0), so that the observable variables capture all the common stochastic trends. However,
allowing F; to be I(1) is also relevant from an empirical point of view since F; might be account-
ing for effects that are not captured by Y;; alone. In such a situation, cointegration among
the elements in Y;; up to the inclusion of I(1) factors is both possible and desirable economi-
cally, which will imply that H;(1) # 0 but is not full rank.? This leads to a broader concept
of cointegration, where the observable variables in Y;; alone do not generate a cointegrating
relationship. Instead, common factors are required to enter in the model in order to define a
long-run relationship. In this regard, the framework is close to Bai, Kao and Ng (2009) where
cointegration is assumed allowing for the possibility of I(1) factors.

Panel spurious regression has been tackled in Phillips and Moon (1999). Contrary to what is
found at the unit level analysis — see Granger and Newbold (1974) and Phillips (1986) — pooled
estimation of the parameters affecting the stochastic regressors leads to consistent estimates of
the so-called long-run average coeflicient 5. For ease of exposition, let us assume that there is no
deterministic component (Model 0) and specify the model that relates the dependent variable

yi+ and the explanatory variables x;; in matrix notation as:
Yi =B + FAi + &, (4)

where y; denotes the (T x 1) vector of the dependent variable, x; is a (T x k) matrix of explana-
tory variables, (3; is a (k x 1) vector of parameters, F' is a (T' X r) matrix of common factors,
Ai is a (r x 1) vector of factor loadings, and &; is a (T x 1) vector collecting the idiosyncratic

errors. Note that we can write (4) in terms of the elements in (1) and obtain:

yi = zifi+FN+¢;

(Frf +Uy,) = (Frj+Uy,) B+ FXi+§
in = Uwiﬁi + F/\;F + &5

2Note that in this case, the common factors will be accounting for misspecification errors in the model, due, for
instance, to the omission of relevant non-stationary stochastic regressors. Further, the presence of I(1) common
factors will capture global stochastic trends that are difficult to proxy using observable data — see the discussion
on the production function empirical example below. Finally, I(1) common factors will also help to capture the
existence of cross-cointegration relationship among the same variable for the different units of the panel data —
see Banerjee, Marcellino and Osbat (2005).



so that 3; can be estimated as the vector of parameters that capture the relationship among
the idiosyncratic component of the variables.

Let us define the projection matrix Mp = Iy — D (D'D) ™" D’ that removes the effect of the
deterministic component on the variables of the model, where D = ¢ for Model 1 and D = [¢ 7]
for Model 2 — it should be understood that Mp = Ir for Model 0. Then we have:

vi = Di+xB; + FN\i+&;
Mpy;, = Mpxz;B; + MpF\; + Mp¢;
Gi = @B+ FN+E,

and

Mpgi = MpiiB; + Mgé;
yi = zBit+&, (5)

with Mz = I — F <F’ F’)_ F', where the superscript “#” indicates that the corresponding
variable has been detrended and defactored. Note that at this stage, we have assumed that the

common factors are observable.? The pooled estimator is defined as:

1L 1 & B L
- szziﬂf,tl‘%] N_Zﬁziﬁ,tyf-

Theorem 1 Let Y;; be a vector of (1+ k) stochastic processes with DGP given by (1)-(3).
Under the assumption that H; (1) is positive definite almost surely for all i (spurious regression),

the pooled estimator given in (6) converges as (T, N) — oo jointly to
A —1
BB = Q0. Q,0,,

where (3 denotes the long-run average regression coefficient, and Qu,u, and Qu,u, are long-run
average covariance matrices of the respective idiosyncratic components defined in the companion

appendiz.

The proof is provided in the companion appendix. It is also possible to derive the limiting
distribution of the estimated long-run average parameter as in Phillips and Moon (1999). How-
ever, for the purposes of testing for cointegration pursued in this paper, we are only required

to show consistency of the estimator as stated in Theorem 1.

3 Although the projection against the deterministic component and the factors can be done in one step,
proceeding in two stages facilitates the derivations below.



3 Panel CCE cointegration test with cross-section dependence

So far, the cross-section dependence has been assumed to be driven by a set of observable
common factors. However, in most cases this situation is infeasible from an empirical point
of view, and we need to devise procedures to estimate (or proxy for) the unobserved common
factors.

There are two popular approaches in the literature that address this issue. First, the Bai
and Ng (2002, 2004) proposal, which uses principal components to estimate the common factors
and panel information criteria to chose the number of common factors. Second, we can use the
cross-section average method suggested in Pesaran (2006, 2007) and Pesaran et al. (2013), which
employs cross-section averages as convenient proxies to capture the common factors without
requiring the estimation of their number. This paper looks in detail at this second approach
and also establishes a comparison with testing procedures based on Bai and Ng (2002, 2004).
Note, however, that the derivations obtained in the previous section follows if we also estimate
the common factors and loadings using the approach described in Bai and Ng (2004).

To see how the CCE procedure works, we define the average of (1) as:
Y: =Dy +7F, + Uy,

where

1 Y 1Y
Y, = =Y Yy, Di=ddy; 6=— 0
t NZZ; R3] t 1y NZZ;Z

o~ 1 &
T = NZM; U = NZUM,
i=1 i=1
with dy = 0 for Model 0, dy = 1 and &; = (0, i1, - - - ,,ui’k)’ for Model 1, and d; = (1,t)" and
6i = (870:071,-- - ;k)/, 0ij = (ui7j,ni7j)/, j=0,1,...,k, for Model 2.
Assumption F': Let us assume that rank (7) =r < (14 k) for all N as N — oo.

If the rank condition established in Assumption F is met, we have
F= (7)) "7 (Y- D —T).

Provided that U, = N1 Zfil Uit 2.0 as N — oo for all t,and , T ER E (7)) =mas N — oo,
we have that
F, — (7?'7?)_1 7 (Yt — Dt) L0as N — oo,

which indicates that, for sufficiently large N, the observable averages h; = (Dt, Y/ )/ can be used
to proxy the unobserved factors.

Following Holly et al. (2010), let us specify the cross-section augmented regression:
Yig = Dig + x5 .0+ Zihi + viyg, (7)

where z = (g, ;) collects the cross-section averages of the dependent and the stochastic



regressors of the model. In order to estimate the J parameters in (7), Holly et al. (2010) use
the pooled CCE estimator (PCCE) in Pesaran (2006), which is given by:

N -1/ N
BPCCE = <Z SU;M%) (Z Q?Q'Myi> ’ (8)
i=1 i=1

where z; = [z1 Ti2 ... Tik), Tij = (Tij1,Tij2,--- ,l‘i,jj),, denotes the (T x k) matrix of
regressors of interest, y; is the (T' x 1) vector of the dependent variable for the i-th unit, and
M=I-H (H"H)fl H', H = [z] for Model 0, H = [¢ z] for Model 1 and H = [t 7 z] for Model
2, with . = (1,1,...,1)" a vector of ones, 7 = (1,2,...,T) a linear time trend and zZ = [Z §] the
(T x (k + 1)) matrix of cross-section averages.

One interesting feature is that the PCCE estimator is easy to compute and does not require
the estimation of the factors driving the cross-section dependence. The main drawback is that
consistency has been proved by Kapetanios et al. (2011) only under the maintained hypothesis
that cointegration exists, an hypothesis that needs to be tested. Therefore, in order to assess the
validity of the testing procedure that we apply, we need to show whether the PCCE estimator is
consistent under the null hypothesis of no cointegration. This result is provided in the following

Theorem.

Theorem 2 Let Y;; be a vector of (1+ k) stochastic processes with DGP given by (1)-(3).
Under the assumption that H; (1) is positive definite almost surely for all i (spurious regression)
and rank (7) =r < (1 + k) for all N as T, N — oo, the pooled estimator given in (8) converges
as (T, N) — oo jointly to

~ p —1

The proof is provided in the companion appendix.

3.1 A test for cointegration based on the PCCE estimator

Using Theorem 2 and following on from the contributions of Pesaran (2007), Holly et al. (2010)
and Pesaran et al. (2013), in this section we propose a panel cointegration test statistic that
is based on the PCCE estimator. It is worth mentioning that the use of the Pesaran approach
requires us to constrain the DGP that has been used so far in the sense to be described below.
Thus, Pesaran (2007) and Pesaran et al. (2013) specify the following DGP:

Yit = Di,t+x;,tﬁi + Gy (9)
Cip = 0iCip1 + fihi +eig, (10)

)

with f; a (r x 1)-vector of I(0) common factors and ¢;; an I(0) idiosyncratic disturbance
term.

As can be seen, (10) can be written as (;; = 1/(1 —6;L) (f{\i + €;¢) so that the null
hypothesis of spurious regression, #; = 1 Vi, implies that (; , = Z;Zl (fj’)\z + em-) = F{ Ni+&i 4
with F1; ~ (1) and §;; ~ I(1). Under the alternative hypothesis, we have |¢;| < 1 for
i=1,...N;; 6; =1fori = N+ 1,... N, with Ny/N — §,0 < § <1 as N — oo, so that



cointegration exists for N; units. Further, note that under the alternative hypothesis, for the
Ny units for which ¢;, = Y 67 ( i+ e,-,t,j) — Fy N+ &y Fog ~ 1(0) and &, ~ I(0),
but for the remaining N — Ny units, Fy; ~ I (1) and §;, ~ I (1).

The Pesaran approach requires us to assume the same order of integration for all common
factors and the idiosyncratic component for each specific unit of the panel, namely I(1) under
the null hypothesis of spurious regression for all units, and I(0) for N; units and I(1) for the
remaining N — N7 units under the alternative hypothesis. This is a substantial restriction of the
general framework used above for estimation, where no assumption on the order of integration
properties of the common factors was needed in relation to that of the idiosyncratic components.
It is worth noticing that the same stochastic processes f; that generates the common factors,
can play different roles under the alternative hypothesis for the different units of the panel data
— i.e., under the alternative hypothesis f; can generate either Fy; or Fi;, depending on the
specific unit of the panel.

The PCCE-based cointegration test begins by estimating the long-run average coefficient
using the PCCE method. Given the consistency of the PCCE estimator under the null hypoth-
esis of spurious regression, in the second stage we use the PCCE estimated parameters to define

the variable:
it = Yit — TiBpoce (11)
for which the following model is estimated using ordinary least squares (OLS) estimation
method:
Uit = Dit + vig,

A~

and the OLS residuals are then computed as ¥;; = 9;; — D;t. The null hypothesis of no
cointegration is tested analyzing the order of integration of ©;; through the application of the

cross-section augmented Dickey-Fuller cointegration (CADF) statistic:
N
CADFp=N"1> ta,,
i=1

where t4, , denotes the pseudo t-ratio of the estimated a;o parameter in the regression:
P _ P _
Ay = ;00541 + Z a; jAD; 4 + ;011 + Z ki j AV 4+ Vg, (12)

J=1 Jj=0

when there is one common factor and

p _ p _
A A A ! A / N
A = a1+ E a; j AV + Qi A1 + § K jAAj; + Vi, (13)
j=1 =0
. 7 ~ _ / . .
with A; = (vt,xu, ... ,a:k,t) the vector of cross-section averages augmentation terms for the

1 + k£ multiple common factors case.
It is worth noticing that (12) and (13) define the two extreme cases i.e., the case where there
is just one common factor and the case where the rank condition established at Assumption F

is met with equality. For those intermediate cases where there are fewer common factors than



observables — i.e., r < 1+ k — the vector Zt in (13) will be defined with ¢; and r — 1 elements
of the cross-section averages of the stochastic regressors. It is important to emphasize that
in empirical applications the number of common factors (r) does not need to equal the total
number of observables (14 k) of the model so that the intermediate cases are relevant from
an empirical point of view. If analysts have knowledge, for example based on economic theory,
about the number of common factors to include in the model, one can impose the restriction
of the number of common factors and use the critical values that involves (1 + k) observable
variables but r < 14 k common factors. In this regard, we could follow the strategy in Pesaran
et al. (2013) and compute the test statistic using all possible combinations of r cross-section
averages available in the system as a way of obtaining robust conclusions.

When the number of common factors is not known, we can follow a conservative strategy and
assume that the rank condition is satisfied with equality and base inference on the estimation
of (13). The price that we would pay if the true number of common factors is r < 1 + k but
we impose r = 1 + k is to have a test statistic with empirical size smaller than the nominal
size accompanied by loss of power. The advantage is to allow us to remain agnostic about the
number of integrated stochastic trends driving the data.?

In order to derive the critical values appropriate for the PCCE-based cointegration test,

note that we can substitute (7) in (11) and obtain

Uig = Dig+ZNi+&,— x;,t(BPCC’E‘ - 5)
= G — 2f(Bpeor — B),

where gf ¢ 1s the unit root part of the process analyzed by Pesaran (2007) — when r = 1 — and
by Pesaran et al. (2013) when r > 1. It is worth noticing that testing for panel cointegration
is asymptotically equivalent to testing for the panel unit root hypothesis addressed in Pesaran
(2007) and Pesaran et al. (2013). Using Theorem 2 it is possible to show that as T, N — oo,
$;,t(BPCCE — [3) has negligible effect on the unit root test of §;; so that, as T, N — oo, the
cointegration test ¢4, , is defined by gft and ?f , which are the same elements that define the
limiting distributions in Pesaran (2007) — see his Theorem 3.2 for the CADF;; statistic when
r =1 — and Pesaran et al. (2013) — see their Theorem 2.1 when 7 > 1.°

Although the limiting distributions of the test statistics proposed in this paper and the ones
reported in Pesaran (2007) and Pesaran et al. (2013) are equivalent, it is the case that there are
slight differences for panel data sets of small 7' and/or N dimensions. In order to save space,
we only report critical values for the pooled test (CADFp), although critical values for the
individual ¢4, , test statistic can be computed using a GAUSS program available upon request.
Tables 1 and 2 present the critical values for the CADFp test statistic for Model 1 and Model

1 An alternative strategy in the case of unknown number of factors, as followed by Pesaran et al. (2013), is to
undertake the testing for all permissible values of r (using all combinations of r cross-section averages for each
choice of r). The size properties of such a procedure are not clear nor are the likely conclusions if one accepts
the null hypothesis for some values of r and rejects for others. This is a topic for further research by us based
on multiple or repeated tests.

The limiting distributions are obtained using sequential and joint limits assuming that N/T — k > 0. Since
consistency only requires that N and T tend to infinity jointly, the condition that N/T" — k > 0 does not pose
any difficulty. The limiting distribution of CADF;; can also be derived under sequential limits provided N — oo
before T — oo.



2, respectively, when there is one common factor (r = 1) — i.e., the rank condition is met with
inequality — whereas Tables 3 and 4 collect the critical values for the multiple common factor
case (r > 1) — in this case, we impose that the rank condition is met with equality.’

The computation of the critical values is based on Pesaran et al. (2013), generating the
dependent variable as y;; = y;+—1 + €1,;,t and a vector of k explanatory variables x;; = ; 1—1 +
£2.44, where g1, = (e1¢¢,agJ¢)' ~ iid N(0,Iy11), i = 1,2,...,N, t = —50,-49,...,T, and
Yi,—50 = Tj,—50 = 0. Using these independent time series we have computed the PCCE estimator
and retrieved the é;; residuals that are used to estimate the regression equation in (12) and
obtain the individual and CADFp statistics. The simulation uses 50,000 replications using
different combinations of T and N. As can be seen, the critical values for the one common
factor case are close to the ones computed in Pesaran (2007) when T is large, although they
differ in finite samples — for example, for Model 2 compare Table 2 of our paper with Table
1b of Pesaran (2007) when 7' = 200. Note also that for large 7' and N the critical values do
not depend on the number of regressors, since the consistency property of the B pccg estimator
implies that the CADFp statistic behaves like the Pesaran (2007) panel unit root statistic,
making our critical values applicable to cases where there are more than two regressors. A
similar feature is found when comparing the critical values in Pesaran et al. (2013) and the
ones computed in this paper for the multiple common factor case.

Pesaran (2007) also proposes a truncated version of the CADF;¢ statistic in order to ensure
that the statistic has finite moments. In our case, the truncation takes the following form — see
Pesaran (2007) pp. 277:

tzi,o = t&i,o if —di < t&i,O < ds

t5,,=—d  ifta,<—d
tr =d if ta, , > do

where (di,d2) = (6.19,2.61) for Model 1 and (d1,d2) = (6.42,1.70) for Model 2. Note that we
use the same threshold values as in Pesaran (2007) given that the limiting distributions of our
test statistic and that of Pesaran are the same. The unreported computations that we have
carried out show that the critical values of the truncated and untruncated versions of the test
statistic coincide exactly for all values of T' > 15 so that, in order to save space, we have not
presented these critical values on the paper. Truncation can also be applied to the multiple
common factor case, although Pesaran et al. (2013) do not provide the values of the upper and
lower limits for the different number of common factors, although they can be easily obtained
—a GAUSS program can be used to compute the threshold values for the truncated version of
the statistic for any number of common factors.

As discussed briefly in the introduction above, the approach proposed in this paper for
testing panel cointegration differs from a common-factor-based approach. An example of the
latter is contained in Banerjee and Carrion-i-Silvestre (2015), who deal with the same model

specification that is used in this paper but where the common factors and factor loadings are

%We do not report the critical values of all possible combinations where the rank condition is satisfied with
inequality, although a GAUSS program is available from the authors to compute the critical values for any desired
combination.
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estimated using principal components. In addition to accounting for cross-section dependence
in two different ways, the testing procedures also differ in one other crucial aspect, namely the
computation of the estimate of 3; in the individual units of the panel. In order for Theorem 2
to apply, B needs to be a pooled estimator, i.e., the potential heterogeneity of the (,’s across
the units of the panel is not taken into account in computing the CCE-based test. This is in
contrast to the common-factor-based test which, since it is computed after first differencing the
data, allows for heterogeneity in the ; parameter and the test statistic for the idiosyncratic
component (which is most directly comparable to the CCE-based test) is based on a mean-group
test constructed by averaging across the unit-specific standardized t-statistics. In principle this
therefore adds to the flexibility of the common-factor based approach, although such flexibility
is unnecessary if either strict homogeneity holds or the f3; coefficients are generated by means
of a random effects-type specification. However to counter this flexibility there is also the
disadvantage of the need to estimate more parameters in order to construct the corresponding
test statistic.

The Monte Carlo simulations reported below specify homogeneous [3; in order to present
the most favorable scenario from the point of view of the use of pooled estimators while disad-

vantaging the factor-based tests.

4 Finite sample performance

4.1 Common factor model: weak and strong dependence

This section looks at the performance of the CCE-based tests for cointegration in comparison
with the factor-based approach under several different specifications of cross-section dependence,
both strong and weak. It should be noted that under some specifications of weak or semi-
strong dependence to be noted below, the factor approaches are no longer optimal and do not
provide consistent estimates of the factors or their loadings as typically Assumption A(ii) is
violated in such circumstances. It is nevertheless of importance to compare the results of the
two approaches, since at an empirical level it is often not clear what form the cross-section
dependence takes in the data. It is therefore interesting and important to note within the
context of the simulation exercises the better performance of the factor-based tests despite
worries about the consistency of the procedures when dependence is only weak. Many of the
features of the DGP used below are influenced by the empirical examples, which help us to

interpret better the results arising from the estimation of the models.

4.1.1 Strong dependence

Let us first consider the DGP defined by:

Yie = Tig+NFi+&, (14)
ASUz',t = Uit (15)
Fiv = pFji—1+wj (16)
§iv = @ii—1tcit, (17)
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where r = {1,2}, \i; ~ N (1,1), v;¢y ~ N (0,1), wj; ~ N (0,0%), j = 1,2, and &;; ~ N (0,1)
are four mutually independent groups. Under the null hypothesis of no cointegration we specify
¢; = 1 Vi, whereas under the alternative hypothesis of cointegration we have |¢;| < 1 for some i.
Note that the definition of cointegration that we are testing for only focuses on the idiosyncratic
component, regardless of the order of integration of the common factor. Thus, if F} ~ I (1)
cointegration exists among (y;+, T+, Fy) but not between (y;¢,x;+). It is worth noticing that
the definition of the loadings implies that Zf\il |Ail = Op (N), so that we are facing the case of
strong dependence.

The simulations focus on Model 2 using the following setup. The empirical size is analyzed
using ¢; = 1, whereas the empirical power is investigated using ¢, = {0.99,0.95,0.9}.7 As for
the common factor component, we consider one and two common factors with autoregressive
parameter given by p = {1,0.99,0.95} with different importance, which is modelled through
the following values for the variance 0% = {0.5,1,10}. The time dimension is set at T =
{50,100,250} and the cross-section dimension is N = {10,20,50}. The nominal size is set at
5% and the critical values tabulated in the previous section are used. The simulations are
performed using GAUSS with 1,000 replications. In order to save space, we only report the
results for 0% = 1 where the number of common factors is estimated. The results for the
remaining two values of a% are qualitatively very similar and the full set of tables can be found
in Banerjee and Carrion-i-Silvestre (2011).

The simulations conducted in this subsection distinguish among three different situations.
First, we cover the case where there is one common factor, and use the critical values that
are computed for the true number of common factors — in this case the rank condition is met
with inequality, i.e., # = 1. Second, we consider the case of two common factors using the
critical values that are computed for the true number of common factors — in this case the rank
condition is met with equality, i.e., 7 = 2. Finally, we focus on the one common factor case
but where we assume that there are two common factors — the rank condition is satisfied with
inequality but we use the critical values that are appropriate when it is satisfied with equality.

This case is discussed in order to mimic the scenario of conservative inference.

One common factor and # = 1 Before presenting the results for the empirical size and
power of the panel cointegration test statistic that is proposed in this paper, we have conducted
a small Monte Carlo simulation to show that the consistency property obtained in Theorem
2 gives a proper approximation in finite samples. Table A.1 in the supplementary material
reports the results of the mean, median and root mean square error of the 3 pccg €stimator
with N = {10,20,50,100} and T" = {50, 100,250} for the one common factor case. As can be
seen, the mean and the median are close to the true value of the parameter —i.e., 5 =1 in (14)
— regardless of the values of ¢; and p. This emphasizes the value of the approach since it is
possible to obtain consistent estimates of § when there is no cointegration (¢; = 1) and when

there is cointegration (|¢;| < 1). Moreover, because the factor is being controlled for adequately,

"Note that for the empirical power analysis we impose an homogeneity restriction in order to fully control
the degree of temporal dependence. Although we do not expect significant changes in the picture that would be
obtained, it would be possible to conduct the analysis allowing for heterogeneous parameters, but the degree of
temporal dependence will be different for each unit.
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whether the factor is integrated (p = 1) or stationary (|p| < 1) does not affect the root mean
square errors. Under spurious regression, root mean square error decreases with /N. This result
is supported by the theoretical derivations shown in Theorem 2 for the limiting distribution
of B pcce- When there is cointegration, it decreases with both N and 7'. Finally, for a given
combination of N and T, the root mean square error is larger under the spurious regression
case than when there is cointegration.

Table 5 presents the empirical size and power for the CADFp panel cointegration test
statistic for N = {10, 20,50} for the one common factor case. In each table we also report the
results for the test statistics in Banerjee and Carrion-i-Silvestre (2015) — hereafter, Z, statistic
— for which the number of common factors throughout this section is estimated using the panel
BIC information criterion in Bai and Ng (2002) with a maximum of six common factors.

As can be seen, the Z, test has the correct size, regardless of the value of the autoregressive
parameter of the common factor (p), except when both N and T are small. The CADFp
statistic has the correct size when p = 1, although we observe that the test statistic tends to
be conservative (underrejects) as p moves away from 1 and T gets large. Note that this can
be explained by the fact that this setup violates the common factor restriction that is required
by Pesaran’s (2007) framework, namely that ¢, = p — i.e., the dynamic of the idiosyncratic
component should be the same as the one driving the common factor component.

As for empirical power, we observe that the CADFp statistic does not out-perform the Z.
statistic for any of the cases shown here. However, the empirical power of the two statistics is
almost equivalent for large T" which may be taken as good grounds for preferring the use of the
CCE-based test when T is reasonably large. It is worth mentioning that even in those cases
where the CADFp statistic becomes conservative due to the violation of the common factor
restriction, it still shows good power.

So far, we have compared the panel data test statistics that are computed using the estimated
idiosyncratic component. The procedure in Banerjee and Carrion-i-Silvestre (2015) also allows
us to analyze the stochastic properties of the estimated common factors. The ADF statistic
that is computed using the estimated common factor is reported in the columns labelled as .
As can be seen, the ¢ has the correct size under the null hypothesis that p = 1, with empirical
power that increases, as expected, as p moves away from 1 and 1" gets large.

To sum up, for this simple scenario, the principal components-based panel cointegration test
in Banerjee and Carrion-i-Silvestre (2015) shows better overall performance, with empirical size
close to the nominal size and empirical power higher than those demonstrated by the CCE-based
statistics. However, both approaches tend to provide the same empirical power when the time
dimension is large, and the convenience of the CCE-based approach needs also to be taken into
account when assessing the relative merits of these alternative testing procedures.

Finally, it could be stressed that the procedure in Banerjee and Carrion-i-Silvestre (2015)
is more informative, as it allows to obtain a fuller picture of the stochastic properties of all
the specified components affecting the model. As noted earlier, from an empirical point of
view, assessing the stochastic properties of the common factors is particularly important since
this allows us to interpret whether (y;;,x;;) cointegrate alone or whether we need to consider

(Yit, Tit, Ft) to get a cointegrating relationship.
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Two common factors and 7 =2 The simulations conducted in this section are based upon
the DGP given by (14) to (17) using two common factors, but where instead of using (15) for

the generation of the stochastic regressors x; ;, they are defined according to

t
Tit = )\f/Ft + Zvi,j; (18)
=1

where A}, ~ N (1, 1), 7 = 1,2. Note that now we are considering that both the dependent
variable and the stochastic exogenous regressors are affected by the common factors. In this
case, the rank condition is satisfied with equality provided that the number of observables
(1+k =2) equals the number of common factors (r = 2), which also equals the number of
cross-section averages that are used in the computation of the statistics — i.e., we assume that
F=2.

Table 6 reports in the columns labelled as Equality the empirical size and power for the
CADFp test statistic, when N = {20,50}. As can be seen, the test statistic has a liberal
empirical size for N = 20, regardless of the order of integration of the common factors. However,
the empirical size equals the nominal size when the number of units of the panel increases up
to N = 50. It is worth noticing that in this case the test statistic features under-rejection
problems when the common factors are I(0), a situation that violates the assumptions made
in our framework. As for the empirical power, the CADFp test statistic shows decent power

figures, which tends to one as T gets large, regardless of the value of N.

One common factor and 7 = 2 From an empirical point of view, it is more interesting to
analyze the effects that might have on the empirical size and power of the C ADF'p test statistic
when practitioners use more cross-section averages than common factors present in the model.
In this case, we have specified the DGP given by (14), (16), (17) and (18), but considering just
one common factor (r =1). Thus, by using all cross-section averages available in the system
we are covering the situation where the assumed number of common factors (7 = 2) is larger
than the true number of common factors (r = 1). Note that now the rank condition is met with
inequality (r <1+ k).

Table 6 reports in the columns labelled as Inequality the empirical size and power for the
CADFp test statistic, when N = {20,50}. As can be seen, the empirical size is close to
the nominal empirical size when the common factor is I(1), regardless of the value of N. As
expected, the test statistic becomes conservative as the common factor becomes I(0) — see the
comments above. As for the empirical power, the CADFp test statistic has good power, which
tends to one as T' gets large. An interesting feature is that for a given combination of (¢;, p),
the figures for the empirical power are smaller than the ones obtained when the correct number
of cross-section averages are used to capture the effects of the common factors — see the values
for the empirical power offered in Table 5 compared with the ones in the columns labelled as
Inequality of Table 6. This result is something to be expected, since we are including more
regressors than needed in the regression equation in which the test statistic bases on, so that a

fall in the power will be produced.
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4.1.2 Semi-strong dependence and weak dependence

Semi-strong dependence In the previous simulation experiment we defined a common fac-
tor model where the sum of the loadings Zf\i 1 1Al = Oy (N), a condition that is required in
order to get a consistent estimate of the space generated by the common factors. However,
it is interesting to analyze the behaviour of the test statistics when we consider departures
from this specification, leading to so called semi-strong (or semi-weak) and weak cross-section
dependence.

For example, following Chudik et al. (2011), we may specify the loadings as

A= o~ N(11),

N b
\/ 32 s Q?

so that in this case Zfil |Ail = O, (N1/2).

Weak dependence Alternatively we may consider the case where the loadings of the common
factors are such that Zfil |Ail = Op (1), so that we face the case of weak dependence through
the loadings. In this regard, we may also follow Chudik et al. (2011) and specify the loadings

as
Qi

2 Zi:l 9;

with the rest of the parameters of the DGP as defined in the previous section. It should be

QiNN(171)7

)

noted that in this case the factor structure is not identified, so that the application of principal
components would not lead to consistent estimates of either the common factors or the factor
loadings. The use of the test statistic in Banerjee and Carrion-i-Silvestre (2015) is thus strictly
speaking not justified.

Table 7 reports the results for N = {10,20,50} when the number of common factors is
estimated. As can be seen, most of the features that were outlined in the previous section
are still valid. However, there are some important differences that could be noted. First, the
empirical size of the CCE-based statistic is close to the nominal one even for the case where
the common factor is I(0), so that we do not see any under-size distortions in this case. This
may be a reflection of the fact that the data generation processes here are better suited to
the CCE approach. Second, except where we have semi-strong dependence with 02F = 10, the
panel BIC information criterion does not detect any common factor since the conditions for
consistent estimation are not satisfied. We therefore report the results only for the tests on
the idiosyncratic component and show that the difficulties of applying the factor approach here
notwithstanding, the Z, statistic remains more powerful than the CCE-based statistic even

when T = 50, although they again perform equally well in terms of power as T' gets large.

4.2 Spatial autocorrelation

Our final specification of the DGP follows Baltagi, Bresson and Pirotte (2007) and introduces

weak cross-section dependence in the panel data setup using a spatial error model. The DGP
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is given by

Yit = Tig+&iy

Ax;p = Uiy

)

§it = @ii—1+eit,

where the error component can follow one of these three different spatial models. First, we

consider the spatial autoregressive (SAR) specification:
gt = ﬁWNét + €t = (IN — ﬁWN)il €,

with &; = (e1¢,€24,---,6n1), W is an (N x N) known spatial weights matrix, o is the spatial
autoregressive parameter and ¢ is an (N x 1) error vector assumed to be distributed indepen-
dently across cross-section dimension with constant variance 0. Second, it is possible to define

a spatial moving average (SMA) specification:
Et = €¢ + ﬂWNEt = (IN + 19WN) €¢,

where now ¢ is the spatial moving average parameter. Finally, we also use the spatial error
component (SEC) specification:
et = & + IWNYy,

where ¢, is an (INV x 1) vector of local error components and 1), is an (N x 1) vector of spillover
error components. The two component vectors are assumed to consist of iid terms with respec-
tive variances o2 and ai, and are uncorrelated.

Of special interest is the SEC specification since we can relate the spatial model with the

common factor model that has been investigated in the previous section. We can specify:
£t = €+ ﬁWNFFt,

where now ¢, = T'Fy, with ' = (74,75, ...,7y) the (N x 7) matrix of loadings. Further, if we
set ¥ =1 and Wy = Iy we get the common factor representation used above. This allows us
to specify different models depending on the degree of weak correlation that we want to allow.
For instance, if the spatial weight matrix is now Vi = Iy + Wy with ¢, = I'F; and ¥ # 0, the
common factors will not only affect each unit, but also their neighbours.

The simulations that are reported in this section follow the setup in Baltagi et al. (2007),
who use two different values for ¥ = {0.4,0.8} and the spatial weight matrix Wy given by the
sparse weight matrix W (1, 1) that defines the ‘1 ahead and 1 behind’ matrix with the i-th row
(1 <i< N) of this N x N matrix having non-zero elements in positions i + 1 and ¢ — 1. The
W matrix has been normalized so that the sum of the elements of each row equals one. Other
sparse weight matrices W (3,7), j = 2,3,...,10, were used in Baltagi et al. (2007), although
they claimed that qualitatively similar results were obtained. Therefore and in order to save
space, we only use the W (1, 1) matrix as a way to illustrate the effect of spatial dependence on

the panel data cointegration tests that we consider in the paper.
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The simulation experiment has been conducted for N = {10, 20,50} and, in general, qualita-
tively similar results are obtained regardless of the number of cross-section units. Consequently,
in what follows our discussion focuses on the results reported in Table 8 for N = 20, given that
this panel dimension is closer to the ones used in the empirical practice — Tables A.2 and A.3
in the supplementary material present the results of the empirical size and power of the panel
data cointegration test statistics for N = {10, 50}, respectively.

When the SAR specification is used, both CADFp and Z, statistics show the correct size
when ¥ = 0.4. However, size distortions (over-rejection problems) are observed when 9 = 0.8,
being the size distortions comparable for both test statistics — in some cases, size distortions are
larger for the Z statistic (N = 10 and N = 20). In general, the Z, statistic is more powerful,
although in some cases this might be due to the effects of the size distortions. As expected, the
empirical power of both test statistics tends to one as N and/or T increase.

When the spatial dependence is driven by a SMA specification, both test statistics have
the correct empirical size for ¥ = 0.4, but show over-rejection problems when ¥ = 0.8. In this
regard, the size distortions are less important for the C AD Fp statistic, although the distortions
almost disappear for both statistics when N = 50. As for the empirical power, we observe that
the Z, statistic is more powerful than the C ADFp statistic in all cases.

The three SEC specifications that we have considered lead to similar qualitative results.
For N = 20 and N = 50, the empirical size of the two statistics is close to the nominal one
regardless of the value of T" and ). Only mild overrejection problems are found for the Z.
statistic when N = 10, while the CADFp statistic shows good performance. The Z, statistic
is more powerful than the CADFp statistic when N = 20 and N = 50, but the performance
of the CADFp statistic for N = 10 is very good if one bear in mind that the empirical size is
controlled. Finally, the empirical power of both statistics tends to one as T gets large.

In summary we may conclude from the results of the simulation experiments that there is
some evidence in favour of the dominance of factor-based procedures over the CCE approach.
However, there may be circumstances where the factor approach is not strictly applicable (such
as in the semi-strong or weak specifications, and when N is really small). Allied to the conve-
nience of the CCE approach and equivalent performances for large T', these are good reasons to

propose the use of our new test for cointegration in panels.

5 Empirical illustrations

5.1 House prices in the US

Holly et al. (2010) analyze the long-run relationship between the logarithm of the real house
price index (p;+) and the logarithm of the real per capita disposable income (y;+) for 48 US
States and the District of Columbia (N = 49) using annual data between 1975 and 2003 (7" = 29)

— see Figures 1 and 2. The model under investigation is given by

Dit = o + BYi¢ + uig,
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where note that slope homogeneity is imposed. The computation of the CD test statistic in
Pesaran (2004) leads us to reject the null hypothesis of no cross-section correlation for the panels
of the variables involved in the model, which indicates that panel cointegration test statistics
that account for the presence of cross-section dependence have to be used — see Table 10.

For this example we do not undertake a comparison with the test statistic in Banerjee and
Carrion-i-Silvestre (2015) since the T dimension is too small relative to N for our needs (in
order to enable consistent computation of the factors). However it may be seen as an advantage
of the CCE-based approach that a feasible test for cointegration can be constructed in the
presence of cross-section dependence for reasonably small N and T — see tables for size and
power properties.

We have computed the individual CCE test statistics proposed in this paper using up to
four lags for the autoregressive correction in (12) and, as in Holly et al. (2010), considering the
presence of one common factor. Table 9 shows that the null hypothesis of no cointegration is
rejected at the 5% level of significance in 3 (p = 0), 8 (p = 1), 13 (p = 2), 18 (p = 3) and 18
(p = 4) cases out of 49 — if the level of significance is set at the 10%, rejection happens in 6
(p=0),13(p=1),19 (p=2), 25 (p=3) and 20 (p = 4) cases out of 49. The same results
are obtained regardless of whether the truncated or untruncated version of the statistic is used.
Therefore, even in the most favorable situation, evidence in favor of cointegration is found for
only half of the units. It would be the case that pooling the individual information will lead to
better statistical inference, provided that the assumption of cross-section independence of é; ;,
i=1,2,...,N,in (12) is met. The computation of the C AD Fp statistic gives CADFp = —1.85
(p=0), CADFp = —2.56 (p=1) and CADFp = —2.78 (p = 2), depending on the order of
the autoregressive correction that is used. As can be seen, when we compare the values of the
CADFp statistic with the critical values in Table 1 we conclude that, except for p = 0, the null
hypothesis of no cointegration is rejected at the 5% level of significance. However, it should
borne in mind that rejection of the null hypothesis does not necessarily imply that cointegration

holds for all units.

5.2 Production function

The second empirical application focuses on the estimation of a production function using
the data in Banerjee, Eberhardt and Reade (2010) taken from the Penn World Table database
(version 6.3). We define a panel data set of developed countries that includes Australia, Austria,
Belgium, Canada, Denmark, Finland, France, Greece, Ireland, Italy, Luxembourg, Netherlands,
Norway, Portugal, Spain, Sweden, Switzerland, the United Kingdom and the United States.
The selection of these countries allows us to have a balanced panel data set covering the period
between 1951 and 2007. Notice also that our data set includes almost all EU-15 countries — we
have not been able to include Germany because of lack of information between 1951 and 1969 —
and almost all G7 countries — the exception is Japan, for which we do not have information for
the whole period. Therefore, we deal with a panel data set of dimension T = 57 and N = 19,
which fits the requirement of having a panel with T" larger than N. The model that is estimated
is given by:
Yit = o + Biliy + Bokit + wiy,
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where y; ; denotes the logarithm of the real GDP per capita, [; ; is the logarithm of the population
and k;; is the logarithm of the real capital stock per capita. As before, the CD test statistic
in Pesaran (2004) rejects the null hypothesis of no cross-section correlation for the panels of
the variables involved in the model, which indicates that panel cointegration test statistics that
account for the presence of cross-section dependence have to be used — see Table 10. The CCE
estimation of the slope parameters equals 3 = (31, 32)’ = (0.8,0.78)".

Table 11 presents the individual CCE t4, , statistics, i = 1,2,...,19, considering that there
is one common factor. As can be seen, using the untruncated version of the statistic the null
hypothesis of no cointegration can be rejected at the 5% level of significance in 2 (p = 0), 1
p=1),2(p=2),1(p=3)and 1 (p = 4) cases out of 19 — we use the critical values for
N = 20 and T = 50. If the level of significance is set at the 10% level, the rejection of the
null hypothesis of no cointegration happens in 3 (p =0),3 (p=1), 2 (p =2), 3 (p = 3) and
3 (p = 4) cases out of 19. If we use the truncated version of the statistic, the results that are
obtained are almost identical, with the marginal exception for Spain with p = 3, where now the
null hypothesis of no cointegration cannot be rejected at the 10% level of significance. Thus,
using the individual based statistics we find little evidence against the null hypothesis of no
cointegration. The individual information can be combined computing the CADFp statistic,
which produces CADFp = —1.68 (p =0), CADFp = —1.71 (p=1), and CADFp = —1.67
(p = 2), depending on the order of the autoregressive correction that is used. As can be seen,
when we compare the values of the CADFp statistic with the critical values in Table 1 for
N =20 and T = 50 we conclude that the null hypothesis of no cointegration cannot be rejected
at the 5% level of significance, regardless of the order of autocorrelation that is considered.

The results of the test statistic in Banerjee and Carrion-i-Silvestre (2015) with up to six
common factors are reported in Table 12. We present two different sets of results depending
on whether or not the variables are divided by their standard deviations when using princi-
pal components — see Banerjee and Carrion-i-Silvestre (2015) for further details. Without this
transformation, the panel BIC information criterion in Bai and Ng (2002) leads to selection of
the maximum number of factors that is allowed. In this case, all the estimated common factors
are non-stationary. Once transformed, the panel BIC indicates that there is only one integrated
common factor. However, regardless of the number of common factors or the transformation,
the statistics in Banerjee and Carrion-i-Silvestre (2015) indicate that the idiosyncratic distur-
bance terms are stationary. It is worth mentioning that rejection of the null hypothesis of no
cointegration does not necessarily mean that all cross-section units are cointegrated. Therefore
we cannot conclude that the variables in the vector Y;; = (i, lit, k:z-,t)’ are cointegrated, since
at least one non-stationary common factor is detected. Cointegration is possible only by the

inclusion of common factors in the model.

6 Conclusions

The paper has shown that consistent estimate of the long-run average coefficient is obtained
when time series in the panel data are cross-section dependence, which is accounted for using a

common factor model approach. The estimation procedure that is applied is based on the CCE
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approach in Pesaran (2006). Our result contributes to the literature of non-stationary panel
data analysis, where consistent estimation of the parameters of the model is feasible in a spurious
regression framework. The paper conducts an extensive simulation exercise to study the finite
sample performance of the statistic that has been proposed, allowing for weak and strong cross-
section dependence. The two empirical applications illustrate the effectiveness of the respective
approaches. Where a weak dependence structure is plausible such as in the house prices example,
the use of CCE-based tests provides satisfactory and confirmatory results. Where however an
integrated trend may be relevant, the restriction of being unable to decompose between common
and idiosyncratic components (especially to have different degrees of persistence) handicaps
somewhat the CCE-based tests in relation to common factor approaches. This is especially
seen in the empirical example where the cointegration possibility is found to be not among the
original variables (between output, labour and income) but between the original variables and

an integrated stochastic common trend.

References

[1] Bai, J. and Ng, S. (2004): A PANIC attack on unit roots and cointegration. Econometrica
72, 1127-1177.

[2] Bai, J., Kao, C. and Ng, S. (2009): Panel cointegration with global stochastic trends.
Journal of Econometrics 149, 82-99.

[3] Baltagi, B. H., Bresson, G. and Pirotte, A. (2007): Panel unit root tests and spatial
dependence. Journal of Applied Econometrics 22, 339-360.

[4] Banerjee, A. and Carrion-i-Silvestre, J. L. (2015): Cointegration in panel data with breaks

and cross-section dependence. Journal of Applied Econometrics 30, 1-23.

[5] Banerjee, A. and Carrion-i-Silvestre, J. L. (2011): Testing for Panel Cointegration using

Common Correlated Effects Estimators. Working Paper, University of Barcelona.

[6] Banerjee, A., Eberhardt, M. and Reade, J. J. (2010): Panel estimation for worriers. Mimeo,

Department of Economics, University of Birmingham.

[7] Banerjee, A., Marcellino, M. and Osbat, C. (2005): Testing for PPP: Should we use panel
methods? Empirical Economics 30, 77-91.

[8] Breitung, J. and Pesaran, M. H. (2008): Unit Roots and Cointegration in Panels. In Matyas,
L., and P. Sevestre (Eds.) The Econometrics of Panel Data: Fundamentals and Recent

Developments in Theory and Practice, 279-322. Kluwer Academic Publishers, Boston.

[9] Chudik, A. and Pesaran, M. H. and Tosetti, E. (2011): Weak and strong cross section

dependence and estimation of large panels. Econometrics Journal 14, C45-C90.

[10] Dickey, D. A. and Fuller, W. A. (1979): Distribution of the estimators for autoregressive

time series with a unit root. Journal of the American Statistical Association T4, 427-431.

20



[11]

[12]

[13]

[14]

[15]

[26]

Gengenbach, C., Urbain, J. P. and Westerlund, J. (2016): Error correction testing in panels
with common stochastic trends. Journal of Applied Econometrics 31, 982-1004.

Granger, C. and Newbold, P. (1974): Spurious regressions in econometrics. Journal of
Econometrics 2, 111-20.

Holly, S., Pesaran, M. H. and Yamagata, T. (2010): A spatio-temporal model of house
prices in the USA. Journal of Econometrics 158, 160-173.

Kapetanios, G., Pesaran, M. H. and Yamagata, T. (2011): Panels with nonstationary

multifactor error structures. Journal of Econometrics 160, 326-348.

Kao, C. (1999): Spurious regression and residual-based tests for cointegration in panel

data. Journal of Econometrics 90, 1-44.

Kao, C., Trapani, L. and Urga, G. (2011): Asymptotics for panel models with common

shocks. Fconometric Reviews forthcoming.

Pedroni, P. (2000): Fully modified OLS for heterogeneous cointegrated panels. Advances
i Econometrics 15, 93-130.

Pesaran, M. H. (2004): General diagnostic tests for cross section dependence in panels.
CESifo Working Papers No. 1233.

Pesaran, M. H. (2006): Estimation and inference in large heterogeneous panels with a

multifactor error structure. Econometrica 74, 967-1012.

Pesaran, M. H. (2007): A simple panel unit root test in the presence of cross section

dependence. Journal of Applied Econometrics 22, 265-312.

Pesaran, M. H., Smith, L. V. and Yamagata, T. (2013): Panel unit root tests in the presence

of a multifactor error structure. Journal of Econometrics 175, 94-115.

Phillips, P. C. B. (1986): Understanding spurious regressions in econometrics. Journal of
FEconometrics 31, 311-340.

Phillips, P. C. B. and Moon, H. R. (1999): Linear regression limit theory for nonstationary
panel data. Econometrica 67, 1057-1111.

Phillips, P. C. B. and Moon, H. R. (2000): Nonstationary panel data analysis: An overview

of some recent developments. Econometric Reviews 19, 263-286.

Urbain, J. P. and Westerlund, J. (2011): Least Squares Asymptotics in Spurious and
Cointegrated Panel Regressions with Common and Idiosyncratic Stochastic Trends. Ozford
Bulletin of Economics and Statistics 73, 119-139.

Urbain, J. P. and Westerlund, J. (2015): Cross sectional averages or principal components?
Journal of econometrics 185, 372-377.

21



Table 1: Critical values for the CADFp test statistic with one common factor for Model 1. The
rank condition is met with inequality

5% level of significance 10% level of significance
T\N 20 30 50 70 100 200 | 20 30 50 70 100 200
30 -2.32 -2.27 -2.22 -2.20 -2.18 -2.17(-2.22 -2.18 -2.14 -2.13 -2.12 -2.11
50 -2.27 -2.22 -2.18 -2.16 -2.14 -2.12|-2.18 -2.14 -2.11 -2.09 -2.08 -2.07
70 -2.26 -2.21 -2.16 -2.14 -2.13 -2.11|-2.17 -2.13 -2.09 -2.08 -2.07 -2.05
100 -2.25 -2.20 -2.15 -2.13 -2.12 -2.10|-2.16 -2.12 -2.08 -2.07 -2.06 -2.05
200 -2.23 -2.18 -2.14 -2.12 -2.11 -2.09|-2.15 -2.10 -2.07 -2.06 -2.05 -2.04
30 -2.35 -2.30 -2.25 -2.24 -2.22 -2.20|-2.24 -2.20 -2.17 -2.16 -2.15 -2.14
50 -2.28 -2.24 -2.19 -2.17 -2.16 -2.14|-2.19 -2.15 -2.12 -2.11 -2.09 -2.08
70 -2.26 -2.21 -2.17 -2.15 -2.14 -2.12|-2.17 -2.14 -2.10 -2.08 -2.08 -2.06
100 -2.25 -2.20 -2.15 -2.14 -2.12 -2.10|-2.16 -2.12 -2.09 -2.07 -2.06 -2.05
200 -2.24 -2.18 -2.14 -2.12 -2.11 -2.09|-2.15 -2.11 -2.07 -2.06 -2.05 -2.04
30 -2.31 -2.25 -2.21 -2.20 -2.18 -2.16|-2.20 -2.16 -2.12 -2.12 -2.10 -2.09
50 -2.25 -2.21 -2.17 -2.14 -2.13 -2.11|-2.16 -2.12 -2.09 -2.08 -2.06 -2.05
70 -2.24 -2.19 -2.15 -2.13 -2.12 -2.10|-2.15 -2.11 -2.08 -2.06 -2.06 -2.04
100 -2.24 -2.19 -2.14 -2.12 -2.11 -2.09|-2.15 -2.11 -2.07 -2.06 -2.05 -2.04
200 -2.23 -2.17 -2.13 -2.11 -2.10 -2.08|-2.14 -2.10 -2.06 -2.05 -2.04 -2.03
30 -2.34 -2.28 -2.22 -2.20 -2.18 -2.17|-2.24 -2.19 -2.15 -2.13 -2.12 -2.11
50 -2.29 -2.23 -2.18 -2.16 -2.15 -2.12|-2.20 -2.15 -2.11 -2.09 -2.09 -2.07
70 -2.27 -2.22 -2.16 -2.14 -2.13 -2.11|-2.18 -2.14 -2.10 -2.08 -2.07 -2.06
100 -2.26 -2.21 -2.16 -2.14 -2.12 -2.10|-2.17 -2.13 -2.09 -2.07 -2.06 -2.05
200 -2.25 -2.19 -2.14 -2.12 -2.11 -2.09|-2.16 -2.11 -2.08 -2.06 -2.05 -2.04
30 -2.36 -2.31 -2.26 -2.23 -2.22 -2.20|-2.26 -2.21 -2.18 -2.16 -2.15 -2.14
50 -2.30 -2.24 -2.20 -2.17 -2.16 -2.14|-2.21 -2.16 -2.12 -2.11 -2.10 -2.08
70 -2.28 -2.22 -2.17 -2.15 -2.14 -2.12|-2.19 -2.14 -2.10 -2.09 -2.08 -2.07
100 -2.26 -2.21 -2.16 -2.14 -2.12 -2.10|-2.18 -2.13 -2.09 -2.08 -2.07 -2.05
200 -2.25 -2.19 -2.15 -2.13 -2.11 -2.09|-2.16 -2.12 -2.08 -2.06 -2.05 -2.04
30 -2.31 -2.26 -2.21 -2.19 -2.18 -2.16|-2.20 -2.16 -2.13 -2.11 -2.10 -2.09
50 -2.27 -2.21 -2.17 -2.14 -2.13 -2.11|-2.17 -2.13 -2.09 -2.08 -2.07 -2.05
70 -2.25 -2.20 -2.15 -2.13 -2.12 -2.10|-2.16 -2.12 -2.08 -2.07 -2.06 -2.04
100 -2.24 -2.19 -2.15 -2.13 -2.11 -2.09|-2.16 -2.11 -2.08 -2.06 -2.05 -2.04
200 -2.24 -2.18 -2.14 -2.12 -2.10 -2.08|-2.15 -2.11 -2.07 -2.06 -2.05 -2.03
30 -2.34 -2.28 -2.23 -2.20 -2.18 -2.17|-2.24 -2.20 -2.15 -2.14 -2.12 -2.11
50  -2.30 -2.24 -2.18 -2.16 -2.15 -2.13|-2.21 -2.16 -2.12 -2.10 -2.09 -2.07
70 -2.28 -2.22 -2.17 -2.15 -2.13 -2.11|-2.19 -2.14 -2.10 -2.09 -2.07 -2.06
100 -2.27 -2.21 -2.16 -2.14 -2.12 -2.10|-2.18 -2.13 -2.09 -2.08 -2.06 -2.05
200 -2.26 -2.20 -2.15 -2.13 -2.11 -2.09|-2.17 -2.12 -2.08 -2.07 -2.05 -2.04
30 -2.37 -2.31 -2.26 -2.23 -2.22 -2.20|-2.26 -2.22 -2.18 -2.16 -2.15 -2.14
50 -2.31 -2.25 -2.20 -2.17 -2.16 -2.14|-2.21 -2.16 -2.13 -2.11 -2.10 -2.08
70 -2.29 -2.23 -2.18 -2.16 -2.14 -2.12|-2.19 -2.15 -2.11 -2.09 -2.08 -2.07
100 -2.27 -2.21 -2.16 -2.14 -2.13 -2.11|-2.18 -2.13 -2.09 -2.08 -2.07 -2.05
200 -2.25 -2.20 -2.15 -2.13 -2.11 -2.09|-2.17 -2.12 -2.09 -2.07 -2.05 -2.04
30 -2.31 -2.26 -2.22 -2.19 -2.17 -2.16|-2.21 -2.16 -2.13 -2.11 -2.10 -2.09
50 -2.27 -2.21 -2.17 -2.15 -2.13 -2.11|-2.17 -2.13 -2.09 -2.08 -2.07 -2.05
70 -2.26 -2.21 -2.16 -2.14 -2.12 -2.10|-2.17 -2.12 -2.09 -2.07 -2.05 -2.04
100 -2.25 -2.20 -2.14 -2.13 -2.11 -2.09|-2.16 -2.12 -2.08 -2.06 -2.05 -2.04
200 -2.25 -2.19 -2.14 -2.12 -2.10 -2.08|-2.16 -2.11 -2.08 -2.06 -2.04 -2.03
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Table 2: Critical values for the CAD Fp test statistic with one common factor for Model 2. The
rank condition is met with inequality

5% level of significance 10% level of significance
p T\N 20 30 50 70 100 200 | 20 30 50 70 100 200
0 30 -2.92 -2.86 -2.81 -2.78 -2.76 -2.74|-2.82 -2.78 -2.74 -2.72 -2.70 -2.69
0 50 -2.83 -2.77 -2.72 -2.70 -2.68 -2.65|-2.74 -2.70 -2.66 -2.64 -2.63 -2.61
70 -2.79 -2.74 -2.69 -2.66 -2.65 -2.62|-2.71 -2.67 -2.63 -2.61 -2.59 -2.58
100 -2.77 -2.71 -2.66 -2.64 -2.62 -2.60|-2.69 -2.65 -2.61 -2.59 -2.57 -2.56
200 -2.74 -2.69 -2.64 -2.62 -2.60 -2.57|-2.67 -2.62 -2.58 -2.56 -2.55 -2.53
30 -2.96 -2.91 -2.86 -2.84 -2.83 -2.81|-2.86 -2.82 -2.79 -2.77 -2.76 -2.74
50 -2.85 -2.80 -2.75 -2.72 -2.71 -2.69|-2.76 -2.72 -2.68 -2.66 -2.65 -2.63
70 -2.80 -2.75 -2.70 -2.68 -2.66 -2.64|-2.72 -2.68 -2.64 -2.62 -2.61 -2.60
100 -2.78 -2.72 -2.67 -2.65 -2.63 -2.61|-2.70 -2.65 -2.61 -2.60 -2.58 -2.57
200 -2.75 -2.69 -2.64 -2.62 -2.60 -2.58|-2.67 -2.63 -2.58 -2.57 -2.55 -2.54
30 -2.90 -2.85 -2.81 -2.79 -2.78 -2.76|-2.79 -2.75 -2.72 -2.70 -2.70 -2.69
50 -2.81 -2.76 -2.72 -2.70 -2.68 -2.66|-2.71 -2.68 -2.65 -2.63 -2.62 -2.60
70 -2.78 -2.72 -2.68 -2.66 -2.64 -2.62|-2.69 -2.65 -2.62 -2.60 -2.59 -2.57
100 -2.76 -2.70 -2.66 -2.64 -2.62 -2.60|-2.67 -2.64 -2.60 -2.58 -2.57 -2.55
200 -2.73 -2.68 -2.63 -2.61 -2.59 -2.57|-2.66 -2.62 -2.58 -2.56 -2.55 -2.53
30 -2.93 -2.86 -2.81 -2.78 -2.76 -2.74|-2.84 -2.78 -2.74 -2.72 -2.71 -2.69
50 -2.84 -2.78 -2.72 -2.70 -2.68 -2.66|-2.76 -2.71 -2.66 -2.64 -2.63 -2.61
70 -2.81 -2.75 -2.69 -2.67 -2.64 -2.62|-2.73 -2.68 -2.63 -2.61 -2.60 -2.58
100 -2.78 -2.72 -2.67 -2.64 -2.62 -2.60|-2.71 -2.66 -2.61 -2.59 -2.57 -2.56
200 -2.76 -2.70 -2.64 -2.62 -2.60 -2.57|-2.68 -2.63 -2.59 -2.57 -2.55 -2.53
30 -2.97 -2.91 -2.87 -2.84 -2.83 -2.81|-2.87 -2.82 -2.79 -2.77 -2.76 -2.74
50 -2.86 -2.80 -2.75 -2.72 -2.71 -2.69|-2.77 -2.72 -2.68 -2.66 -2.65 -2.63
70 -2.82 -2.76 -2.71 -2.68 -2.67 -2.64|-2.73 -2.68 -2.65 -2.62 -2.61 -2.60
100 -2.79 -2.73 -2.68 -2.65 -2.63 -2.61|-2.71 -2.66 -2.62 -2.60 -2.58 -2.57
200 -2.76 -2.70 -2.65 -2.62 -2.61 -2.58|-2.68 -2.63 -2.59 -2.57 -2.56 -2.54
30 -2.90 -2.85 -2.81 -2.79 -2.78 -2.76|-2.79 -2.75 -2.72 -2.71 -2.70 -2.69
50 -2.82 -2.76 -2.72 -2.69 -2.68 -2.66|-2.73 -2.68 -2.65 -2.63 -2.62 -2.60
70 -2.79 -2.73 -2.69 -2.66 -2.64 -2.62|-2.70 -2.65 -2.62 -2.60 -2.59 -2.57
100 -2.77 -2.71 -2.66 -2.64 -2.62 -2.60|-2.69 -2.64 -2.60 -2.58 -2.57 -2.55
200 -2.75 -2.69 -2.64 -2.62 -2.60 -2.57|-2.67 -2.62 -2.58 -2.56 -2.55 -2.53
30 -2.94 -2.87 -2.81 -2.78 -2.76 -2.74|-2.85 -2.79 -2.74 -2.72 -2.70 -2.69
50  -2.85 -2.79 -2.73 -2.70 -2.68 -2.66|-2.76 -2.71 -2.67 -2.65 -2.63 -2.61
70 -2.82 -2.75 -2.69 -2.67 -2.65 -2.62|-2.73 -2.68 -2.64 -2.62 -2.60 -2.58
100 -2.79 -2.73 -2.67 -2.65 -2.62 -2.60|-2.71 -2.66 -2.61 -2.59 -2.58 -2.56
200 -2.76 -2.70 -2.65 -2.62 -2.60 -2.58|-2.69 -2.64 -2.59 -2.57 -2.55 -2.53
30 -2.98 -2.92 -2.87 -2.84 -2.82 -2.81|-2.88 -2.83 -2.79 -2.77 -2.75 -2.74
50 -2.86 -2.81 -2.75 -2.73 -2.71 -2.69|-2.77 -2.73 -2.69 -2.67 -2.65 -2.64
70 -2.83 -2.76 -2.71 -2.69 -2.67 -2.64|-2.74 -2.69 -2.65 -2.63 -2.61 -2.60
100 -2.80 -2.74 -2.68 -2.66 -2.63 -2.62|-2.71 -2.66 -2.62 -2.60 -2.58 -2.57
200 -2.76 -2.71 -2.65 -2.63 -2.60 -2.58|-2.69 -2.64 -2.60 -2.58 -2.56 -2.54
30 -2.91 -2.86 -2.81 -2.79 -2.78 -2.76|-2.80 -2.76 -2.72 -2.71 -2.69 -2.68
50 -2.82 -2.77 -2.72 -2.70 -2.68 -2.66|-2.73 -2.69 -2.65 -2.63 -2.62 -2.61
70 -2.79 -2.74 -2.68 -2.66 -2.65 -2.63|-2.71 -2.66 -2.62 -2.60 -2.59 -2.57
100 -2.77 -2.71 -2.66 -2.64 -2.62 -2.60|-2.69 -2.64 -2.60 -2.59 -2.57 -2.56
200 -2.75 -2.70 -2.64 -2.62 -2.60 -2.57|-2.68 -2.63 -2.59 -2.57 -2.55 -2.53
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Table 3: Critical values for the CADFp test statistic with multiple factors for Model 1. The
rank condition is met with equality

5% level of significance 10% level of significance
T\N 20 30 50 70 100 200 | 20 30 50 70 100 200
30 -2.51 -2.45 -2.40 -2.38 -2.36 -2.34|-2.41 -2.36 -2.32 -2.30 -2.29 -2.27
50  -2.50 -2.44 -2.40 -2.37 -2.36 -2.33|-2.40 -2.36 -2.32 -2.30 -2.29 -2.27
70 -2.50 -2.44 -2.40 -2.37 -2.35 -2.33|-2.40 -2.36 -2.32 -2.30 -2.29 -2.27
100 -2.49 -2.44 -2.39 -2.38 -2.35 -2.33|-2.40 -2.36 -2.32 -2.31 -2.29 -2.27
200 -2.49 -2.44 -2.39 -2.37 -2.36 -2.34|-2.40 -2.35 -2.32 -2.31 -2.29 -2.28
30 -2.54 -2.47 -2.41 -2.39 -2.37 -2.35|-2.41 -2.36 -2.32 -2.31 -2.29 -2.27
50  -2.50 -2.45 -2.40 -2.37 -2.36 -2.33|-2.40 -2.35 -2.32 -2.29 -2.28 -2.27
70 -2.50 -2.44 -2.40 -2.37 -2.35 -2.33|-2.40 -2.35 -2.32 -2.30 -2.29 -2.27
100 -2.49 -2.44 -2.39 -2.37 -2.35 -2.33|-2.40 -2.35 -2.32 -2.30 -2.29 -2.27
200 -2.49 -2.44 -2.39 -2.37 -2.35 -2.34|-2.40 -2.35 -2.32 -2.31 -2.29 -2.28
30 -2.48 -2.40 -2.35 -2.32 -2.30 -2.27|-2.34 -2.28 -2.24 -2.22 -2.20 -2.18
50 -2.46 -2.40 -2.35 -2.32 -2.31 -2.29|-2.35 -2.30 -2.27 -2.24 -2.23 -2.21
70 -2.46 -2.41 -2.36 -2.34 -2.32 -2.29|-2.36 -2.32 -2.28 -2.26 -2.25 -2.23
100 -2.47 -2.41 -2.37 -2.35 -2.33 -2.31|-2.37 -2.33 -2.29 -2.28 -2.26 -2.24
200 -2.48 -2.42 -2.38 -2.36 -2.34 -2.32|-2.39 -2.34 -2.31 -2.29 -2.28 -2.26
30 -2.73 -2.66 -2.60 -2.58 -2.55 -2.53|-2.62 -2.56 -2.51 -2.49 -2.48 -2.46
50 -2.73 -2.66 -2.61 -2.58 -2.57 -2.54|-2.63 -2.57 -2.53 -2.51 -2.50 -2.48
70 -2.73 -2.67 -2.61 -2.59 -2.57 -2.55|-2.63 -2.58 -2.54 -2.52 -2.50 -2.49
100 -2.73 -2.67 -2.62 -2.59 -2.57 -2.55|-2.64 -2.59 -2.54 -2.52 -2.51 -2.49
200 -2.73 -2.67 -2.62 -2.60 -2.58 -2.56|-2.64 -2.59 -2.55 -2.53 -2.52 -2.50
30 -2.71 -2.64 -2.57 -2.55 -2.52 -2.50|-2.58 -2.52 -2.47 -2.45 -2.43 -2.41
50 -2.71 -2.64 -2.59 -2.55 -2.55 -2.52|-2.60 -2.54 -2.50 -2.47 -2.47 -2.44
70 -2.71 -2.65 -2.59 -2.57 -2.55 -2.53|-2.61 -2.56 -2.51 -2.50 -2.48 -2.47
100 -2.72 -2.65 -2.61 -2.58 -2.56 -2.54|-2.62 -2.57 -2.53 -2.51 -2.49 -2.48
200 -2.73 -2.67 -2.62 -2.59 -2.58 -2.55|-2.63 -2.59 -2.54 -2.52 -2.51 -2.49
30 -2.61 -2.53 -2.46 -2.43 -2.40 -2.37|-2.46 -2.40 -2.34 -2.32 -2.29 -2.27
50 -2.64 -2.56 -2.51 -2.48 -2.46 -2.44|-2.52 -2.45 -2.41 -2.39 -2.38 -2.36
70 -2.66 -2.60 -2.54 -2.52 -2.49 -2.47|-2.55 -2.50 -2.45 -2.44 -2.42 -2.41
100 -2.68 -2.62 -2.57 -2.54 -2.52 -2.50|-2.58 -2.53 -2.49 -2.47 -2.45 -2.44
200 -2.71 -2.65 -2.60 -2.57 -2.56 -2.53|-2.61 -2.57 -2.52 -2.50 -2.49 -2.47
30 -2.91 -2.83 -2.76 -2.74 -2.71 -2.68|-2.79 -2.73 -2.68 -2.65 -2.63 -2.61
50 -2.92 -2.85 -2.79 -2.76 -2.74 -2.72|-2.82 -2.76 -2.71 -2.69 -2.67 -2.65
70 -2.93 -2.86 -2.80 -2.78 -2.76 -2.73|-2.83 -2.77 -2.73 -2.71 -2.69 -2.67
100 -2.95 -2.87 -2.81 -2.79 -2.77 -2.75|-2.85 -2.79 -2.74 -2.72 -2.70 -2.68
200 -2.95 -2.88 -2.83 -2.80 -2.78 -2.76|-2.85 -2.80 -2.76 -2.73 -2.72 -2.70
30 -2.84 -2.75 -2.68 -2.65 -2.63 -2.60|-2.70 -2.63 -2.57 -2.55 -2.53 -2.51
50 -2.87 -2.80 -2.73 -2.71 -2.69 -2.66|-2.75 -2.70 -2.65 -2.62 -2.60 -2.59
70 -2.89 -2.82 -2.77 -2.74 -2.72 -2.69|-2.79 -2.73 -2.69 -2.66 -2.65 -2.62
100 -2.92 -2.84 -2.79 -2.76 -2.74 -2.72|-2.82 -2.75 -2.71 -2.69 -2.67 -2.65
200 -2.93 -2.87 -2.81 -2.78 -2.77 -2.75|-2.84 -2.79 -2.74 -2.72 -2.70 -2.69
30 -2.75 -2.64 -2.54 -2.50 -2.46 -2.43|-2.57 -2.49 -2.40 -2.37 -2.34 -2.32
50 -2.75 -2.68 -2.62 -2.59 -2.56 -2.54|-2.63 -2.57 -2.52 -2.49 -2.47 -2.46
70 -2.81 -2.74 -2.69 -2.66 -2.63 -2.61|-2.70 -2.64 -2.60 -2.57 -2.56 -2.54
100 -2.86 -2.79 -2.73 -2.71 -2.69 -2.66|-2.76 -2.69 -2.65 -2.63 -2.61 -2.59
200 -2.90 -2.84 -2.79 -2.76 -2.74 -2.72|-2.81 -2.76 -2.71 -2.69 -2.67 -2.66
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Table 4: Critical values for the CADFp test statistic with multiple factors for Model 2. The
rank condition is met with equality

5% level of significance 10% level of significance
p T\N 20 30 50 70 100 200 | 20 30 50 70 100 200
0 30 -2.97 -2.90 -2.86 -2.82 -2.80 -2.78|-2.87 -2.82 -2.78 -2.75 -2.74 -2.72
0 50 -295 -2.89 -2.84 -2.81 -2.79 -2.77|-2.86 -2.81 -2.77 -2.75 -2.73 -2.72
70 -2.94 -2.88 -2.83 -2.81 -2.79 -2.77|-2.85 -2.81 -2.77 -2.75 -2.73 -2.71
100 -2.94 -2.88 -2.83 -2.81 -2.79 -2.76|-2.85 -2.81 -2.77 -2.75 -2.73 -2.71
200 -2.93 -2.88 -2.83 -2.80 -2.78 -2.76|-2.85 -2.81 -2.76 -2.75 -2.73 -2.71
30 -3.00 -2.94 -2.89 -2.86 -2.84 -2.81(-2.88 -2.83 -2.79 -2.77 -2.75 -2.73
50 -2.96 -2.90 -2.84 -2.82 -2.80 -2.78|-2.86 -2.81 -2.77 -2.75 -2.74 -2.72
70 -2.94 -2.89 -2.84 -2.81 -2.79 -2.77|-2.85 -2.80 -2.76 -2.75 -2.73 -2.72
100 -2.94 -2.88 -2.83 -2.81 -2.79 -2.77|-2.85 -2.81 -2.77 -2.75 -2.73 -2.71
200 -2.93 -2.88 -2.83 -2.80 -2.79 -2.76|-2.85 -2.80 -2.76 -2.75 -2.73 -2.71
30 -2.94 -2.86 -2.81 -2.77 -2.75 -2.72|-2.80 -2.74 -2.70 -2.67 -2.65 -2.63
50 -2.90 -2.85 -2.79 -2.77 -2.75 -2.73|-2.80 -2.75 -2.71 -2.69 -2.68 -2.66
70 -2.91 -2.85 -2.80 -2.77 -2.75 -2.73|-2.81 -2.76 -2.72 -2.71 -2.69 -2.67
100 -2.91 -2.86 -2.81 -2.79 -2.76 -2.74|-2.82 -2.78 -2.73 -2.72 -2.70 -2.69
200 -2.92 -2.86 -2.81 -2.79 -2.77 -2.75|-2.84 -2.79 -2.75 -2.73 -2.72 -2.70
30 -3.14 -3.06 -3.00 -2.98 -2.95 -2.92|-3.03 -2.97 -2.92 -2.90 -2.88 -2.86
50 -3.13 -3.06 -3.01 -2.98 -2.96 -2.93|-3.04 -2.98 -2.93 -2.91 -2.89 -2.88
70 -3.13 -3.07 -3.01 -2.98 -2.96 -2.94|-3.04 -2.99 -2.94 -2.92 -2.90 -2.89
100 -3.13 -3.07 -3.01 -2.99 -2.97 -2.94|-3.04 -2.99 -2.94 -2.93 -2.91 -2.89
200 -3.13 -3.07 -3.02 -2.99 -2.98 -2.95|-3.05 -3.00 -2.95 -2.93 -2.92 -2.90
30 -3.12 -3.05 -2.99 -2.96 -2.94 -2.91|-2.99 -2.93 -2.88 -2.86 -2.84 -2.82
50 -3.11 -3.04 -2.99 -2.96 -2.94 -2.91|-3.01 -2.94 -2.91 -2.88 -2.87 -2.85
70 -3.11 -3.05 -3.00 -2.97 -2.95 -2.93|-3.01 -2.96 -2.92 -2.90 -2.88 -2.86
100 -3.12 -3.05 -3.00 -2.98 -2.96 -2.93|-3.03 -2.98 -2.93 -2.91 -2.89 -2.88
200 -3.12 -3.06 -3.01 -2.99 -2.97 -2.95|-3.04 -2.99 -2.95 -2.93 -2.91 -2.89
30 -3.01 -2.93 -2.85 -2.82 -2.79 -2.76|-2.85 -2.78 -2.72 -2.70 -2.68 -2.65
50 -3.02 -2.95 -2.90 -2.87 -2.85 -2.83|-2.91 -2.85 -2.81 -2.78 -2.77 -2.75
70 -3.05 -2.99 -2.93 -2.90 -2.88 -2.86(-2.94 -2.90 -2.85 -2.83 -2.81 -2.79
100 -3.08 -3.01 -2.95 -2.94 -2.91 -2.89|-2.98 -2.93 -2.88 -2.87 -2.85 -2.83
200 -3.10 -3.04 -2.99 -2.97 -2.95 -2.92|-3.01 -2.97 -2.92 -2.90 -2.89 -2.87
30 -3.28 -3.19 -3.13 -3.10 -3.07 -3.04|-3.16 -3.09 -3.04 -3.02 -2.99 -2.97
50 -3.29 -3.22 -3.16 -3.13 -3.10 -3.08|-3.19 -3.13 -3.08 -3.06 -3.04 -3.02
70 -3.30 -3.23 -3.17 -3.14 -3.12 -3.09|-3.20 -3.15 -3.10 -3.08 -3.05 -3.04
100 -3.31 -3.24 -3.18 -3.15 -3.13 -3.11|-3.22 -3.16 -3.11 -3.09 -3.07 -3.05
200 -3.32 -3.25 -3.19 -3.16 -3.14 -3.12|-3.23 -3.18 -3.13 -3.11 -3.09 -3.07
30 -3.21 -3.12 -3.04 -3.01 -2.98 -2.95|-3.05 -2.99 -2.92 -2.90 -2.88 -2.86
50 -3.23 -3.16 -3.10 -3.07 -3.04 -3.02|-3.11 -3.06 -3.01 -2.99 -2.97 -2.95
70 -3.26 -3.19 -3.13 -3.10 -3.08 -3.05|-3.16 -3.10 -3.05 -3.02 -3.01 -2.99
100 -3.28 -3.21 -3.15 -3.12 -3.10 -3.08|-3.18 -3.13 -3.08 -3.05 -3.04 -3.02
200 -3.30 -3.24 -3.18 -3.15 -3.13 -3.11|-3.21 -3.16 -3.11 -3.09 -3.07 -3.05
30 -3.15 -3.02 -2.92 -2.87 -2.83 -2.78|-2.94 -2.85 -2.77 -2.73 -2.69 -2.66
50 -3.09 -3.03 -2.96 -2.93 -2.90 -2.88|-2.97 -2.91 -2.86 -2.84 -2.82 -2.80
70 -3.16 -3.09 -3.03 -3.00 -2.98 -2.96|-3.05 -3.00 -2.95 -2.93 -2.91 -2.89
100 -3.21 -3.15 -3.09 -3.06 -3.04 -3.02|-3.12 -3.06 -3.01 -2.99 -2.97 -2.95
200 -3.27 -3.21 -3.15 -3.12 -3.10 -3.08|-3.18 -3.13 -3.08 -3.06 -3.04 -3.02
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Table 5: Empirical size and power of the panel cointegration test statistics with strong cross-

section dependence

N =10 N =20 N =50
¢, p T | Z  tp CADFp| Z, tz CADFp| Z.  t; CADFp
I 1 50 [0.124 0010 0051 |0.06I 0.6 0.047 | 0.052 0.066 0.050
11 100 |0.072 0.046 0.051 |0.058 0053 0.050 |0.059 0.056  0.053
1 1 250 |0.066 0.051 0045 |0.053 0.055 0.043 | 0.048 0.049  0.052
1 099 50 |0.123 0010 0053 |0.060 0061 0.047 |0.053 0.064  0.050
1099 100 | 0.072 0.048 0.051 |0.059 0.056 0.045 |0.059 0.058  0.049
1 099 250 | 0.065 0.064 0.042 |0.053 0.061 0.038 |0.048 0.062 0.038
1 095 50 |0.120 0.010 0.047 |0.056 0074 0.040 |0.049 0.077  0.038
1 095 100 | 0.070 0.076  0.040 | 0.058 0.092  0.029 | 0.056 0.095 0.021
1 095 250 | 0.064 0.235 0025 | 0053 0257 0.012 |0.045 0276  0.006
109 50 |0.118 0013 0040 |0.056 0102 0.027 |0.047 0.107  0.020
109 100 |0.069 0.167 0030 |0.058 0200 0.016 |0.056 0.211  0.007
1 09 2500065 0642 0.021 |0.051 0.788 0.006 | 0.046 0.809  0.001
099 1 50 |0.127 0.010 0.055 |0.064 0.061 0.048 | 0.062 0.065 0.052
0.99 1 100 | 0.096 0.047 0.057 |0.078 0.053 0.058 |0.102 0.057  0.068
0.99 1 250 |0.186 0.053 0.085 |0.261 0056 0.107 | 0476 0.050  0.160
0.99 0.99 50 |0.125 0.009 0.057 |0.064 0.061 0.049 |0.061 0.064  0.051
0.99 0.99 100 | 0.095 0.048 0.054 |0.079 0.056 0.055 |0.101 0.057  0.061
0.99 0.99 250 | 0.185 0.065 0.078 | 0.260 0.060 0.096 | 0.473 0.064  0.132
0.99 095 50 |0.121 0.009 0.050 |0.061 0073 0.041 |0.058 0.078  0.040
0.99 0.95 100 | 0.090 0.075 0.044 | 0.077 0.092 0.034 |0.098 0.095 0.028
0.99 0.95 250 | 0.181 0.244 0.050 |0.261 0.258 0.038 | 0.469 0278  0.040
0.99 0.9 50 |0.121 0.014 0.043 |0.057 0.102 0.028 |0.056 0.107 0.023
0.99 0.9 100 |0.089 0.167 0.032 |0.077 0202 0019 |0.097 0211  0.010
0.99 0.9 250 | 0.179 0.668 0.044 | 0.259 0.798 0.022 | 0.466 0.818 0.016
095 1 50 [0.179 0.010 0.089 | 0217 0.060 0.103 | 0.416 0.066  0.146
0.95 1 100 | 0.560 0.044 0.215 |0.830 0.054 0.358 | 0.996 0.057  0.586
0.95 1 250 | 1.000 0.056  0.950 1 0.054 1000 |1.000 0.051  1.000
0.95 0.99 50 |0.179 0.008 0.088 |0218 0062 0.101 | 0415 0.064 0.141
0.95 0.99 100 | 0.561 0.047 0.215 |0.832 0.058 0.354 | 0.997 0.058  0.581
0.95 0.99 250 | 1.000 0.069  0.944 1 0.064 1000 |1.000 0.065  1.000
0.95 0.95 50 |0.177 0.010 0.085 |0.214 0.073 0.084 |0410 0077 0.112
0.95 0.95 100 | 0.556 0.078  0.187 | 0.830 0.093  0.300 | 0.996 0.097  0.495
0.95 0.95 250 | 1.000 0.288  0.931 10271 0999 |1.000 0285  1.000
0.95 0.9 50 | 0172 0.014 0071 |0.209 0.101 0.065 | 0401 0.109 0.078
0.95 0.9 100 | 0.557 0.175 0.160 |0.826 0.206 0.233 | 0.996 0.213  0.396
0.95 0.9 250 | 1.000 0.783  0.923 1 083 0998 |1.000 0.836 1.000
09 1 50 [0.338 0010 0213 |0.742 0.061 0.318 | 0.981 0.067  0.532
0.9 1 100 |0.971 0.046  0.765 1 0.057 0974 |1.000 0.058  1.000
0.9 1 250|1.000 0.061  1.000 1 0.056 1000 |1.000 0.051  1.000
0.9 099 50 | 033 0009 0213 |0.739 0.063 0319 | 0981 0065 0.527
0.9 0.99 100 | 0.970 0.050  0.764 1 0.059 0973 |1.000 0.060  1.000
0.9 0.99 250 |1.000 0.076  1.000 1 0.065 1000 |1.000 0.065  1.000
0.9 095 50 | 033 0010 0200 |0.736 0.074 0296 |0.981 0.079  0.492
0.9 0.95 100 | 0.971 0.081  0.739 1 0.094 0966 |1.000 0.100  1.000
0.9 095 250 |1.000 0.311  1.000 1 028 1000 |1.000 0.284  1.000
0.9 09 50 |0335 0014 0183 [0731 0.102 0.258 |0.981 0.111  0.438
0.9 0.9 100|0.970 0181  0.710 1 0209 0950 |1.000 0.219  1.000
0.9 0.9 250|1.000 0833 1.000 1 0.842 1000 |1.000 0.842  1.000
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Table 6: Empirical size and power of the CAD Fp panel cointegration test statistic with strong
cross-section dependence. Rank condition is satisfied with equality and with inequality
Equality Inequality
T N=20 N=50| N=20 N =50
50 0.113 0.066 0.052 0.047
100  0.110 0.068 0.053 0.051
250  0.112 0.069 0.048 0.051
0.99 50 0.109 0.068 0.049 0.047
0.99 100 0.109 0.061 0.052 0.052
0.99 250 0.110 0.046 0.044 0.042
0.95 50 0.108 0.049 0.045 0.043
0.95 100 0.100 0.024 0.039 0.031
0.95 250 0.107 0.007 0.025 0.013
0.9 50 0.101 0.027 0.036 0.032
0.9 100 0.090 0.007 0.024 0.017
0.9 250 0.161 0.003 0.016 0.007
0.99 1 50 0.114 0.068 0.053 0.050
0.99 1 100  0.118 0.081 0.061 0.063
0.99 1 250  0.169 0.153 0.107 0.125
0.99 0.99 50 0.113 0.068 0.051 0.050
0.99 0.99 100 0.119 0.074 0.061 0.060
0.99 0.99 250 0.169 0.125 0.101 0.112
0.99 0.95 50 0.110 0.050 0.046 0.044
0.99 0.95 100 0.107 0.032 0.047 0.037
0.99 0.95 250 0.177 0.027 0.060 0.045
0.99 0.9 50 0.104 0.029 0.037 0.032
0.99 0.9 100 0.104 0.009 0.030 0.020
0.99 0.9 250 0.262 0.012 0.041 0.022
0.95 1 50 0.162 0.143 0.097 0.111
0.95 1 100  0.273 0.419 0.278 0.410
0.95 1 250  0.716 0.987 0.993 1.000
0.95 0.99 50 0.160 0.141 0.095 0.109
0.95 0.99 100 0.270 0.409 0.279 0.408
0.95 0.99 250 0.741 0.987 0.993 1.000
0.95 0.95 50 0.153 0.118 0.085 0.090
0.95 0.95 100 0.278 0.299 0.239 0.333
0.95 0.95 250 0.889 0.985 0.988 1.000
0.95 0.9 50 0.146 0.076 0.073 0.071
0.95 0.9 100 0.300 0.197 0.198 0.253
0.95 0.9 250 0.973 0.988 0.983 1.000
0.9 1 50 0.275 0.381 0.269 0.377
0.9 1 100  0.584 0.946 0.903 0.997
0.9 1 250  0.944 1.000 1.000 1.000
0.9 0.99 50 0.274 0.379 0.271 0.377
0.9 0.99 100 0.582 0.949 0.902 0.998
0.9 099 250 0.959 1.000 1.000 1.000
0.9 0.95 50 0.271 0.346 0.253 0.341
0.9 095 100 0.628 0.933 0.887 0.995
0.9 095 250 0.997 1.000 1.000 1.000
09 09 50 0.266 0.281 0.226 0.291
0.9 0.9 100 0.703 0.910 0.863 0.991
0.9 0.9 250 1.000 1.000 1.000 1.000
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Table 7: Empirical size and power of the panel cointegration tests with semi-strong and weak
cross-section dependence through the loadings

Semi-strong cross-section dependence Weak cross-section dependence
N =10 N =20 N =50 N =10 N =20 N =50
T | Z. CADF| Z. CADF| Z. CADF| Z, CADF| Z, CADF| Z, CADF

SN

50 10.105 0.051 [0.051 0.050 [0.055 0.049 [0.098 0.051 {0.051 0.047 [0.053 0.052
10010.061 0.056 |0.052 0.053 |0.057 0.043 [0.059 0.052 |0.052 0.051 |0.058 0.046
250(0.053 0.050 |0.056 0.046 |[0.049 0.048 |0.053 0.050 [0.054 0.047 |0.047 0.048
0.99 50 [0.105 0.051 |0.051 0.050 [0.055 0.050 |0.098 0.051 [0.052 0.047 |0.053 0.052
0.99 100|0.062 0.056 |0.053 0.054 [0.057 0.043 |0.059 0.053 |0.052 0.050 |0.057 0.047
0.99 250(0.059 0.048 |0.055 0.045 [0.050 0.049 |0.056 0.049 [0.055 0.047 |0.047 0.049
0.95 50 [0.105 0.051 |0.053 0.047 |0.056 0.048 |0.100 0.051 [0.052 0.047 |0.052 0.053
0.95 100{0.067 0.056 |0.055 0.049 |0.057 0.042 |0.062 0.053 [0.052 0.050 |0.057 0.048
0.95 250(0.065 0.049 [0.061 0.040 |0.052 0.048 |0.054 0.051 |{0.054 0.045 |0.047 0.049
0.9 50 (0.106 0.052 [0.052 0.043 |0.057 0.048 [0.098 0.051 |[0.052 0.046 |0.052 0.053
0.9 100/0.073 0.054 [0.058 0.043 |0.059 0.044 [0.062 0.054 |[0.052 0.049 |0.057 0.048
0.9 250/0.066 0.051 [0.064 0.040 |0.053 0.049 [0.054 0.050 |{0.055 0.045 |0.047 0.049

el el B

PN VWG | S

©
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©
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50 10.109 0.052 [0.060 0.051 |[0.066 0.051 [0.104 0.053 {0.060 0.046 [0.066 0.056
099 1 100(0.075 0.061 |0.078 0.060 [0.102 0.057 |0.076 0.059 [0.079 0.060 |0.103 0.061
099 1 250(0.164 0.085 |0.246 0.111 |0.475 0.135 |0.170 0.083 |0.252 0.100 [0.479 0.136
0.99 0.99 50 |0.108 0.053 |0.059 0.051 |0.067 0.051 {0.104 0.052 |0.060 0.046 |0.066 0.056
0.99 0.99 100|0.076 0.061 |0.078 0.060 [0.103 0.057 |0.078 0.058 [0.078 0.060 |0.102 0.061
0.99 0.99 250(0.171 0.085 |0.253 0.102 |0.482 0.133 |0.173 0.086 |0.253 0.100 [0.479 0.135
0.99 0.95 50 |0.108 0.053 |[0.059 0.050 [0.067 0.050 [0.105 0.052 |0.059 0.047 |0.066 0.056
0.99 0.95 100|0.084 0.058 |0.083 0.055 [0.106 0.055 |0.079 0.057 |0.078 0.059 |0.103 0.061
0.99 0.95 250(0.192 0.082 |0.272 0.088 |0.493 0.131 |0.175 0.084 |0.255 0.097 |[0.480 0.135
0.99 0.9 50 (0.110 0.052 |0.061 0.046 |0.068 0.049 |{0.106 0.052 |0.060 0.047 |0.066 0.055
0.99 0.9 100{0.090 0.059 |0.083 0.052 |0.110 0.054 |0.080 0.058 |0.079 0.059 [0.104 0.062
0.99 0.9 250(0.200 0.084 |0.279 0.089 |0.497 0.130 |0.175 0.084 |0.256 0.097 |0.481 0.135

095 1 50 1(0.171 0.077 [0.228 0.096 |0.450 0.121 |{0.168 0.077 [0.239 0.090 [0.450 0.118
095 1 100(0.573 0.201 |0.842 0.315 |0.997 0.502 |0.597 0.198 |0.857 0.299 [0.998 0.492
095 1 250(0.999 0.929 |1.000 0.999 |1.000 1.000 |{1.000 0.935 |1.000 0.999 |1.000 1.000
0.95 0.99 50 |0.171 0.078 |0.229 0.098 |0.448 0.120 {0.168 0.076 |0.239 0.089 |0.449 0.119
0.95 0.99 100]0.573 0.202 |0.847 0.314 |0.997 0.498 |0.595 0.201 |0.858 0.298 [0.998 0.492
0.95 0.99 250|1.000 0.930 |1.000 0.999 |1.000 1.000 |{1.000 0.936 |1.000 0.999 |1.000 1.000
0.95 0.95 50 |0.174 0.078 |0.234 0.095 |0.452 0.117 |0.170 0.076 |0.240 0.090 |0.451 0.118
0.95 0.95 100]0.600 0.201 |0.865 0.301 |0.998 0.496 |[0.598 0.199 |0.862 0.298 [0.998 0.493
0.95 0.95 250|1.000 0.935 |1.000 0.998 |1.000 1.000 |{1.000 0.937 |1.000 0.999 |1.000 1.000
0.95 0.9 50 (0.176 0.076 |0.242 0.087 |0.456 0.111 |0.171 0.076 |0.239 0.089 |0.451 0.117
0.95 0.9 100(0.617 0.200 |0.873 0.287 [0.998 0.490 |0.599 0.197 |0.863 0.297 |0.998 0.491
0.95 0.9 250|1.000 0.940 |1.000 0.999 |1.000 1.000 |{1.000 0.938 |1.000 0.999 |1.000 1.000

09 1 5010396 0.172 |0.802 0.281 [0.991 0.435 [0.416 0.173 [0.818 0.268 [0.991 0.432
09 1 100{0.986 0.732 |1.000 0.963 |1.000 1.000 [0.994 0.738 [1.000 0.952 |1.000 1.000
0.9 1 250({1.000 1.000 |1.000 1.000 |1.000 1.000 [1.000 1.000 |[1.000 1.000 |{1.000 1.000
0.9 0.99 50 (0.398 0.172 |0.801 0.281 |0.991 0.434 |0.415 0.173 |0.818 0.268 |0.992 0.431
0.9 0.99 100{0.988 0.733 |1.000 0.964 |1.000 1.000 [0.993 0.740 [1.000 0.953 |1.000 1.000
0.9 0.99 250{1.000 1.000 |1.000 1.000 |1.000 1.000 [1.000 1.000 |[1.000 1.000 |{1.000 1.000
0.9 0.95 50 (0.401 0.170 |0.811 0.272 [0.991 0.433 |0.418 0.171 |0.818 0.268 |0.992 0.430
0.9 0.95 100{0.991 0.734 |1.000 0.958 |1.000 1.000 [0.994 0.740 [1.000 0.951 |1.000 1.000
0.9 0.95 250{1.000 1.000 |1.000 1.000 |1.000 1.000 [1.000 1.000 |[1.000 1.000 |{1.000 1.000
0.9 09 501(0.407 0.172 |0.821 0.265 [0.992 0.434 |0.417 0.172 |0.819 0.268 |[0.992 0.430
0.9 09 100{0.993 0.740 |1.000 0.955 |1.000 1.000 [0.994 0.740 [1.000 0.951 |1.000 1.000
0.9 09 250({1.000 1.000 |1.000 1.000 |1.000 1.000 [1.000 1.000 |1.000 1.000 |{1.000 1.000
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Table 8: Empirical size and power of the panel cointegration tests with normalized spatial

dependence, N = 20

SAR SMA
9 =04 9 =08 9 =04 9 =08
¢, T | Z. CADFp| Z, CADFp| Z. CADFp| Z, CADFp
I 50 [0.074 0065 |0.113 0.137 [0064 0064 |0.1I7 0.087
1 100 | 0.084 0073 |0.124 0.147 [0.070 0.071 |0.121  0.090
1 250 | 0.066 0.067 |0.113 0.146 |0.067 0.054 | 0.131  0.085
099 50 | 0.080 0.066 |O0.114 0.142 |0.070 0.066 |0.118  0.091
0.99 100 | 0.111  0.084 |0.150 0.162 |0.096 0.077 | 0.142  0.104
0.99 250 | 0.240 0.119 | 0.263 0211 |0239 0111 |0.273  0.145
0.95 50 |0.201 0.112 |0.191 0192 |0204 0105 |0.191  0.135
0.95 100 | 0.691 0311 |0.545 0365 | 0.688 0.309 | 0.517  0.330
0.95 250 | 1.000  0.998 |0.997 0.967 | 1.000 0.998 | 0.998  0.992
0.9 50 |0.627 0287 |0411 0349 |0.662 0280 | 0.38  0.311
0.9 100 | 1.000 0935 |0.962 0.852 | 0.999 0942 | 0.955  0.912
0.9 250 | 1.000  1.000 | 1.000 1.000 | 1.000  1.000 | 1.000  1.000
SEC1 SEC2
9 =04 9 =08 9 =04 9 =08
¢, T | Z. CADFp| Z, CADFp| Z. CADFp| Z, CADFp
1 50 [0.048 0046 | 0050 0043 |0.054 0.043 | 0.058 0.049
1 100 | 0.062 0.052 |0.060 0052 |0.062 0053 |0.066 0.053
1 2500053 0049 |0.052 0.046 |0.049 0.049 | 0.047  0.048
099 50 | 0.051 0.048 |0.055 0.046 | 0.056 0.045 | 0.060  0.051
0.99 100 | 0.084  0.060 |0.083 0.058 |0.084 0.061 |0.091  0.062
0.99 250 | 0.222  0.096 |0.224  0.098 | 0.221  0.100 | 0.219  0.100
0.95 50 | 0.187 0.089 |0.183 0.087 |0.186 0.086 | 0.192  0.086
0.95 100 | 0.708  0.300 |0.706  0.296 | 0.701  0.296 | 0.706  0.294
0.95 250 | 1.000  0.999 | 1.000 0.999 | 1.000  0.999 | 1.000  0.999
0.9 50 |0.683 0266 |0.678 0262 |0.673 0263 | 0.680  0.266
0.9 100 | 1.000  0.953 | 1.000 0.954 | 1.000 0.953 | 1.000  0.957
0.9 250 | 1.000  1.000 | 1.000 1.000 | 1.000  1.000 | 1.000  1.000
SEC3
9 =04 9 =038
¢, T | Z. CADFp| Z, CADFp
I 50 [0.058 0052 [0.07]  0.062
1 100 | 0.063 0.054 | 0.075  0.069
1 2500050 0.050 |0.065 0.064
099 50 | 0.068 0.053 |0.078  0.066
0.99 100 | 0.092  0.062 |0.103  0.077
0.99 250 | 0.222  0.107 | 0.235  0.121
0.95 50 |0.202 0.092 |0212 0.111
0.95 100 | 0.702  0.293 | 0.701  0.312
0.95 250 | 1.000  0.999 |1.000  0.999
0.9 50 | 0.676 0270 |0.658  0.284
0.9 100 | 1.000  0.956 | 0.998  0.942
0.9 250 | 1.000  1.000 | 1.000  1.000
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Figure 1: US State real house price
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Figure 2: US State real per capita disposable income
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Table 9: US Housing price and disposable income relationship. Individual cointegration statis-
tics

Alabama -0.827 -1.259 -3.575 -3.585 -1.858
Arkansas -1.121 -2.557 -3.668 -2.563 -1.772
Arizona -1.972 -2.157 -2.708 -3.491 -3.633
California -1.418 -3.526 -3.797 -3.563 -3.555
Colorado -1.110 -1.963 -1.867 -2.370 -1.633
Connecticut -0.953 -2.196 -2.905 -5.117 -3.560
District of Columbia -2.273 -2.606 -3.370%  -1.964 -1.901
Delaware -2.346 -2.212 -3.025 -3.151%  -2.442
Florida -2.016 -1.807 -2.664 -1.480 -1.314
Georgia -3.758%*  -3.991 -3.127%  -1.752 -4.663
Towa -1.409 -2.559 -2.956 -3.052 -4.393
Idaho -1.588 -2.302 -3.826 -8.305 -4.972
Illinois -1.669 -1.775 -1.531 -2.875 -1.736
Indiana -1.626 -1.980 -1.839 -2.106 -2.472
Kansas -1.343 -1.662 -1.989 -2.134 -1.758
Kentucky -3.414* -1.610 -1.151 -2.955 -1.420
Louisiana -1.817 -2.932 -4.087**%  _6.247** -3.523**
Massachusetts -1.210 -2.031 -3.119*  -4.465*%*  -5.050**
Maryland -1.348 -3.061 -3.640**  -4.336** -2.906
Maine -0.935 -3.192*  -3.108*  -3.334*  -3.553**
Michigan -1.521 -3.145%* -2.767 -2.450 -2.294
Minnesota -0.379 -0.416 -2.033 -1.223 -1.121
Missouri -1.575 -2.957 -3.456* -1.456 -1.416
Mississippi -3.266 -2.602 -2.341 -3.788*%*  -2.325
Montana -1.578 -1.975 -2.198 -1.949 -1.316
North Carolina -2.145 -1.814 -1.404 -3.812%*%  _4.361**
North Dakota -2.636 -4.622**%  _3.935*%* -3.433*  -2.408
Nebraska -1.092 -3.506%*F  -3.782*%*  _4.605%* -4.307**
New Hampshire -0.911 -3.236*%  -3.040 S3.7T16%*F  _3.744%*
New Jersey -1.798 -2.895 -2.622 -2.651 -2.565
New Mexico -1.368 -2.165 -3.879*%*  _3.624** -3.020
Nevada -2.136 -1.832 -1.153 -2.097 -1.482
New York -4.822%*%  _4.808** -1.824 -0.230 -1.793
Ohio -1.625 -1.792 -2.228 -2.707 -3.752%*
Oklahoma -2.114 -4.011**  -4.511** -2.935 -5.321%**
Oregon -1.243 -1.758 -2.242 -3.802**  -3.739%*
Pennsylvania -1.769 -3.008 -2.425 -3.324*%  -2.340
Rhode Island -1.344 -3.139*%  -3.317*  -5.344**  _5.342%*
South Carolina -3.112*  -5.697** -1.794 -1.547 -1.235
South Dakota -3.854*%*  _2.213 -2.229 -2.110 -3.181
Tennessee -1.230 -1.918 -2.588 -2.714 -1.616
Texas -2.348 -3.654%*%  _4.175%*  -3.320%  -4.181°%*
Utah -1.156 -2.919 -2.828 -3.335%  -2.552
Virginia -1.730 -1.875 -2.767 -4.731**  -1.550
Vermont -2.189 -2.460 -3.557 -4.176%*  -2.844
Washington -2.011 -3.409*  -2.503 -3.179*%  -3.768**
Wisconsin -1.939 -0.792 -1.184 -2.969 -2.634
West Virginia -1.776 -1.442 -1.729 -2.155 -2.913
Wyoming 1927 2112 3.67TFF _4.694%F  _3.326%

Notes: Columns 2 to 6 report the results for different lags. ** and * denote rejection
of the null hypothesis of no cointegration at the 5 and 10% levels of significance,
respectively.
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Table 10: Residual cross correlation of ADF(p) regressions. US Housing price and production
function illustrations

US Housing prices
ADF(1) ADF(2) ADF(3) ADF(4)
pig  67.07 63.16 58.99 56.28
Yir 9341 89.02 88.49 82.62

Production function
ADF(1) ADF(2) ADF(3) ADF(4)
Yit 30.28 28.25 28.16 28.32
lit 12.09 4.63 4.43 5.11
kiy 4257 24.82 25.13 25.33

Table 11: Production function. Individual CCE cointegration statistics

p=20 p=1 p=2 p=3 p=4
AUS -0.881 1.071 0.149 -0.069 0.483
AUT -3.189*  -4.439** -6.153**  -4.667** -2.858
BEL 1.351 1.942 0.406 0.703 0.111
CAN -2.005 -2.694 -1.928 -1.136 -1.422
CHE -1.236 -1.126 -1.220 -1.897 -1.977
DNK -2.804 -2.430 -2.210 -2.124 -3.386%*
ESP  -5.354** -3.206*%  -3.755%** _3.017* = -3.233*
FIN  -0.808 -2.137 -1.577 -1.482 -1.535
FRA -2.401 -2.110 -1.451 -0.655 -0.927
GBR  -3.490** -2.405 -2.674 -2.709 -3.031*
GRC -2.387 -3.177% -2.190 -2.226 -2.056
IRL  -0.366 -1.251 -1.202 -1.558 -1.955
ITA -1.431 -1.139 -0.583 -0.418 0.304
LUX -1.502 -1.904 -1.819 -1.761 -2.283
NLD -2.439 -2.521 -2.317 -3.136%  -2.671
NOR -1.613 -1.824 -1.510 -1.231 -1.087
PRT -0.747 -0.593 -0.035 0.247 0.390
SWE -0.225 -1.507 -0.945 -0.668 -1.298
USA -0.367 -0.950 -0.673 -0.283 -0.451

** and

Notes: Columns 2 to 6 report the results for different lags.
* denote rejection of the null hypothesis of no cointegration at the
5 and 10% levels of significance, respectively. a indicates that the
null hypothesis is not rejected when using the truncated version

of the test statistic.

Table 12: Production function. Banerjee and Carrion-i-Silvestre panel cointegration test

Not transformed
r=0 r=1 r=2 r=3 r=4 r=5 r==6

A -3.56  -3.16 -3.09 -2.84 -2.75 -246 -2.53
71 (non-parametric M@ test) - 1 1 3 4 5 6
71 (parametric M@ test) - 1 2 3 4 5 6
Transformed

r=0 r=1 r=2 r=3 r=4 r=35 r=6
Ly -3.56  -3.79 -3.75 -3.76 -3.88 -4.08 -3.62
71 (non-parametric M@ test) - 1 2 3 4 5 6
71 (parametric M@ test) - 1 2 3 4 5 6

Notes: Transformed means that the y;, variables are divided by their standard deviation

32



Testing for Panel Cointegration using Common Correlated
Effects Estimators®

Supporting information

Anindya Banerjee
Department of Economics
University of Birmingham

Edghaston, Birmingham, B15 2TT, UK
E-mail: a.banerjee@bham.ac.uk

Josep Lluis Carrion-i-Silvestre
AQR-IREA Research group
Department of Econometrics, Statistics and Spanish Economy
University of Barcelona
Av. Diagona, 690
08034, Barcelona
E-mail: carrion@ub.edu

February 17, 2017

*Carrion-i-Silvestre acknowledges the financial support from Spanish Ministerio de Ciencia y Tecnologia under
grant EC02014-58991-C3-1-R. We thank Rob Taylor and two referees, George Kapetanios, Hashem Pesaran and
Jean-Pierre Urbain, and the participants at the 17th Panel Data Conference in Montreal, the Conference in
Honor of H. M. Pesaran in Cambridge and the XIV Encuentro de Economia Aplicada in Huelva for their helpful
comments. Responsibility for any remaining errors lies with us.



A Supporting information

/
Lemma 1 Define the vector of stochastic processes V;; = (eg,t,vé) that satisfies the panel
functional central limit theorem (CLT):

[Tr]
T2 Z Vig = Ci (L) Wi(r) as T — oo for all i,
t=1

where C; (1) is a (L + k+ ) x (1 + k + r))-matriz of conditional long-run standard deviations.
Proof: see Lemma 3 in Phillips and Moon (1999).

Lemma 2 Define the (1 + k + r)-vector W; (r) of standard Brownian motions. The expected
value of the cross-product matriz for the demeaned — W} (r) = W; (r) — fol Wi (s)ds — and de-
trended — W (r) = W; (r) — (4 — 6r) fo s)ds—(—6 + 12r) fol sWi (s) ds — vectors of Brown-
tan motions is given by:

a) Demeaned Brownian motions:

or —r?2 254 s2 1

EW*(r)yW*(s))=(rAs)— SR —|—§.
b) Detrended Brownian motions:
E(W*(r)W*(s)) = (rAs)+2rds—1r3—3r2s 4 2r2 + 2rs® — 3rs?
L6y, 12
—r$——r—35 §°— —s+ —.
) 10 10 15

Proof. Constant term. Define a vector of demeaned Brownian motions W (r) = W; (r) —
fo s) ds for which we want to compute E (W (r) W} (s)). Since the Brownian motions are
1ndependent across ¢, consider the cross-product for one element of the vector, and remove the

subscript to simplify notation:

E(W* (r)W* () = E[<W(r)—/1W(u)du> (W(s)—/lW(u)du>]
W () W /W ) du— W (s)/OlW(u)du—l—(/;W(u)du)z]

— E[Al— A2 — A3+ A4].

= F

The expected value of Al is:

E(Al)=E(W (r)W(s)) =(rAs).



For the second element we have:

B(A2) = E[W(r)/olW(u)du}

- /OTE(W(T)W(U))dqu E(W (r)W (u)) du

(/Orudu—i—/rlrdu) - <2+7«(1—7«)>.

The computation of the expected value for the third element is similar:

B(A3) = E[W(s)/olvv(u)du}

s 1
_ /0 EW (s)W @) dut | EW ()W (u))du
52

_ (/Osudu—i—/slsdu) _ (2+s(1—s)>.

Finally, for the fourth element:

</01W(u)du>2]

= E[/Ol/(]IW(u)W(v)dudv} :2/01/OUE(W(u)W(U))dudv

1 u 1
= 2/ / vdudv = —.
o Jo 3

Taken all these elements together, we obtain:

E(A4) = E

or —r2 25+ 2
— +

E(W* (r)W* () = (r As) — : é

Time trend case. Define a vector of detrended Brownian motions W;* (r) = W; (r) — (4 — 6r)
fol W; (s)ds— (=6 + 12r) fol sW; (s) ds for which we want to compute E (W} (r) W' (s)). Since
the Brownian motions are independent across i, consider the cross-product for one element of

the vector, and remove the subscript to simplify notation:
1 1
EW*(ryW*(s)) = FE {(W (r)— (4 —6r) / W (u)du — (—6 + 127‘)/ uW (u) du)
0 0

1 1
(W(s)—(4— 63)/0 W (u)du— (=6 + 125)/0 uW (u) du)]



so that

E(W* () W*(s)) = E[W(r) (4— 65) W /W ) du — 6+125)/01uW(u)du

4—6r)W /OW u)du + (4 — 6r) (4 — 65s) </0W )du)2

+(4 - 67")(—6—|—123)/01W(u)du/01uW(u)du

1

—(
(
(=64 127) W (s )/ W () du
(—

0

1
+(—6+12r) (4 — 68/W du/ uW (u) du
0

2

+ (=6 +12r) (— 6+12)(/01 uW (u )du)

— E[Bl—B2— B3— B4+ B5+ B6 — BT+ B8+ BY].

Let us focus on the expected value of each of these nine elements. For the first element we have:
EBL)=EW(r)Wi(s)=(rAs).
The second element:
E(B2) = [ (4—6s)W / W (u du}
1
— (4-6s) UE du+/ E(W(T)W(u))du}

— (4- 6s)</0 udu—i—/rlrdu) (4- 63)<T22+7"(1—7")>-

The third element:

E(B3) — E[(—6+123)W(7~) /0 1uW(u)du}

1

_ (—6+125) {/TuE(W(r)W(u))du—i—/r uE(W(r)W(u))du}

0

= (—6+125) <§+T<;_j>>

The fourth element — note that is similar to B2:

E(B4) = E[4 6r) W /W du]

= (4- 6r)[/ (s)W (u du+/E ]
= (4—6r) (/ udu—i—/lsdu) (4— 6r< 3(1—s)>.



The fifth element:

E(B5) = E

(4= 6r) (4—65) [2 (/O /0 E(W(a)W(v))dudvﬂ
() ) )] =

The sixth element:

1

w
= (4—-6r)(—6+12s5)E [/01 /01 oW (u) W (v) dudv]
u 1
vE (W (u) W (v)) —|—/u vE (W (u) W (v))) dvdu}

/Ou o2 +/u uv) dvdu] = (4 6r) (<64 12s).

Il

—

o

|

[=2)

3

S~—

0N

[=>)

+

[—

)

S~—
| u— |
c\
iy
7 N N
o\..

&

[aery —~

The seventh element — similar to B3:

E(BT) = E{(—6+12r)W(s)/01uW(u)du]
— (=64 120) U uE(W(s)W(u))du—i—/: uE(W(s)W(u))du]

0
3

— (=6+12r) <83+5<;—822)>

The eight element — similar to B6:

E(BS) = E{(4—63)(—6+12r)/01W(u)du/01uW(u)du]
5

= 5 (4—6) (=6 +12r).



Finally, the ninth element:

E(BY) — E|(=6+12r)( 6+123< 1uW )2]
01 2
= (=6+12r)(—6+12s)FE <OuW )]
_ (—6+12r)(—6+123)E[/0 /Olu )dudv]
(<64 12r) (=6 + 125) [2 01 OUWE (W (u ())dudv}

2
= (—=6+12r)(—6+ 12s) [2/ / uv2dudv] =1 (=64 12r) (—6 + 12s).

o Jo
Taking all these elements together, we obtain:

r? r3 1 72
EW*(r)yW*(s)) = (rAs)—(4—6s) <2+r(1 —r)) — (=6 +12s) <3 +r (2 — 2))

52 1
—(4—6r) E—i—s(l—s) +§(4—67’)(4—63)

5
24 (4—6r)(—6+ 12s)

ornn (2o(3-2))

+ L (4—6s)(—6+ 12r)

24
2
15 (=6 + 12r) (—6 + 12s)
= (rAs)+2r3s — 13 —3r?s 4+ 2r? 4 2rs® — 3rs?
6 11 4 ., 11 2
D o 2 e 2
+5rs 1Or §” 4 2s 1OS+15

A.1 Proof of Theorem 1
A.1.1 No deterministic component

In this section we analyze the model specification that does not include any deterministic com-
ponent, i.e., D;y = 0 Vi in (1). For ease of exposition, we start considering that all common
factors in the model are I(1), but the derivations also apply if there is a mixture of I(0) and
I(1) common factors, or all common factors are I(0) — see below.

Let M;(r) = (My, (r), My, (r)",Mp (r)") = (My, (r),Mp(r)") = C; (1) W; (r), where
M; (r) is a randomly scaled Brownian motion with a conditional covariance matrix C; (1) C; (1)’

that has a well defined expectation provided that HEC (1) C; (1) 'H < oo as shown in Lemma
1(d) in Phillips and Moon (1999). Let us define Z;, = (U'

it

) by the continuous mapping



theorem we have that as T" — oo for a fixed N

222“2”;»0 /W YW/ (1) dr C; ( /M ) M (r) dr.

. . . e _
Further, we define the long-run conditional covariance matrix of Z; ; = (UZ " ) = Uy t> Usy 1 15
"/
) Uwi,kﬂfv Ft) as

Qw,uv, Qu,v., Qu,F
Q = | Q,u, QW,u., QW.r |=

Qpu,,  Qru,, QFF

with C; (1) = (Cy, (1), Cy, (1), Cr (1)) = (Cy, (1)',Cr (1)') and the long-run average covari-

ance matrix of Z;; as:

Qu,u, Qwu, Q,r
Q=1 Q,u, Qu. Qur

Qru, Qru, QrFF

Qu  Qur

Qru QFF = EGMaa)).

Let K be the invariant o-field generated by F, so that U;; are independent across ¢ conditional

on K. Then, we define the expected value of the cross product matrix as

5( M) ML () o) - p(awe([ W ) W ) ar) i1y

1
= 57(6%(1)21u+k+ﬂC2(1Y>
- 1o
2

Note that averaging across ¢ the cross-products involving U;; we have, conditional on K,

N T
N—IZT—2ZUMU’t:>le(/ My, (r) M}, (r) dr >
=1 t=1

Using Lemma 4 in Phillips and Moon (1999) and Theorem 9 in Kao, Trapani and Urga (2011),
we have that F ’ fol My, (r) My, (r)dr

gives

2
KH < 00, so that as N — oo the law of strong numbers

N1 i < /O 1 My, (r) M, (r)dr

=1

K> w3 g ( /0 Mo, () Ml (r) dr

1



We have defined the pooled estimator as

N - N
= [iS ] LSren)
where, in this case, 7 = Mpx;. Note that

T %aYs; = T *zjMpx; =T U, MyU,,
= T2, U, — T72ULF (T2F'F) " T2F'U,,

so that, in the limit,
1
r2aar =, ) ([ W, W, () ar| K ) Cu, (1)
] 0 (3 ZTg (3

(e (] W, (1) W () dr K)Cr )

(crt (/0 Wi (r) Wi () dr| K )cp<1>’)_1

<C’F (1) ( /0 Wi (r) W, (1) dr K) Cu. (1)’)} .

Using the fact that E (Wy, (r) W, (s)) = (r As) 14, with (rAs) = min{r, s}, we have,

conditional on K,
K) Cu,, (1)’}

5[ [ [ o Wi, 00000 WL, 9O, 1) dras| .

E(T %) S E [CUIZ- (1) ( /0 1 Wor, () W, (1) dr

with 7 (r,s) = Wi (r) Cp (1) ( (fo W (r) Wh (r )dr) Cr (1)’)_ICF(1)WF (s). Note

that
1 1
K) Cu,, (1)/] = (/ Td?“) Qu,u, = §QUIUZ;
0
and

E [/01 /01 Cu,, (1) Wy, (r) h(r,s) Wy, (s)Cu,, (1)’drds‘K] = </01 /01 (r As)h(r,s) dsdr> Qu.v,,

so that, conditional on K, we have

as 1 1 1
N1 ZT*%;&/@* = (2 — / / (r As)h(r,s) dsdr) Qu,u,-
o Jo

=1

Blow, o ([ wi, i, 0)a




Similarly, for the numerator of the pooled estimator

T %x'y; = T *xjMpy; = T U, MpU,
— — — -1 e
= T7?U, U, —T U, F(T°F'F) T *FU,,

so that, conditional on K,

IZT 2oy 1% (—/ / (rns) TS)deT>QUzUy'

Finally,

-1

A [(1_/1 /1 (r/\s)h(r,s)dsdr> QUIUI]
[(-/ / (r A s)h(r, s)dsdr> QUIUy]

= QUxU,cQUzUy

Note that the conditioning variables that appear in the numerator and denominator of the
estimator cancel out so that the conditional limit of the estimator is also the unconditional
limit.

So far, the proof has used sequential limits to show the consistency of the pooled estimator.
However and following Phillips and Moon (1999), the same result is achieved if we base our
analysis on joint limit theory. By the Beveridge-Nelson (BN) decomposition:

Zis 2 Cy (1) Py + Vig — Viu + Zio,

)

!/
with P;; = Z[TT] Sit, Sit = <w£, E;t) . Then, define

N T N
NN TN 2302, 5 NTYY Qi + Rig).
i=1 t=1 =1
where
Qir = 220 ) Pii P, Ci (1)

Ry = Rlit+R1it+R2it

/
Ry = T 2201 1t( zo—Vi,t-l-Zi,o)

T
~ ~ !
Roiy = T2 Z ( Vit + Z; 0) (Vz‘,o —Vig + Zi,()) .



We need to show that ||Q;¢|| is uniformly integrable in T', provided that then

as (T, N) — oo jointly. By ||[AB|| < ||A||||B]| and the triangle inequality

T
1Qiell <G WIPT2 ) I Paell®
t=1

Note that as T — oo .
1
T3 Py = / |Widll? dr.
=1 0

and that

T T 1
_ _ 1
E (T QZHPz‘,tHz) = tr <T QZE(B,t,PZ,t)> —F </ ||W¢,t\|2d"°) = St Tk -
t=1 t=1 0

Then, it follows from Billingsley (1968) that T-2 3"/_, || P;+||* is uniformly integrable in T’ Since
E||C; (1)||* < oo, we can conclude that ||C; (1)||* T2 Zle || P; 4||? is uniformly integrable in T
and, hence, ||Q; ;| is uniformly integrable in 7. Consequently, N1 Zfil Qi 2 %Q as stated
above.

So far, we have assumed that all » common factors are I(1), but it would be the case that
there is a subset of 79 I(0) common factors and a subset of 71 I(1) common factors, r = 79+ ;.
Let us define F; = (FY ,, F67t)/, with Fy; the (r1 x 1)-vector of I(1) common factors and Fp; the

(ro x 1)-vector of I1(0) common factors. In this case,

T %z} = T 2U, MpU,,
= T2 U, — T U, FV (VF'FY) " OFU,,
with U = diag (¥1, ¥g) a rescaling diagonal matrix defined by the (r; x 1)-vector ¥q = (T,

.., T7Y) and by the (rg x 1)-vector Wo = (T"1/2,..., T71/2), so that VF'F¥ = O, (1). Using

these elements, we have

N

we /1 11
N1 ZT*%C;@;‘ = (2 - / / (rAs)h(r,s) dsdr> Qu,u, -
i=1 0 Jo

The same applies for N2 SN 7—=2#y* &5 <% — fol fol (r A s)h(r,s) dsdr) Qu,u,, so that 3 5
Q(_flUmQUzUy = [ as above. Consequently, having a combination of I(0) and I(1) common factors
does not alter the result about the consistency of the pooled estimator.

A.1.2 Constant term

In this section we consider the deterministic specification given by Model 1 through the definition

of Dy = p; = (Ki0r Mis-- - ,,ui’k)l. Using the projection matrix Mp = I—D (D'D)™" D', where

10



- N - -

D = denotes a vector of ones, we define Z; ; = (UZ-’J, Ft’) , where U; = MpU; and F = MpF
are the OLS detrended variables. By the continuous mapping theorem we have that as T' — oo
for a fixed N

222”2”:0 /W* YW (r) dr C; ( /M* ) MG (r) dr,

t=1

where W* (r) = fo s)ds and M} (r) = M; (r) —fol M; (s) ds are demeaned Brownian

motion vectors. As above,

5 M () M ) w) = s(aoe(f W Wy () ) ;1Y)

1
= E <Oi (1) gf(1+k+r)0i (1)/>
1
= =Q.
6

The developments carried out in the previous section follow here replacing W; (r) by W;* ().
Note that now

(2 7

T2z = T 2%
T

so that, in the limit,

T 22z = Cu,, ( (/ W, (r U (r)dr K> Cu,, (1)

~[(ew / We,, () Wi (r)ar| K) r (1)

(crn( [ W () W (1) dr K)Cr <1>')1
(/ Wi () Wi, () dr| K ) Cu., 1Y ).

From Lemma 2, E(W(j (r) Wi (s s) = ((rAs) — (2r—r%) /2 — (25 — s%) /2 4+ 1/3) 14y, so
that, conditional on K, we obtain N=1 SN 7255 @5 (1 /6 — fol fol((r/\s) (2r —r?) /2
— (25— %) /2 + 1/3)h(r, s) dsdr)Qu,u, and N~ 1Zi:1T Zprtyr Y3 (1/6 — fol fo ((ras) —
(2r —1?) /2—(2s — 5%) /2+1/3)h (r, s) dsdr)Qu,v, , where now h (r, s) W (r)Cp (1) (Cr (1)
fo Wi (r) Wy (r)dr)Cr (1)) 1Cr (1) W} () with Wi (1) = Wp (r fo W (s)ds. Therefore,

B 2 QUZUIQUwa = 3, as above. Following the steps given in the previous subsectlon, it can be

shown that the same result is obtained if we use joint limits, where the only difference is that
we use demeaned Brownian motions instead of standard Brownian motions — to be specific, we
need to consider that in this case N1 Zfi 1 Qi 2 %Q and the rest of the proof applies. As
above, note that the conditioning variables that appear in the numerator and denominator of

the estimator cancel out so that the conditional limit of the estimator is also the unconditional

11



limit.

A.1.3 Time trend

In this section we consider the deterministic specification given by Model 2, i.e., D;; = (1,1) [d; 0,
dids -ww 05k, with 0;; = (,u”,m’j),, j = 0,1,... k. Using the projection matrix Mp =
I —D(D'D)' D', where D = [1 7] with ¢ a vector of ones and 7 = (1,2,...,T). We define
Zut = (Uzt, Ft> , where U; = MpU; and F = MpF are the OLS detrended variables. By the

continuous mapping theorem we have that as T — oo for a fixed N

T
T2 ZiuZl, = Ci (1 / Wi (r) W (r)dr C; ( / M (r) M} (r) dr,
t=1
where W (r ) =W, (r)— (4 —6r) fo s)ds—(—6+12r) fol sW; (s)ds and M} (r) = M; (r) —
(4 —6r) fU s)ds —(—6+ 12r) fo sMZ (s) ds are detrended Brownian motion vectors. In this

case,

B < /0 M () M () dr) _ g (cl- (1) E ( /0 W W () dr) C; (1)’)
- E (Ci (1) T15f(1+k+r)0i (1)I>

1
= 1—59
From Lemma 2, F (Wﬁ (r )Wf}/ (s )) = ((rAs)+2r3s —r3 — 3r2s + 2r? + 2rs® — 3rs® + grs
— % — 83+ 282 — %S + &)I14x, so that, conditional on K, N~ 12 T2z ©5 (& —
fol fo ((r As)+2r3s—r3—3r2s+2r2 4+ 2rs3 —3rs® 4+ Srs— }ér—s +23 — s+ 2Z)h(r,s)dsdr)
Qu,u, and N~! Z?;T Zgxtyr ©% (£ — fol fol((r A s) +2r3s — 13 — 3r2s + 2r? + 2rs3 — 3rs?
+ Srs — r — 3+ 252 — 1ks + Z)h(r, s) dsdr)Qu,u,, with h(r, s) = Wi (r)Cr (1) (Cr (1)
(fo W (r) W (r )dr) Cr (1))71Cp (1) W (s) with W (r) = We (r) — (4 — 6r) Ji W (s) ds
— (=6 + 12r) fo sWr (s)ds. Consequently, B L Ql}iUmQUzUy = . Following the steps given
above, it can be shown that the same result is obtained if we use joint limits, where the only
difference is that we use detrended Brownian motions instead of standard Brownian motions — to
be specific, in this case N1 Zf\il Qi 2 1—159 and the rest of the proof applies. As above, note
that the conditioning variables that appear in the numerator and denominator of the estimator

cancel out so that the conditional limit of the estimator is also the unconditional limit.

A.2 Proof of Theorem 2

In order to prove Theorem 2, we begin by defining the projection matrix M = I—H (H'H) ! H,
where H = z for Model 0, H = [¢ 2] for Model 1 and H = [ 7 2] for Model 2, with zZ = [Z ¢] being
the (T x (k 4 1)) matrix of cross-section averages. Further, let us define My =1 -G (ele) el
and M, =T -Q(Q'Q)" Q.

In the case of Model 0 G = F denotes the (7' x 7) matrix of unobserved factors, Q = GP

12



with P = 7, and A7 is the Moore-Penrose inverse of matrix A. For Model 1, G = [¢ F], and

p:[;;].

Finally, for Model 2 we have G = [v 7 F], and

_ I, ¢
P:[ 2 5].
0 =«

The pooled estimator is computed as:

) L -1 L
P airt| e
L =1 =1

1 & N R )
= NZT_2 (gj;Ml‘Z)] NZT_2 (gj;Myl)
i=1 i—1

In order to show consistency of the pooled estimator, we need to establish that the quadratic
form involving the projection matrix using the cross-section averages is asymptotically equiva-

lent to that defined by using the true factors. That is, we need to analyze

T2 ||Y{ MY; — Y] M,Y;

)

where

Y;:FW;—I—UZ‘

denotes the model defined in (1) in matrix notation, assuming no deterministic terms to simplify

the notation.
Note that
T—QHKIME_)/;/M(]}/;H S T—2 H(Y;/g_}/ZQ) (H—lH)*l Hln
viQ (') - (QQ) ) i,

+172||v/Q (Q'Q) ! (i - @) |
= I+I1I1+11I

T2 ‘

Consider part I and recall that H = Q + U.
We then have

— — ., — —1 7
. _ 1 - YU H'H\ " H'Y;
2| (v/H - !Q) (H'H) T Y, S\ = H( =)
where
= N
iU\ _ iZY{UJ‘ _o (2L
T2 N = T2 PAVN)’

13



given that T72Y/U; = O, (1) and N~Y23"¥ | T=2Y/U; = O, (1). Assuming that the rank
condition rank (7) = r < (14 k) for all N as T, N — oo holds, and provided that T—2H'H =
O, (1) and T2H'Y; = O, (1), we have that I = O, (N~%/2).

For part I1 we have

where T72Y/Q = O, (1) and T72Q'Q = O, (1). Note that

0 QU U'Q
T2 * T2 T2

w ()

e o (%

9

H <Q’Q>‘1 H'Y;
T2 T2

oo 1 L& v, 1
2 || = 7222 2 _OP< ﬁ)?
H T N3 j=1 T N

given that T72U/U; = O, (1) and N~V2 30 T720/U; = O, (1). Similarly, |T72Q'U| =
O, (N*1/2), so that 11 = O, (N*1/2).

Part I11 is given by
Using the elements above, it may be easily shown that 111 = O, (N_I/Q).
Consequently, when the rank condition rank (7) = r < (1 + k) holds for all N as T, N — oo,

v/
T2

/ / -1
111 < Y/Q (Q Q)

T2 \ T?

My = My, so that, conditional on K, we have

v <o, ().

uniformly over i. Therefore, conditional on K, we have

1 & 1\ 1 & 1
B=|=> T2 (xj My, — = Y T (2 Mgy, —
B Ni:1 (xz gx)_‘_Op (\/N)] [N — (wl Qy)+OP<\/N>]’
so that as T, N — o0
BEB= Q(_]iUmQUzUya

a result that was already established in Theorem 1 and confirmed in the Monte Carlo experiment

that has been conducted above.

14



¥10°0 000'T  000°T | 6100 000'T  000°T | TEOO 000°'T  000°T | 8700 000'T  000°T 0S¢ 60 60
G200 000'T  000°T | G€0°0 100°T  TOO'T | LS00 000°'T  000°T | 4800 000'T 000°T 00T 60 60
¥€0°0 000'T  000°T | 8700 6660  000°T | 9.0°0 6660 8660 | LIT0 966'0 9660 09 60 60
710°0 000°'T 000 T | 6100 000°T  000°T | ¢€0°0 000°T  000°T | 8700 000°T  000°T 0S¢ G6°0 670
G200 000°T  000°T | 9€0°0 100°T  T00°T | LS0°0 000°'T  000°T | 4800 000'T  000°T 00T G960 60
€€0°0 000°'T 000 T | 8700 000°T  000°T | 9200 6660 8660 | 8IT0 9660 9660 09 G960 60
¥10°0 000'T  000°T | 0200 000°T  000°T | ¢€0°0 000'T  000°T | 6700 000'T  000°T 0S¢ 660 60
Gco0 000°T  000°T | 9€0°0 T00°'T  TOO'T | LS0°0 000°T  000°T | 280°0 000°T  TOO'T 00T 660 60
€€0°0 000'T  000°T | 8700 000°T  000°T | 9200 6660  866°0 | LTIT0 966'0 9660 09 660 60
71070 000°'T  000°T | 0200 000°T  000°T | 2€0°0 000°T  000°T | 670°0 666'0 000°T 0S¢ ! 60
G200 000°T  000°T | 9€0°0 100°T  TOO'T | LS00 000°'T  000°T | 4800 100°T  T100°'T 00T T 60
€€0°0 000'T  000°T | 8700 000'T  000°T | 9,00 8660 8660 | LIT0 966'0  966°0 09 1 6°0
€700 T00°T  T00°'T | 090°0 000°T 6660 | 9600 000°T 6660 | L¥VI°0 €00°T T00OT 0S¢ 670 T
¢v0°0 6660  000°T | 090°0 €00'T ¢00°T | G600 100°T  000°T | ¥¥1°0 666'0 000T 00T 60 T
1700 000°T  000°T | 0900 6660 6660 | ¥60°0 6660 6660 | SVI°0 9660 L1660 09 60 T
€70°0 100°T  TOO'T | 090°0 000'T 6660 | S60°0 T00°T 6660 | S¥T°0 €00'T 000T 09¢ G960 T
17070 6660  000°T | 6900 €00'T ¢00°T | ¥60°0 100°T  000°T | €VI°0 8660  000°T 00T G960 I
170°0 000°T  000°T | 090°0 000°T  000°T | €600 666'0 6660 | SVI°0 g66'0 9660 09 G60 T
¢v0°0 100°T  T00°T | 6S0°0 000'T 6660 | €600 000'T 66670 | VIO 000'T 000T 09 660 T
0¥0°0 666°0  000°T | 65900 T100°'T  200'T | ¢60°0 100°'T  000°T | OPT°0 2660 000'T 00T 660 T
170°0 000'T  000°T | 6900 000'T  000°T | ¢60°0 000'T 66670 | ¥¥I°0 9660 9660 09 660 T
¢vo0 T00°T  T00°'T | 6S0°0 6660 6660 | ¢60°0 T100°'T 6660 | 9710 100°T  T00'T 0% T T
070°0 6660  000°T | 6900 100°T  <00°T | ¢60°0 000°'T  000°T | OFI°O 866'0  000°T 00T ! !
170°0 000°'T  000°T | 6900 000°T  000°T | 2600 6660 6660 | 710 9660 9660 09 ! !
HSINY  UBIPS]N  UBSIN | HSINY  UBIPOIN  UBSIN | HSINY URIPOIN  UBSIN | HSINY URIPO]N  UBSIN [ d ‘o
00T =N 0§ =N 0c=N 0T =N

H00d ¢f 9119 Jo 10110 dIeNbS R J00I PUR URIPIW ‘UWRDIN :T'V 9[qR],

15



Table A.2: Empirical size and power of the panel cointegration tests with normalized spatial

dependence, N = 10

SAR SMA
¥ =04 ¥ =028 ¥ =04 ¥ =0.8
®; T 4. CADFp | Z; CADFp | Z. CADFp | Z; CADFp
1 50 | 0.131 0.064 0.135 0.126 0.134 0.062 0.153 0.096
1 100 | 0.142 0.069 0.140 0.123 0.140 0.061 0.161 0.090
1 250 | 0.128 0.060 0.131 0.126 0.130 0.061 0.170 0.095
0.99 50 | 0.136 0.066 0.139 0.126 0.132 0.062 0.155 0.098
0.99 100 | 0.152 0.074 0.155 0.137 0.158 0.063 0.180 0.097
0.99 250 | 0.217  0.096 0.211 0.173 0.225 0.099 0.254 0.136
0.95 50 | 0.178 0.101 0.173 0.168 0.171 0.094 0.197  0.134
0.95 100 | 0.384 0.220 0.360 0.286 0.372 0.203 0.376 0.246
0.95 250 | 0.956 0.923 0.931 0.845 0.953 0.913 0.894 0.880
0.9 50 | 0.296 0.203 0.272 0.281 0.291 0.207 0.298 0.237
0.9 100 | 0.788 0.728 0.725 0.673 0.791 0.718 0.720 0.685
0.9 250 | 1.000 1.000 0.999 1.000 1.000 1.000 0.997 1.000
SEC1 SEC2
¥ =04 ¥ =028 ¥ =04 ¥ =0.8
?; T Z4. CADFp | Z, CADFp | Z. CADFp | Z; CADFp
1 50 | 0.091 0.050 0.095 0.050 0.097  0.049 0.115 0.052
1 100 | 0.061 0.050 0.060 0.048 0.061 0.047 0.066 0.047
1 250 | 0.054 0.047 0.054 0.046 0.052 0.044 0.056 0.049
0.99 50 | 0.092 0.050 0.096 0.050 0.102 0.052 0.118 0.052
0.99 100 | 0.073 0.053 0.076 0.053 0.075 0.051 0.080 0.052
0.99 250 | 0.159 0.077 0.155 0.077 0.152 0.081 0.154 0.078
0.95 50 | 0.152 0.080 0.153 0.079 0.158 0.078 0.163 0.078
0.95 100 | 0.450 0.177 0.455 0.178 0.458 0.176 0.452 0.177
0.95 250 | 0.997  0.938 0.997 0941 0.998 0.942 0.998 0.940
0.9 50 | 0.337 0.176 0.331 0.177 0.335 0.182 0.308 0.181
0.9 100 | 0.972 0.734 0.972 0.736 0.972 0.738 0.959 0.742
0.9 250 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
SEC3
¥ =04 ¥ =0.8
?; T Z. CADFp | Z; CADFp
1 50 | 0.138 0.056 0.128 0.070
1 100 | 0.123 0.048 0.135 0.059
1 250 | 0.095 0.052 0.141 0.064
0.99 50 | 0.143 0.057 0.134 0.070
0.99 100 | 0.130 0.052 0.157  0.063
0.99 250 | 0.188 0.082 0.236 0.097
0.95 50 | 0.174 0.083 0.180 0.096
0.95 100 | 0.380 0.180 0.391 0.205
0.95 250 | 0.973 0.934 0.961 0.920
0.9 50 | 0.282 0.192 0.308 0.199
0.9 100 | 0.815 0.739 0.820 0.721
0.9 250 | 1.000 1.000 1.000 1.000
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Table A.3: Empirical size and power of the panel cointegration tests with normalized spatial

dependence, N = 50

SAR SMA
¥ =04 ¥ =028 ¥ =04 ¥ =0.8
®; T 4. CADFp | Z; CADFp | Z. CADFp | Z; CADFp
1 50 | 0.073 0.064 0.131 0.126 0.064 0.061 0.083 0.075
1 100 | 0.083 0.069 0.156 0.139 0.076 0.064 0.105 0.084
1 250 | 0.060 0.062 0.138 0.134 0.065 0.065 0.091 0.085
0.99 50 | 0.083 0.070 0.138 0.128 0.078 0.062 0.093 0.080
0.99 100 | 0.137  0.078 0.195 0.157 0.120 0.077 0.162 0.100
0.99 250 | 0.404 0.153 0.391 0.235 0.423 0.141 0.428 0.169
0.95 50 | 0.346 0.133 0.266 0.196 0.344 0.120 0.359 0.145
0.95 100 | 0.952 0.496 0.795 0.501 0.961 0.488 0.938 0.488
0.95 250 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.9 50 | 0.936 0.432 0.630 0.451 0.942 0.417 0.918 0.427
0.9 100 | 1.000 1.000 0.999 0.982 1.000 1.000 1.000 0.998
0.9 250 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
SEC1 SEC2
¥ =04 ¥ =028 ¥ =04 ¥ =0.8
?; T Z4. CADFp | Z, CADFp | Z. CADFp | Z; CADFp
1 50 | 0.054 0.048 0.053 0.046 0.051 0.044 0.054 0.048
1 100 | 0.061 0.054 0.059 0.053 0.061 0.056 0.063 0.053
1 250 | 0.049 0.057 0.048 0.056 0.047  0.057 0.048 0.052
0.99 50 | 0.060 0.049 0.057  0.049 0.057  0.047 0.062 0.052
0.99 100 | 0.104 0.064 0.104 0.065 0.101 0.066 0.111 0.064
0.99 250 | 0.398 0.137 0.399 0.135 0.397  0.132 0.395 0.130
0.95 50 | 0.334 0.107 0.333 0.108 0.338 0.105 0.335 0.105
0.95 100 | 0.974 0.493 0.973 0.493 0.974 0.493 0.969 0.490
0.95 250 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.9 50 | 0.960 0.433 0.960 0.429 0.959 0.429 0.955 0.433
0.9 100 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.9 250 | 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
SEC3
¥ =04 ¥ =0.8
?; T Z. CADFp | Z; CADFp
1 50 | 0.099 0.054 0.071 0.061
1 100 | 0.062 0.048 0.079 0.052
1 250 | 0.053 0.055 0.059 0.066
0.99 50 | 0.071 0.055 0.081 0.063
0.99 100 | 0.111 0.061 0.122 0.064
0.99 250 | 0.397  0.133 0.399 0.144
0.95 50 | 0.352 0.114 0.349 0.127
0.95 100 | 0.968 0.488 0.959 0.482
0.95 250 | 1.000 1.000 1.000 1.000
0.9 50 | 0957 0.432 0.938 0.428
0.9 100 | 1.000 0.999 1.000 1.000
0.9 250 | 1.000 1.000 1.000 1.000
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