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Abstract

Spurious regression analysis in panel data when the time series are cross-section dependent

is analyzed in the paper. We show that consistent estimation of the long-run average parameter

is possible once we control for cross-section dependence using cross-section averages in the spirit

of the common correlated e¤ects approach in Pesaran (2006). This result is used to design a

panel cointegration test statistic accounting for cross-section dependence. The performance of

the proposal is investigated in comparison with factor-based methods to control for cross-section

dependence when strong, semi-weak and weak cross-section dependence may be present.

Keywords: panel cointegration, cross-section dependence, common factors, spatial econo-
metrics

JEL codes: C12, C22



1 Introduction

During the last twenty years the analysis of macroeconomic panels has experienced a vast and

rapid development. This has been primarily due to two reasons: �rst, the easy availability of

statistical information concerning panels of data where the time dimension is augmented by

the use of cross-section variation (for example, across countries, regions or industrial sectors),

and, second, the belief that combining these two sources of information would lead to better

statistical inference.

The recent literature has seen many e¤orts, in particular to design procedures aimed at

estimating long-run relationships among economic variables using macro-panel data techniques.

Testing for cointegration in panel data has been a particular area of focus, since it constitutes

the analysis that needs to be conducted prior to estimating long-run relationships. The early

papers in this area such as the ones in Kao (1999) and Pedroni (2000) assumed cross-section

independence among the units of the panel data, a situation that is rarely found in empirical

economic analyses. Cross-section dependence appears naturally when studying economic data

due to, for instance, market integration processes, globalization of economic activity, o¤shoring

processes or because of the presence of common shocks like oil price shocks. More recent papers

have therefore devoted considerable attention to devising procedures relaxing the assumption

of cross-section independence �see, for example, Breitung and Pesaran (2008) for an overview.

There may be di¤erent sources of cross-section dependence, exerting di¤erent degrees of

dependence intensity. On the one hand, we may have pervasive cross-section dependence due

to the presence of a dominant unit in the panel data setup, a situation that can be interpreted

as if there were common factors a¤ecting all the time series in the panel. On the other hand,

cross-section dependence may be important only among some neighbours. The notion of �neigh-

bour�does not of course necessarily need to be de�ned in terms of physical contiguity, such as

neighbouring regions or cities, but may also be de�ned inter alia in terms of economic distance,

usually, trade partnerships. This characterization of cross-section dependence has given rise to

the notions of weak and strong dependence as discussed prominently by Chudik, Pesaran and

Tosetti (2011).

In this paper we investigate the performance of panel cointegration tests in the presence of

weak and/or strong cross-section dependence in the sense to be de�ned below. In particular,

our contribution is to develop the theory of a panel cointegration test based on the common

correlated e¤ects (CCE) estimation procedure proposed by Pesaran (2006). Holly, Pesaran

and Yamagata (2010) use a CCE-based procedure in their investigation without developing a

formal test for cointegration. Our proposal �lls this gap. We show, drawing upon arguments

developed by Phillips and Moon (1999) and Kao, Trapani and Urga (2011) that in a panel

spurious regression, the pooled CCE estimator provides a consistent estimate of the long-run

average coe¢ cient. The Kao et al. (2011) paper is particularly useful for the theoretical

derivations since it allows us to work with the invariant �-�eld generated by the factors which

drive the cross-section dependence. Once consistency is proved, this result can then be used as

the basis for a panel cointegration test.

Two other papers are worth mentioning to put our work in context. First, Urbain and West-

erlund (2011) look at the asymptotics of least squares regressions in spurious and cointegrated
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panels with cross-section dependence driven by common and idiosyncratic stochastic trends or

factors which may be integrated or stationary. Second, Gengenbach, Urbain and Westerlund

(2016) study a panel cointegration test based on the error correction model approach where the

cross-section dependence is modelled via the use of cross-section averages. While the techniques

used are similar, neither paper deals with the estimation of a long-run average coe¢ cient à la

Phillips and Moon (1999) in the construction of a cointegration test based on this estimator.

An important feature of our test is that it can be linked directly to the Pesaran (2007) and

Pesaran, Smith and Yamagata (2013) panel data unit root tests with which it is asymptotically

equivalent depending upon the number of integrated common factors.

The procedures that are proposed in the paper are investigated through Monte Carlo sim-

ulations to evaluate the potential bene�ts of using the new proposal compared to alternative

approaches existing in the literature. In this respect we compare the size and power properties

of the pooled CCE-based test with the factor-based cointegration testing procedure developed

in Banerjee and Carrion-i-Silvestre (2015). Factor-based approaches to model dependence are

typically thought of as being an alternative to the use of CCE estimators. The advantages of the

latter method include the ability to allow for a more detailed look at the nature of the depen-

dence, notably their decomposition into I(1) and I(0) components. This allows for cointegration

not only among the variables themselves but also between the variables and the non-stationary

factors. The disadvantages include the potential inconsistency of the factor estimates and their

loadings when the dependence is weak, and of the di¢ culty of estimating both the number

of factors and the factors themselves especially when the cross-section dimension is relatively

small. The convenience of using CCE-based tests is also an advantage that needs to be taken

into account.

Having developed the theory, we explore these trade-o¤s through Monte Carlo simulations

in order to evaluate the potential bene�ts of using the newly proposed test is one of the main

purposes of our paper. The simulation experiments cover a wide spectrum of cross-section

dependence patterns. First, we consider strong, semi-strong and weak cross-section dependence

through a factor model speci�cation. Second, weak dependence is also analyzed using the typical

spatial econometrics con�gurations to control for the presence of cross-section dependence. It
is not our purpose here to o¤er a broad evaluation of the size and power properties of a range

of panel tests for cointegration. Rather this paper is intended to propose and evaluate our new

test and to compare its performance with a factor-based competitor.1

The application of the procedures proposed in this paper is illustrated using two di¤erent

empirical examples, emphasizing di¤erent forms of dependence. In both cases, we �nd that

cross-section dependence is present among the units of the panels. First, we focus on the

estimation of a model to explain the behaviour of house prices in 48 US states and the District

of Columbia, complementing the analysis carried out in Holly et al. (2010). Second, we proceed

to estimate a production function for a set of OECD developed countries which represents a

typical macro panel. Here the likely presence of an I(1) productivity trend puts it within the

framework of models with strong dependence among the units of the panel. Both these examples

1The only other paper we are aware of that makes this direct comparison is by Urbain and Westerlund (2015).
However, since their framework is entirely stationary, they do not deal with issues relating to cointegration,
focusing instead only on cross-section dependence.
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serve to illustrate and interpret further the results of the simulation analysis.

The paper is organized as follows. Section 2 describes the model upon which the panel

cointegration test statistic proposed in the paper is based. We derive consistency results for the

pooled CCE estimator under di¤erent speci�cations of the deterministic terms. Next, Section

3 de�nes the panel cointegration test statistic using the CCE estimator. The �nite sample

performance under di¤erent sources of cross-section dependence is investigated in Section 4.

Section 5 presents the results of two empirical applications. Finally, Section 6 concludes. All

the proofs are contained in the appendix at the end of the paper.

2 The model

Let Yi;t = (yi;t; x0i;t)
0 a (1 + k)-vector of I (1) stochastic processes with the following data gen-

erating process (DGP):

Yi;t = Di;t + �iFt + Ui;t (1)

(I � L)Ft = vt = C(L)wt (2)

(I � L)Ui;t = ei;t = Hi(L)"i;t; (3)

where Di;t denotes the deterministic part of the model that is given by either the absence

of deterministic elements Di;t = 0 8i (Model 0), a vector of constant terms, Di;t = �i =�
�i;0; �i;1; : : : ; �i;k

�0 (Model 1), or a vector linear time trends, Di;t = �i (1; t)
0, with �i =�

�0i;0; �
0
i;1; : : : ; �

0
i;k

�0, �i;j = ��i;j ; �i;j�0, j = 0; 1; : : : ; k, (Model 2). The Ft component denotes a
(r � 1)-vector of common factors and �i the ((k + 1)� r) matrix of factor loadings, and denote
by K an invariant �-�eld generated by Ft so that, conditionally on K, Ui;t =

�
Uyi;t; U

0
xi;t

�0
are independent across i. The disturbance terms vt and ei;t are assumed to be I(0) stationary

processes, i = 1; : : : ; N , t = 1; : : : ; T , j = 1; : : : ; r.

Our analysis is based on the same set of assumptions as in Bai and Ng (2004) and Banerjee

and Carrion-i-Silvestre (2015). Let M <1 be a generic positive number, not depending on T

and N . Further, the Euclidean norm of a generic matrix A is de�ned as kAk = trace (A0A)1=2.

Then:

Assumption A: (i) for non-random �i, k�ik � M ; for random �i, E k�ik4 � M , (ii)
1
N

PN
i=1 �

0
i�i

p! ��, a (r � r) positive de�nite matrix.
Assumption B: (i) vt = C (L)wt, wt � iid (0;�w), E kwtk4 � M , and (ii) V ar (�Ft) =P1
j=0Cj�wC

0
j > 0, (iii)

P1
j=0 j kCjk < M ; and (iv) C (1) has rank r1, 0 � r1 � r.

Assumption C: (i) for each i, ei;t = Hi (L) "i;t, "i;t � iid
�
0; �2";i

�
, E j"i;tj8 �M ,

P1
j=0 j jHi;j j <

M , !2i = Hi (1)
2 �2";i > 0; (ii) E ("i;t"j;t) = � i;j with

PN
i=1 j� i;j j �M for all j;

(iii) E
��� 1p

N

PN
i=1 ["i;s"i;t � E ("i;s"i;t)]

���4 �M , for every (t; s).

Assumption D: The errors "i;t, wt and the loadings �i are three mutually independent groups

across i , t and (1 + k) dimensions.

Assumption E: E kF0k �M , and for every i = 1; : : : ; N , E kUi;0k �M .

The model speci�cation considers the case where the stochastic regressors xi;t are assumed
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to be either cross-section independent �imposing all, but the �rst, rows of �i to be equal to zero

�or cross-section dependent with dependence driven by a set of observable common factors Ft.

Furthermore, it is possible to assume that the set of common factors a¤ecting the endogenous

variable yi;t is di¤erent from those a¤ecting the stochastic regressors xi;t, a situation that is

covered if we de�ne �i to be a block-diagonal matrix.

Despite the presence of the operator (I �L) in equation (2), Ft does not have to be I(1). In
fact, Ft can be I(0), I(1), or a combination of both, depending on the rank of C(1). If C(1) = 0,

then Ft is I(0). If C(1) is of full rank, then each component of Ft is I(1). If C(1) 6= 0, but not
full rank, then some components of Ft are I(1) and some are I(0).

Note that although this framework is very �exible, it implies a change in the standard de�n-

ition of cointegration. The usual de�nition of cointegration among Yi;t = (yi;t; x0i;t)
0 requires Ft

to be I(0), so that the observable variables capture all the common stochastic trends. However,

allowing Ft to be I(1) is also relevant from an empirical point of view since Ft might be account-

ing for e¤ects that are not captured by Yi;t alone. In such a situation, cointegration among

the elements in Yi;t up to the inclusion of I(1) factors is both possible and desirable economi-

cally, which will imply that Hi(1) 6= 0 but is not full rank.2 This leads to a broader concept

of cointegration, where the observable variables in Yi;t alone do not generate a cointegrating

relationship. Instead, common factors are required to enter in the model in order to de�ne a

long-run relationship. In this regard, the framework is close to Bai, Kao and Ng (2009) where

cointegration is assumed allowing for the possibility of I(1) factors.

Panel spurious regression has been tackled in Phillips and Moon (1999). Contrary to what is

found at the unit level analysis �see Granger and Newbold (1974) and Phillips (1986) �pooled

estimation of the parameters a¤ecting the stochastic regressors leads to consistent estimates of

the so-called long-run average coe¢ cient �. For ease of exposition, let us assume that there is no

deterministic component (Model 0) and specify the model that relates the dependent variable

yi;t and the explanatory variables xi;t in matrix notation as:

yi = xi�i + F�i + �i; (4)

where yi denotes the (T � 1) vector of the dependent variable, xi is a (T � k) matrix of explana-
tory variables, �i is a (k � 1) vector of parameters , F is a (T � r) matrix of common factors,
�i is a (r � 1) vector of factor loadings, and �i is a (T � 1) vector collecting the idiosyncratic
errors. Note that we can write (4) in terms of the elements in (1) and obtain:

yi = xi�i + F�i + �i

(F�yi + Uyi) = (F�xi + Uxi)�i + F�i + �i

Uyi = Uxi�i + F (�i � �
y
i + �

x
i �i) + �i

Uyi = Uxi�i + F�
�
i + �i;

2Note that in this case, the common factors will be accounting for misspeci�cation errors in the model, due, for
instance, to the omission of relevant non-stationary stochastic regressors. Further, the presence of I(1) common
factors will capture global stochastic trends that are di¢ cult to proxy using observable data �see the discussion
on the production function empirical example below. Finally, I(1) common factors will also help to capture the
existence of cross-cointegration relationship among the same variable for the di¤erent units of the panel data �
see Banerjee, Marcellino and Osbat (2005).

4



so that �i can be estimated as the vector of parameters that capture the relationship among

the idiosyncratic component of the variables.

Let us de�ne the projection matrix MD = IT �D (D0D)�1D0 that removes the e¤ect of the

deterministic component on the variables of the model, where D = � for Model 1 and D = [� � ]

for Model 2 �it should be understood that MD = IT for Model 0. Then we have:

yi = Di + xi�i + F�i + �i

MDyi = MDxi�i +MDF�i +MD�i

~yi = ~xi�i + ~F�i + ~�i;

and

M ~F ~yi = M ~F ~xi�i +M ~F
~�i

y�i = x�i�i + �
�
i ; (5)

with M ~F = IT � ~F
�
~F 0 ~F

��1
~F 0, where the superscript ��� indicates that the corresponding

variable has been detrended and defactored. Note that at this stage, we have assumed that the

common factors are observable.3 The pooled estimator is de�ned as:

�̂ =

"
NX
i=1

�
x�0i x

�
i

�#�1 NX
i=1

�
x�0i y

�
i

�
(6)

=

"
1

N

NX
i=1

1

T 2

TX
t=1

x�i;tx
�0
i;t

#�1
1

N

NX
i=1

1

T 2

TX
t=1

x�i;ty
�
i :

Theorem 1 Let Yi;t be a vector of (1 + k) stochastic processes with DGP given by (1)-(3).

Under the assumption that Hi (1) is positive de�nite almost surely for all i (spurious regression),

the pooled estimator given in (6) converges as (T;N)!1 jointly to

�̂
p! � = 


�1
UxUx
UxUy ;

where � denotes the long-run average regression coe¢ cient, and 
UxUx and 
UxUy are long-run

average covariance matrices of the respective idiosyncratic components de�ned in the companion

appendix.

The proof is provided in the companion appendix. It is also possible to derive the limiting

distribution of the estimated long-run average parameter as in Phillips and Moon (1999). How-

ever, for the purposes of testing for cointegration pursued in this paper, we are only required

to show consistency of the estimator as stated in Theorem 1.

3Although the projection against the deterministic component and the factors can be done in one step,
proceeding in two stages facilitates the derivations below.
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3 Panel CCE cointegration test with cross-section dependence

So far, the cross-section dependence has been assumed to be driven by a set of observable

common factors. However, in most cases this situation is infeasible from an empirical point

of view, and we need to devise procedures to estimate (or proxy for) the unobserved common

factors.

There are two popular approaches in the literature that address this issue. First, the Bai

and Ng (2002, 2004) proposal, which uses principal components to estimate the common factors

and panel information criteria to chose the number of common factors. Second, we can use the

cross-section average method suggested in Pesaran (2006, 2007) and Pesaran et al. (2013), which

employs cross-section averages as convenient proxies to capture the common factors without

requiring the estimation of their number. This paper looks in detail at this second approach

and also establishes a comparison with testing procedures based on Bai and Ng (2002, 2004).

Note, however, that the derivations obtained in the previous section follows if we also estimate

the common factors and loadings using the approach described in Bai and Ng (2004).

To see how the CCE procedure works, we de�ne the average of (1) as:

�Yt = �Dt + ��Ft + �Ut;

where

�Yt =
1

N

NX
i=1

Yi;t; �Dt = ��dt; �� =
1

N

NX
i=1

�i

�� =
1

N

NX
i=1

�i; �Ut =
1

N

NX
i=1

Ui;t;

with dt = 0 for Model 0, dt = 1 and �i =
�
�i;0; �i;1; : : : ; �i;k

�0 for Model 1, and dt = (1; t)0 and
�i =

�
�0i;0; �

0
i;1; : : : ; �

0
i;k

�0, �i;j = ��i;j ; �i;j�0, j = 0; 1; : : : ; k, for Model 2.
Assumption F : Let us assume that rank (��) = r � (1 + k) for all N as N !1.

If the rank condition established in Assumption F is met, we have

Ft =
�
��0��
��1

��0
�
�Yt � �Dt � �Ut

�
:

Provided that �Ut = N�1PN
i=1 Ui;t

p! 0 as N ! 1 for all t, and , ��
p! E (�i) = � as N ! 1,

we have that

Ft �
�
��0��
��1

��0
�
�Yt � �Dt

� p! 0 as N !1;

which indicates that, for su¢ ciently large N , the observable averages �ht =
�
�Dt; �Y

0
t

�0 can be used
to proxy the unobserved factors.

Following Holly et al. (2010), let us specify the cross-section augmented regression:

yi;t = Di;t + x
0
i;t� + �z

0
t�i + �i;t; (7)

where �zt = (�yt; �x
0
t)
0 collects the cross-section averages of the dependent and the stochastic
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regressors of the model. In order to estimate the � parameters in (7), Holly et al. (2010) use

the pooled CCE estimator (PCCE) in Pesaran (2006), which is given by:

�̂PCCE =

 
NX
i=1

x0i �Mxi

!�1 NX
i=1

x0i �Myi

!
; (8)

where xi = [xi;1 xi;2 : : : xi;k], xi;j = (xi;j;1; xi;j;2; : : : ; xi;j;T )
0, denotes the (T � k) matrix of

regressors of interest, yi is the (T � 1) vector of the dependent variable for the i-th unit, and
�M = I � �H

�
�H 0 �H

��1 �H 0, �H = [�z] for Model 0, �H = [� �z] for Model 1 and �H = [� � �z] for Model

2, with � = (1; 1; : : : ; 1)0 a vector of ones, � = (1; 2; : : : ; T )0 a linear time trend and �z = [�x �y] the

(T � (k + 1)) matrix of cross-section averages.
One interesting feature is that the PCCE estimator is easy to compute and does not require

the estimation of the factors driving the cross-section dependence. The main drawback is that

consistency has been proved by Kapetanios et al. (2011) only under the maintained hypothesis

that cointegration exists, an hypothesis that needs to be tested. Therefore, in order to assess the

validity of the testing procedure that we apply, we need to show whether the PCCE estimator is

consistent under the null hypothesis of no cointegration. This result is provided in the following

Theorem.

Theorem 2 Let Yi;t be a vector of (1 + k) stochastic processes with DGP given by (1)-(3).

Under the assumption that Hi (1) is positive de�nite almost surely for all i (spurious regression)

and rank (��) = r � (1 + k) for all N as T;N !1, the pooled estimator given in (8) converges
as (T;N)!1 jointly to

�̂PCCE
p! � = 


�1
UxUx
UxUy :

The proof is provided in the companion appendix.

3.1 A test for cointegration based on the PCCE estimator

Using Theorem 2 and following on from the contributions of Pesaran (2007), Holly et al. (2010)

and Pesaran et al. (2013), in this section we propose a panel cointegration test statistic that

is based on the PCCE estimator. It is worth mentioning that the use of the Pesaran approach

requires us to constrain the DGP that has been used so far in the sense to be described below.

Thus, Pesaran (2007) and Pesaran et al. (2013) specify the following DGP:

yi;t = Di;t + x
0
i;t�i + �i;t (9)

�i;t = �i�i;t�1 + f
0
t�i + �i;t; (10)

with ft a (r � 1)-vector of I(0) common factors and �i;t an I(0) idiosyncratic disturbance

term.

As can be seen, (10) can be written as �i;t = 1= (1� �iL) (f 0t�i + �i;t) so that the null
hypothesis of spurious regression, �i = 1 8i, implies that �i;t =

Pt
j=1

�
f 0j�i + �i;j

�
= F 01;t�i+�i;t,

with F1;t � I (1) and �i;t � I (1). Under the alternative hypothesis, we have j�ij < 1 for

i = 1; : : : N1; �i = 1 for i = N1+ 1; : : : N , with N1=N ! �, 0 < � � 1 as N ! 1, so that
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cointegration exists for N1 units. Further, note that under the alternative hypothesis, for the

N1 units for which �i;t =
P1

j=0 �
j
i

�
f 0t�j�i + �i;t�j

�
= F 00;t�i + �i;t, F0;t � I (0) and �i;t � I (0),

but for the remaining N �N1 units, F1;t � I (1) and �i;t � I (1).

The Pesaran approach requires us to assume the same order of integration for all common

factors and the idiosyncratic component for each speci�c unit of the panel, namely I(1) under

the null hypothesis of spurious regression for all units, and I(0) for N1 units and I(1) for the

remaining N�N1 units under the alternative hypothesis. This is a substantial restriction of the
general framework used above for estimation, where no assumption on the order of integration

properties of the common factors was needed in relation to that of the idiosyncratic components.

It is worth noticing that the same stochastic processes ft that generates the common factors,

can play di¤erent roles under the alternative hypothesis for the di¤erent units of the panel data

� i.e., under the alternative hypothesis ft can generate either F0;t or F1;t, depending on the

speci�c unit of the panel.

The PCCE-based cointegration test begins by estimating the long-run average coe¢ cient

using the PCCE method. Given the consistency of the PCCE estimator under the null hypoth-

esis of spurious regression, in the second stage we use the PCCE estimated parameters to de�ne

the variable:

~yi;t = yi;t � x0i;t�̂PCCE ; (11)

for which the following model is estimated using ordinary least squares (OLS) estimation

method:

~yi;t = Di;t + �i;t;

and the OLS residuals are then computed as �̂i;t = ~yi;t � D̂i;t. The null hypothesis of no

cointegration is tested analyzing the order of integration of �̂i;t through the application of the

cross-section augmented Dickey-Fuller cointegration (CADF) statistic:

CADFP = N�1
NX
i=1

t�̂i;0 ;

where t�̂i;0 denotes the pseudo t-ratio of the estimated �i;0 parameter in the regression:

��̂i;t = �i;0�̂i;t�1 +

pX
j=1

�i;j��̂i;t�j + 'i�̂t�1 +

pX
j=0

�i;j��̂t�j + �i;t; (12)

when there is one common factor and

��̂i;t = �i;0�̂i;t�1 +

pX
j=1

�i;j��̂i;t�j + '
0
iÂt�1 +

pX
j=0

�0i;j�Ât�j + �i;t; (13)

with Ât =
�
�̂t; �x1;t; : : : ; �xk;t

�0
the vector of cross-section averages augmentation terms for the

1 + k multiple common factors case.

It is worth noticing that (12) and (13) de�ne the two extreme cases i.e., the case where there

is just one common factor and the case where the rank condition established at Assumption F

is met with equality. For those intermediate cases where there are fewer common factors than

8



observables �i.e., r < 1 + k �the vector Ât in (13) will be de�ned with �̂t and r � 1 elements
of the cross-section averages of the stochastic regressors. It is important to emphasize that

in empirical applications the number of common factors (r) does not need to equal the total

number of observables (1 + k) of the model so that the intermediate cases are relevant from

an empirical point of view. If analysts have knowledge, for example based on economic theory,

about the number of common factors to include in the model, one can impose the restriction

of the number of common factors and use the critical values that involves (1 + k) observable

variables but r < 1+ k common factors. In this regard, we could follow the strategy in Pesaran

et al. (2013) and compute the test statistic using all possible combinations of r cross-section

averages available in the system as a way of obtaining robust conclusions.

When the number of common factors is not known, we can follow a conservative strategy and

assume that the rank condition is satis�ed with equality and base inference on the estimation

of (13). The price that we would pay if the true number of common factors is r < 1 + k but

we impose r = 1 + k is to have a test statistic with empirical size smaller than the nominal

size accompanied by loss of power. The advantage is to allow us to remain agnostic about the

number of integrated stochastic trends driving the data.4

In order to derive the critical values appropriate for the PCCE-based cointegration test,

note that we can substitute (7) in (11) and obtain

~yi;t = Di;t + �z
0
t�i + �i;t � x0i;t(�̂PCCE � �)

= ~yPi;t � x0i;t(�̂PCCE � �);

where ~yPi;t is the unit root part of the process analyzed by Pesaran (2007) �when r = 1 �and

by Pesaran et al. (2013) when r > 1. It is worth noticing that testing for panel cointegration

is asymptotically equivalent to testing for the panel unit root hypothesis addressed in Pesaran

(2007) and Pesaran et al. (2013). Using Theorem 2 it is possible to show that as T;N ! 1,
x0i;t(�̂PCCE � �) has negligible e¤ect on the unit root test of ~yi;t so that, as T;N ! 1, the
cointegration test t�̂i;0 is de�ned by ~y

P
i;t and ~y

P
t , which are the same elements that de�ne the

limiting distributions in Pesaran (2007) �see his Theorem 3.2 for the CADFif statistic when

r = 1 �and Pesaran et al. (2013) �see their Theorem 2.1 when r > 1.5

Although the limiting distributions of the test statistics proposed in this paper and the ones

reported in Pesaran (2007) and Pesaran et al. (2013) are equivalent, it is the case that there are

slight di¤erences for panel data sets of small T and/or N dimensions. In order to save space,

we only report critical values for the pooled test (CADFP ), although critical values for the

individual t�̂i;0 test statistic can be computed using a GAUSS program available upon request.

Tables 1 and 2 present the critical values for the CADFP test statistic for Model 1 and Model

4An alternative strategy in the case of unknown number of factors, as followed by Pesaran et al. (2013), is to
undertake the testing for all permissible values of r (using all combinations of r cross-section averages for each
choice of r). The size properties of such a procedure are not clear nor are the likely conclusions if one accepts
the null hypothesis for some values of r and rejects for others. This is a topic for further research by us based
on multiple or repeated tests.

5The limiting distributions are obtained using sequential and joint limits assuming that N=T ! k > 0. Since
consistency only requires that N and T tend to in�nity jointly, the condition that N=T ! k > 0 does not pose
any di¢ culty. The limiting distribution of CADFif can also be derived under sequential limits provided N !1
before T !1:
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2, respectively, when there is one common factor (r = 1) �i.e., the rank condition is met with

inequality �whereas Tables 3 and 4 collect the critical values for the multiple common factor

case (r > 1) �in this case, we impose that the rank condition is met with equality.6

The computation of the critical values is based on Pesaran et al. (2013), generating the

dependent variable as yi;t = yi;t�1+ "1;i;t and a vector of k explanatory variables xi;t = xi;t�1+

"2;i;t, where "i;t =
�
"1;i;t; "

0
2;i;t

�0
� iid N (0; Ik+1), i = 1; 2; : : : ; N , t = �50;�49; : : : ; T , and

yi;�50 = xi;�50 = 0. Using these independent time series we have computed the PCCE estimator

and retrieved the êi;t residuals that are used to estimate the regression equation in (12) and

obtain the individual and CADFP statistics. The simulation uses 50,000 replications using

di¤erent combinations of T and N . As can be seen, the critical values for the one common

factor case are close to the ones computed in Pesaran (2007) when T is large, although they

di¤er in �nite samples � for example, for Model 2 compare Table 2 of our paper with Table

1b of Pesaran (2007) when T = 200. Note also that for large T and N the critical values do

not depend on the number of regressors, since the consistency property of the �̂PCCE estimator

implies that the CADFP statistic behaves like the Pesaran (2007) panel unit root statistic,

making our critical values applicable to cases where there are more than two regressors. A

similar feature is found when comparing the critical values in Pesaran et al. (2013) and the

ones computed in this paper for the multiple common factor case.

Pesaran (2007) also proposes a truncated version of the CADFif statistic in order to ensure

that the statistic has �nite moments. In our case, the truncation takes the following form �see

Pesaran (2007) pp. 277: 8>><>>:
t��̂i;0 = t�̂i;0 if � d1 < t�̂i;0 < d2

t��̂i;0 = �d1 if t�̂i;0 � �d1
t��̂i;0 = d2 if t�̂i;0 � d2

;

where (d1; d2) = (6:19; 2:61) for Model 1 and (d1; d2) = (6:42; 1:70) for Model 2. Note that we

use the same threshold values as in Pesaran (2007) given that the limiting distributions of our

test statistic and that of Pesaran are the same. The unreported computations that we have

carried out show that the critical values of the truncated and untruncated versions of the test

statistic coincide exactly for all values of T > 15 so that, in order to save space, we have not

presented these critical values on the paper. Truncation can also be applied to the multiple

common factor case, although Pesaran et al. (2013) do not provide the values of the upper and

lower limits for the di¤erent number of common factors, although they can be easily obtained

�a GAUSS program can be used to compute the threshold values for the truncated version of

the statistic for any number of common factors.

As discussed brie�y in the introduction above, the approach proposed in this paper for

testing panel cointegration di¤ers from a common-factor-based approach. An example of the

latter is contained in Banerjee and Carrion-i-Silvestre (2015), who deal with the same model

speci�cation that is used in this paper but where the common factors and factor loadings are

6We do not report the critical values of all possible combinations where the rank condition is satis�ed with
inequality, although a GAUSS program is available from the authors to compute the critical values for any desired
combination.
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estimated using principal components. In addition to accounting for cross-section dependence

in two di¤erent ways, the testing procedures also di¤er in one other crucial aspect, namely the

computation of the estimate of �i in the individual units of the panel. In order for Theorem 2

to apply, � needs to be a pooled estimator, i.e., the potential heterogeneity of the �i�s across

the units of the panel is not taken into account in computing the CCE-based test. This is in

contrast to the common-factor-based test which, since it is computed after �rst di¤erencing the

data, allows for heterogeneity in the �i parameter and the test statistic for the idiosyncratic

component (which is most directly comparable to the CCE-based test) is based on a mean-group

test constructed by averaging across the unit-speci�c standardized t-statistics. In principle this

therefore adds to the �exibility of the common-factor based approach, although such �exibility

is unnecessary if either strict homogeneity holds or the �i coe¢ cients are generated by means

of a random e¤ects-type speci�cation. However to counter this �exibility there is also the

disadvantage of the need to estimate more parameters in order to construct the corresponding

test statistic.

The Monte Carlo simulations reported below specify homogeneous �i in order to present

the most favorable scenario from the point of view of the use of pooled estimators while disad-

vantaging the factor-based tests.

4 Finite sample performance

4.1 Common factor model: weak and strong dependence

This section looks at the performance of the CCE-based tests for cointegration in comparison

with the factor-based approach under several di¤erent speci�cations of cross-section dependence,

both strong and weak. It should be noted that under some speci�cations of weak or semi-

strong dependence to be noted below, the factor approaches are no longer optimal and do not

provide consistent estimates of the factors or their loadings as typically Assumption A(ii) is

violated in such circumstances. It is nevertheless of importance to compare the results of the

two approaches, since at an empirical level it is often not clear what form the cross-section

dependence takes in the data. It is therefore interesting and important to note within the

context of the simulation exercises the better performance of the factor-based tests despite

worries about the consistency of the procedures when dependence is only weak. Many of the

features of the DGP used below are in�uenced by the empirical examples, which help us to

interpret better the results arising from the estimation of the models.

4.1.1 Strong dependence

Let us �rst consider the DGP de�ned by:

yi;t = xi;t + �
0
iFt + �i;t (14)

�xi;t = �i;t (15)

Fj;t = �Fj;t�1 + wj;t (16)

�i;t = �i�i;t�1 + "i;t; (17)
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where r = f1; 2g, �i;j � N (1; 1), �i;t � N (0; 1), wj;t � N
�
0; �2F

�
, j = 1; 2, and "i;t � N (0; 1)

are four mutually independent groups. Under the null hypothesis of no cointegration we specify

�i = 1 8i, whereas under the alternative hypothesis of cointegration we have j�ij < 1 for some i.
Note that the de�nition of cointegration that we are testing for only focuses on the idiosyncratic

component, regardless of the order of integration of the common factor. Thus, if Ft � I (1)

cointegration exists among (yi;t; xi;t; Ft) but not between (yi;t; xi;t). It is worth noticing that

the de�nition of the loadings implies that
PN

i=1 j�ij = Op (N), so that we are facing the case of

strong dependence.

The simulations focus on Model 2 using the following setup. The empirical size is analyzed

using �i = 1, whereas the empirical power is investigated using �i = f0:99; 0:95; 0:9g.7 As for
the common factor component, we consider one and two common factors with autoregressive

parameter given by � = f1; 0:99; 0:95g with di¤erent importance, which is modelled through
the following values for the variance �2F = f0:5; 1; 10g. The time dimension is set at T =

f50; 100; 250g and the cross-section dimension is N = f10; 20; 50g. The nominal size is set at
5% and the critical values tabulated in the previous section are used. The simulations are

performed using GAUSS with 1,000 replications. In order to save space, we only report the

results for �2F = 1 where the number of common factors is estimated. The results for the

remaining two values of �2F are qualitatively very similar and the full set of tables can be found

in Banerjee and Carrion-i-Silvestre (2011).

The simulations conducted in this subsection distinguish among three di¤erent situations.

First, we cover the case where there is one common factor, and use the critical values that

are computed for the true number of common factors �in this case the rank condition is met

with inequality, i.e., r̂ = 1. Second, we consider the case of two common factors using the

critical values that are computed for the true number of common factors �in this case the rank

condition is met with equality, i.e., r̂ = 2. Finally, we focus on the one common factor case

but where we assume that there are two common factors �the rank condition is satis�ed with

inequality but we use the critical values that are appropriate when it is satis�ed with equality.

This case is discussed in order to mimic the scenario of conservative inference.

One common factor and r̂ = 1 Before presenting the results for the empirical size and

power of the panel cointegration test statistic that is proposed in this paper, we have conducted

a small Monte Carlo simulation to show that the consistency property obtained in Theorem

2 gives a proper approximation in �nite samples. Table A.1 in the supplementary material

reports the results of the mean, median and root mean square error of the �̂PCCE estimator

with N = f10; 20; 50; 100g and T = f50; 100; 250g for the one common factor case. As can be
seen, the mean and the median are close to the true value of the parameter �i.e., � = 1 in (14)

� regardless of the values of �i and �. This emphasizes the value of the approach since it is

possible to obtain consistent estimates of � when there is no cointegration (�i = 1) and when

there is cointegration (j�ij < 1). Moreover, because the factor is being controlled for adequately,
7Note that for the empirical power analysis we impose an homogeneity restriction in order to fully control

the degree of temporal dependence. Although we do not expect signi�cant changes in the picture that would be
obtained, it would be possible to conduct the analysis allowing for heterogeneous parameters, but the degree of
temporal dependence will be di¤erent for each unit.
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whether the factor is integrated (� = 1) or stationary (j�j < 1) does not a¤ect the root mean

square errors. Under spurious regression, root mean square error decreases with N . This result

is supported by the theoretical derivations shown in Theorem 2 for the limiting distribution

of �̂PCCE . When there is cointegration, it decreases with both N and T . Finally, for a given

combination of N and T , the root mean square error is larger under the spurious regression

case than when there is cointegration.

Table 5 presents the empirical size and power for the CADFP panel cointegration test

statistic for N = f10; 20; 50g for the one common factor case. In each table we also report the
results for the test statistics in Banerjee and Carrion-i-Silvestre (2015) �hereafter, Z� statistic

�for which the number of common factors throughout this section is estimated using the panel

BIC information criterion in Bai and Ng (2002) with a maximum of six common factors.

As can be seen, the Z� test has the correct size, regardless of the value of the autoregressive

parameter of the common factor (�), except when both N and T are small. The CADFP
statistic has the correct size when � = 1, although we observe that the test statistic tends to

be conservative (underrejects) as � moves away from 1 and T gets large. Note that this can

be explained by the fact that this setup violates the common factor restriction that is required

by Pesaran�s (2007) framework, namely that �i = � � i.e., the dynamic of the idiosyncratic

component should be the same as the one driving the common factor component.

As for empirical power, we observe that the CADFP statistic does not out-perform the Z�
statistic for any of the cases shown here. However, the empirical power of the two statistics is

almost equivalent for large T which may be taken as good grounds for preferring the use of the

CCE-based test when T is reasonably large. It is worth mentioning that even in those cases

where the CADFP statistic becomes conservative due to the violation of the common factor

restriction, it still shows good power.

So far, we have compared the panel data test statistics that are computed using the estimated

idiosyncratic component. The procedure in Banerjee and Carrion-i-Silvestre (2015) also allows

us to analyze the stochastic properties of the estimated common factors. The ADF statistic

that is computed using the estimated common factor is reported in the columns labelled as t ~F .

As can be seen, the t ~F has the correct size under the null hypothesis that � = 1, with empirical

power that increases, as expected, as � moves away from 1 and T gets large.

To sum up, for this simple scenario, the principal components-based panel cointegration test

in Banerjee and Carrion-i-Silvestre (2015) shows better overall performance, with empirical size

close to the nominal size and empirical power higher than those demonstrated by the CCE-based

statistics. However, both approaches tend to provide the same empirical power when the time

dimension is large, and the convenience of the CCE-based approach needs also to be taken into

account when assessing the relative merits of these alternative testing procedures.

Finally, it could be stressed that the procedure in Banerjee and Carrion-i-Silvestre (2015)

is more informative, as it allows to obtain a fuller picture of the stochastic properties of all

the speci�ed components a¤ecting the model. As noted earlier, from an empirical point of

view, assessing the stochastic properties of the common factors is particularly important since

this allows us to interpret whether (yi;t; xi;t) cointegrate alone or whether we need to consider

(yi;t; xi;t; Ft) to get a cointegrating relationship.
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Two common factors and r̂ = 2 The simulations conducted in this section are based upon

the DGP given by (14) to (17) using two common factors, but where instead of using (15) for

the generation of the stochastic regressors xi;t, they are de�ned according to

xi;t = �x
0
i Ft +

tX
j=1

�i;j ; (18)

where �xi;j � N (1; 1), j = 1; 2. Note that now we are considering that both the dependent

variable and the stochastic exogenous regressors are a¤ected by the common factors. In this

case, the rank condition is satis�ed with equality provided that the number of observables

(1 + k = 2) equals the number of common factors (r = 2), which also equals the number of

cross-section averages that are used in the computation of the statistics �i.e., we assume that

r̂ = 2.

Table 6 reports in the columns labelled as Equality the empirical size and power for the

CADFP test statistic, when N = f20; 50g. As can be seen, the test statistic has a liberal
empirical size for N = 20, regardless of the order of integration of the common factors. However,

the empirical size equals the nominal size when the number of units of the panel increases up

to N = 50. It is worth noticing that in this case the test statistic features under-rejection

problems when the common factors are I(0), a situation that violates the assumptions made

in our framework. As for the empirical power, the CADFP test statistic shows decent power

�gures, which tends to one as T gets large, regardless of the value of N .

One common factor and r̂ = 2 From an empirical point of view, it is more interesting to

analyze the e¤ects that might have on the empirical size and power of the CADFP test statistic

when practitioners use more cross-section averages than common factors present in the model.

In this case, we have speci�ed the DGP given by (14), (16), (17) and (18), but considering just

one common factor (r = 1). Thus, by using all cross-section averages available in the system

we are covering the situation where the assumed number of common factors (r̂ = 2) is larger

than the true number of common factors (r = 1). Note that now the rank condition is met with

inequality (r < 1 + k).

Table 6 reports in the columns labelled as Inequality the empirical size and power for the

CADFP test statistic, when N = f20; 50g. As can be seen, the empirical size is close to

the nominal empirical size when the common factor is I(1), regardless of the value of N . As

expected, the test statistic becomes conservative as the common factor becomes I(0) �see the

comments above. As for the empirical power, the CADFP test statistic has good power, which

tends to one as T gets large. An interesting feature is that for a given combination of (�i; �),

the �gures for the empirical power are smaller than the ones obtained when the correct number

of cross-section averages are used to capture the e¤ects of the common factors �see the values

for the empirical power o¤ered in Table 5 compared with the ones in the columns labelled as

Inequality of Table 6. This result is something to be expected, since we are including more

regressors than needed in the regression equation in which the test statistic bases on, so that a

fall in the power will be produced.
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4.1.2 Semi-strong dependence and weak dependence

Semi-strong dependence In the previous simulation experiment we de�ned a common fac-

tor model where the sum of the loadings
PN

i=1 j�ij = Op (N) ; a condition that is required in

order to get a consistent estimate of the space generated by the common factors. However,

it is interesting to analyze the behaviour of the test statistics when we consider departures

from this speci�cation, leading to so called semi-strong (or semi-weak) and weak cross-section

dependence.

For example, following Chudik et al. (2011), we may specify the loadings as

�i =
%iq

3
PN

i=1 %
2
i

; %i � N (1; 1) ;

so that in this case
PN

i=1 j�ij = Op
�
N1=2

�
.

Weak dependence Alternatively we may consider the case where the loadings of the common

factors are such that
PN

i=1 j�ij = Op (1), so that we face the case of weak dependence through

the loadings. In this regard, we may also follow Chudik et al. (2011) and specify the loadings

as

�i =
%i

2
PN

i=1 %i
; %i � N (1; 1) ;

with the rest of the parameters of the DGP as de�ned in the previous section. It should be

noted that in this case the factor structure is not identi�ed, so that the application of principal

components would not lead to consistent estimates of either the common factors or the factor

loadings. The use of the test statistic in Banerjee and Carrion-i-Silvestre (2015) is thus strictly

speaking not justi�ed.

Table 7 reports the results for N = f10; 20; 50g when the number of common factors is
estimated. As can be seen, most of the features that were outlined in the previous section

are still valid. However, there are some important di¤erences that could be noted. First, the

empirical size of the CCE-based statistic is close to the nominal one even for the case where

the common factor is I(0), so that we do not see any under-size distortions in this case. This

may be a re�ection of the fact that the data generation processes here are better suited to

the CCE approach. Second, except where we have semi-strong dependence with �2F = 10, the

panel BIC information criterion does not detect any common factor since the conditions for

consistent estimation are not satis�ed. We therefore report the results only for the tests on

the idiosyncratic component and show that the di¢ culties of applying the factor approach here

notwithstanding, the Z� statistic remains more powerful than the CCE-based statistic even

when T = 50, although they again perform equally well in terms of power as T gets large.

4.2 Spatial autocorrelation

Our �nal speci�cation of the DGP follows Baltagi, Bresson and Pirotte (2007) and introduces

weak cross-section dependence in the panel data setup using a spatial error model. The DGP
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is given by

yi;t = xi;t + �i;t

�xi;t = vi;t

�i;t = �i�i;t�1 + "i;t;

where the error component can follow one of these three di¤erent spatial models. First, we

consider the spatial autoregressive (SAR) speci�cation:

"t = #WN"t + �t = (IN � #WN )
�1 �t;

with "t = ("1;t; "2;t; : : : ; "N;t)
0, WN is an (N �N) known spatial weights matrix, # is the spatial

autoregressive parameter and �t is an (N � 1) error vector assumed to be distributed indepen-
dently across cross-section dimension with constant variance �2� . Second, it is possible to de�ne

a spatial moving average (SMA) speci�cation:

"t = �t + #WN �t = (IN + #WN ) �t;

where now # is the spatial moving average parameter. Finally, we also use the spatial error

component (SEC) speci�cation:

"t = �t + #WN t;

where �t is an (N � 1) vector of local error components and  t is an (N � 1) vector of spillover
error components. The two component vectors are assumed to consist of iid terms with respec-

tive variances �2� and �
2
 , and are uncorrelated.

Of special interest is the SEC speci�cation since we can relate the spatial model with the

common factor model that has been investigated in the previous section. We can specify:

"t = �t + #WN�Ft;

where now  t = �Ft, with � = (

0
1; 


0
2; : : : ; 


0
N )

0 the (N � r) matrix of loadings. Further, if we
set # = 1 and WN = IN we get the common factor representation used above. This allows us

to specify di¤erent models depending on the degree of weak correlation that we want to allow.

For instance, if the spatial weight matrix is now VN = IN +WN with  t = �Ft and # 6= 0, the
common factors will not only a¤ect each unit, but also their neighbours.

The simulations that are reported in this section follow the setup in Baltagi et al. (2007),

who use two di¤erent values for # = f0:4; 0:8g and the spatial weight matrix WN given by the

sparse weight matrix W (1; 1) that de�nes the �1 ahead and 1 behind�matrix with the i-th row

(1 < i < N) of this N �N matrix having non-zero elements in positions i + 1 and i � 1. The
WN matrix has been normalized so that the sum of the elements of each row equals one. Other

sparse weight matrices W (j; j), j = 2; 3; : : : ; 10, were used in Baltagi et al. (2007), although

they claimed that qualitatively similar results were obtained. Therefore and in order to save

space, we only use the W (1; 1) matrix as a way to illustrate the e¤ect of spatial dependence on

the panel data cointegration tests that we consider in the paper.
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The simulation experiment has been conducted for N = f10; 20; 50g and, in general, qualita-
tively similar results are obtained regardless of the number of cross-section units. Consequently,

in what follows our discussion focuses on the results reported in Table 8 for N = 20, given that

this panel dimension is closer to the ones used in the empirical practice �Tables A.2 and A.3

in the supplementary material present the results of the empirical size and power of the panel

data cointegration test statistics for N = f10; 50g, respectively.
When the SAR speci�cation is used, both CADFP and Z� statistics show the correct size

when # = 0:4. However, size distortions (over-rejection problems) are observed when # = 0:8,

being the size distortions comparable for both test statistics �in some cases, size distortions are

larger for the Z� statistic (N = 10 and N = 20). In general, the Z� statistic is more powerful,

although in some cases this might be due to the e¤ects of the size distortions. As expected, the

empirical power of both test statistics tends to one as N and/or T increase.

When the spatial dependence is driven by a SMA speci�cation, both test statistics have

the correct empirical size for # = 0:4, but show over-rejection problems when # = 0:8. In this

regard, the size distortions are less important for the CADFP statistic, although the distortions

almost disappear for both statistics when N = 50. As for the empirical power, we observe that

the Z� statistic is more powerful than the CADFP statistic in all cases.

The three SEC speci�cations that we have considered lead to similar qualitative results.

For N = 20 and N = 50, the empirical size of the two statistics is close to the nominal one

regardless of the value of T and #. Only mild overrejection problems are found for the Z�
statistic when N = 10, while the CADFP statistic shows good performance. The Z� statistic

is more powerful than the CADFP statistic when N = 20 and N = 50, but the performance

of the CADFP statistic for N = 10 is very good if one bear in mind that the empirical size is

controlled. Finally, the empirical power of both statistics tends to one as T gets large.

In summary we may conclude from the results of the simulation experiments that there is

some evidence in favour of the dominance of factor-based procedures over the CCE approach.

However, there may be circumstances where the factor approach is not strictly applicable (such

as in the semi-strong or weak speci�cations, and when N is really small). Allied to the conve-

nience of the CCE approach and equivalent performances for large T , these are good reasons to

propose the use of our new test for cointegration in panels.

5 Empirical illustrations

5.1 House prices in the US

Holly et al. (2010) analyze the long-run relationship between the logarithm of the real house

price index (pi;t) and the logarithm of the real per capita disposable income (yi;t) for 48 US

States and the District of Columbia (N = 49) using annual data between 1975 and 2003 (T = 29)

�see Figures 1 and 2. The model under investigation is given by

pi;t = �i + �yi;t + ui;t;
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where note that slope homogeneity is imposed. The computation of the CD test statistic in

Pesaran (2004) leads us to reject the null hypothesis of no cross-section correlation for the panels

of the variables involved in the model, which indicates that panel cointegration test statistics

that account for the presence of cross-section dependence have to be used �see Table 10.

For this example we do not undertake a comparison with the test statistic in Banerjee and

Carrion-i-Silvestre (2015) since the T dimension is too small relative to N for our needs (in

order to enable consistent computation of the factors). However it may be seen as an advantage

of the CCE-based approach that a feasible test for cointegration can be constructed in the

presence of cross-section dependence for reasonably small N and T �see tables for size and

power properties.

We have computed the individual CCE test statistics proposed in this paper using up to

four lags for the autoregressive correction in (12) and, as in Holly et al. (2010), considering the

presence of one common factor. Table 9 shows that the null hypothesis of no cointegration is

rejected at the 5% level of signi�cance in 3 (p = 0), 8 (p = 1), 13 (p = 2), 18 (p = 3) and 18

(p = 4) cases out of 49 � if the level of signi�cance is set at the 10%, rejection happens in 6

(p = 0), 13 (p = 1), 19 (p = 2), 25 (p = 3) and 20 (p = 4) cases out of 49. The same results

are obtained regardless of whether the truncated or untruncated version of the statistic is used.

Therefore, even in the most favorable situation, evidence in favor of cointegration is found for

only half of the units. It would be the case that pooling the individual information will lead to

better statistical inference, provided that the assumption of cross-section independence of êi;t,

i = 1; 2; : : : ; N , in (12) is met. The computation of the CADFP statistic gives CADFP = �1:85
(p = 0), CADFP = �2:56 (p = 1) and CADFP = �2:78 (p = 2), depending on the order of
the autoregressive correction that is used. As can be seen, when we compare the values of the

CADFP statistic with the critical values in Table 1 we conclude that, except for p = 0, the null

hypothesis of no cointegration is rejected at the 5% level of signi�cance. However, it should

borne in mind that rejection of the null hypothesis does not necessarily imply that cointegration

holds for all units.

5.2 Production function

The second empirical application focuses on the estimation of a production function using

the data in Banerjee, Eberhardt and Reade (2010) taken from the Penn World Table database

(version 6.3). We de�ne a panel data set of developed countries that includes Australia, Austria,

Belgium, Canada, Denmark, Finland, France, Greece, Ireland, Italy, Luxembourg, Netherlands,

Norway, Portugal, Spain, Sweden, Switzerland, the United Kingdom and the United States.

The selection of these countries allows us to have a balanced panel data set covering the period

between 1951 and 2007. Notice also that our data set includes almost all EU-15 countries �we

have not been able to include Germany because of lack of information between 1951 and 1969 �

and almost all G7 countries �the exception is Japan, for which we do not have information for

the whole period. Therefore, we deal with a panel data set of dimension T = 57 and N = 19,

which �ts the requirement of having a panel with T larger than N . The model that is estimated

is given by:

yi;t = �i + �1li;t + �2ki;t + ui;t;
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where yi;t denotes the logarithm of the real GDP per capita, li;t is the logarithm of the population

and ki;t is the logarithm of the real capital stock per capita. As before, the CD test statistic

in Pesaran (2004) rejects the null hypothesis of no cross-section correlation for the panels of

the variables involved in the model, which indicates that panel cointegration test statistics that

account for the presence of cross-section dependence have to be used �see Table 10. The CCE

estimation of the slope parameters equals �̂ = (�̂1; �̂2)
0 = (0:8; 0:78)0.

Table 11 presents the individual CCE t�̂i;0 statistics, i = 1; 2; : : : ; 19, considering that there

is one common factor. As can be seen, using the untruncated version of the statistic the null

hypothesis of no cointegration can be rejected at the 5% level of signi�cance in 2 (p = 0), 1

(p = 1), 2 (p = 2), 1 (p = 3) and 1 (p = 4) cases out of 19 �we use the critical values for

N = 20 and T = 50. If the level of signi�cance is set at the 10% level, the rejection of the

null hypothesis of no cointegration happens in 3 (p = 0), 3 (p = 1), 2 (p = 2), 3 (p = 3) and

3 (p = 4) cases out of 19. If we use the truncated version of the statistic, the results that are

obtained are almost identical, with the marginal exception for Spain with p = 3, where now the

null hypothesis of no cointegration cannot be rejected at the 10% level of signi�cance. Thus,

using the individual based statistics we �nd little evidence against the null hypothesis of no

cointegration. The individual information can be combined computing the CADFP statistic,

which produces CADFP = �1:68 (p = 0), CADFP = �1:71 (p = 1), and CADFP = �1:67
(p = 2), depending on the order of the autoregressive correction that is used. As can be seen,

when we compare the values of the CADFP statistic with the critical values in Table 1 for

N = 20 and T = 50 we conclude that the null hypothesis of no cointegration cannot be rejected

at the 5% level of signi�cance, regardless of the order of autocorrelation that is considered.

The results of the test statistic in Banerjee and Carrion-i-Silvestre (2015) with up to six

common factors are reported in Table 12. We present two di¤erent sets of results depending

on whether or not the variables are divided by their standard deviations when using princi-

pal components �see Banerjee and Carrion-i-Silvestre (2015) for further details. Without this

transformation, the panel BIC information criterion in Bai and Ng (2002) leads to selection of

the maximum number of factors that is allowed. In this case, all the estimated common factors

are non-stationary. Once transformed, the panel BIC indicates that there is only one integrated

common factor. However, regardless of the number of common factors or the transformation,

the statistics in Banerjee and Carrion-i-Silvestre (2015) indicate that the idiosyncratic distur-

bance terms are stationary. It is worth mentioning that rejection of the null hypothesis of no

cointegration does not necessarily mean that all cross-section units are cointegrated. Therefore

we cannot conclude that the variables in the vector Yi;t = (yi;t; li;t; ki;t)0 are cointegrated, since

at least one non-stationary common factor is detected. Cointegration is possible only by the

inclusion of common factors in the model.

6 Conclusions

The paper has shown that consistent estimate of the long-run average coe¢ cient is obtained

when time series in the panel data are cross-section dependence, which is accounted for using a

common factor model approach. The estimation procedure that is applied is based on the CCE
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approach in Pesaran (2006). Our result contributes to the literature of non-stationary panel

data analysis, where consistent estimation of the parameters of the model is feasible in a spurious

regression framework. The paper conducts an extensive simulation exercise to study the �nite

sample performance of the statistic that has been proposed, allowing for weak and strong cross-

section dependence. The two empirical applications illustrate the e¤ectiveness of the respective

approaches. Where a weak dependence structure is plausible such as in the house prices example,

the use of CCE-based tests provides satisfactory and con�rmatory results. Where however an

integrated trend may be relevant, the restriction of being unable to decompose between common

and idiosyncratic components (especially to have di¤erent degrees of persistence) handicaps

somewhat the CCE-based tests in relation to common factor approaches. This is especially

seen in the empirical example where the cointegration possibility is found to be not among the

original variables (between output, labour and income) but between the original variables and

an integrated stochastic common trend.
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Table 1: Critical values for the CADFP test statistic with one common factor for Model 1. The
rank condition is met with inequality

5% level of signi�cance 10% level of signi�cance
k + 1 r p TnN 20 30 50 70 100 200 20 30 50 70 100 200
2 1 0 30 -2.32 -2.27 -2.22 -2.20 -2.18 -2.17 -2.22 -2.18 -2.14 -2.13 -2.12 -2.11
2 1 0 50 -2.27 -2.22 -2.18 -2.16 -2.14 -2.12 -2.18 -2.14 -2.11 -2.09 -2.08 -2.07
2 1 0 70 -2.26 -2.21 -2.16 -2.14 -2.13 -2.11 -2.17 -2.13 -2.09 -2.08 -2.07 -2.05
2 1 0 100 -2.25 -2.20 -2.15 -2.13 -2.12 -2.10 -2.16 -2.12 -2.08 -2.07 -2.06 -2.05
2 1 0 200 -2.23 -2.18 -2.14 -2.12 -2.11 -2.09 -2.15 -2.10 -2.07 -2.06 -2.05 -2.04
2 1 1 30 -2.35 -2.30 -2.25 -2.24 -2.22 -2.20 -2.24 -2.20 -2.17 -2.16 -2.15 -2.14
2 1 1 50 -2.28 -2.24 -2.19 -2.17 -2.16 -2.14 -2.19 -2.15 -2.12 -2.11 -2.09 -2.08
2 1 1 70 -2.26 -2.21 -2.17 -2.15 -2.14 -2.12 -2.17 -2.14 -2.10 -2.08 -2.08 -2.06
2 1 1 100 -2.25 -2.20 -2.15 -2.14 -2.12 -2.10 -2.16 -2.12 -2.09 -2.07 -2.06 -2.05
2 1 1 200 -2.24 -2.18 -2.14 -2.12 -2.11 -2.09 -2.15 -2.11 -2.07 -2.06 -2.05 -2.04
2 1 2 30 -2.31 -2.25 -2.21 -2.20 -2.18 -2.16 -2.20 -2.16 -2.12 -2.12 -2.10 -2.09
2 1 2 50 -2.25 -2.21 -2.17 -2.14 -2.13 -2.11 -2.16 -2.12 -2.09 -2.08 -2.06 -2.05
2 1 2 70 -2.24 -2.19 -2.15 -2.13 -2.12 -2.10 -2.15 -2.11 -2.08 -2.06 -2.06 -2.04
2 1 2 100 -2.24 -2.19 -2.14 -2.12 -2.11 -2.09 -2.15 -2.11 -2.07 -2.06 -2.05 -2.04
2 1 2 200 -2.23 -2.17 -2.13 -2.11 -2.10 -2.08 -2.14 -2.10 -2.06 -2.05 -2.04 -2.03
3 1 0 30 -2.34 -2.28 -2.22 -2.20 -2.18 -2.17 -2.24 -2.19 -2.15 -2.13 -2.12 -2.11
3 1 0 50 -2.29 -2.23 -2.18 -2.16 -2.15 -2.12 -2.20 -2.15 -2.11 -2.09 -2.09 -2.07
3 1 0 70 -2.27 -2.22 -2.16 -2.14 -2.13 -2.11 -2.18 -2.14 -2.10 -2.08 -2.07 -2.06
3 1 0 100 -2.26 -2.21 -2.16 -2.14 -2.12 -2.10 -2.17 -2.13 -2.09 -2.07 -2.06 -2.05
3 1 0 200 -2.25 -2.19 -2.14 -2.12 -2.11 -2.09 -2.16 -2.11 -2.08 -2.06 -2.05 -2.04
3 1 1 30 -2.36 -2.31 -2.26 -2.23 -2.22 -2.20 -2.26 -2.21 -2.18 -2.16 -2.15 -2.14
3 1 1 50 -2.30 -2.24 -2.20 -2.17 -2.16 -2.14 -2.21 -2.16 -2.12 -2.11 -2.10 -2.08
3 1 1 70 -2.28 -2.22 -2.17 -2.15 -2.14 -2.12 -2.19 -2.14 -2.10 -2.09 -2.08 -2.07
3 1 1 100 -2.26 -2.21 -2.16 -2.14 -2.12 -2.10 -2.18 -2.13 -2.09 -2.08 -2.07 -2.05
3 1 1 200 -2.25 -2.19 -2.15 -2.13 -2.11 -2.09 -2.16 -2.12 -2.08 -2.06 -2.05 -2.04
3 1 2 30 -2.31 -2.26 -2.21 -2.19 -2.18 -2.16 -2.20 -2.16 -2.13 -2.11 -2.10 -2.09
3 1 2 50 -2.27 -2.21 -2.17 -2.14 -2.13 -2.11 -2.17 -2.13 -2.09 -2.08 -2.07 -2.05
3 1 2 70 -2.25 -2.20 -2.15 -2.13 -2.12 -2.10 -2.16 -2.12 -2.08 -2.07 -2.06 -2.04
3 1 2 100 -2.24 -2.19 -2.15 -2.13 -2.11 -2.09 -2.16 -2.11 -2.08 -2.06 -2.05 -2.04
3 1 2 200 -2.24 -2.18 -2.14 -2.12 -2.10 -2.08 -2.15 -2.11 -2.07 -2.06 -2.05 -2.03
4 1 0 30 -2.34 -2.28 -2.23 -2.20 -2.18 -2.17 -2.24 -2.20 -2.15 -2.14 -2.12 -2.11
4 1 0 50 -2.30 -2.24 -2.18 -2.16 -2.15 -2.13 -2.21 -2.16 -2.12 -2.10 -2.09 -2.07
4 1 0 70 -2.28 -2.22 -2.17 -2.15 -2.13 -2.11 -2.19 -2.14 -2.10 -2.09 -2.07 -2.06
4 1 0 100 -2.27 -2.21 -2.16 -2.14 -2.12 -2.10 -2.18 -2.13 -2.09 -2.08 -2.06 -2.05
4 1 0 200 -2.26 -2.20 -2.15 -2.13 -2.11 -2.09 -2.17 -2.12 -2.08 -2.07 -2.05 -2.04
4 1 1 30 -2.37 -2.31 -2.26 -2.23 -2.22 -2.20 -2.26 -2.22 -2.18 -2.16 -2.15 -2.14
4 1 1 50 -2.31 -2.25 -2.20 -2.17 -2.16 -2.14 -2.21 -2.16 -2.13 -2.11 -2.10 -2.08
4 1 1 70 -2.29 -2.23 -2.18 -2.16 -2.14 -2.12 -2.19 -2.15 -2.11 -2.09 -2.08 -2.07
4 1 1 100 -2.27 -2.21 -2.16 -2.14 -2.13 -2.11 -2.18 -2.13 -2.09 -2.08 -2.07 -2.05
4 1 1 200 -2.25 -2.20 -2.15 -2.13 -2.11 -2.09 -2.17 -2.12 -2.09 -2.07 -2.05 -2.04
4 1 2 30 -2.31 -2.26 -2.22 -2.19 -2.17 -2.16 -2.21 -2.16 -2.13 -2.11 -2.10 -2.09
4 1 2 50 -2.27 -2.21 -2.17 -2.15 -2.13 -2.11 -2.17 -2.13 -2.09 -2.08 -2.07 -2.05
4 1 2 70 -2.26 -2.21 -2.16 -2.14 -2.12 -2.10 -2.17 -2.12 -2.09 -2.07 -2.05 -2.04
4 1 2 100 -2.25 -2.20 -2.14 -2.13 -2.11 -2.09 -2.16 -2.12 -2.08 -2.06 -2.05 -2.04
4 1 2 200 -2.25 -2.19 -2.14 -2.12 -2.10 -2.08 -2.16 -2.11 -2.08 -2.06 -2.04 -2.03
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Table 2: Critical values for the CADFP test statistic with one common factor for Model 2. The
rank condition is met with inequality

5% level of signi�cance 10% level of signi�cance
k + 1 r p TnN 20 30 50 70 100 200 20 30 50 70 100 200
2 1 0 30 -2.92 -2.86 -2.81 -2.78 -2.76 -2.74 -2.82 -2.78 -2.74 -2.72 -2.70 -2.69
2 1 0 50 -2.83 -2.77 -2.72 -2.70 -2.68 -2.65 -2.74 -2.70 -2.66 -2.64 -2.63 -2.61
2 1 0 70 -2.79 -2.74 -2.69 -2.66 -2.65 -2.62 -2.71 -2.67 -2.63 -2.61 -2.59 -2.58
2 1 0 100 -2.77 -2.71 -2.66 -2.64 -2.62 -2.60 -2.69 -2.65 -2.61 -2.59 -2.57 -2.56
2 1 0 200 -2.74 -2.69 -2.64 -2.62 -2.60 -2.57 -2.67 -2.62 -2.58 -2.56 -2.55 -2.53
2 1 1 30 -2.96 -2.91 -2.86 -2.84 -2.83 -2.81 -2.86 -2.82 -2.79 -2.77 -2.76 -2.74
2 1 1 50 -2.85 -2.80 -2.75 -2.72 -2.71 -2.69 -2.76 -2.72 -2.68 -2.66 -2.65 -2.63
2 1 1 70 -2.80 -2.75 -2.70 -2.68 -2.66 -2.64 -2.72 -2.68 -2.64 -2.62 -2.61 -2.60
2 1 1 100 -2.78 -2.72 -2.67 -2.65 -2.63 -2.61 -2.70 -2.65 -2.61 -2.60 -2.58 -2.57
2 1 1 200 -2.75 -2.69 -2.64 -2.62 -2.60 -2.58 -2.67 -2.63 -2.58 -2.57 -2.55 -2.54
2 1 2 30 -2.90 -2.85 -2.81 -2.79 -2.78 -2.76 -2.79 -2.75 -2.72 -2.70 -2.70 -2.69
2 1 2 50 -2.81 -2.76 -2.72 -2.70 -2.68 -2.66 -2.71 -2.68 -2.65 -2.63 -2.62 -2.60
2 1 2 70 -2.78 -2.72 -2.68 -2.66 -2.64 -2.62 -2.69 -2.65 -2.62 -2.60 -2.59 -2.57
2 1 2 100 -2.76 -2.70 -2.66 -2.64 -2.62 -2.60 -2.67 -2.64 -2.60 -2.58 -2.57 -2.55
2 1 2 200 -2.73 -2.68 -2.63 -2.61 -2.59 -2.57 -2.66 -2.62 -2.58 -2.56 -2.55 -2.53
3 1 0 30 -2.93 -2.86 -2.81 -2.78 -2.76 -2.74 -2.84 -2.78 -2.74 -2.72 -2.71 -2.69
3 1 0 50 -2.84 -2.78 -2.72 -2.70 -2.68 -2.66 -2.76 -2.71 -2.66 -2.64 -2.63 -2.61
3 1 0 70 -2.81 -2.75 -2.69 -2.67 -2.64 -2.62 -2.73 -2.68 -2.63 -2.61 -2.60 -2.58
3 1 0 100 -2.78 -2.72 -2.67 -2.64 -2.62 -2.60 -2.71 -2.66 -2.61 -2.59 -2.57 -2.56
3 1 0 200 -2.76 -2.70 -2.64 -2.62 -2.60 -2.57 -2.68 -2.63 -2.59 -2.57 -2.55 -2.53
3 1 1 30 -2.97 -2.91 -2.87 -2.84 -2.83 -2.81 -2.87 -2.82 -2.79 -2.77 -2.76 -2.74
3 1 1 50 -2.86 -2.80 -2.75 -2.72 -2.71 -2.69 -2.77 -2.72 -2.68 -2.66 -2.65 -2.63
3 1 1 70 -2.82 -2.76 -2.71 -2.68 -2.67 -2.64 -2.73 -2.68 -2.65 -2.62 -2.61 -2.60
3 1 1 100 -2.79 -2.73 -2.68 -2.65 -2.63 -2.61 -2.71 -2.66 -2.62 -2.60 -2.58 -2.57
3 1 1 200 -2.76 -2.70 -2.65 -2.62 -2.61 -2.58 -2.68 -2.63 -2.59 -2.57 -2.56 -2.54
3 1 2 30 -2.90 -2.85 -2.81 -2.79 -2.78 -2.76 -2.79 -2.75 -2.72 -2.71 -2.70 -2.69
3 1 2 50 -2.82 -2.76 -2.72 -2.69 -2.68 -2.66 -2.73 -2.68 -2.65 -2.63 -2.62 -2.60
3 1 2 70 -2.79 -2.73 -2.69 -2.66 -2.64 -2.62 -2.70 -2.65 -2.62 -2.60 -2.59 -2.57
3 1 2 100 -2.77 -2.71 -2.66 -2.64 -2.62 -2.60 -2.69 -2.64 -2.60 -2.58 -2.57 -2.55
3 1 2 200 -2.75 -2.69 -2.64 -2.62 -2.60 -2.57 -2.67 -2.62 -2.58 -2.56 -2.55 -2.53
4 1 0 30 -2.94 -2.87 -2.81 -2.78 -2.76 -2.74 -2.85 -2.79 -2.74 -2.72 -2.70 -2.69
4 1 0 50 -2.85 -2.79 -2.73 -2.70 -2.68 -2.66 -2.76 -2.71 -2.67 -2.65 -2.63 -2.61
4 1 0 70 -2.82 -2.75 -2.69 -2.67 -2.65 -2.62 -2.73 -2.68 -2.64 -2.62 -2.60 -2.58
4 1 0 100 -2.79 -2.73 -2.67 -2.65 -2.62 -2.60 -2.71 -2.66 -2.61 -2.59 -2.58 -2.56
4 1 0 200 -2.76 -2.70 -2.65 -2.62 -2.60 -2.58 -2.69 -2.64 -2.59 -2.57 -2.55 -2.53
4 1 1 30 -2.98 -2.92 -2.87 -2.84 -2.82 -2.81 -2.88 -2.83 -2.79 -2.77 -2.75 -2.74
4 1 1 50 -2.86 -2.81 -2.75 -2.73 -2.71 -2.69 -2.77 -2.73 -2.69 -2.67 -2.65 -2.64
4 1 1 70 -2.83 -2.76 -2.71 -2.69 -2.67 -2.64 -2.74 -2.69 -2.65 -2.63 -2.61 -2.60
4 1 1 100 -2.80 -2.74 -2.68 -2.66 -2.63 -2.62 -2.71 -2.66 -2.62 -2.60 -2.58 -2.57
4 1 1 200 -2.76 -2.71 -2.65 -2.63 -2.60 -2.58 -2.69 -2.64 -2.60 -2.58 -2.56 -2.54
4 1 2 30 -2.91 -2.86 -2.81 -2.79 -2.78 -2.76 -2.80 -2.76 -2.72 -2.71 -2.69 -2.68
4 1 2 50 -2.82 -2.77 -2.72 -2.70 -2.68 -2.66 -2.73 -2.69 -2.65 -2.63 -2.62 -2.61
4 1 2 70 -2.79 -2.74 -2.68 -2.66 -2.65 -2.63 -2.71 -2.66 -2.62 -2.60 -2.59 -2.57
4 1 2 100 -2.77 -2.71 -2.66 -2.64 -2.62 -2.60 -2.69 -2.64 -2.60 -2.59 -2.57 -2.56
4 1 2 200 -2.75 -2.70 -2.64 -2.62 -2.60 -2.57 -2.68 -2.63 -2.59 -2.57 -2.55 -2.53
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Table 3: Critical values for the CADFP test statistic with multiple factors for Model 1. The
rank condition is met with equality

5% level of signi�cance 10% level of signi�cance
k + 1 r p TnN 20 30 50 70 100 200 20 30 50 70 100 200
2 2 0 30 -2.51 -2.45 -2.40 -2.38 -2.36 -2.34 -2.41 -2.36 -2.32 -2.30 -2.29 -2.27
2 2 0 50 -2.50 -2.44 -2.40 -2.37 -2.36 -2.33 -2.40 -2.36 -2.32 -2.30 -2.29 -2.27
2 2 0 70 -2.50 -2.44 -2.40 -2.37 -2.35 -2.33 -2.40 -2.36 -2.32 -2.30 -2.29 -2.27
2 2 0 100 -2.49 -2.44 -2.39 -2.38 -2.35 -2.33 -2.40 -2.36 -2.32 -2.31 -2.29 -2.27
2 2 0 200 -2.49 -2.44 -2.39 -2.37 -2.36 -2.34 -2.40 -2.35 -2.32 -2.31 -2.29 -2.28
2 2 1 30 -2.54 -2.47 -2.41 -2.39 -2.37 -2.35 -2.41 -2.36 -2.32 -2.31 -2.29 -2.27
2 2 1 50 -2.50 -2.45 -2.40 -2.37 -2.36 -2.33 -2.40 -2.35 -2.32 -2.29 -2.28 -2.27
2 2 1 70 -2.50 -2.44 -2.40 -2.37 -2.35 -2.33 -2.40 -2.35 -2.32 -2.30 -2.29 -2.27
2 2 1 100 -2.49 -2.44 -2.39 -2.37 -2.35 -2.33 -2.40 -2.35 -2.32 -2.30 -2.29 -2.27
2 2 1 200 -2.49 -2.44 -2.39 -2.37 -2.35 -2.34 -2.40 -2.35 -2.32 -2.31 -2.29 -2.28
2 2 2 30 -2.48 -2.40 -2.35 -2.32 -2.30 -2.27 -2.34 -2.28 -2.24 -2.22 -2.20 -2.18
2 2 2 50 -2.46 -2.40 -2.35 -2.32 -2.31 -2.29 -2.35 -2.30 -2.27 -2.24 -2.23 -2.21
2 2 2 70 -2.46 -2.41 -2.36 -2.34 -2.32 -2.29 -2.36 -2.32 -2.28 -2.26 -2.25 -2.23
2 2 2 100 -2.47 -2.41 -2.37 -2.35 -2.33 -2.31 -2.37 -2.33 -2.29 -2.28 -2.26 -2.24
2 2 2 200 -2.48 -2.42 -2.38 -2.36 -2.34 -2.32 -2.39 -2.34 -2.31 -2.29 -2.28 -2.26
3 3 0 30 -2.73 -2.66 -2.60 -2.58 -2.55 -2.53 -2.62 -2.56 -2.51 -2.49 -2.48 -2.46
3 3 0 50 -2.73 -2.66 -2.61 -2.58 -2.57 -2.54 -2.63 -2.57 -2.53 -2.51 -2.50 -2.48
3 3 0 70 -2.73 -2.67 -2.61 -2.59 -2.57 -2.55 -2.63 -2.58 -2.54 -2.52 -2.50 -2.49
3 3 0 100 -2.73 -2.67 -2.62 -2.59 -2.57 -2.55 -2.64 -2.59 -2.54 -2.52 -2.51 -2.49
3 3 0 200 -2.73 -2.67 -2.62 -2.60 -2.58 -2.56 -2.64 -2.59 -2.55 -2.53 -2.52 -2.50
3 3 1 30 -2.71 -2.64 -2.57 -2.55 -2.52 -2.50 -2.58 -2.52 -2.47 -2.45 -2.43 -2.41
3 3 1 50 -2.71 -2.64 -2.59 -2.55 -2.55 -2.52 -2.60 -2.54 -2.50 -2.47 -2.47 -2.44
3 3 1 70 -2.71 -2.65 -2.59 -2.57 -2.55 -2.53 -2.61 -2.56 -2.51 -2.50 -2.48 -2.47
3 3 1 100 -2.72 -2.65 -2.61 -2.58 -2.56 -2.54 -2.62 -2.57 -2.53 -2.51 -2.49 -2.48
3 3 1 200 -2.73 -2.67 -2.62 -2.59 -2.58 -2.55 -2.63 -2.59 -2.54 -2.52 -2.51 -2.49
3 3 2 30 -2.61 -2.53 -2.46 -2.43 -2.40 -2.37 -2.46 -2.40 -2.34 -2.32 -2.29 -2.27
3 3 2 50 -2.64 -2.56 -2.51 -2.48 -2.46 -2.44 -2.52 -2.45 -2.41 -2.39 -2.38 -2.36
3 3 2 70 -2.66 -2.60 -2.54 -2.52 -2.49 -2.47 -2.55 -2.50 -2.45 -2.44 -2.42 -2.41
3 3 2 100 -2.68 -2.62 -2.57 -2.54 -2.52 -2.50 -2.58 -2.53 -2.49 -2.47 -2.45 -2.44
3 3 2 200 -2.71 -2.65 -2.60 -2.57 -2.56 -2.53 -2.61 -2.57 -2.52 -2.50 -2.49 -2.47
4 4 0 30 -2.91 -2.83 -2.76 -2.74 -2.71 -2.68 -2.79 -2.73 -2.68 -2.65 -2.63 -2.61
4 4 0 50 -2.92 -2.85 -2.79 -2.76 -2.74 -2.72 -2.82 -2.76 -2.71 -2.69 -2.67 -2.65
4 4 0 70 -2.93 -2.86 -2.80 -2.78 -2.76 -2.73 -2.83 -2.77 -2.73 -2.71 -2.69 -2.67
4 4 0 100 -2.95 -2.87 -2.81 -2.79 -2.77 -2.75 -2.85 -2.79 -2.74 -2.72 -2.70 -2.68
4 4 0 200 -2.95 -2.88 -2.83 -2.80 -2.78 -2.76 -2.85 -2.80 -2.76 -2.73 -2.72 -2.70
4 4 1 30 -2.84 -2.75 -2.68 -2.65 -2.63 -2.60 -2.70 -2.63 -2.57 -2.55 -2.53 -2.51
4 4 1 50 -2.87 -2.80 -2.73 -2.71 -2.69 -2.66 -2.75 -2.70 -2.65 -2.62 -2.60 -2.59
4 4 1 70 -2.89 -2.82 -2.77 -2.74 -2.72 -2.69 -2.79 -2.73 -2.69 -2.66 -2.65 -2.62
4 4 1 100 -2.92 -2.84 -2.79 -2.76 -2.74 -2.72 -2.82 -2.75 -2.71 -2.69 -2.67 -2.65
4 4 1 200 -2.93 -2.87 -2.81 -2.78 -2.77 -2.75 -2.84 -2.79 -2.74 -2.72 -2.70 -2.69
4 4 2 30 -2.75 -2.64 -2.54 -2.50 -2.46 -2.43 -2.57 -2.49 -2.40 -2.37 -2.34 -2.32
4 4 2 50 -2.75 -2.68 -2.62 -2.59 -2.56 -2.54 -2.63 -2.57 -2.52 -2.49 -2.47 -2.46
4 4 2 70 -2.81 -2.74 -2.69 -2.66 -2.63 -2.61 -2.70 -2.64 -2.60 -2.57 -2.56 -2.54
4 4 2 100 -2.86 -2.79 -2.73 -2.71 -2.69 -2.66 -2.76 -2.69 -2.65 -2.63 -2.61 -2.59
4 4 2 200 -2.90 -2.84 -2.79 -2.76 -2.74 -2.72 -2.81 -2.76 -2.71 -2.69 -2.67 -2.66
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Table 4: Critical values for the CADFP test statistic with multiple factors for Model 2. The
rank condition is met with equality

5% level of signi�cance 10% level of signi�cance
k + 1 r p TnN 20 30 50 70 100 200 20 30 50 70 100 200
2 2 0 30 -2.97 -2.90 -2.86 -2.82 -2.80 -2.78 -2.87 -2.82 -2.78 -2.75 -2.74 -2.72
2 2 0 50 -2.95 -2.89 -2.84 -2.81 -2.79 -2.77 -2.86 -2.81 -2.77 -2.75 -2.73 -2.72
2 2 0 70 -2.94 -2.88 -2.83 -2.81 -2.79 -2.77 -2.85 -2.81 -2.77 -2.75 -2.73 -2.71
2 2 0 100 -2.94 -2.88 -2.83 -2.81 -2.79 -2.76 -2.85 -2.81 -2.77 -2.75 -2.73 -2.71
2 2 0 200 -2.93 -2.88 -2.83 -2.80 -2.78 -2.76 -2.85 -2.81 -2.76 -2.75 -2.73 -2.71
2 2 1 30 -3.00 -2.94 -2.89 -2.86 -2.84 -2.81 -2.88 -2.83 -2.79 -2.77 -2.75 -2.73
2 2 1 50 -2.96 -2.90 -2.84 -2.82 -2.80 -2.78 -2.86 -2.81 -2.77 -2.75 -2.74 -2.72
2 2 1 70 -2.94 -2.89 -2.84 -2.81 -2.79 -2.77 -2.85 -2.80 -2.76 -2.75 -2.73 -2.72
2 2 1 100 -2.94 -2.88 -2.83 -2.81 -2.79 -2.77 -2.85 -2.81 -2.77 -2.75 -2.73 -2.71
2 2 1 200 -2.93 -2.88 -2.83 -2.80 -2.79 -2.76 -2.85 -2.80 -2.76 -2.75 -2.73 -2.71
2 2 2 30 -2.94 -2.86 -2.81 -2.77 -2.75 -2.72 -2.80 -2.74 -2.70 -2.67 -2.65 -2.63
2 2 2 50 -2.90 -2.85 -2.79 -2.77 -2.75 -2.73 -2.80 -2.75 -2.71 -2.69 -2.68 -2.66
2 2 2 70 -2.91 -2.85 -2.80 -2.77 -2.75 -2.73 -2.81 -2.76 -2.72 -2.71 -2.69 -2.67
2 2 2 100 -2.91 -2.86 -2.81 -2.79 -2.76 -2.74 -2.82 -2.78 -2.73 -2.72 -2.70 -2.69
2 2 2 200 -2.92 -2.86 -2.81 -2.79 -2.77 -2.75 -2.84 -2.79 -2.75 -2.73 -2.72 -2.70
3 3 0 30 -3.14 -3.06 -3.00 -2.98 -2.95 -2.92 -3.03 -2.97 -2.92 -2.90 -2.88 -2.86
3 3 0 50 -3.13 -3.06 -3.01 -2.98 -2.96 -2.93 -3.04 -2.98 -2.93 -2.91 -2.89 -2.88
3 3 0 70 -3.13 -3.07 -3.01 -2.98 -2.96 -2.94 -3.04 -2.99 -2.94 -2.92 -2.90 -2.89
3 3 0 100 -3.13 -3.07 -3.01 -2.99 -2.97 -2.94 -3.04 -2.99 -2.94 -2.93 -2.91 -2.89
3 3 0 200 -3.13 -3.07 -3.02 -2.99 -2.98 -2.95 -3.05 -3.00 -2.95 -2.93 -2.92 -2.90
3 3 1 30 -3.12 -3.05 -2.99 -2.96 -2.94 -2.91 -2.99 -2.93 -2.88 -2.86 -2.84 -2.82
3 3 1 50 -3.11 -3.04 -2.99 -2.96 -2.94 -2.91 -3.01 -2.94 -2.91 -2.88 -2.87 -2.85
3 3 1 70 -3.11 -3.05 -3.00 -2.97 -2.95 -2.93 -3.01 -2.96 -2.92 -2.90 -2.88 -2.86
3 3 1 100 -3.12 -3.05 -3.00 -2.98 -2.96 -2.93 -3.03 -2.98 -2.93 -2.91 -2.89 -2.88
3 3 1 200 -3.12 -3.06 -3.01 -2.99 -2.97 -2.95 -3.04 -2.99 -2.95 -2.93 -2.91 -2.89
3 3 2 30 -3.01 -2.93 -2.85 -2.82 -2.79 -2.76 -2.85 -2.78 -2.72 -2.70 -2.68 -2.65
3 3 2 50 -3.02 -2.95 -2.90 -2.87 -2.85 -2.83 -2.91 -2.85 -2.81 -2.78 -2.77 -2.75
3 3 2 70 -3.05 -2.99 -2.93 -2.90 -2.88 -2.86 -2.94 -2.90 -2.85 -2.83 -2.81 -2.79
3 3 2 100 -3.08 -3.01 -2.95 -2.94 -2.91 -2.89 -2.98 -2.93 -2.88 -2.87 -2.85 -2.83
3 3 2 200 -3.10 -3.04 -2.99 -2.97 -2.95 -2.92 -3.01 -2.97 -2.92 -2.90 -2.89 -2.87
4 4 0 30 -3.28 -3.19 -3.13 -3.10 -3.07 -3.04 -3.16 -3.09 -3.04 -3.02 -2.99 -2.97
4 4 0 50 -3.29 -3.22 -3.16 -3.13 -3.10 -3.08 -3.19 -3.13 -3.08 -3.06 -3.04 -3.02
4 4 0 70 -3.30 -3.23 -3.17 -3.14 -3.12 -3.09 -3.20 -3.15 -3.10 -3.08 -3.05 -3.04
4 4 0 100 -3.31 -3.24 -3.18 -3.15 -3.13 -3.11 -3.22 -3.16 -3.11 -3.09 -3.07 -3.05
4 4 0 200 -3.32 -3.25 -3.19 -3.16 -3.14 -3.12 -3.23 -3.18 -3.13 -3.11 -3.09 -3.07
4 4 1 30 -3.21 -3.12 -3.04 -3.01 -2.98 -2.95 -3.05 -2.99 -2.92 -2.90 -2.88 -2.86
4 4 1 50 -3.23 -3.16 -3.10 -3.07 -3.04 -3.02 -3.11 -3.06 -3.01 -2.99 -2.97 -2.95
4 4 1 70 -3.26 -3.19 -3.13 -3.10 -3.08 -3.05 -3.16 -3.10 -3.05 -3.02 -3.01 -2.99
4 4 1 100 -3.28 -3.21 -3.15 -3.12 -3.10 -3.08 -3.18 -3.13 -3.08 -3.05 -3.04 -3.02
4 4 1 200 -3.30 -3.24 -3.18 -3.15 -3.13 -3.11 -3.21 -3.16 -3.11 -3.09 -3.07 -3.05
4 4 2 30 -3.15 -3.02 -2.92 -2.87 -2.83 -2.78 -2.94 -2.85 -2.77 -2.73 -2.69 -2.66
4 4 2 50 -3.09 -3.03 -2.96 -2.93 -2.90 -2.88 -2.97 -2.91 -2.86 -2.84 -2.82 -2.80
4 4 2 70 -3.16 -3.09 -3.03 -3.00 -2.98 -2.96 -3.05 -3.00 -2.95 -2.93 -2.91 -2.89
4 4 2 100 -3.21 -3.15 -3.09 -3.06 -3.04 -3.02 -3.12 -3.06 -3.01 -2.99 -2.97 -2.95
4 4 2 200 -3.27 -3.21 -3.15 -3.12 -3.10 -3.08 -3.18 -3.13 -3.08 -3.06 -3.04 -3.02
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Table 5: Empirical size and power of the panel cointegration test statistics with strong cross-
section dependence

N = 10 N = 20 N = 50
�i � T Z� t ~F CADFP Z� t ~F CADFP Z� t ~F CADFP
1 1 50 0.124 0.010 0.051 0.061 0.061 0.047 0.052 0.066 0.050
1 1 100 0.072 0.046 0.051 0.058 0.053 0.050 0.059 0.056 0.053
1 1 250 0.066 0.051 0.045 0.053 0.055 0.043 0.048 0.049 0.052
1 0.99 50 0.123 0.010 0.053 0.060 0.061 0.047 0.053 0.064 0.050
1 0.99 100 0.072 0.048 0.051 0.059 0.056 0.045 0.059 0.058 0.049
1 0.99 250 0.065 0.064 0.042 0.053 0.061 0.038 0.048 0.062 0.038
1 0.95 50 0.120 0.010 0.047 0.056 0.074 0.040 0.049 0.077 0.038
1 0.95 100 0.070 0.076 0.040 0.058 0.092 0.029 0.056 0.095 0.021
1 0.95 250 0.064 0.235 0.025 0.053 0.257 0.012 0.045 0.276 0.006
1 0.9 50 0.118 0.013 0.040 0.056 0.102 0.027 0.047 0.107 0.020
1 0.9 100 0.069 0.167 0.030 0.058 0.200 0.016 0.056 0.211 0.007
1 0.9 250 0.065 0.642 0.021 0.051 0.788 0.006 0.046 0.809 0.001
0.99 1 50 0.127 0.010 0.055 0.064 0.061 0.048 0.062 0.065 0.052
0.99 1 100 0.096 0.047 0.057 0.078 0.053 0.058 0.102 0.057 0.068
0.99 1 250 0.186 0.053 0.085 0.261 0.056 0.107 0.476 0.050 0.160
0.99 0.99 50 0.125 0.009 0.057 0.064 0.061 0.049 0.061 0.064 0.051
0.99 0.99 100 0.095 0.048 0.054 0.079 0.056 0.055 0.101 0.057 0.061
0.99 0.99 250 0.185 0.065 0.078 0.260 0.060 0.096 0.473 0.064 0.132
0.99 0.95 50 0.121 0.009 0.050 0.061 0.073 0.041 0.058 0.078 0.040
0.99 0.95 100 0.090 0.075 0.044 0.077 0.092 0.034 0.098 0.095 0.028
0.99 0.95 250 0.181 0.244 0.050 0.261 0.258 0.038 0.469 0.278 0.040
0.99 0.9 50 0.121 0.014 0.043 0.057 0.102 0.028 0.056 0.107 0.023
0.99 0.9 100 0.089 0.167 0.032 0.077 0.202 0.019 0.097 0.211 0.010
0.99 0.9 250 0.179 0.668 0.044 0.259 0.798 0.022 0.466 0.818 0.016
0.95 1 50 0.179 0.010 0.089 0.217 0.060 0.103 0.416 0.066 0.146
0.95 1 100 0.560 0.044 0.215 0.830 0.054 0.358 0.996 0.057 0.586
0.95 1 250 1.000 0.056 0.950 1 0.054 1.000 1.000 0.051 1.000
0.95 0.99 50 0.179 0.008 0.088 0.218 0.062 0.101 0.415 0.064 0.141
0.95 0.99 100 0.561 0.047 0.215 0.832 0.058 0.354 0.997 0.058 0.581
0.95 0.99 250 1.000 0.069 0.944 1 0.064 1.000 1.000 0.065 1.000
0.95 0.95 50 0.177 0.010 0.085 0.214 0.073 0.084 0.410 0.077 0.112
0.95 0.95 100 0.556 0.078 0.187 0.830 0.093 0.300 0.996 0.097 0.495
0.95 0.95 250 1.000 0.288 0.931 1 0.271 0.999 1.000 0.285 1.000
0.95 0.9 50 0.172 0.014 0.071 0.209 0.101 0.065 0.401 0.109 0.078
0.95 0.9 100 0.557 0.175 0.160 0.826 0.206 0.233 0.996 0.213 0.396
0.95 0.9 250 1.000 0.783 0.923 1 0.83 0.998 1.000 0.836 1.000
0.9 1 50 0.338 0.010 0.213 0.742 0.061 0.318 0.981 0.067 0.532
0.9 1 100 0.971 0.046 0.765 1 0.057 0.974 1.000 0.058 1.000
0.9 1 250 1.000 0.061 1.000 1 0.056 1.000 1.000 0.051 1.000
0.9 0.99 50 0.336 0.009 0.213 0.739 0.063 0.319 0.981 0.065 0.527
0.9 0.99 100 0.970 0.050 0.764 1 0.059 0.973 1.000 0.060 1.000
0.9 0.99 250 1.000 0.076 1.000 1 0.065 1.000 1.000 0.065 1.000
0.9 0.95 50 0.336 0.010 0.200 0.736 0.074 0.296 0.981 0.079 0.492
0.9 0.95 100 0.971 0.081 0.739 1 0.094 0.966 1.000 0.100 1.000
0.9 0.95 250 1.000 0.311 1.000 1 0.280 1.000 1.000 0.284 1.000
0.9 0.9 50 0.335 0.014 0.183 0.731 0.102 0.258 0.981 0.111 0.438
0.9 0.9 100 0.970 0.181 0.710 1 0.209 0.950 1.000 0.219 1.000
0.9 0.9 250 1.000 0.833 1.000 1 0.842 1.000 1.000 0.842 1.000

26



Table 6: Empirical size and power of the CADFP panel cointegration test statistic with strong
cross-section dependence. Rank condition is satis�ed with equality and with inequality

Equality Inequality
�i � T N = 20 N = 50 N = 20 N = 50
1 1 50 0.113 0.066 0.052 0.047
1 1 100 0.110 0.068 0.053 0.051
1 1 250 0.112 0.069 0.048 0.051
1 0.99 50 0.109 0.068 0.049 0.047
1 0.99 100 0.109 0.061 0.052 0.052
1 0.99 250 0.110 0.046 0.044 0.042
1 0.95 50 0.108 0.049 0.045 0.043
1 0.95 100 0.100 0.024 0.039 0.031
1 0.95 250 0.107 0.007 0.025 0.013
1 0.9 50 0.101 0.027 0.036 0.032
1 0.9 100 0.090 0.007 0.024 0.017
1 0.9 250 0.161 0.003 0.016 0.007
0.99 1 50 0.114 0.068 0.053 0.050
0.99 1 100 0.118 0.081 0.061 0.063
0.99 1 250 0.169 0.153 0.107 0.125
0.99 0.99 50 0.113 0.068 0.051 0.050
0.99 0.99 100 0.119 0.074 0.061 0.060
0.99 0.99 250 0.169 0.125 0.101 0.112
0.99 0.95 50 0.110 0.050 0.046 0.044
0.99 0.95 100 0.107 0.032 0.047 0.037
0.99 0.95 250 0.177 0.027 0.060 0.045
0.99 0.9 50 0.104 0.029 0.037 0.032
0.99 0.9 100 0.104 0.009 0.030 0.020
0.99 0.9 250 0.262 0.012 0.041 0.022
0.95 1 50 0.162 0.143 0.097 0.111
0.95 1 100 0.273 0.419 0.278 0.410
0.95 1 250 0.716 0.987 0.993 1.000
0.95 0.99 50 0.160 0.141 0.095 0.109
0.95 0.99 100 0.270 0.409 0.279 0.408
0.95 0.99 250 0.741 0.987 0.993 1.000
0.95 0.95 50 0.153 0.118 0.085 0.090
0.95 0.95 100 0.278 0.299 0.239 0.333
0.95 0.95 250 0.889 0.985 0.988 1.000
0.95 0.9 50 0.146 0.076 0.073 0.071
0.95 0.9 100 0.300 0.197 0.198 0.253
0.95 0.9 250 0.973 0.988 0.983 1.000
0.9 1 50 0.275 0.381 0.269 0.377
0.9 1 100 0.584 0.946 0.903 0.997
0.9 1 250 0.944 1.000 1.000 1.000
0.9 0.99 50 0.274 0.379 0.271 0.377
0.9 0.99 100 0.582 0.949 0.902 0.998
0.9 0.99 250 0.959 1.000 1.000 1.000
0.9 0.95 50 0.271 0.346 0.253 0.341
0.9 0.95 100 0.628 0.933 0.887 0.995
0.9 0.95 250 0.997 1.000 1.000 1.000
0.9 0.9 50 0.266 0.281 0.226 0.291
0.9 0.9 100 0.703 0.910 0.863 0.991
0.9 0.9 250 1.000 1.000 1.000 1.000
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Table 7: Empirical size and power of the panel cointegration tests with semi-strong and weak
cross-section dependence through the loadings

Semi-strong cross-section dependence Weak cross-section dependence
N = 10 N = 20 N = 50 N = 10 N = 20 N = 50

�i � T Z� CADF Z� CADF Z� CADF Z� CADF Z� CADF Z� CADF
1 1 50 0.105 0.051 0.051 0.050 0.055 0.049 0.098 0.051 0.051 0.047 0.053 0.052
1 1 100 0.061 0.056 0.052 0.053 0.057 0.043 0.059 0.052 0.052 0.051 0.058 0.046
1 1 250 0.053 0.050 0.056 0.046 0.049 0.048 0.053 0.050 0.054 0.047 0.047 0.048
1 0.99 50 0.105 0.051 0.051 0.050 0.055 0.050 0.098 0.051 0.052 0.047 0.053 0.052
1 0.99 100 0.062 0.056 0.053 0.054 0.057 0.043 0.059 0.053 0.052 0.050 0.057 0.047
1 0.99 250 0.059 0.048 0.055 0.045 0.050 0.049 0.056 0.049 0.055 0.047 0.047 0.049
1 0.95 50 0.105 0.051 0.053 0.047 0.056 0.048 0.100 0.051 0.052 0.047 0.052 0.053
1 0.95 100 0.067 0.056 0.055 0.049 0.057 0.042 0.062 0.053 0.052 0.050 0.057 0.048
1 0.95 250 0.065 0.049 0.061 0.040 0.052 0.048 0.054 0.051 0.054 0.045 0.047 0.049
1 0.9 50 0.106 0.052 0.052 0.043 0.057 0.048 0.098 0.051 0.052 0.046 0.052 0.053
1 0.9 100 0.073 0.054 0.058 0.043 0.059 0.044 0.062 0.054 0.052 0.049 0.057 0.048
1 0.9 250 0.066 0.051 0.064 0.040 0.053 0.049 0.054 0.050 0.055 0.045 0.047 0.049
0.99 1 50 0.109 0.052 0.060 0.051 0.066 0.051 0.104 0.053 0.060 0.046 0.066 0.056
0.99 1 100 0.075 0.061 0.078 0.060 0.102 0.057 0.076 0.059 0.079 0.060 0.103 0.061
0.99 1 250 0.164 0.085 0.246 0.111 0.475 0.135 0.170 0.083 0.252 0.100 0.479 0.136
0.99 0.99 50 0.108 0.053 0.059 0.051 0.067 0.051 0.104 0.052 0.060 0.046 0.066 0.056
0.99 0.99 100 0.076 0.061 0.078 0.060 0.103 0.057 0.078 0.058 0.078 0.060 0.102 0.061
0.99 0.99 250 0.171 0.085 0.253 0.102 0.482 0.133 0.173 0.086 0.253 0.100 0.479 0.135
0.99 0.95 50 0.108 0.053 0.059 0.050 0.067 0.050 0.105 0.052 0.059 0.047 0.066 0.056
0.99 0.95 100 0.084 0.058 0.083 0.055 0.106 0.055 0.079 0.057 0.078 0.059 0.103 0.061
0.99 0.95 250 0.192 0.082 0.272 0.088 0.493 0.131 0.175 0.084 0.255 0.097 0.480 0.135
0.99 0.9 50 0.110 0.052 0.061 0.046 0.068 0.049 0.106 0.052 0.060 0.047 0.066 0.055
0.99 0.9 100 0.090 0.059 0.083 0.052 0.110 0.054 0.080 0.058 0.079 0.059 0.104 0.062
0.99 0.9 250 0.200 0.084 0.279 0.089 0.497 0.130 0.175 0.084 0.256 0.097 0.481 0.135
0.95 1 50 0.171 0.077 0.228 0.096 0.450 0.121 0.168 0.077 0.239 0.090 0.450 0.118
0.95 1 100 0.573 0.201 0.842 0.315 0.997 0.502 0.597 0.198 0.857 0.299 0.998 0.492
0.95 1 250 0.999 0.929 1.000 0.999 1.000 1.000 1.000 0.935 1.000 0.999 1.000 1.000
0.95 0.99 50 0.171 0.078 0.229 0.098 0.448 0.120 0.168 0.076 0.239 0.089 0.449 0.119
0.95 0.99 100 0.573 0.202 0.847 0.314 0.997 0.498 0.595 0.201 0.858 0.298 0.998 0.492
0.95 0.99 250 1.000 0.930 1.000 0.999 1.000 1.000 1.000 0.936 1.000 0.999 1.000 1.000
0.95 0.95 50 0.174 0.078 0.234 0.095 0.452 0.117 0.170 0.076 0.240 0.090 0.451 0.118
0.95 0.95 100 0.600 0.201 0.865 0.301 0.998 0.496 0.598 0.199 0.862 0.298 0.998 0.493
0.95 0.95 250 1.000 0.935 1.000 0.998 1.000 1.000 1.000 0.937 1.000 0.999 1.000 1.000
0.95 0.9 50 0.176 0.076 0.242 0.087 0.456 0.111 0.171 0.076 0.239 0.089 0.451 0.117
0.95 0.9 100 0.617 0.200 0.873 0.287 0.998 0.490 0.599 0.197 0.863 0.297 0.998 0.491
0.95 0.9 250 1.000 0.940 1.000 0.999 1.000 1.000 1.000 0.938 1.000 0.999 1.000 1.000
0.9 1 50 0.396 0.172 0.802 0.281 0.991 0.435 0.416 0.173 0.818 0.268 0.991 0.432
0.9 1 100 0.986 0.732 1.000 0.963 1.000 1.000 0.994 0.738 1.000 0.952 1.000 1.000
0.9 1 250 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.9 0.99 50 0.398 0.172 0.801 0.281 0.991 0.434 0.415 0.173 0.818 0.268 0.992 0.431
0.9 0.99 100 0.988 0.733 1.000 0.964 1.000 1.000 0.993 0.740 1.000 0.953 1.000 1.000
0.9 0.99 250 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.9 0.95 50 0.401 0.170 0.811 0.272 0.991 0.433 0.418 0.171 0.818 0.268 0.992 0.430
0.9 0.95 100 0.991 0.734 1.000 0.958 1.000 1.000 0.994 0.740 1.000 0.951 1.000 1.000
0.9 0.95 250 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.9 0.9 50 0.407 0.172 0.821 0.265 0.992 0.434 0.417 0.172 0.819 0.268 0.992 0.430
0.9 0.9 100 0.993 0.740 1.000 0.955 1.000 1.000 0.994 0.740 1.000 0.951 1.000 1.000
0.9 0.9 250 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 8: Empirical size and power of the panel cointegration tests with normalized spatial
dependence, N = 20

SAR SMA
# = 0:4 # = 0:8 # = 0:4 # = 0:8

�i T Z� CADFP Z� CADFP Z� CADFP Z� CADFP
1 50 0.074 0.065 0.113 0.137 0.064 0.064 0.117 0.087
1 100 0.084 0.073 0.124 0.147 0.070 0.071 0.121 0.090
1 250 0.066 0.067 0.113 0.146 0.067 0.054 0.131 0.085
0.99 50 0.080 0.066 0.114 0.142 0.070 0.066 0.118 0.091
0.99 100 0.111 0.084 0.150 0.162 0.096 0.077 0.142 0.104
0.99 250 0.240 0.119 0.263 0.211 0.239 0.111 0.273 0.145
0.95 50 0.201 0.112 0.191 0.192 0.204 0.105 0.191 0.135
0.95 100 0.691 0.311 0.545 0.365 0.688 0.309 0.517 0.330
0.95 250 1.000 0.998 0.997 0.967 1.000 0.998 0.998 0.992
0.9 50 0.627 0.287 0.411 0.349 0.662 0.280 0.386 0.311
0.9 100 1.000 0.935 0.962 0.852 0.999 0.942 0.955 0.912
0.9 250 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SEC1 SEC2
# = 0:4 # = 0:8 # = 0:4 # = 0:8

�i T Z� CADFP Z� CADFP Z� CADFP Z� CADFP
1 50 0.048 0.046 0.050 0.043 0.054 0.043 0.058 0.049
1 100 0.062 0.052 0.060 0.052 0.062 0.053 0.066 0.053
1 250 0.053 0.049 0.052 0.046 0.049 0.049 0.047 0.048
0.99 50 0.051 0.048 0.055 0.046 0.056 0.045 0.060 0.051
0.99 100 0.084 0.060 0.083 0.058 0.084 0.061 0.091 0.062
0.99 250 0.222 0.096 0.224 0.098 0.221 0.100 0.219 0.100
0.95 50 0.187 0.089 0.183 0.087 0.186 0.086 0.192 0.086
0.95 100 0.708 0.300 0.706 0.296 0.701 0.296 0.706 0.294
0.95 250 1.000 0.999 1.000 0.999 1.000 0.999 1.000 0.999
0.9 50 0.683 0.266 0.678 0.262 0.673 0.263 0.680 0.266
0.9 100 1.000 0.953 1.000 0.954 1.000 0.953 1.000 0.957
0.9 250 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SEC3
# = 0:4 # = 0:8

�i T Z� CADFP Z� CADFP
1 50 0.058 0.052 0.071 0.062
1 100 0.063 0.054 0.075 0.069
1 250 0.050 0.050 0.065 0.064
0.99 50 0.068 0.053 0.078 0.066
0.99 100 0.092 0.062 0.103 0.077
0.99 250 0.222 0.107 0.235 0.121
0.95 50 0.202 0.092 0.212 0.111
0.95 100 0.702 0.293 0.701 0.312
0.95 250 1.000 0.999 1.000 0.999
0.9 50 0.676 0.270 0.658 0.284
0.9 100 1.000 0.956 0.998 0.942
0.9 250 1.000 1.000 1.000 1.000
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Figure 1: US State real house price

Figure 2: US State real per capita disposable income
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Table 9: US Housing price and disposable income relationship. Individual cointegration statis-
tics

p = 0 p = 1 p = 2 p = 3 p = 4
Alabama -0.827 -1.259 -3.575 -3.585 -1.858
Arkansas -1.121 -2.557 -3.668 -2.563 -1.772
Arizona -1.972 -2.157 -2.708 -3.491 -3.633
California -1.418 -3.526 -3.797 -3.563 -3.555
Colorado -1.110 -1.963 -1.867 -2.370 -1.633
Connecticut -0.953 -2.196 -2.905 -5.117 -3.560
District of Columbia -2.273 -2.606 -3.370* -1.964 -1.901
Delaware -2.346 -2.212 -3.025 -3.151* -2.442
Florida -2.016 -1.807 -2.664 -1.480 -1.314
Georgia -3.758** -3.991 -3.127* -1.752 -4.663
Iowa -1.409 -2.559 -2.956 -3.052 -4.393
Idaho -1.588 -2.302 -3.826 -8.305 -4.972
Illinois -1.669 -1.775 -1.531 -2.875 -1.736
Indiana -1.626 -1.980 -1.839 -2.106 -2.472
Kansas -1.343 -1.662 -1.989 -2.134 -1.758
Kentucky -3.414* -1.610 -1.151 -2.955 -1.420
Louisiana -1.817 -2.932 -4.087** -6.247** -3.523**
Massachusetts -1.210 -2.031 -3.119* -4.465** -5.050**
Maryland -1.348 -3.061 -3.640** -4.336** -2.906
Maine -0.935 -3.192* -3.108* -3.334* -3.553**
Michigan -1.521 -3.145* -2.767 -2.450 -2.294
Minnesota -0.379 -0.416 -2.033 -1.223 -1.121
Missouri -1.575 -2.957 -3.456* -1.456 -1.416
Mississippi -3.266 -2.602 -2.341 -3.788** -2.325
Montana -1.578 -1.975 -2.198 -1.949 -1.316
North Carolina -2.145 -1.814 -1.404 -3.812** -4.361**
North Dakota -2.636 -4.622** -3.935** -3.433* -2.408
Nebraska -1.092 -3.506** -3.782** -4.605** -4.307**
New Hampshire -0.911 -3.236* -3.040 -3.716** -3.744**
New Jersey -1.798 -2.895 -2.622 -2.651 -2.565
New Mexico -1.368 -2.165 -3.879** -3.624** -3.020
Nevada -2.136 -1.832 -1.153 -2.097 -1.482
New York -4.822** -4.808** -1.824 -0.230 -1.793
Ohio -1.625 -1.792 -2.228 -2.707 -3.752**
Oklahoma -2.114 -4.011** -4.511** -2.935 -5.321**
Oregon -1.243 -1.758 -2.242 -3.802** -3.739**
Pennsylvania -1.769 -3.008 -2.425 -3.324* -2.340
Rhode Island -1.344 -3.139* -3.317* -5.344** -5.342**
South Carolina -3.112* -5.697** -1.794 -1.547 -1.235
South Dakota -3.854** -2.213 -2.229 -2.110 -3.181
Tennessee -1.230 -1.918 -2.588 -2.714 -1.616
Texas -2.348 -3.654** -4.175** -3.320* -4.181**
Utah -1.156 -2.919 -2.828 -3.335* -2.552
Virginia -1.730 -1.875 -2.767 -4.731** -1.550
Vermont -2.189 -2.460 -3.557 -4.176** -2.844
Washington -2.011 -3.409* -2.503 -3.179* -3.768**
Wisconsin -1.939 -0.792 -1.184 -2.969 -2.634
West Virginia -1.776 -1.442 -1.729 -2.155 -2.913
Wyoming -1.927 -2.112 -3.677** -4.694** -3.326*
Notes: Columns 2 to 6 report the results for di¤erent lags. ** and * denote rejection
of the null hypothesis of no cointegration at the 5 and 10% levels of signi�cance,
respectively.
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Table 10: Residual cross correlation of ADF(p) regressions. US Housing price and production
function illustrations

US Housing prices
ADF(1) ADF(2) ADF(3) ADF(4)

pi;t 67.07 63.16 58.99 56.28
yi;t 93.41 89.02 88.49 82.62

Production function
ADF(1) ADF(2) ADF(3) ADF(4)

yi;t 30.28 28.25 28.16 28.32
li;t 12.09 4.63 4.43 5.11
ki;t 42.57 24.82 25.13 25.33

Table 11: Production function. Individual CCE cointegration statistics
p = 0 p = 1 p = 2 p = 3 p = 4

AUS -0.881 1.071 0.149 -0.069 0.483
AUT -3.189* -4.439** -6.153** -4.667** -2.858
BEL 1.351 1.942 0.406 0.703 0.111
CAN -2.005 -2.694 -1.928 -1.136 -1.422
CHE -1.236 -1.126 -1.220 -1.897 -1.977
DNK -2.804 -2.430 -2.210 -2.124 -3.386**
ESP -5.354** -3.206* -3.755**a -3.017* -3.233*
FIN -0.808 -2.137 -1.577 -1.482 -1.535
FRA -2.401 -2.110 -1.451 -0.655 -0.927
GBR -3.490** -2.405 -2.674 -2.709 -3.031*
GRC -2.387 -3.177* -2.190 -2.226 -2.056
IRL -0.366 -1.251 -1.202 -1.558 -1.955
ITA -1.431 -1.139 -0.583 -0.418 0.304
LUX -1.502 -1.904 -1.819 -1.761 -2.283
NLD -2.439 -2.521 -2.317 -3.136* -2.671
NOR -1.613 -1.824 -1.510 -1.231 -1.087
PRT -0.747 -0.593 -0.035 0.247 0.390
SWE -0.225 -1.507 -0.945 -0.668 -1.298
USA -0.367 -0.950 -0.673 -0.283 -0.451
Notes: Columns 2 to 6 report the results for di¤erent lags. ** and
* denote rejection of the null hypothesis of no cointegration at the
5 and 10% levels of signi�cance, respectively. a indicates that the
null hypothesis is not rejected when using the truncated version
of the test statistic.

Table 12: Production function. Banerjee and Carrion-i-Silvestre panel cointegration test
Not transformed

r = 0 r = 1 r = 2 r = 3 r = 4 r = 5 r = 6
Z� -3.56 -3.16 -3.09 -2.84 -2.75 -2.46 -2.53
r̂1 (non-parametric MQ test) - 1 1 3 4 5 6
r̂1 (parametric MQ test) - 1 2 3 4 5 6

Transformed
r = 0 r = 1 r = 2 r = 3 r = 4 r = 5 r = 6

Z� -3.56 -3.79 -3.75 -3.76 -3.88 -4.08 -3.62
r̂1 (non-parametric MQ test) - 1 2 3 4 5 6
r̂1 (parametric MQ test) - 1 2 3 4 5 6
Notes: Transformed means that the y�i;t variables are divided by their standard deviation
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A Supporting information

Lemma 1 De�ne the vector of stochastic processes Vi;t =
�
e0i;t; v

0
t

�0
that satis�es the panel

functional central limit theorem (CLT):

T�1=2
[Tr]X
t=1

Vi;t ) Ci (1)Wi (r) as T !1 for all i;

where Ci (1) is a ((1 + k + r)� (1 + k + r))-matrix of conditional long-run standard deviations.

Proof: see Lemma 3 in Phillips and Moon (1999).

Lemma 2 De�ne the (1 + k + r)-vector Wi (r) of standard Brownian motions. The expected

value of the cross-product matrix for the demeaned �W �
i (r) = Wi (r)�

R 1
0 Wi (s) ds �and de-

trended �W �
i (r) =Wi (r)� (4� 6r)

R 1
0 Wi (s) ds� (�6 + 12r)

R 1
0 sWi (s) ds �vectors of Brown-

ian motions is given by:

a) Demeaned Brownian motions:

E (W � (r)W � (s)) = (r ^ s)� 2r � r
2

2
� 2s+ s

2

2
+
1

3
:

b) Detrended Brownian motions:

E (W � (r)W � (s)) = (r ^ s) + 2r3s� r3 � 3r2s+ 2r2 + 2rs3 � 3rs2

+
6

5
rs� 11

10
r � s3 + 2s2 � 11

10
s+

2

15
:

Proof. Constant term. De�ne a vector of demeaned Brownian motions W �
i (r) = Wi (r) �R 1

0 Wi (s) ds for which we want to compute E (W �
i (r)W

�0
i (s)). Since the Brownian motions are

independent across i, consider the cross-product for one element of the vector, and remove the

subscript to simplify notation:

E (W � (r)W � (s)) = E

��
W (r)�

Z 1

0
W (u) du

��
W (s)�

Z 1

0
W (u) du

��
= E

"
W (r)W (s)�W (r)

Z 1

0
W (u) du�W (s)

Z 1

0
W (u) du+

�Z 1

0
W (u) du

�2#
= E [A1�A2�A3 +A4] :

The expected value of A1 is:

E (A1) = E (W (r)W (s)) = (r ^ s) :

2



For the second element we have:

E (A2) = E

�
W (r)

Z 1

0
W (u) du

�
=

Z r

0
E (W (r)W (u)) du+

Z 1

r
E (W (r)W (u)) du

=

�Z r

0
udu+

Z 1

r
rdu

�
=

�
r2

2
+ r (1� r)

�
:

The computation of the expected value for the third element is similar:

E (A3) = E

�
W (s)

Z 1

0
W (u) du

�
=

Z s

0
E (W (s)W (u)) du+

Z 1

s
E (W (s)W (u)) du

=

�Z s

0
udu+

Z 1

s
sdu

�
=

�
s2

2
+ s (1� s)

�
:

Finally, for the fourth element:

E (A4) = E

"�Z 1

0
W (u) du

�2#

= E

�Z 1

0

Z 1

0
W (u)W (v) dudv

�
= 2

Z 1

0

Z u

0
E (W (u)W (v)) dudv

= 2

Z 1

0

Z u

0
vdudv =

1

3
:

Taken all these elements together, we obtain:

E (W � (r)W � (s)) = (r ^ s)� 2r � r
2

2
� 2s+ s

2

2
+
1

3
:

Time trend case. De�ne a vector of detrended Brownian motions W �
i (r) =Wi (r)� (4� 6r)R 1

0 Wi (s) ds� (�6 + 12r)
R 1
0 sWi (s) ds for which we want to compute E (W �

i (r)W
�0
i (s)). Since

the Brownian motions are independent across i, consider the cross-product for one element of

the vector, and remove the subscript to simplify notation:

E (W � (r)W � (s)) = E

�
(W (r)� (4� 6r)

Z 1

0
W (u) du� (�6 + 12r)

Z 1

0
uW (u) du)

(W (s)� (4� 6s)
Z 1

0
W (u) du� (�6 + 12s)

Z 1

0
uW (u) du)

�
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so that

E (W � (r)W � (s)) = E [W (r)W (s)� (4� 6s)W (r)

Z 1

0
W (u) du�W (r) (�6 + 12s)

Z 1

0
uW (u) du

� (4� 6r)W (s)

Z 1

0
W (u) du+ (4� 6r) (4� 6s)

�Z 1

0
W (u) du

�2
+(4� 6r) (�6 + 12s)

Z 1

0
W (u) du

Z 1

0
uW (u) du

� (�6 + 12r)W (s)

Z 1

0
uW (u) du

+(�6 + 12r) (4� 6s)
Z 1

0
W (u) du

Z 1

0
uW (u) du

+(�6 + 12r) (�6 + 12s)
�Z 1

0
uW (u) du

�2#
= E [B1�B2�B3�B4 +B5 +B6�B7 +B8 +B9] :

Let us focus on the expected value of each of these nine elements. For the �rst element we have:

E (B1) = E (W (r)W (s)) = (r ^ s) :

The second element:

E (B2) = E

�
(4� 6s)W (r)

Z 1

0
W (u) du

�
= (4� 6s)

�Z r

0
E (W (r)W (u)) du+

Z 1

r
E (W (r)W (u)) du

�
= (4� 6s)

�Z r

0
udu+

Z 1

r
rdu

�
= (4� 6s)

�
r2

2
+ r (1� r)

�
:

The third element:

E (B3) = E

�
(�6 + 12s)W (r)

Z 1

0
uW (u) du

�
= (�6 + 12s)

�Z r

0
uE (W (r)W (u)) du+

Z 1

r
uE (W (r)W (u)) du

�
= (�6 + 12s)

�
r3

3
+ r

�
1

2
� r

2

2

��
:

The fourth element �note that is similar to B2:

E (B4) = E

�
(4� 6r)W (s)

Z 1

0
W (u) du

�
= (4� 6r)

�Z s

0
E (W (s)W (u)) du+

Z 1

s
E (W (s)W (u)) du

�
= (4� 6r)

�Z s

0
udu+

Z 1

s
sdu

�
= (4� 6r)

�
s2

2
+ s (1� s)

�
:
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The �fth element:

E (B5) = E

"
(4� 6r) (4� 6s)

�Z 1

0
W (u) du

�2#

= (4� 6r) (4� 6s)E
"�Z 1

0
W (u) du

�2#

= (4� 6r) (4� 6s)E
��Z 1

0

Z 1

0
W (u)W (v) dudv

��
= (4� 6r) (4� 6s)

�
2

�Z 1

0

Z u

0
E (W (u)W (v)) dudv

��
= (4� 6r) (4� 6s)

�
2

�Z 1

0

Z u

0
vdudv

��
=
1

3
(4� 6r) (4� 6s) :

The sixth element:

E (B6) = E

�
(4� 6r) (�6 + 12s)

Z 1

0
W (u) du

Z 1

0
uW (u) du

�
= (4� 6r) (�6 + 12s)E

�Z 1

0
W (u) du

Z 1

0
uW (u) du

�
= (4� 6r) (�6 + 12s)E

�Z 1

0

Z 1

0
vW (u)W (v) dudv

�
= (4� 6r) (�6 + 12s)

�Z 1

0

�Z u

0
vE (W (u)W (v)) +

Z 1

u
vE (W (u)W (v))

�
dvdu

�
= (4� 6r) (�6 + 12s)

�Z 1

0

�Z u

0
v2 +

Z 1

u
uv

�
dvdu

�
=
5

24
(4� 6r) (�6 + 12s) :

The seventh element �similar to B3:

E (B7) = E

�
(�6 + 12r)W (s)

Z 1

0
uW (u) du

�
= (�6 + 12r)

�Z s

0
uE (W (s)W (u)) du+

Z 1

s
uE (W (s)W (u)) du

�
= (�6 + 12r)

�
s3

3
+ s

�
1

2
� s

2

2

��
:

The eight element �similar to B6:

E (B8) = E

�
(4� 6s) (�6 + 12r)

Z 1

0
W (u) du

Z 1

0
uW (u) du

�
=

5

24
(4� 6s) (�6 + 12r) :
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Finally, the ninth element:

E (B9) = E

"
(�6 + 12r) (�6 + 12s)

�Z 1

0
uW (u) du

�2#

= (�6 + 12r) (�6 + 12s)E
"�Z 1

0
uW (u) du

�2#

= (�6 + 12r) (�6 + 12s)E
�Z 1

0

Z 1

0
uvW (u)W (v) dudv

�
= (�6 + 12r) (�6 + 12s)

�
2

Z 1

0

Z u

0
uvE (W (u)W (v)) dudv

�
= (�6 + 12r) (�6 + 12s)

�
2

Z 1

0

Z u

0
uv2dudv

�
=
2

15
(�6 + 12r) (�6 + 12s) :

Taking all these elements together, we obtain:

E (W � (r)W � (s)) = (r ^ s)� (4� 6s)
�
r2

2
+ r (1� r)

�
� (�6 + 12s)

�
r3

3
+ r

�
1

2
� r

2

2

��
� (4� 6r)

�
s2

2
+ s (1� s)

�
+
1

3
(4� 6r) (4� 6s)

+
5

24
(4� 6r) (�6 + 12s)

� (�6 + 12r)
�
s3

3
+ s

�
1

2
� s

2

2

��
+
5

24
(4� 6s) (�6 + 12r)

+
2

15
(�6 + 12r) (�6 + 12s)

= (r ^ s) + 2r3s� r3 � 3r2s+ 2r2 + 2rs3 � 3rs2

+
6

5
rs� 11

10
r � s3 + 2s2 � 11

10
s+

2

15

A.1 Proof of Theorem 1

A.1.1 No deterministic component

In this section we analyze the model speci�cation that does not include any deterministic com-

ponent, i.e., Di;t = 0 8i in (1). For ease of exposition, we start considering that all common
factors in the model are I(1), but the derivations also apply if there is a mixture of I(0) and

I(1) common factors, or all common factors are I(0) �see below.

Let Mi (r) = (Myi (r)
0 ;Mxi (r)

0 ;MF (r)
0)0 = (MUi (r)

0 ;MF (r)
0)0 = Ci (1)Wi (r), where

Mi (r) is a randomly scaled Brownian motion with a conditional covariance matrix Ci (1)Ci (1)
0

that has a well de�ned expectation provided that


ECi (1)Ci (1)0

 < 1 as shown in Lemma

1(d) in Phillips and Moon (1999). Let us de�ne Zi;t =
�
U 0i;t; F

0
t

�0
, by the continuous mapping

6



theorem we have that as T !1 for a �xed N

T�2
TX
t=1

Zi;tZ
0
i;t ) Ci (1)

Z 1

0
Wi (r)W

0
i (r) dr Ci (1)

0 =

Z 1

0
Mi (r)M

0
i (r) dr:

Further, we de�ne the long-run conditional covariance matrix of Zi;t =
�
U 0i;t; F

0
t

�0
= (Uyi;t; Uxi;1;t;

: : : ; Uxi;k;t; F
0
t)
0 as


i =

264 
UyiUyi 
UyiUxi 
UyiF


UxiUyi 
UxiUxi 
UxiF


FUyi 
FUxi 
FF

375 = " 
Ui 
UiF


FUi 
FF

#

= Ci (1)Ci (1)
0 =

264 CUyi (1)CUyi (1)
0 CUyi (1)Cxi (1)

0 CUyi (1)CF (1)
0

CUxi (1)CUyi (1)
0 CUxi (1)CUxi (1)

0 CUxi (1)CF (1)
0

CF (1)CUyi (1)
0 CF (1)CUxi (1)

0 CF (1)CF (1)
0

375 ;
with Ci (1) = (Cyi (1)

0 ; Cxi (1)
0 ; CF (1)

0)0 = (CUi (1)
0 ; CF (1)

0)0 and the long-run average covari-

ance matrix of Zi;t as:


 =

264 
UyUy 
UyUx 
UyF


UxUy 
UxUx 
UxF


FUy 
FUx 
FF

375 = " 
U 
UF


FU 
FF

#
= E

�
Ci (1)Ci (1)

0� :
Let K be the invariant �-�eld generated by Ft, so that Ui;t are independent across i conditional

on K. Then, we de�ne the expected value of the cross product matrix as

E

�Z 1

0
Mi (r)M

0
i (r) dr

�
= E

�
Ci (1)E

�Z 1

0
Wi (r)W

0
i (r) dr

�
Ci (1)

0
�

= E

�
Ci (1)

1

2
I(1+k+r)Ci (1)

0
�

=
1

2

:

Note that averaging across i the cross-products involving Ui;t we have, conditional on K,

N�1
NX
i=1

T�2
TX
t=1

Ui;tU
0
i;t ) N�1

NX
i=1

�Z 1

0
MUi (r)M

0
Ui (r) dr

����K� :
Using Lemma 4 in Phillips and Moon (1999) and Theorem 9 in Kao, Trapani and Urga (2011),

we have that E



R 10 MUi (r)M

0
Ui
(r) dr

���K


2 <1, so that as N !1 the law of strong numbers

gives

N�1
NX
i=1

�Z 1

0
MUi (r)M

0
Ui (r) dr

����K� a:s:! E

�Z 1

0
MUi (r)M

0
Ui (r) dr

����K� = 1

2

U :

7



We have de�ned the pooled estimator as

�̂ =

"
1

N

NX
i=1

T�2
�
x�0i x

�
i

�#�1 1
N

NX
i=1

T�2
�
x�0i y

�
i

�
;

where, in this case, x�i =MFxi. Note that

T�2x�0i x
�
i = T�2x0iMFxi = T

�2U 0xiMFUxi

= T�2U 0xiUxi � T
�2U 0xiF

�
T�2F 0F

��1
T�2F 0Uxi ;

so that, in the limit,

T�2x�0i x
�
i ) CUxi (1)

�Z 1

0
WUxi

(r)W 0
Uxi
(r) dr

����K�CUxi (1)0
�
��
CUxi (1)

�Z 1

0
WUxi

(r)W 0
F (r) dr

����K�CF (1)0��
CF (1)

�Z 1

0
WF (r)W

0
F (r) dr

����K�CF (1)0��1�
CF (1)

�Z 1

0
WF (r)W

0
Uxi
(r) dr

����K�CUxi (1)0�� :
Using the fact that E

�
WUi (r)W

0
Ui
(s)
�
= (r ^ s) I1+k, with (r ^ s) = min fr; sg, we have,

conditional on K,

E
�
T�2x�0i x

�
i

� a:s:! E

�
CUxi (1)

�Z 1

0
WUxi

(r)W 0
Uxi
(r) dr

����K�CUxi (1)0�
�E

�Z 1

0

Z 1

0
CUxi (1)WUxi

(r)h (r; s)W 0
Uxi
(s)CUxi (1)

0 drds
���K� ;

with h (r; s) = W 0
F (r)CF (1)

0
�
CF (1)

�R 1
0 WF (r)W

0
F (r) dr

�
CF (1)

0
��1

CF (1)WF (s). Note

that

E

�
CUxi (1)

�Z 1

0
WUxi

(r)W 0
Uxi
(r) dr

����K�CUxi (1)0� = �Z 1

0
rdr

�

UxUx =

1

2

UxUx ;

and

E

�Z 1

0

Z 1

0
CUxi (1)WUxi

(r)h (r; s)W 0
Uxi
(s)CUxi (1)

0 drds
���K� = �Z 1

0

Z 1

0
(r ^ s)h (r; s) dsdr

�

UxUx ;

so that, conditional on K, we have

N�1
NX
i=1

T�2x�0i x
�
i
a:s:!
�
1

2
�
Z 1

0

Z 1

0
(r ^ s)h (r; s) dsdr

�

UxUx :

8



Similarly, for the numerator of the pooled estimator

T�2x�0i y
�
i = T�2x0iMF yi = T

�2U 0xiMFUyi

= T�2U 0xiUyi � T
�2U 0xiF

�
T�2F 0F

��1
T�2F 0Uyi ;

so that, conditional on K,

N�1
NX
i=1

T�2x�0i y
�
i
a:s:!
�
1

2
�
Z 1

0

Z 1

0
(r ^ s)h (r; s) dsdr

�

UxUy :

Finally,

�̂
p!

��
1

2
�
Z 1

0

Z 1

0
(r ^ s)h (r; s) dsdr

�

UxUx

��1
��
1

2
�
Z 1

0

Z 1

0
(r ^ s)h (r; s) dsdr

�

UxUy

�
= 


�1
UxUx
UxUy = �:

Note that the conditioning variables that appear in the numerator and denominator of the

estimator cancel out so that the conditional limit of the estimator is also the unconditional

limit.

So far, the proof has used sequential limits to show the consistency of the pooled estimator.

However and following Phillips and Moon (1999), the same result is achieved if we base our

analysis on joint limit theory. By the Beveridge-Nelson (BN) decomposition:

Zi;t
a:s:
= Ci (1)Pi;t + ~Vi;0 � ~Vi;t + Zi;0;

with Pi;t =
P[Tr]
t=1 Si;t, Si;t =

�
w0t; "

0
i;t

�0
. Then, de�ne

N�1
NX
i=1

T�2
TX
t=1

Zi;tZ
0
i;t
a:s:
= N�1

NX
i=1

(Qi;t +Ri;t) ;

where

Qi;t = T�2
TX
t=1

Ci (1)Pi;tP
0
i;tCi (1)

Ri;t = R1;i;t +R
0
1;i;t +R2;i;t

R1;i;t = T�2
TX
t=1

Ci (1)Pi;t

�
~Vi;0 � ~Vi;t + Zi;0

�0
R2;i;t = T�2

TX
t=1

�
~Vi;0 � ~Vi;t + Zi;0

��
~Vi;0 � ~Vi;t + Zi;0

�0
:

9



We need to show that kQi;tk is uniformly integrable in T , provided that then

N�1
NX
i=1

Qi;t
p! 1

2

;

as (T;N)!1 jointly. By kABk � kAk kBk and the triangle inequality

kQi;tk � kCi (1)k2 T�2
TX
t=1

kPi;tk2 :

Note that as T !1

T�2
TX
t=1

kPi;tk2 )
Z 1

0
kWi;tk2 dr;

and that

E

 
T�2

TX
t=1

kPi;tk2
!
= tr

 
T�2

TX
t=1

E
�
Pi;t; P

0
i;t

�!
! E

�Z 1

0
kWi;tk2 dr

�
=
1

2
tr (I1+k+r) :

Then, it follows from Billingsley (1968) that T�2
PT
t=1 kPi;tk

2 is uniformly integrable in T . Since

E kCi (1)k2 <1, we can conclude that kCi (1)k2 T�2
PT
t=1 kPi;tk

2 is uniformly integrable in T

and, hence, kQi;tk is uniformly integrable in T . Consequently, N�1PN
i=1Qi;t

p! 1
2
 as stated

above.

So far, we have assumed that all r common factors are I(1), but it would be the case that

there is a subset of r0 I(0) common factors and a subset of r1 I(1) common factors, r = r0+ r1.

Let us de�ne Ft =
�
F 01;t; F

0
0;t

�0, with F1;t the (r1 � 1)-vector of I(1) common factors and F0;t the
(r0 � 1)-vector of I(0) common factors. In this case,

T�2x�0i x
�
i = T�2U 0xiMFUxi

= T�2U 0xiUxi � T
�2U 0xiF	

�
	F 0F	

��1
	F 0Uxi ;

with 	 = diag (	1;	0) a rescaling diagonal matrix de�ned by the (r1 � 1)-vector 	1 = (T�1;
: : : ; T�1) and by the (r0 � 1)-vector 	0 =

�
T�1=2; : : : ; T�1=2

�
, so that 	F 0F	 = Op (1). Using

these elements, we have

N�1
NX
i=1

T�2x�0i x
�
i
a:s:!
�
1

2
�
Z 1

0

Z 1

0
(r ^ s)h (r; s) dsdr

�

UxUx :

The same applies forN�1PN
i=1 T

�2x�0i y
�
i
a:s:!
�
1
2 �

R 1
0

R 1
0 (r ^ s)h (r; s) dsdr

�

UxUy , so that �̂

p!


�1
UxUx


UxUy = � as above. Consequently, having a combination of I(0) and I(1) common factors

does not alter the result about the consistency of the pooled estimator.

A.1.2 Constant term

In this section we consider the deterministic speci�cation given by Model 1 through the de�nition

of Di;t = �i =
�
�i;0; �i;1; : : : ; �i;k

�0. Using the projection matrixMD = I�D (D0D)�1D0, where

10



D = � denotes a vector of ones, we de�ne ~Zi;t =
�
~U 0i;t;

~F 0t

�0
, where ~Ui = MDUi and ~F = MDF

are the OLS detrended variables. By the continuous mapping theorem we have that as T !1
for a �xed N

T�2
TX
t=1

~Zi;t ~Z
0
i;t ) Ci (1)

Z 1

0
W �
i (r)W

�0
i (r) dr Ci (1)

0 =

Z 1

0
M�
i (r)M

�0
i (r) dr;

whereW �
i (r) =Wi (r)�

R 1
0 Wi (s) ds andM�

i (r) =Mi (r)�
R 1
0 Mi (s) ds are demeaned Brownian

motion vectors. As above,

E

�Z 1

0
M�
i (r)M

�0
i (r) dr

�
= E

�
Ci (1)E

�Z 1

0
W �
i (r)W

�0
i (r) dr

�
Ci (1)

0
�

= E

�
Ci (1)

1

6
I(1+k+r)Ci (1)

0
�

=
1

6

:

The developments carried out in the previous section follow here replacingWi (r) byW �
i (r).

Note that now

T�2x�0i x
�
i = T�2~x0iM ~F ~xi = T

�2 ~U 0xiM ~F
~Uxi

= T�2 ~U 0xi
~Uxi � T�2 ~U 0xi ~F

�
T�2 ~F 0 ~F

��1
T�2 ~F 0 ~Uxi ;

so that, in the limit,

T�2x�0i x
�
i ) CUxi (1)

�Z 1

0
W �
Uxi
(r)W �0

Uxi
(r) dr

����K�CUxi (1)0
�
��
CUxi (1)

�Z 1

0
W �
Uxi
(r)W �0

F (r) dr

����K�CF (1)0��
CF (1)

�Z 1

0
W �
F (r)W

�0
F (r) dr

����K�CF (1)0��1�
CF (1)

�Z 1

0
W �
F (r)W

�0
Uxi
(r) dr

����K�CUxi (1)0�� :
From Lemma 2, E

�
W �
Ui
(r)W �0

Ui
(s)
�
= ((r ^ s) �

�
2r � r2

�
=2 �

�
2s� s2

�
=2 + 1=3)I1+k, so

that, conditional on K, we obtain N�1PN
i=1 T

�2x�0i x
�
i
a:s:! (1=6 �

R 1
0

R 1
0 ((r ^ s) �

�
2r � r2

�
=2

�
�
2s� s2

�
=2 + 1=3)h (r; s) dsdr)
UxUx and N

�1PN
i=1 T

�2x�0i y
�
i
a:s:! (1=6 �

R 1
0

R 1
0 ((r ^ s) ��

2r � r2
�
=2�

�
2s� s2

�
=2+1=3)h (r; s) dsdr)
UxUy , where now h (r; s) =W

�0
F (r)CF (1)

0 (CF (1)

(
R 1
0 W

�
F (r)W

�0
F (r) dr)CF (1)

0)�1CF (1)W
�
F (s) withW

�
F (r) =WF (r)�

R 1
0 WF (s) ds. Therefore,

�̂
p! 


�1
UxUx


UxUy = �, as above. Following the steps given in the previous subsection, it can be

shown that the same result is obtained if we use joint limits, where the only di¤erence is that

we use demeaned Brownian motions instead of standard Brownian motions �to be speci�c, we

need to consider that in this case N�1PN
i=1Qi;t

p! 1
6
 and the rest of the proof applies. As

above, note that the conditioning variables that appear in the numerator and denominator of

the estimator cancel out so that the conditional limit of the estimator is also the unconditional
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limit.

A.1.3 Time trend

In this section we consider the deterministic speci�cation given by Model 2, i.e., Di;t = (1; t) [�i;0,

�i;1, : : :, �i;k], with �i;j =
�
�i;j ; �i;j

�0, j = 0; 1; : : : ; k. Using the projection matrix MD =

I � D (D0D)�1D0, where D = [� � ] with � a vector of ones and � = (1; 2; : : : ; T )0. We de�ne
~Zi;t =

�
~U 0i;t;

~F 0t

�0
, where ~Ui = MDUi and ~F = MDF are the OLS detrended variables. By the

continuous mapping theorem we have that as T !1 for a �xed N

T�2
TX
t=1

~Zi;t ~Z
0
i;t ) Ci (1)

Z 1

0
W �
i (r)W

�0
i (r) dr Ci (1)

0 =

Z 1

0
M�
i (r)M

�0
i (r) dr;

where W �
i (r) =Wi (r)� (4� 6r)

R 1
0 Wi (s) ds� (�6 + 12r)

R 1
0 sWi (s) ds and M�

i (r) =Mi (r)�
(4� 6r)

R 1
0 Mi (s) ds� (�6 + 12r)

R 1
0 sMi (s) ds are detrended Brownian motion vectors. In this

case,

E

�Z 1

0
M�
i (r)M

�0
i (r) dr

�
= E

�
Ci (1)E

�Z 1

0
W �
i (r)W

�0
i (r) dr

�
Ci (1)

0
�

= E

�
Ci (1)

1

15
I(1+k+r)Ci (1)

0
�

=
1

15

:

From Lemma 2, E
�
W �
Ui
(r)W �0

Ui
(s)
�
= ((r ^ s) + 2r3s � r3 � 3r2s + 2r2 + 2rs3 � 3rs2 + 6

5rs

� 11
10r � s

3 + 2s2 � 11
10s +

2
15)I1+k, so that, conditional on K, N

�1PN
i=1 T

�2x�0i x
�
i
a:s:! ( 115 �R 1

0

R 1
0 ((r ^ s)+2r

3s�r3�3r2s+2r2+2rs3�3rs2+ 6
5rs�

11
10r�s

3+2s2� 11
10s+

2
15)h (r; s) dsdr)


UxUx and N
�1PN

i=1 T
�2x�0i y

�
i
a:s:! ( 115 �

R 1
0

R 1
0 ((r ^ s) + 2r

3s � r3 � 3r2s + 2r2 + 2rs3 � 3rs2

+ 6
5rs �

11
10r � s

3 + 2s2 � 11
10s +

2
15)h (r; s) dsdr)
UxUy , with h (r; s) = W �0

F (r)CF (1)
0 (CF (1)�R 1

0 W
�
F (r)W

�0
F (r) dr

�
CF (1)

0)�1CF (1)W
�
F (s) with W

�
F (r) = WF (r) � (4� 6r)

R 1
0 WF (s) ds

� (�6 + 12r)
R 1
0 sWF (s) ds. Consequently, �̂

p! 

�1
UxUx


UxUy = �. Following the steps given

above, it can be shown that the same result is obtained if we use joint limits, where the only

di¤erence is that we use detrended Brownian motions instead of standard Brownian motions �to

be speci�c, in this case N�1PN
i=1Qi;t

p! 1
15
 and the rest of the proof applies. As above, note

that the conditioning variables that appear in the numerator and denominator of the estimator

cancel out so that the conditional limit of the estimator is also the unconditional limit.

A.2 Proof of Theorem 2

In order to prove Theorem 2, we begin by de�ning the projection matrix �M = I� �H
�
�H 0 �H

��1 �H 0,

where �H = �z for Model 0, �H = [� �z] for Model 1 and �H = [� � �z] for Model 2, with �z = [�x �y] being

the (T � (k + 1)) matrix of cross-section averages. Further, let us de�neMg = I�G (G0G)�1G0

and Mq = I �Q (Q0Q)+Q0.
In the case of Model 0 G = F denotes the (T � r) matrix of unobserved factors, Q = G �P
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with �P = ��, and A+ is the Moore-Penrose inverse of matrix A. For Model 1, G = [� F ], and

�P =

"
1 ��

0 ��

#
:

Finally, for Model 2 we have G = [� � F ], and

�P =

"
I2 ��

0 ��

#
:

The pooled estimator is computed as:

�̂ =

"
1

N

NX
i=1

T�2
�
x�0i x

�
i

�#�1 1
N

NX
i=1

T�2
�
x�0i y

�
i

�
=

"
1

N

NX
i=1

T�2
�
x0i �Mxi

�#�1 1
N

NX
i=1

T�2
�
x0i �Myi

�
:

In order to show consistency of the pooled estimator, we need to establish that the quadratic

form involving the projection matrix using the cross-section averages is asymptotically equiva-

lent to that de�ned by using the true factors. That is, we need to analyze

T�2


Y 0i �MYi � Y 0iMqYi



 ;
where

Yi = F�
0
i + Ui

denotes the model de�ned in (1) in matrix notation, assuming no deterministic terms to simplify

the notation.

Note that

T�2


Y 0i �MYi � Y 0iMqYi



 � T�2



�Y 0i �H � Y 0iQ

� �
�H 0 �H

��1 �H 0Yi





+T�2




Y 0iQ�� �H 0 �H
��1 � �Q0Q��1� �H 0Yi





+T�2




Y 0iQ �Q0Q��1 � �H 0Yi �Q0Yi
�




= I + II + III:

Consider part I and recall that �H = Q+ �U .

We then have

T�2



�Y 0i �H � Y 0iQ

� �
�H 0 �H

��1 �H 0Yi




 � 



Y 0i �UT 2











� �H 0 �H

T 2

��1 �H 0Yi
T 2






 ;
where 



Y 0i �UT 2





 =






 1N

NX
j=1

Y 0i Uj
T 2







 = Op
�
1p
N

�
;
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given that T�2Y 0i Uj = Op (1) and N�1=2PN
j=1 T

�2Y 0i Uj = Op (1). Assuming that the rank

condition rank (��) = r � (1 + k) for all N as T;N ! 1 holds, and provided that T�2 �H 0 �H =

Op (1) and T�2 �H 0Yi = Op (1), we have that I = Op
�
N�1=2�.

For part II we have

II �




 �U 0 �UT 2 +

Q0 �U

T 2
+
�U 0Q

T 2











Y 0iQT 2

� �H 0 �H

T 2

��1











�
Q0Q

T 2

��1 �H 0Yi
T 2






 ;
where T�2Y 0iQ = Op (1) and T

�2Q0Q = Op (1). Note that





 �U 0 �UT 2




 =







 1N2

NX
i=1

NX
j=1

U 0iUj
T 2







 = Op
�
1p
N

�
;

given that T�2U 0iUj = Op (1) and N�1=2PN
j=1 T

�2U 0iUj = Op (1). Similarly,


T�2Q0 �U

 =

Op
�
N�1=2�, so that II = Op �N�1=2�.
Part III is given by

III �





Y 0iQT 2

�
Q0Q

T 2

��1









Y 0i �UT 2





 :
Using the elements above, it may be easily shown that III = Op

�
N�1=2�.

Consequently, when the rank condition rank (��) = r � (1 + k) holds for all N as T;N !1,
Mg =Mq, so that, conditional on K, we have

T�2


Y 0i �MYi � Y 0iMgYi



 � Op� 1p
N

�
;

uniformly over i. Therefore, conditional on K, we have

�̂ =

"
1

N

NX
i=1

T�2
�
x0iMgxi

�
+Op

�
1p
N

�#�1 "
1

N

NX
i=1

T�2
�
x0iMgyi

�
+Op

�
1p
N

�#
;

so that as T;N !1
�̂

p! � = 

�1
UxUx
UxUy ;

a result that was already established in Theorem 1 and con�rmed in the Monte Carlo experiment

that has been conducted above.
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Table A.2: Empirical size and power of the panel cointegration tests with normalized spatial
dependence, N = 10

SAR SMA
# = 0:4 # = 0:8 # = 0:4 # = 0:8

�i T Z� CADFP Z� CADFP Z� CADFP Z� CADFP
1 50 0.131 0.064 0.135 0.126 0.134 0.062 0.153 0.096
1 100 0.142 0.069 0.140 0.123 0.140 0.061 0.161 0.090
1 250 0.128 0.060 0.131 0.126 0.130 0.061 0.170 0.095
0.99 50 0.136 0.066 0.139 0.126 0.132 0.062 0.155 0.098
0.99 100 0.152 0.074 0.155 0.137 0.158 0.063 0.180 0.097
0.99 250 0.217 0.096 0.211 0.173 0.225 0.099 0.254 0.136
0.95 50 0.178 0.101 0.173 0.168 0.171 0.094 0.197 0.134
0.95 100 0.384 0.220 0.360 0.286 0.372 0.203 0.376 0.246
0.95 250 0.956 0.923 0.931 0.845 0.953 0.913 0.894 0.880
0.9 50 0.296 0.203 0.272 0.281 0.291 0.207 0.298 0.237
0.9 100 0.788 0.728 0.725 0.673 0.791 0.718 0.720 0.685
0.9 250 1.000 1.000 0.999 1.000 1.000 1.000 0.997 1.000

SEC1 SEC2
# = 0:4 # = 0:8 # = 0:4 # = 0:8

�i T Z� CADFP Z� CADFP Z� CADFP Z� CADFP
1 50 0.091 0.050 0.095 0.050 0.097 0.049 0.115 0.052
1 100 0.061 0.050 0.060 0.048 0.061 0.047 0.066 0.047
1 250 0.054 0.047 0.054 0.046 0.052 0.044 0.056 0.049
0.99 50 0.092 0.050 0.096 0.050 0.102 0.052 0.118 0.052
0.99 100 0.073 0.053 0.076 0.053 0.075 0.051 0.080 0.052
0.99 250 0.159 0.077 0.155 0.077 0.152 0.081 0.154 0.078
0.95 50 0.152 0.080 0.153 0.079 0.158 0.078 0.163 0.078
0.95 100 0.450 0.177 0.455 0.178 0.458 0.176 0.452 0.177
0.95 250 0.997 0.938 0.997 0.941 0.998 0.942 0.998 0.940
0.9 50 0.337 0.176 0.331 0.177 0.335 0.182 0.308 0.181
0.9 100 0.972 0.734 0.972 0.736 0.972 0.738 0.959 0.742
0.9 250 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SEC3
# = 0:4 # = 0:8

�i T Z� CADFP Z� CADFP
1 50 0.138 0.056 0.128 0.070
1 100 0.123 0.048 0.135 0.059
1 250 0.095 0.052 0.141 0.064
0.99 50 0.143 0.057 0.134 0.070
0.99 100 0.130 0.052 0.157 0.063
0.99 250 0.188 0.082 0.236 0.097
0.95 50 0.174 0.083 0.180 0.096
0.95 100 0.380 0.180 0.391 0.205
0.95 250 0.973 0.934 0.961 0.920
0.9 50 0.282 0.192 0.308 0.199
0.9 100 0.815 0.739 0.820 0.721
0.9 250 1.000 1.000 1.000 1.000
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Table A.3: Empirical size and power of the panel cointegration tests with normalized spatial
dependence, N = 50

SAR SMA
# = 0:4 # = 0:8 # = 0:4 # = 0:8

�i T Z� CADFP Z� CADFP Z� CADFP Z� CADFP
1 50 0.073 0.064 0.131 0.126 0.064 0.061 0.083 0.075
1 100 0.083 0.069 0.156 0.139 0.076 0.064 0.105 0.084
1 250 0.060 0.062 0.138 0.134 0.065 0.065 0.091 0.085
0.99 50 0.083 0.070 0.138 0.128 0.078 0.062 0.093 0.080
0.99 100 0.137 0.078 0.195 0.157 0.120 0.077 0.162 0.100
0.99 250 0.404 0.153 0.391 0.235 0.423 0.141 0.428 0.169
0.95 50 0.346 0.133 0.266 0.196 0.344 0.120 0.359 0.145
0.95 100 0.952 0.496 0.795 0.501 0.961 0.488 0.938 0.488
0.95 250 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.9 50 0.936 0.432 0.630 0.451 0.942 0.417 0.918 0.427
0.9 100 1.000 1.000 0.999 0.982 1.000 1.000 1.000 0.998
0.9 250 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SEC1 SEC2
# = 0:4 # = 0:8 # = 0:4 # = 0:8

�i T Z� CADFP Z� CADFP Z� CADFP Z� CADFP
1 50 0.054 0.048 0.053 0.046 0.051 0.044 0.054 0.048
1 100 0.061 0.054 0.059 0.053 0.061 0.056 0.063 0.053
1 250 0.049 0.057 0.048 0.056 0.047 0.057 0.048 0.052
0.99 50 0.060 0.049 0.057 0.049 0.057 0.047 0.062 0.052
0.99 100 0.104 0.064 0.104 0.065 0.101 0.066 0.111 0.064
0.99 250 0.398 0.137 0.399 0.135 0.397 0.132 0.395 0.130
0.95 50 0.334 0.107 0.333 0.108 0.338 0.105 0.335 0.105
0.95 100 0.974 0.493 0.973 0.493 0.974 0.493 0.969 0.490
0.95 250 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.9 50 0.960 0.433 0.960 0.429 0.959 0.429 0.955 0.433
0.9 100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.9 250 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SEC3
# = 0:4 # = 0:8

�i T Z� CADFP Z� CADFP
1 50 0.059 0.054 0.071 0.061
1 100 0.062 0.048 0.079 0.052
1 250 0.053 0.055 0.059 0.066
0.99 50 0.071 0.055 0.081 0.063
0.99 100 0.111 0.061 0.122 0.064
0.99 250 0.397 0.133 0.399 0.144
0.95 50 0.352 0.114 0.349 0.127
0.95 100 0.968 0.488 0.959 0.482
0.95 250 1.000 1.000 1.000 1.000
0.9 50 0.957 0.432 0.938 0.428
0.9 100 1.000 0.999 1.000 1.000
0.9 250 1.000 1.000 1.000 1.000
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