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ABSTRACT

We derive a new equation of state (EoS) for neutron stars (NS) from the outer crust to the core based on modern microscopic
calculations using the Argonne v18 potential plus three-body forces computed with the Urbana model. To deal with the inhomogeneous
structures of matter in the NS crust, we use a recent nuclear energy density functional that is directly based on the same microscopic
calculations, and which is able to reproduce the ground-state properties of nuclei along the periodic table. The EoS of the outer
crust requires the masses of neutron-rich nuclei, which are obtained through Hartree-Fock-Bogoliubov calculations with the new
functional when they are unknown experimentally. To compute the inner crust, Thomas-Fermi calculations in Wigner-Seitz cells
are performed with the same functional. Existence of nuclear pasta is predicted in a range of average baryon densities between
�0.067 fm−3 and �0.0825 fm−3, where the transition to the core takes place. The NS core is computed from the new nuclear EoS
assuming non-exotic constituents (core of npeμ matter). In each region of the star, we discuss the comparison of the new EoS with
previous EoSs for the complete NS structure, widely used in astrophysical calculations. The new microscopically derived EoS fulfills
at the same time a NS maximum mass of 2 M� with a radius of 10 km, and a 1.5 M� NS with a radius of 11.6 km.
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1. Introduction

Neutron stars (NS) harbor unique conditions and phenomena
that challenge the physical theories of matter. Beneath a thin
stellar atmosphere, a NS interior consists of three main regions,
namely, an outer crust, an inner crust, and a core, each one fea-
turing a different physics (Shapiro & Teukolsky 1983; Haensel
et al. 2006; Chamel & Haensel 2008). The core is the internal
region at densities larger than 1.5 × 1014 g/cm3, where matter
forms a homogeneous liquid composed of neutrons plus a cer-
tain fraction of protons, electrons, and muons that maintain the
system in β equilibrium. Deep in the core, at still higher den-
sities, strange baryons and even deconfined quarks may appear
(Shapiro & Teukolsky 1983; Haensel et al. 2006). Moving from
the core to the exterior, density and pressure decrease. When
the density becomes lower than approximately 1.5× 1014 g/cm3,
matter inhomogeneities set in. The positive charges concentrate
in individual clusters of charge Z and form a solid lattice to min-
imize the Coulomb repulsion among them. The lattice is embed-
ded in a gas of free neutrons and a background of electrons such
that the whole system is charge neutral. This region of the star
is called the inner crust, where the nuclear structures may adopt
non-spherical shapes (generically referred to as nuclear pasta) in
order to minimize their energy (Baym et al. 1971a; Ravenhall
et al. 1983; Lorenz et al. 1993; Oyamatsu 1993). At lower densi-
ties, neutrons are finally confined within the nuclear clusters and
matter is made of a lattice of neutron-rich nuclei permeated by a
degenerate electron gas. This region is known as the outer crust
(Baym et al. 1971b) and extends, from inside to outside, from a
neutron drip density of about 4×1011 g/cm3 to a density of about
104 g/cm3. Most of the mass and size of a NS are accounted for
by its core. Although the crust is only a small fraction of the

star mass and radius, the crust plays an important role in vari-
ous observed astrophysical phenomena such as pulsar glitches,
quasiperiodic oscillations in soft gamma-ray repeaters (SGR),
and thermal relaxation in soft X-ray transients (SXT; Haensel
et al. 2006; Chamel & Haensel 2008; Piro 2005; Strohmayer &
Watts 2006; Steiner & Watts 2009; Sotani et al. 2012; Newton
et al. 2013; Piekarewicz et al. 2014), which depend on the depar-
ture of the star from the picture of a homogeneous fluid. Recent
studies suggest that the existence of nuclear pasta layers in the
NS crust may limit the rotational speed of pulsars and may be a
possible origin of the lack of X-ray pulsars with long spin peri-
ods (Pons et al. 2013; Horowitz et al. 2015).

The equation of state (EoS) of neutron-rich matter is a basic
input needed to compute most properties of NSs. A large body of
experimental data on nuclei, heavy ion collisions, and astrophys-
ical observations has been gathered and used along the years to
constrain the nuclear EoS and to understand the structure and
properties of NS. Unfortunately, a direct link of measurements
and observations with the underlying EoS is very difficult and a
proper interpretation of the data necessarily needs some theoret-
ical inputs. To reduce the uncertainty on these types of analyses,
it is helpful to develop a microscopic theory of nuclear matter
based on a sound many-body scheme and well-controlled basic
interactions among nucleons. To this end, it is of particular rele-
vance to have a unified theory able to describe on a microscopic
level the complete structure of NS from the outer crust to the
core.

There are just a few EoSs devised and used to describe
the whole NS within a unified framework. It is usually as-
sumed that the NS crust has the structure of a regular lat-
tice that is treated in the Wigner-Seitz (WS) approximation.
A partially phenomenological approach was developed by
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Lattimer & Swesty (1991; LS). The inner crust was computed
using the compressible liquid drop model (CLDM) introduced
by Baym, Bethe, and Pethick (Baym et al. 1971a) to take into
account the effect of the dripped neutrons. In the LS model the
EoS is derived from a Skyrme nuclear effective force. There
are different versions of this EoS (Lattimer & Swesty 1991;
Lattimer 2015), each one having a different incompressibility.
Another EoS was developed by Shen et al. (Shen et al. 1998b,a;
Sumiyoshi 2015) based on a nuclear relativistic mean field
(RMF) model. The crust was described in the Thomas-Fermi
(TF) scheme using the variational method with trial profiles for
the nucleon densities. The LS and Shen EoSs are widely used in
astrophysical calculations for both neutron stars and supernova
simulations due to their numerical simplicity and the large range
of tabulated densities and temperatures.

Douchin & Haensel (2001; DH) formulated a unified EoS
for NS on the basis of the SLy4 Skyrme nuclear effective force
(Chabanat et al. 1998), where some parameters of the Skyrme
interaction were adjusted to reproduce the Wiringa et al. calcu-
lation of neutron matter (Wiringa et al. 1988) above saturation
density. Hence, the DH EoS contains certain microscopic input.
In the DH model the inner crust was treated in the CLDM ap-
proach. More recently, unified EoSs for NS have been derived by
the Brussels-Montreal group (Chamel et al. 2011; Pearson et al.
2012; Fantina et al. 2013; Potekhin et al. 2013). They are based
on the BSk family of Skyrme nuclear effective forces (Goriely
et al. 2010). Each force is fitted to the known masses of nu-
clei and adjusted among other constraints to reproduce a differ-
ent microscopic EoS of neutron matter with different stiffness at
high density. The inner crust is treated in the extended Thomas-
Fermi approach with trial nucleon density profiles including per-
turbatively shell corrections for protons via the Strutinsky inte-
gral method. Analytical fits of these neutron-star EoSs have been
constructed in order to facilitate their inclusion in astrophysi-
cal simulations (Potekhin et al. 2013). Quantal Hartree calcula-
tions for the NS crust have been systematically performed by
(Shen et al. 2011b,a). This approach uses a virial expansion at
low density and a RMF effective interaction at intermediate and
high densities, and the EoS of the whole NS has been tabulated
for different RMF parameter sets. Also recently, a complete EoS
for supernova matter has been developed within the statistical
model (Hempel & Schaffner-Bielich 2010). We shall adopt here
the EoS of the BSk21 model (Chamel et al. 2011; Pearson et al.
2012; Fantina et al. 2013; Potekhin et al. 2013; Goriely et al.
2010) as a representative example of contemporary EoS for the
complete NS structure, and a comparison with the other EoSs of
the BSk family (Chamel et al. 2011; Pearson et al. 2012; Fantina
et al. 2013; Potekhin et al. 2013) and the RMF family (Shen et al.
2011b,a) shall be left for future study.

Our aim in this paper is to obtain a unified EoS for neu-
tron stars based on a microscopic many-body theory. The nu-
clear EoS of the model is derived in the Brueckner-Hartree-Fock
(BHF) approach from the bare nucleon-nucleon (NN) interac-
tion in free space (Argonne v18 potential, Wiringa et al. 1995)
with inclusion of three-body forces (TBF) among nucleons. In
the current state of the art of the Brueckner approach, the TBFs
are reduced to a density-dependent two-body force by averaging
over the third nucleon in the medium (Baldo et al. 1997). We em-
ploy TBFs based on the Urbana model, consisting of an attrac-
tive term from two-pion exchange and a repulsive phenomeno-
logical central term, to reproduce the saturation point (Schiavilla
et al. 1986; Baldo et al. 1997, 2012; Taranto et al. 2013). The cor-
responding nuclear EoS for symmetric and asymmetric nuclear

matter fulfills several requirements imposed both by heavy ion
collisions and astrophysical observations (Taranto et al. 2013).

Recently the connection between two-body and three-body
forces within the meson-nucleon theory of the nuclear interac-
tion has been extensively discussed and developed in (Grangé
et al. 1989; Zuo et al. 2002; Li & Schulze 2008; Li et al.
2008). At present the theoretical status of microscopically de-
rived TBFs is still incipient, however a tentative approach has
been proposed using the same meson-exchange parameters as
the underlying NN potential. Results have been obtained with
the Argonne v18, the Bonn B, and the Nijmegen 93 potentials
(Li & Schulze 2008; Li et al. 2008). More recently the chi-
ral expansion theory to the nucleon interaction has been exten-
sively developed (Weinberg 1968, 1990, 1991, 1992; Entem &
Machleidt 2003; Valderrama & Phillips 2015; Leutwyler 1994;
Epelbaum et al. 2009; Otsuka et al. 2010; Holt et al. 2013;
Hebeler et al. 2011; Drischler et al. 2014; Hebeler & Schwenk
2010; Carbone et al. 2013; Ekström et al. 2013; Coraggio et al.
2014). This approach is based on a deeper level of the strong
interaction theory, where the QCD chiral symmetry is explicitly
exploited in a low-momentum expansion of the multi-nucleon
interaction processes. In this approach multi-nucleon interac-
tions arise naturally and a hierarchy of the different orders can
be established. Despite some ambiguity in the parametrization of
the force (Ekström et al. 2013) and some difficulty in the treat-
ment of many-body systems (Laehde et al. 2013), the method
has marked a great progress in the microscopic theory of nu-
clear systems. Indeed it turns out (Coraggio et al. 2014; Ekström
et al. 2015) that within this class of interactions a compatible
treatment of few-nucleon systems and nuclear matter is possi-
ble. However, this class of NN and TBF (or multi-body) inter-
actions is devised on the basis of a low-momentum expansion,
where the momentum cut-off is fixed essentially by the mass of
the ρ-meson. As such they cannot be used at density well above
saturation, where we are also going to test the proposed EoS. In
any case, the strength of TBFs is model dependent. In particu-
lar, the role of TBFs appears to be marginal in the quark-meson
model of the NN interaction (Baldo & Fukukawa 2014).

A many-body calculation of the inhomogeneous structures
of a NS crust is currently out of reach at the level of the BHF
approach that we can apply for the homogeneous matter of the
core. In an attempt to maximize the use of the same microscopic
theory for the description of the complete stellar structure, we
employ in the crust calculations the recently developed BCPM
(Barcelona-Catania-Paris-Madrid) nuclear energy density func-
tional (Baldo et al. 2008b, 2010, 2013). The BCPM functional
has been obtained from the ab initio BHF calculations in nuclear
matter within an approximation inspired by the Kohn-Sham for-
mulation of density functional theory (Kohn & Sham 1965).
Instead of starting from a certain effective interaction, the BCPM
functional is built up with a bulk part obtained directly from the
BHF results in symmetric and neutron matter via the local den-
sity approximation. It is supplemented by a phenomenological
surface part, which is absent in nuclear matter, together with the
Coulomb, spin-orbit, and pairing contributions. This energy den-
sity functional constructed upon the BHF calculations has a re-
duced set of four adjustable parameters in total and describes the
ground-state properties of finite nuclei similarly successfully as
the Skyrme and Gogny forces (Baldo et al. 2008b, 2010, 2013).

We model the NS crust in the WS approximation. To com-
pute the outer crust, we take the masses of neutron-rich nu-
clei from experiment if they are measured, and perform de-
formed Hartree-Fock-Bogoliubov (HFB) calculations with the
BCPM energy density functional when the masses are unknown.
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To describe the inner crust, we perform self-consistent Thomas-
Fermi calculations with the BCPM functional in different peri-
odic configurations (spheres, cylinders, slabs, cylindrical holes,
and spherical bubbles). In this calculation of the inner crust, by
construction of the BCPM functional, the low-density neutron
gas and the bulk matter of the high-density nuclear structures
are not only consistent with each other, but they both are given
by the microscopic BHF calculation. We find that nuclear pasta
shapes are the energetically most favourable configurations be-
tween a density of �0.067 fm−3 (or 1.13 × 1014 g/cm3) and
the transition to the core, though the energy differences with the
spherical solution are small. The NS core is assumed to be com-
posed of npeμ matter. We compute the EoS of the core using
the nuclear EoS from the BHF calculations. In the past years,
the BHF approach has been extended in order to include the hy-
peron degrees of freedom (Baldo et al. 1998, 2000a), which play
an important role in the study of neutron-star matter. However,
in this work we are mainly interested on the properties of the
nucleonic EoS, and therefore we do not consider cores with hy-
perons or other exotic components. In each region of the star we
critically compare the new NS EoS with the results from various
semi-microscopic approaches mentioned above, where the crust
and the core were calculated within the same theoretical scheme.
Lastly, we compute the mass-radius relation of neutron stars us-
ing the unified EoS for the crust and core that has been derived
from the microscopic BHF calculations in nuclear matter. The
predicted maximum mass and radii are compatible with the re-
cent astrophysical observations and analyses. We reported some
preliminary results about the new EoS recently in (Baldo et al.
2014).

In Sect. 2 we summarize the microscopic nuclear input to
our calculations and the derivation of the BCPM energy density
functional for nuclei. We devote Sect. 3 to the calculations of the
outer crust. In Sect. 4 we introduce the Thomas-Fermi formalism
for the inner crust with the BCPM functional, and in Sect. 5 we
discuss the results in the inner crust, including the pasta shapes.
In Sect. 6 we describe the calculation of the EoS in the core and
obtain the mass-radius relation of neutron stars. We conclude
with a summary and outlook in Sect. 7.

2. Microscopic input and energy density functional
for nuclei

As the microscopic BHF EoS of nuclear matter underlies our
formulation, we start by summarizing how the EoS of nuclear
matter is obtained in the BHF method and how it has been used
to construct a suitable energy density functional for the descrip-
tion of finite nuclei.

The nuclear EoS of the model is derived in the framework
of the Brueckner-Bethe-Goldstone theory, which is based on a
linked cluster expansion of the energy per nucleon of nuclear
matter (see Baldo 1999, Chap. 1, and references therein). The
basic ingredient in this many-body approach is the Brueckner
reaction matrix G, which is the solution of the Bethe-Goldstone
equation

G[n;ω] = v +
∑
ka,kb

v
|kakb〉Q 〈kakb|
ω − e(ka) − e(kb)

G[n;ω], (1)

where v is the bare NN interaction, n is the nucleon number den-
sity, and ω is the starting energy. The propagation of intermedi-
ate baryon pairs is determined by the Pauli operator Q and the

single-particle energy e(k), given by

e(k) = e(k; n) =
k2

2m
+ U(k; n) . (2)

We note that we assume natural units � = c = 1 throughout
the paper. The BHF approximation for the single-particle poten-
tial U(k; n) using the continuous choice is

U(k; n) =
∑

k′ ≤ kF

〈
kk′

∣∣∣G[n; e(k) + e(k′)]
∣∣∣kk′

〉
a , (3)

where the matrix element is antisymmetrized, as indicated by the
“a” subscript. Due to the occurrence of U(k) in Eq. (2), the cou-
pled system of Eqs. (1) to (3) must be solved in a self-consistent
manner for several Fermi momenta of the particles involved. The
corresponding BHF energy per nucleon is

E
A
=

3
5

k2
F

2m
+

1
2n

∑
k,k′ ≤ kF

〈
kk′

∣∣∣G[n; e(k) + e(k′)]
∣∣∣kk′

〉
a. (4)

In this scheme, the only input quantity we need is the bare NN in-
teraction v in the Bethe-Goldstone Eq. (1). The nuclear EoS can
be calculated with good accuracy in the Brueckner two-hole-line
approximation with the continuous choice for the single-particle
potential, since the results in this scheme are quite close to the
calculations which include also the three-hole-line contribution
(Song et al. 1998; Baldo et al. 2000b; Baldo & Burgio 2001).
In the present work, we use the Argonne v18 potential (Wiringa
et al. 1995) as the two-nucleon interaction. The dependence on
the NN interaction, as well as a comparison with other many-
body approaches, has been systematically investigated in (Baldo
et al. 2012).

One of the well-known results of several studies, which
lasted for about half a century, is that non-relativistic calcula-
tions, based on purely two-body interactions, fail to reproduce
the correct saturation point of symmetric nuclear matter, and
three-body forces among nucleons are needed to correct this
deficiency. In our approach the TBF is reduced to a density-
dependent two-body force by averaging over the position of the
third particle, assuming that the probability of having two parti-
cles at a given distance is reduced according to the two-body cor-
relation function (Baldo et al. 1997). In this work we use a phe-
nomenological approach based on the so-called Urbana model,
which consists of an attractive term due to two-pion exchange
with excitation of an intermediate Δ resonance, and a repulsive
phenomenological central term (Schiavilla et al. 1986). Those
TBFs produce a shift of the saturation point (the minimum) of
about +1 MeV in energy. This adjustment was obtained by tun-
ing the two parameters contained in the TBFs, and was per-
formed to get an optimal saturation point (for details see Baldo
et al. 1997). The calculated nuclear EoS conforms to several con-
straints required by the phenomenology of heavy ion collisions
and astrophysical observational data (Taranto et al. 2013).

For computational purposes, an educated polynomial fit is
performed on top of the microscopic calculation of the nuclear
EoS including a fine tuning of the two parameters of the three-
body forces such that the saturation point be E/A = −16 MeV
at a density n0 = 0.16 fm−3. The interpolating polynomials for
symmetric nuclear matter and pure neutron matter are written as

Ps(n) =
(E

A

)
SNM

=

5∑
k=1

ak

( n
n0

)k
,

Pn(n) =
(E

A

)
PNM

=

5∑
k=1

bk

( n
n0n

)k
, (5)
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Table 1. Coefficients of the polynomial fits E/A of the EoS of symmet-
ric matter and neutron matter, see Eq. (5).

k ak (MeV) bk (MeV)

1 −73.292028 −34.972615
2 49.964912 22.182307
3 −18.037608 −7.151756
4 3.486179 1.790874
5 −0.243552 −0.169591

where n0n = 0.155 fm−3. The values of the coefficients of the
interpolating polynomials (BCP09 version of the parameters,
Baldo et al. 2010) are given in Table 1. This fit is valid up to
density around n = 0.4 fm−3, and it is used only for convenience.
For higher density, as the ones occurring in NS cores, we use a
direct numerical interpolation of the computed EoS, using the
same procedure and functional form as in reference (Burgio &
Schulze 2010) for a set of accurate BHF calculations. We found
that the polynomial form of the EoS and the high density fit join
smoothly in the interval 0.3−0.4 fm−3, for both the energy den-
sity and the pressure of the β stable matter. The overall EoS so
obtained will be reported in the corresponding Tables below and
used for NS calculations. The properties of infinite nuclear mat-
ter at saturation are collected in Table 2, and we see that their
values agree very well with the known empirical values. The
symmetry energy and the corresponding slope parameter L are
two important quantities closely related to various properties of
neutron stars and to the thickness of the neutron skin of nuclei
(Horowitz & Piekarewicz 2001). It can be noticed that the pre-
dicted values for Esym(n0) and L lie within the recent constraints
derived from the analysis of different astrophysical observations
(Newton et al. 2013; Steiner et al. 2010; Lattimer & Lim 2013;
Hebeler et al. 2013) and nuclear experiments (Chen et al. 2010;
Tsang et al. 2012; Viñas et al. 2014).

The BHF result can be directly employed for the calculations
of the NS liquid core, where the nuclei have dissolved into their
constituents, protons and neutrons. However, the description of
finite nuclei and nuclear structures of a NS crust is not man-
ageable on a fully microscopic level. Indeed, the only known
tractable framework to solve the nuclear many-body problem in
finite nuclei across the nuclear chart is provided by density func-
tional theory. In order to describe finite nuclei, the BCPM en-
ergy density functional was built (Baldo et al. 2008b, 2010,
2013) based on the same microscopic BHF calculations pre-
sented before. The BCPM functional is obtained within an ap-
proximation inspired by the Kohn-Sham method (Kohn & Sham
1965). In this approach the energy is split into two parts, the
first one being the uncorrelated kinetic energy, while the sec-
ond one contains both the potential energy and the correlated
part of the kinetic energy. An auxiliary set of A orthonormal or-
bitals ϕi(r, σ, q) is introduced (where A is the nucleon number
and σ and q are spin and isospin indices), allowing one to write
the one-body density as if it were obtained from a Slater deter-
minant as n(r) =

∑
i,σ,q |ϕi(r, σ, q)|2, and the uncorrelated kinetic

energy as

T0 =
1

2m

∑
i,σ,q

∫
|∇ϕi(r, σ, q)|2dr. (6)

To deal with the unknown form of the correlated part of the
energy density functional, a strategy often followed in atomic
and molecular physics is to use accurate theoretical calculations
performed in a uniform system which finally are parametrized

in terms of the one-body density. We use a similar approach,
and we apply it to the nuclear many-body problem to obtain the
BCPM functional. For this purpose we split the interacting nu-
clear part of the energy (EN) into bulk and surface contributions
(i.e. EN = Ebulk

N + Esurf
N ). We obtain the bulk contribution Ebulk

N
directly from the ab initio BHF calculations of the uniform nu-
clear matter system by a local density approximation. Namely,
in our approach Ebulk

N depends locally on the nucleon density
n = nn +np and the asymmetry parameter β = (nn −np)/(nn+np)
and reads as

Ebulk
N [np, nn] =

∫ [
Ps(n)(1 − β2) + Pn(n)β2]ndr, (7)

where the polynomials Ps(n) and Pn(n) in powers of the one-
body density have been introduced in Eq. (5).

In addition to the bulk part, also surface, Coulomb, and spin-
orbit contributions which are absent in nuclear matter are neces-
sary in the interacting functional to properly describe finite nu-
clei. We make the simplest possible choice for the surface part
of the functional by adopting the form

Esurf
N [np, nn] =

1
2

∑
q,q′

∫ ∫
nq(r)vq,q′(r − r′)nq′(r′)drdr′

−1
2

∑
q,q′

∫
nq(r)nq′(r)dr

∫
vq,q′(r′)dr′, (8)

where q = n, p for neutrons and protons. The second term in
Eq. (8) is subtracted to not contaminate the bulk part deter-
mined from the microscopic nuclear matter calculation. For the
finite range form factors we take a Gaussian shape vq,q′(r) =
Vq,q′e−r2/α2

, with three adjustable parameters: the range α, the
strength Vp,p = Vn,n ≡ VL for like nucleons, and the strength
Vn,p = Vp,n ≡ VU for unlike nucleons. The Coulomb contribu-
tion to the functional is the sum of a direct term and a Slater
exchange term computed from the proton density:

Ecoul =
e2

2

∫∫
np(r)np(r′)
|r − r′| drdr′ − 3e2

4

(3
π

)1/3
∫

n4/3
p (r)dr. (9)

As in Skyrme and Gogny forces, the spin-orbit term is a zero-
range interaction vs.o. = iW0(σi +σ j) × [k′ × δ(ri − r j)k], whose
contribution to the energy reads

Es.o. = −W0

2

∫
[n(r)∇J(r) + nn(r)∇Jn(r) + np(r)∇Jp(r)]dr, (10)

where the uncorrelated spin density Jq for each kind of nucleon
is obtained using the auxiliary set of orbitals as

Jq(r) = −i
∑

i,σ,σ′
ϕ∗i (r, σ, q)[∇ϕi(r, σ′, q) × 〈σ |σ |σ′〉]. (11)

Thus, the total energy of a finite nucleus is expressed as

E = T0 + Ebulk
N + Esurf

N + Ecoul + Es.o.. (12)

In the calculations of open-shell nuclei we also take into account
pairing correlations. The minimization procedure applied to the
full functional gives a set of Hartree-like equations where the
potential part includes in an effective way the overall exchange
and correlation contributions. Further details of the functional
can be found in (Baldo et al. 2008b, 2010, 2013).

We note that the posited functional has only four open pa-
rameters (the strengths VL and VU, the range α of the surface
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Table 2. Properties of nuclear matter at saturation predicted by the EoS of this work in comparison with the empirical ranges (Newton et al. 2013;
Steiner et al. 2010; Lattimer & Lim 2013; Hebeler et al. 2013; Chen et al. 2010; Tsang et al. 2012; Viñas et al. 2014).

E/A n0 K Esym(n0) L
(MeV) (fm−3) (MeV) (MeV) (MeV)

This work −16.00 0.160 213.75 31.92 52.96
Ska (Lattimer & Swesty 1991) −16.00 0.155 263.18 32.91 74.62
SLy4 (Chabanat et al. 1998) −15.97 0.160 229.93 32.00 45.96
BSk21 (Goriely et al. 2010) −16.05 0.158 245.8 30.0 46.6
TM1 (Shen et al. 1998a) −16.26 0.145 281.14 36.89 110.79
Empirical −16.0 ± 0.1 0.16 ± 0.01 220 ± 30 31 ± 2 ∼60 ± 25

Notes. From left to right, the quantities are the energy per particle, density, incompressibility, symmetry energy, and slope parameter of the
symmetry energy: L = 3n0

∂Esym(n)
∂n

∣∣∣
n0

. The effective nucleon mass in the present model is m∗ = m (Baldo et al. 2008b). The nuclear matter
properties of other EoSs that will be considered in the sections of results are also shown.

Table 3. Parameters of the Gaussian form factors and spin-orbit
strength.

α (fm) VL (MeV) VU (MeV) W0 (MeV)
0.90 −137.024 −117.854 95.43

term, and the spin-orbit strength W0), while the rest of the func-
tional is derived from the microscopic BHF calculation. The four
open parameters have been determined by minimizing the root-
mean-square (rms) deviation σE between the theoretical and ex-
perimental binding energies of a set of well-deformed nuclei in
the rare-earth, actinide, and super-heavy mass regions of the nu-
clear chart (Baldo et al. 2008b). The optimized values of the
parameters are given in Table 3. The predictive power of the
functional is then tested by computing the binding energies of
467 known spherical nuclei. A fairly reasonable rms deviation
σE = 1.3 MeV between theory and experiment is found. Indeed,
the rms deviations for binding energies and for charge radii of
nuclei across the mass table with the BCPM functional are com-
parable to those obtained with highly successful nuclear mean
field models such as the D1S Gogny force, the SLy4 Skyrme
force, and the NL3 RMF parameter set, which for the same set
of nuclei yield rms deviations σE of 1.2–1.8 MeV, see (Baldo
et al. 2008b, 2010, 2013). The study of ground-state deforma-
tion properties, fission barriers, and excited octupole states with
the BCPM functional (Robledo et al. 2008, 2010) shows that the
deformation properties of BCPM are similar to those predicted
by the D1S Gogny force, which can be considered as a bench-
mark to study deformed nuclei.

3. The outer crust

The outer crust of a NS is the region of the star that consists of
neutron-rich nuclei and free electrons at densities approximately
between 104 g/cm3, where atoms become completely ionized,
and 4 × 1011 g/cm3, where neutrons start to drip from the nu-
clei. The nuclei arrange themselves in a solid body-centred cu-
bic (bcc) lattice in order to minimize the Coulomb repulsion
and are stabilized against β decay by the surrounding electron
gas. At the low densities of the beginning of the outer crust, the
Coulomb lattice is populated by 56Fe nuclei. As the density of
matter increases with increasing depth in the crust, it becomes
energetically favourable for the system to lower the proton frac-
tion through electron captures with the energy excess carried
away by neutrinos. The system progressively evolves towards
a lattice of more and more neutron-rich nuclei as it approaches

the bottom of the outer crust, until the neutron drip density is
reached and the inner crust of the NS begins.

3.1. Formalism for the outer crust

To describe the structure of the outer crust we follow the formal-
ism developed by Baym, Pethick, and Sutherland (BPS; Baym
et al. 1971b), as applied more recently in (Rüster et al. 2006;
Roca-Maza & Piekarewicz 2008; Roca-Maza et al. 2012; see
also Haensel et al. 2006; Pearson et al. 2011, and references
therein). It is considered that the matter inside the star is cold and
charge neutral, and that it is in its absolute ground state in com-
plete thermodynamic equilibrium. This is a meaningful assump-
tion for non-accreting neutron stars that have lived long enough
to cool down and to reach equilibrium after their creation. In
the outer crust, the energy at average baryon number density nb
consists of the nuclear plus electronic and lattice contributions:

E(A, Z, nb) = EN + Eel + El, (13)

where A is the number of nucleons in the nucleus, Z is the atomic
number, and nb = A/V (where V stands for volume). The nuclear
contribution to Eq. (13) corresponds to the mass of the nucleus,
i.e. the rest mass energy of its neutrons and protons minus the
nuclear binding energy:

EN(A, Z) = M(A, Z) = (A − Z)mn + Zmp − B(A, Z). (14)

The electronic contribution reads Eel = Eel V , where the energy
density Eel of the electrons can be considered as that of a degen-
erate relativistic free Fermi gas:

Eel =
kFe

8π2
(2k2

Fe + m2
e)

√
k2

Fe + m2
e

− m4
e

8π2
ln

[(
kFe +

√
k2

Fe + m2
e

) /
me

]
, (15)

with kFe =
(
3π2ne

)1/3
being the Fermi momentum of the elec-

trons, ne = (Z/A)nb the electron number density, and me the
electron rest mass. The lattice energy can be written as

El = −Cl
Z2

A1/3
kFb, (16)

where kFb =
(
3π2nb

)1/3
= (A/Z)1/3kFe is the average Fermi mo-

mentum and Cl = 3.40665 × 10−3 for bcc lattices (Roca-Maza
& Piekarewicz 2008). The lattice contribution has the form of
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the Coulomb energy in the nuclear mass formula with a partic-
ular prefactor and corresponds to the repulsion energy among
the nuclei distributed in the bcc lattice, their attraction with the
electrons, and the repulsion energy among the electrons.

The basic assumption in the calculation is that thermal, hy-
drostatic, and chemical equilibrium is reached in each layer of
the crust. As no pressure is exerted by the nuclei, only the elec-
tronic and lattice terms contribute to the pressure in the outer
crust (Baym et al. 1971b). Therefore, we have

P = −
(
∂E
∂V

)
T,A,Z

= μene − Eel − nb

3
Cl

Z2

A4/3
kFb, (17)

where μe =

√
k2

Fe + m2
e is the Fermi energy of the electrons in-

cluding their rest mass. One has to find the nucleus that at a
certain pressure minimizes the Gibbs free energy per particle, or
chemical potential, μ = G/A = (E − TS )/A + P/nb (Baym et al.
1971b). As far as the system can be assumed at zero tempera-
ture in good approximation, since the electronic Fermi energy is
much larger that the temperature of the star, the quantity to be
minimized is given by

μ(A, Z, P) =
E(A, Z, nb)

A
+

P
nb

=
M(A, Z)

A
+

Z
A
μe − 4

3
Cl

Z2

A4/3
kFb. (18)

For a fixed pressure, Eq. (18) is minimized with respect to the
mass number A and the atomic charge Z of the nucleus in order
to find the optimal configuration. The nuclear masses M(A, Z)
needed in Eq. (18) can be taken from experiment if they are
available or calculated using nuclear models.

3.2. Equation of state of the outer crust

Although thousands of nuclear masses are experimentally de-
termined not far from stability, the masses of very neutron-
rich nuclei are not known. We used in Eq. (18) the measured
masses whenever available. For the unknown masses, we per-
formed deformed Hartree-Fock-Bogoliubov calculations with
the BCPM energy density functional, which has been con-
structed from the microscopic BHF calculations as described
in Sect. 2. We took the experimental data of masses from the
most recent atomic mass evaluation, i.e. the AME2012 evalu-
ation (Audi et al. 2012). As the field of high-precision mass
measurements of unstable neutron-rich nuclei continues to ad-
vance in the radioactive beam facilities worldwide (Thoennessen
2013), better constraints can be placed on the composition of the
outer crust. Thus, we also included in our calculation the mass
of 82Zn recently determined by a Penning-trap measurement at
ISOLDE-CERN (Wolf et al. 2013). Being the most neutron-rich
N = 50 isotone known to date, 82Zn is an important nucleus in
the study of the NS outer crust (Wolf et al. 2013).

The calculated composition of the outer crust (neutron and
proton numbers of the equilibrium nuclei) vs. the average baryon
density nb is displayed in Fig. 1. After the 56Fe nucleus that pop-
ulates the outer crust up to nb = 5 × 10−9 fm−3 (8 × 106 g/cm3),
the composition profile exhibits a sequence of plateaus. The ef-
fect is related with the enhanced nuclear binding for magic nu-
cleon numbers, i.e. Z = 28 in the Ni plateau that occurs at in-
termediate densities in Fig. 1, and N = 50 and N = 82 in the
neutron plateaus that occur at higher densities. Along a neutron
plateau, such as N = 50, the nuclei experience electron captures
that reduce the proton number, resulting in a staircase structure

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

n
b
 (fm

-3
)

20

30

40

50

60

70

80

Pr
ot

on
 a

nd
 N

eu
tr

on
 N

um
be

rs

Ni

N=50

Zn
Se

Ge

Mo

Ni

N=82

Zr
SrKr KrN=34

SeN=30
Fe

N=36

BCPM:  N
BCPM:  Z
FRDM

Fig. 1. Neutron (N) and proton (Z) numbers of the predicted nuclei in
the outer crust of a neutron star using the experimental nuclear masses
(Audi et al. 2012; Wolf et al. 2013) when available and the BCPM en-
ergy density functional or the FRDM mass formula (Möller et al. 1995)
for the unmeasured masses.

of shells of increasingly neutron-rich isotones, until the jump to
the next neutron plateau (N = 82) takes place. The composi-
tion of the crust is determined by the experimental masses up to
densities around 2.5×10−5 fm−3 (4×1010 g/cm3). At higher den-
sities, model masses need to be used because the relevant nuclei
are more neutron rich and their masses are not measured.

The results for the composition in the high-density part
of the outer crust from the microscopic BCPM model can be
seen in Fig. 1. They are shown along with the results from the
macroscopic-microscopic finite-range droplet model (FRDM) of
Möller, Nix et al. (Möller et al. 1995) that was fitted with high
accuracy to the thousands of experimental masses available at
the time it was published. Despite BCPM has no more than four
fitted parameters (for reference, the sophisticated macroscopic-
microscopic models such as the FRDM (Möller et al. 1995)
and the Duflo-Zuker model (Duflo & Zuker 1995) have tens
of adjustable parameters), the predictions of BCPM are over-
all quite in consonance with those of the FRDM. In particu-
lar, the jump to the N = 82 plateau is predicted at practically
the same density. Some differences are found, though, in the
width of the shell of 78Ni before the N = 82 plateau, and in
the fact that BCPM reaches the neutron drip with a (very thin)
shell of 114Se, while the FRDM reaches the neutron drip with
a shell of 118Kr. We note that at the base of the outer crust
(neutron drip) the baryon density, mass density, pressure, and
electron chemical potential of the equilibrium configuration in
BCPM are nb = 2.62 × 10−4 fm−3, ε = 4.37 × 1011 g/cm3,
P = 4.84 × 10−4 MeV/fm3, and μe = 26.09 MeV, respectively.
These values are close (cf. Table I of Roca-Maza & Piekarewicz
2008) to the results computed using the highly successful FRDM
(Möller et al. 1995) and Duflo-Zuker (Duflo & Zuker 1995)
models, what gives us confidence that the BCPM energy den-
sity functional is well suited for extrapolating to the neutron-rich
regions.

In Fig. 2 we display the EoS, or pressure-density relation-
ship, of the outer crust obtained from the experimental masses
plus BCPM, and from the experimental masses plus the FRDM.
One observes small jumps in the density for particular values
of the pressure. They are associated with the change from an
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Fig. 2. Pressure in the outer crust against baryon density using the ex-
perimental nuclear masses (Audi et al. 2012; Wolf et al. 2013) when
available and the BCPM energy density functional or the FRDM mass
formula (Möller et al. 1995) for the unmeasured masses. Also shown is
the pressure from models BSk21, BPS, Lattimer-Swesty (LS-Ska), and
Shen et al. (Shen-TM1) (see text for details). The dashed vertical line
indicates the approximate end of the experimentally constrained region.

equilibrium nucleus to another in the composition. During this
change the pressure and the chemical potential remain constant,
implying a finite variation of the baryon density (Baym et al.
1971b; Rüster et al. 2006; Haensel et al. 2006; Pearson et al.
2011). After the region constrained by the experimental masses
(marked by the dashed vertical line in Fig. 2), the pressures of
BCPM (black solid line) and the FRDM (red dashed line) ex-
trapolate very similarly, with only some differences appreciated
by the end of the outer crust. Our results for the composition and
EoS of the outer crust are given in Table 4. The quantities ε and Γ
in this table are, respectively, the mass density of matter and the
adiabatic index Γ = (nb/P) (dP/dnb).

Also plotted in Fig. 2 is the pressure in the outer crust from
some popular EoSs that model the complete structure of the NS.
The figure is drawn up to nb = 3 × 10−4 fm−3, thus comprising
the change from the outer crust to the inner crust in order to allow
comparison of the EoSs also in this region (notice, however, that
inner crust results are not available for the FRDM). We show in
Fig. 2 the EoS from the recent BSk21 Skyrme nuclear effective
force (Pearson et al. 2012; Fantina et al. 2013; Potekhin et al.
2013; Goriely et al. 2010) tabulated in (Potekhin et al. 2013).
The parameters of this force were fitted (Goriely et al. 2010) to
reproduce with high accuracy almost all known nuclear masses,
and to various physical conditions including the neutron matter
EoS from microscopic calculations. We see in Fig. 2 that af-
ter the experimentally constrained region, the BSk21 pressure is
similar to the BCPM and FRDM results, with just some displace-
ment around the densities where the composition changes from a
nucleus to the next one. In the seminal work of BPS (Baym et al.
1971b) the nuclear masses for the outer crust were provided by
an early semi-empirical mass table. The corresponding EoS is
seen to display a similar pattern with the BCPM, FRDM, and
BSk21 results in Fig. 2. The EoS by Lattimer & Swesty (1991),
taken here in its Ska version (Lattimer 2015; LS-Ska), and the
EoS by (Shen et al. 1998b,a; Sumiyoshi 2015; Shen-TM1) were

Table 4. Composition and equation of state of the outer crust.

nb Z A ε P Γ

(fm−3) (g cm−3) (erg cm−3)

6.2203E−12 26 56 1.0317E+04 9.5393E+18 1.797
6.3129E−11 26 56 1.0471E+05 5.3379E+20 1.688
6.3046E−10 26 56 1.0457E+06 2.3241E+22 1.586
4.9516E−09 26 56 8.2138E+06 5.4155E+23 1.470
6.3067E−09 28 62 1.0462E+07 7.3908E+23 1.459
2.5110E−08 28 62 4.1659E+07 5.3113E+24 1.400
7.9402E−08 28 62 1.3176E+08 2.6112E+25 1.369
1.5828E−07 28 62 2.6269E+08 6.6859E+25 1.358
1.6400E−07 26 58 2.7220E+08 6.9610E+25 1.357
1.7778E−07 28 64 2.9508E+08 7.4978E+25 1.356
3.1622E−07 28 64 5.2496E+08 1.6340E+26 1.350
5.0116E−07 28 64 8.3212E+08 3.0390E+26 1.345
7.9431E−07 28 64 1.3191E+09 5.6433E+26 1.343
8.5093E−07 28 66 1.4132E+09 5.9393E+26 1.342
9.2239E−07 28 66 1.5319E+09 6.6181E+26 1.342
9.9998E−07 36 86 1.6609E+09 7.1858E+26 1.341
1.2587E−06 36 86 2.0908E+09 9.7829E+26 1.340
1.5845E−06 36 86 2.6324E+09 1.3318E+27 1.340
1.8587E−06 36 86 3.0881E+09 1.6492E+27 1.339
1.9952E−06 34 84 3.3151E+09 1.7369E+27 1.339
3.1620E−06 34 84 5.2552E+09 3.2161E+27 1.338
5.0116E−06 34 84 8.3320E+09 5.9526E+27 1.337
6.7858E−06 34 84 1.1285E+10 8.9241E+27 1.336
7.5849E−06 32 82 1.2615E+10 9.8815E+27 1.336
9.9996E−06 32 82 1.6635E+10 1.4293E+28 1.335
1.2589E−05 32 82 2.0947E+10 1.9437E+28 1.335
1.6595E−05 32 82 2.7622E+10 2.8107E+28 1.335
1.9053E−05 30 80 3.1718E+10 3.2111E+28 1.335
2.5118E−05 30 80 4.1828E+10 4.6433E+28 1.334
3.1621E−05 30 80 5.2673E+10 6.3132E+28 1.334
3.7973E−05 30 80 6.3269E+10 8.0596E+28 1.334
4.1685E−05 28 78 6.9462E+10 8.6285E+28 1.334
5.8754E−05 28 78 9.7955E+10 1.3639E+29 1.334
6.3093E−05 30 84 1.0520E+11 1.4867E+29 1.334
7.6207E−05 30 84 1.2711E+11 1.9125E+29 1.334
8.4137E−05 42 124 1.4035E+11 2.0101E+29 1.334
1.0964E−04 42 124 1.8299E+11 2.8616E+29 1.334
1.2022E−04 40 122 2.0067E+11 3.1040E+29 1.334
1.4125E−04 40 122 2.3584E+11 3.8485E+29 1.334
1.5667E−04 40 122 2.6163E+11 4.4187E+29 1.334
1.6982E−04 38 120 2.8364E+11 4.7062E+29 1.334
2.0416E−04 38 120 3.4112E+11 6.0164E+29 1.334
2.4265E−04 38 120 4.0556E+11 7.5746E+29 1.334
2.6155E−04 34 114 4.3721E+11 7.7582E+29 1.334

Notes. The last nucleus in the table with known mass is 80Zn. The ex-
perimental masses determine the results up to densities around 2.5 ×
10−5 fm−3, while at higher densities the calculation of the composition
involves unmeasured masses.

computed with, respectively, the Skyrme force Ska and the rel-
ativistic mean-field model TM1. In the two cases the calcula-
tions of masses are of semiclassical type and A and Z vary in
a continuous way. Therefore, these EoSs do not present jumps
at the densities associated with a change of nucleus in the crust.
Beyond this feature, the influence of shell effects in the EoS is
rather moderate because to the extent that the pressure at the
densities of interest is largely determined by the electrons, small
changes of the atomic number Z compared with its semiclassical
estimate modify only marginally the electron density and, con-
sequently, the pressure. The LS-Ska EoS shows good agreement
with the previously discussed models, with some departure from
them in the transition to the inner crust. The largest discrepancies
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in Fig. 2 are observed with the Shen-TM1 EoS that in this re-
gion predicts a softer crustal pressure with density than the other
models.

4. The inner crust: formalism

Below the outer crust, the inner crust starts at a density about
4 × 1011 g/cm3, where nuclei have become so neutron rich that
neutrons drip in the environment, and extends until the NS core.
The structure of the inner crust consists of a Coulomb lattice of
nuclear clusters permeated by the gases of free neutrons and free
electrons. This is a unique system that is not accessible to exper-
iment because of the presence of the free neutron gas. The frac-
tion of free neutrons increases with growing density of matter.
At the bottom layers of the inner crust the equilibrium nuclear
shape may change from sphere, to cylinder, slab, tube (cylindri-
cal hole), and bubble (spherical hole) before going into uniform
matter. These shapes are generically known as “nuclear pasta”.

Full quantal Hartree-Fock (HF) calculations of the nuclear
structures in the inner crust are complicated by the treatment
of the neutron gas and the eventual need to deal with differ-
ent geometries. As a result, large scale calculations of the in-
ner crust and nuclear pasta have been performed very often with
semiclassical methods such as the CLDM (Lattimer & Swesty
1991; Douchin & Haensel 2001) or the Thomas-Fermi (TF) ap-
proximation and their variants, employing effective forces for
the nuclear interaction, see (Haensel et al. 2006; Chamel &
Haensel 2008) for reviews. Calculations of TF type, including
pasta phases, have been carried out both in the non-relativistic
(Oyamatsu 1993; Gögelein & Müther 2007; Onsi et al. 2008;
Pearson et al. 2012) and in the relativistic (Cheng et al. 1997;
Shen et al. 1998b,a; Avancini et al. 2008; Grill et al. 2012) nu-
clear mean-field theories.

In this work we apply the self-consistent TF approximation
to describe the inner crust for two reasons. First, our main aim is
to obtain the EoS of the neutron star, which is largely driven by
the neutron gas and where the contribution of shell corrections
is to some extent marginal. Second, the semiclassical methods,
as far as they do not contain shell effects, are well suited to de-
scribe non-spherical shapes, i.e. pasta phases, as we shall dis-
cuss below. Nevertheless, it is to be mentioned that in the case
of spherical symmetry, shell corrections for protons in the inner
crust may be introduced perturbatively on top of the semiclassi-
cal results via the Strutinsky shell-correction method. These cor-
rections have been included in the calculations of the inner crust
by the Brussels-Montreal group (Chamel et al. 2011; Pearson
et al. 2012; Fantina et al. 2013; Potekhin et al. 2013) with the
BSk19–BSk21 Skyrme forces (Goriely et al. 2010). Shell ef-
fects can be taken into account self-consistently using the HF
method. Indeed, HF calculations of inner crust matter were per-
formed in spherical WS cells in the pioneering work of Negele
& Vautherin (1973). Pairing effects in the inner crust can have
important consequences to describe, e.g. pulsar glitches phe-
nomena or the cooling of NS. Pairing correlations have been
included in BCS and HFB calculations of the inner crust in
the spherical WS approach, see for instance (Pizzochero et al.
2002; Sandulescu et al. 2004; Baldo et al. 2007; Grill et al. 2011;
Pastore et al. 2011) and references therein, and also in the BCS
theory of anisotropic multiband superconductivity beyond the
WS approach (Chamel et al. 2010). These works are mainly de-
voted to investigate the superfluid properties of NS inner crusts
and only, to our knowledge, in (Baldo et al. 2007) the EoS of the
inner crust including pairing correlations was reported.

It must be mentioned as well that the formation and the
properties of nuclear pasta have been investigated in three-
dimensional HF (Gögelein & Müther 2007; Pais & Stone 2012;
Schuetrumpf et al. 2014) and TF (Okamoto et al. 2013) calcu-
lations in cubic boxes that avoid any assumptions on the ge-
ometry of the system. Generally speaking, the results of these
calculations observe the usual pasta shapes but additional com-
plex morphologies can appear as stable or metastable states at
the transitions between shapes (Gögelein & Müther 2007; Pais
& Stone 2012; Schuetrumpf et al. 2014; Okamoto et al. 2013).
Techniques based on Monte Carlo and molecular dynamics sim-
ulations, which do not impose a periodicity or symmetry of the
system unlike the WS approximation, have also been applied to
study nuclear pasta, see (Horowitz et al. 2004, 2015; Watanabe
et al. 2009; Schneider et al. 2013) and references therein. (We
note that some of the quoted three-dimensional simulation cal-
culations are for pasta in supernova matter rather than in cold
neutron-star matter.) These calculations are highly time consum-
ing and a detailed pressure-vs.-density relation for the whole in-
ner crust is not yet available.

4.1. Self-consistent Thomas-Fermi description of the inner
crust of a neutron star

In this section we describe the method used for computing the
structure and the EoS of the inner crust with the BCPM energy
density functional. Although a summary of the approach has
been presented elsewhere (Baldo et al. 2014), here we provide
a more complete report of the formalism.

The total energy of an ensemble of A−Z neutrons, Z protons,
and Z electrons in a spherical Wigner-Seitz (WS) cell of volume
Vc = 4πR3

c/3 can be expressed as

E = E(A, Z,Rc) =
∫

Vc

[
H

(
nn, np

)
+ mnnn + mpnp

+ Eel (ne) + Ecoul

(
np, ne

)
+ Eex

(
np, ne

) ]
dr. (19)

The term H
(
nn, np

)
is the contribution of the nuclear energy

density, without the nucleon rest masses. In our approach it reads

H
(
nn, np

)
=

3
5

(
3π2

)2/3

2mn
n5/3

n (r) +
3
5

(
3π2

)2/3

2mp
n5/3

p (r)

+V
(
nn(r), np(r)

)
, (20)

where the neutron and proton kinetic energy densities are writ-
ten in the TF approximation and V

(
nn, np

)
is the interacting

part provided by the BCPM nuclear energy density functional
(see Sect. 2), which contains bulk and surface contributions. The
term Eel (ne) in Eq. (19) is the relativistic energy density due to
the motion of the electrons, including their rest mass. Since at
the densities prevailing in neutron star inner crust the Fermi en-
ergy of the electrons is much higher than the Coulomb energy,
we computed Eel using the energy density of a uniform rela-
tivistic Fermi gas given by Eq. (15). The term Ecoul

(
np, ne

)
in

Eq. (19) is the Coulomb energy density from the direct part of
the proton-proton, electron-electron, and proton-electron inter-
actions. Assuming that the electrons are uniformly distributed,
this term can be written as

Ecoul

(
np, ne

)
=

1
2

(
np(r) − ne

) (
Vp(r) − Ve(r)

)
, (21)
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with

Vp(r) =
∫

e2np(r′)
|r − r′| dr′, Ve(r) =

∫
e2ne

|r − r′|dr′. (22)

We did calculations where we allowed the profile of the elec-
tron density to depend locally on position. However, we found
this to have a marginal influence on our results for compositions
and energies and decided to proceed with a uniform distribution
for the electrons. Lastly, the term Eex(np, ne) in Eq. (19) is the
exchange part of the proton-proton and electron-electron inter-
actions treated in Slater approximation:

Eex

(
np, ne

)
= −3

4

(
3
π

)1/3
e2

(
n4/3

p (r) + n4/3
e

)
. (23)

We consider the matter within a WS cell of radius Rc and per-
form a fully variational calculation of the total energy E(A, Z,Rc)
of Eq. (19) imposing charge neutrality and an average baryon
density nb = A/Vc. The fact that the nucleon densities are fully
variational differs from some other TF calculations carried out
with non-relativistic nuclear models (Oyamatsu 1993; Gögelein
& Müther 2007; Onsi et al. 2008; Pearson et al. 2012) that use
parametrized trial neutron and proton densities in the minimiza-
tion. TF calculations of the inner crust with fully variational den-
sities using relativistic nuclear mean-field models have been re-
ported in the literature (Cheng et al. 1997; Shen et al. 1998b,a;
Avancini et al. 2008; Grill et al. 2012).

Taking functional derivatives of Eq. (19) with respect to the
particle densities and including the conditions of charge neutral-
ity and constant average baryon density with suitable Lagrange
multipliers, leads to the variational equations

δH
(
nn, np

)
δnn

+ mn − μn = 0, (24)

δH
(
nn, np

)
δnp

+ Vp(r) − Ve(r) −
(

3
π

)1/3
e2n1/3

p (r)

+ mp − μp = 0, (25)√
k2

Fe + m2
e + Ve(r) − Vp(r) −

(
3
π

)1/3
e2n1/3

e − μe = 0, (26)

plus the β-equilibrium condition

μe = μn − μp, (27)

which is imposed along with the constraints of charge neutrality
and fixed average baryon density in the cell. We note that in this
work the chemical potentials μn, μp, and μe include the rest mass
of the particle.

Equations (24)–(27) are solved self-consistently in a WS cell
of specified size Rc following the method described in (Sil et al.
2002) and the energy is calculated from Eq. (19). Next, a search
of the optimal size of the cell for the considered average baryon
density nb is performed by repeating the calculation for differ-
ent values of Rc, in order to find the absolute minimum of the
energy per baryon for that nb. This can be a delicate numerical
task because the minimum of the energy is usually rather flat as
a function of the cell radius Rc (or, equivalently, as a function
of the baryon number A) and the energy differences may be be-
tween a few keV and a few eV.

In order to obtain the EoS of the inner crust we have to com-
pute the pressure. The derivation of the expression of the pres-
sure in this region of the NS is given in Appendix A. As shown

in the appendix (also see Pearson et al. 2012), in the inner crust
the pressure assumes the form

P = Png + Pfree
el + Pex

el , (28)

where Png is the pressure of the gas of dripped neutrons, Pfree
el =

ne

√
k2

Fe + m2
e − Eel(ne) is the pressure of free electron gas, and

Pex
el = − 1

4

(
3
π

)1/3
e2n4/3

e is a corrective term from the electron
Coulomb exchange. That is, the pressure in the inner crust is
exerted by the neutron and electron gases in which the nuclear
structures are embedded. On the other hand, in Appendix B we
show explicitly that when the minimization of the energy per unit
volume with respect to the radius of the WS cell is attained, sub-
jected to an average density nb and charge neutrality, the Gibbs
free energy G = PV + E per particle equals the neutron chem-
ical potential, i.e. G/A = μn. This result provides an alternative
way to extract the pressure from the knowledge of the neutron
chemical potential and the energy.

The same formalism described for spherical nuclei can
be applied to obtain solutions for spherical bubbles (hollow
spheres). Assuming the appropriate geometry, the method can
be used in a similar way for other shapes (nuclear pasta), as dis-
cussed in the next subsection.

4.2. Pasta phases: cylindrical and planar geometries

The method of solving Eqs. (24)–(27) can be extended to deal
with WS cells having cylindrical symmetry (rods or “nuclear
spaghetti”) or planar symmetry (slabs or “nuclear lasagne”). The
length of the rods and the area of the slabs in the inner crust of
a neutron star are effectively infinite. The calculations for these
non-spherical geometries are simplified if one also considers the
unit cells as rods and slabs of infinite extent in the direction per-
pendicular to the base area of the rods and to the width of the
slabs, respectively. That is, the corresponding WS cells are taken
as rods of finite radius Rc and length L → ∞, and as slabs of fi-
nite width 2Rc and transverse area S → ∞. With this choice of
geometries, the number of particles and energy per unit length
(rods) or area (slabs) are finite. By taking dV = 2πLrdr for rods
and dV = S dx for slabs in Eq. (19), the energy calculations are
reduced to one-variable integrals over the finite size Rc of the
WS cell (i.e. from 0 to Rc in a circle of radius Rc in the case of
rods, and from −Rc to +Rc along the x direction for slabs). The
calculation of the Coulomb potentials is likewise simplified. In
the case of rods the direct Coulomb potential can be written as

Vp (r) = −4πe2

[
ln r

∫ r

0
r′np(r′)dr′ +

∫ Rc

r
r′ ln r′np(r′)dr′

]
(29)

for protons, and as

Ve (r) = πe2neR2
c

(
1 − r2

R2
c
− 2 ln Rc

)
(30)

for the uniform electron distribution. In the case of slabs these
potentials read

Vp (x) = −4πe2

[
x
∫ x

0
np(x′)dx′ +

∫ Rc

x
x′np(x′)dx′

]
, (31)

and

Ve (x) = −2πe2ne

(
x2 + R2

c

)
. (32)
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The other piece of the energy that depends on the geometry of
the WS cell is the nuclear surface contribution, which is given by
Eq. (8) for the BCPM energy density functional. In the case of
spherical nuclei, performing the angular integration, the surface
energy density of Eq. (8) can be recast as

Esurf

(
nq, nq′

)
=
π

2

∑
q,q′
α2Vq,q′nq(r)

×
[1

r

∫ ∞

0
nq′(r′)

(
e−(r−r′)2/α2 − e−(r+r′)2/α2)

r′ dr′

− π1/2αnq′(r)
]
. (33)

For rods the nuclear surface contribution to the energy density is
given by

Esurf

(
nq, nq′

)
=
π

2

∑
q,q′
α2Vq,q′nq(r)

×
[ 2
α
π1/2e−r2/α2

∫ ∞

0
nq′(r

′)e−r′2/α2
I0

(2rr′

α2

)
r′ dr′

− π1/2αnq′(r)
]
, (34)

where I0 is the modified Bessel function, while for slabs it is
given by

Esurf

(
nq, nq′

)
=
π

2

∑
q,q′
α2Vq,q′nq(x)

×
[ ∫ ∞

−∞
nq′ (x′)e−(x−x′)2/α2

dx′

− π1/2αnq′(x)
]
. (35)

As happens with spherical nuclei and spherical bubbles, the
equations corresponding to cylindrical rods can be similarly ap-
plied to obtain the solutions for tube shapes (hollow rods).

5. The inner crust: results

5.1. Analysis of the self-consistent solutions

To compute the EoS of a neutron-star inner crust we need to de-
termine the optimal configuration of the WS cell, i.e. the shape
and composition that yield the minimal energy per baryon, as a
function of the average baryon density nb. This is done for each
nb value following the method explained in the previous section.
In Fig. 3 we display the results for the minimal energy per baryon
E/A in the different shapes. The energy per baryon is shown rel-
ative to the value in uniform neutron-proton-electron (npe) mat-
ter in order to be able to appreciate the energy separations be-
tween shapes. Our set of considered shapes consists of spherical
droplets, cylindrical rods, slabs, cylindrical tubes, and spherical
bubbles.

As can be seen in Fig. 3, it was possible to obtain solu-
tions for rods and slabs starting at densities as low as nb ∼
0.005 fm−3. Solutions at lower crustal densities, i.e. from the
transition density between the outer crust and the inner crust un-
til nb = 0.005 fm−3, were obtained for spherical droplets only.
These solutions are not plotted in Fig. 3 for visual purposes of
the rest of the figure. We note that at a density nb = 0.0003 fm−3

immediately after the neutron drip point, i.e. at the beginning of
the inner crust, the difference E/A−(E/A)npe is of −2.5 MeV. For
tube and bubble shapes, solutions could be obtained for crustal
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Fig. 3. Energy per baryon of different shapes relative to uniform npe
matter as a function of baryon density in the inner crust.
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Fig. 4. Energy per baryon of different shapes relative to uniform npe
matter as a function of baryon density in the high-density region of the
inner crust.

densities higher than about 0.07 fm−3, where the system is not
far from uniform matter.

The spherical droplet configuration is the energetically most
favourable shape all the way up to nb ∼ 0.065 fm−3, see Fig. 3.
When the crustal density reaches ∼0.065 fm−3 (approximately
1014 g/cm3), the nucleus occupies a significant fraction of the
cell volume and it may happen that non-spherical structures
have lower energy than the spherical droplets (Ravenhall et al.
1983; Lorenz et al. 1993; Oyamatsu 1993; Haensel et al. 2006;
Chamel & Haensel 2008). We show in Fig. 4 the high-density
region between nb = 0.07 fm−3 and nb = 0.0825 fm−3, where
the TF-BCPM model predicts the appearance of non-spherical

A103, page 10 of 22

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201526642&pdf_id=3
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201526642&pdf_id=4


B. K. Sharma et al.: Unified equation of state for neutron stars on a microscopic basis

Table 5. Baryon density of the successive changes of energetically
favourable topology in the inner crust.

Drop/rod Rod/slab Slab/tube Tube/bubble Bubble/uniform

0.067 0.076 0.082 �0.0825 ≈0.0825

Notes. Units are fm−3.

shapes as optimal configurations. Indeed, the first change of nu-
clear shape occurs at nb = 0.067 fm−3 from droplets to rods.
It can be seen in Fig. 4 that the cylindrical shape is the energeti-
cally favoured configuration up to a crustal density of 0.076 fm−3

where a second change takes place to the planar slab shape. As
the density of the crustal matter increases further, the energy per
baryon of tubes and bubbles becomes progressively closer to that
of the slabs. Very close to the crust-core transition, estimated to
occur in the TF-BCPM model at nb = 0.0825 fm−3, there are
successive shape changes from slabs to tubes at nb = 0.082 fm−3

and to spherical bubbles at almost 0.0825 fm−3. At this latter
density, the energy per baryon of the self-consistent TF bubble
solution and that of uniform matter differ by barely −200 eV
(in comparison, the value of E/A − mn is of 8.3 MeV). In sum-
mary, as compiled in Table 5, the TF-BCPM model predicts that
the sequence of shapes in the inner crust changes from spher-
ical droplets to rods, slabs, tubes, and spherical bubbles. This
is in consonance with the ordering of pasta phases reported in
previous TF calculations (Oyamatsu 1993; Avancini et al. 2008;
Grill et al. 2012). It can be noticed that the consideration of pasta
shapes renders the transition to the core somewhat smoother. The
energy differences between the most bound shape and the spher-
ical solution at the same density are, though, small and do not
exceed 1−1.5 keV per nucleon.

A typical landscape of solutions is illustrated in Fig. 5 where,
for a density nb = 0.077 fm−3, the energy per baryon relative to
the neutron rest mass is shown as a function of the size of the
WS cell for the various shapes. Usually, the curves for a given
shape are flat around their minimum. For example, in the case of
spherical droplets in Fig. 5, a 1% deviation of Rc from the value
of the minimum implies a shift of merely 25 eV in E/A, but it
changes the baryon number by as much as 25 units. Sufficiently
close points have to be computed in order to determine precisely
the Rc value (equivalently, the A value) that corresponds to the
minimal energy per baryon. On the other hand, at high crustal
densities the differences among the energy per baryon of the
minima of the various shapes (quoted in brackets in Fig. 5) are
small; e.g. the minima of the slab and rod solutions in Fig. 5
differ by 190 eV.

Figure 6 displays the cell size Rc and the proton fraction
xp = Z/A of the equilibrium configurations against nb for the
different shapes in our calculation. Rc shows a nearly monotonic
downward trend when the density increases, in agreement with
other studies of NS inner crusts (Oyamatsu 1993; Onsi et al.
2008; Pearson et al. 2012; Avancini et al. 2008; Grill et al. 2012).
The size of the cell has a significant dependence on the geom-
etry of the nuclear structures, as seen by comparing Rc of the
different shapes. In the spherical solutions, the cell radius de-
creases from almost 45 fm at nb = 0.0003 fm−3 to 13.7 fm at
nb = 0.08 fm−3 near the transition to the core. As regards the
proton fraction xp, it takes quite similar values for the various
cell geometries in the ranges of densities where we obtained so-
lutions for the respective shapes. Beyond a density of the or-
der of 0.02 fm−3 the proton fraction shows a weak change with
density, and after nb ∼ 0.05 fm−3 it smoothly tends to the value
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Fig. 5. The minimum energy per baryon relative to the neutron mass for
different shapes as a function of the cell size Rc at an average baryon
density nb = 0.077 fm−3. The value of the absolute minimum for each
shape is shown in MeV in brackets.
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Fig. 6. Radius Rc of the Wigner-Seitz cell and proton fraction xp = Z/A
(given in percentage) in different geometries with respect to the baryon
density.

in uniform npe matter. For the spherical droplet solutions, we
find that xp rapidly decreases from 31% at nb = 0.0003 fm−3 to
∼3% at nb = 0.02 fm−3. It afterward remains almost constant,
presenting a minimum value of 2.75% at nb = 0.045 fm−3 and
then a certain increase up to 3.2% at the last densities before the
core.

Taking into account that except for densities close to the
crust-core transition the spherical shape is the energetically pre-
ferred configuration, and when it is not, the energy differences
are fairly small, we restrict the discussion about the A and Z val-
ues in the WS cells to spherical nuclei. Figure 7 depicts the
evolution with nb of A and Z of the equilibrium spherical so-
lutions. The numerical values are collected in Table 6. When
free neutrons begin to appear in the crust the number of nu-
cleons contained in a cell quickly increases from A = 113 up
to a maximum A � 1100 at nb = 0.025 fm−3. From this den-
sity onwards, A shows a slowly decreasing trend (with a relative
plateau around nb ∼ 0.05 fm−3) till A � 820 at nb � 0.07 fm−3,
and finally it presents an increase approaching the core. We see
in Fig. 7 that the results for the atomic number Z in the inner
crust show an overall smooth decrease as a function of nb and
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Fig. 7. Mass number A (left vertical scale) and atomic number Z (right
vertical scale) corresponding to spherical nuclei with respect to the
baryon density.

a final slight increase before the transition to the core in agree-
ment with the behaviour of A. The range of Z values lies be-
tween an upper value Z � 36 at nb � 0.01 fm−3 and a lower
value Z � 25 at nb � 0.07 fm−3. We note that in our calcu-
lation the mass and atomic numbers vary continuously and are
not restricted to integer values because we have used the TF ap-
proximation which averages shell effects. The same fact explains
that the atomic number Z of the optimal configurations does not
correspond to proton magic numbers, as it happens when pro-
ton shell corrections are included in the calculations (Negele &
Vautherin 1973; Baldo et al. 2007; Chamel et al. 2011; Pearson
et al. 2012; Fantina et al. 2013; Potekhin et al. 2013). However,
as we have seen from the flatness of E/A with respect to A (or Rc)
around the minima in the discussion of Fig. 5, the resulting EoS
is robust against the details of the composition.

Before leaving this section, in Fig. 8 we display the spa-
tial dependence of the self-consistent neutron and proton den-
sity profiles for the optimal solutions in spherical WS cells with
average baryon densities nb = 0.0475 fm−3, 0.065 fm−3, and
0.076 fm−3. It is observed that in denser matter the size of the WS
cell decreases, as we discussed previously, and that the amount
of free neutrons in the gas increases, as expected. It can be seen
that the nuclear surface is progressively washed out with increas-
ing average baryon density as the nucleon distributions become
more uniform. At high nb the density profile inside the WS cell
extends towards the edge of the cell, pointing out that the WS ap-
proximation may be close to its limits of validity (Negele &
Vautherin 1973; Chamel et al. 2007; Baldo et al. 2007; Pastore
et al. 2011; Gögelein & Müther 2007; Newton & Stone 2009).
Although the proton number Z is similar for the three average
baryon densities of Fig. 8, the local distribution of the protons
is very different in the three cases. In Fig. 8c the proton den-
sity profile extends more than 3 fm farther from the origin than
in Fig. 8a, while the central value of the proton density has de-
creased by more than a factor 2, hinting at the fact that the neu-
trons have a strong drag effect on the protons. Figure 9 presents
the nucleon density profiles obtained for cylindrical and planar
geometries at the same average density nb = 0.076 fm−3 as in
Fig. 8c. From Figs. 8c (droplets), 9a (rods), and 9b (slabs) we
see that the size of the WS cells decreases with decreasing di-
mensionality, i.e. Rc,droplet > Rc,rod > Rc,slab. At high average den-
sities near the crust-core transition, nucleons inside the WS cell
can arrange themselves in such a way that the region of higher

Table 6. Composition of the inner crust.

nb Z A Rc

(fm−3) (fm)

0.0003 34.934 112.991 44.8000
0.0005 34.237 153.293 41.8300
0.00075 33.479 213.369 40.8000
0.0010 36.012 264.978 39.8450
0.0014 34.265 333.809 38.4675
0.0017 36.291 376.721 37.5400
0.0020 35.091 414.026 36.6975
0.0025 36.104 466.725 35.4550
0.0030 34.519 511.212 34.3925
0.0035 35.645 550.067 33.4775
0.0040 34.549 585.320 32.6900
0.0050 34.990 648.872 31.4075
0.0060 35.472 707.137 30.4150
0.0075 35.711 787.198 29.2625
0.0088 35.252 848.825 28.4500
0.0100 36.094 898.261 27.7825
0.0120 36.181 963.496 26.7625
0.0135 35.863 999.069 26.0450
0.0150 35.339 1025.682 25.3675
0.0170 34.982 1051.388 24.5325
0.0180 34.461 1061.641 24.1475
0.0200 34.036 1078.235 23.4350
0.0225 33.477 1094.430 22.6450
0.0250 32.910 1104.446 21.9300
0.0275 32.204 1104.566 21.2450
0.0300 31.290 1092.541 20.5625
0.0325 30.203 1069.599 19.8800
0.0350 29.036 1039.295 19.2100
0.0375 27.959 1008.341 18.5850
0.0400 27.152 984.099 18.0425
0.0425 26.665 968.891 17.5900
0.0450 26.549 965.017 17.2350
0.0475 26.701 968.928 16.9500
0.0500 26.955 974.581 16.6950
0.0520 27.096 975.352 16.4825
0.0540 27.065 968.814 16.2400
0.0560 26.808 953.172 15.9575
0.0580 26.322 928.561 15.6350
0.0600 25.650 897.063 15.2825
0.0620 25.080 869.075 14.9575
0.0640 24.833 852.005 14.7025
0.0650 24.750 844.737 14.5850
0.0660 24.672 837.603 14.4700
0.0680 24.613 826.389 14.2625
0.0700 24.674 818.891 14.0825
0.0720 24.875 815.658 13.9325
0.0740 25.249 817.728 13.8175
0.0750 25.502 820.707 13.7725
0.0760 25.810 825.326 13.7375
0.0770 26.190 832.083 13.7150
0.0780 26.615 840.127 13.7000
0.0790 27.111 850.432 13.6975
0.0800 27.677 863.085 13.7075

density is concentrated at the edge of the cell, leaving the uni-
form region of lower density in the inner part of the cell. This
distribution of nucleons corresponds to the cylindrical tube and
spherical bubble configurations. In Figs. 9c and d, we plot the
neutron and proton density profiles of the optimal solution for
tubes and bubbles at nb = 0.076 fm−3. At equal average density,
the size of the cells containing tubes and bubbles is larger than
the size of the cells accommodating rods and droplets, respec-
tively, as can be appreciated by comparing Fig. 9a for rods with
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Fig. 8. a) Optimal density profile of neutrons nn and protons np for
spherical nuclear droplets at average baryon density nb = 0.0475 fm−3.
The associated baryon and proton numbers, proton fraction xp = Z/A
in percentage, and radius of the cell are shown. The vertical dashed
line marks the location of the end of the WS cell. b) The same for
nb = 0.065 fm−3. c) The same for nb = 0.076 fm−3.

Fig. 9c for tubes, and Fig. 8c for droplets with Fig. 9d for bub-
bles. As a consequence of this fact and of the effectively larger
value of the integration factors 2πr and 4πr2 when the densities
are accumulated near the edge of the cell, the total number of
nucleons and the atomic number in the tube and bubble cells is
about 1.5−2 times larger than in their rod and droplet counter-
parts. The proton fraction xp = Z/A is, however, practically the
same for all geometries.

5.2. Equation of state of the inner crust

The energy per baryon in the inner crust predicted by the BCPM
functional is displayed against the average baryon density in
Fig. 10. The result is compared with other calculations avail-
able in the literature. This comparison will be, at the same
time, useful to discriminate popular EoSs used in neutron-star
modeling among each other. We show in Fig. 10 the results
of the quantal calculations of Negele & Vautherin (1973; la-
bel NV) and of Baldo et al. (2007; label Moskow). These two
EoSs of the inner crust include shell effects and in the case of
Moskow also pairing correlations. In addition to these models,
we compare with some of the EoSs that have been devised to
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Fig. 9. a) Optimal density profile of neutrons nn and protons np for
rod shapes at average baryon density nb = 0.076 fm−3. The associated
baryon and proton numbers, proton fraction xp = Z/A in percentage,
and radius of the cell are shown. The vertical dashed line marks the
location of the end of the WS cell. b) The same for slab shapes. c) The
same for tube shapes. d) The same for bubble shapes. We note that the
scale on the horizontal axis is the same in Figs. 9c and a, and in Figs. 9d
and 8c.

describe the complete neutron-star structure. The EoS by Baym
et al. (1971a,b; label BBP), the EoS by Lattimer & Swesty
(1991) in its Ska version (Lattimer 2015; label LS-Ska), and the
EoS by Douchin & Haensel (2001; label DH-SLy4) were all ob-
tained using the CLDM model to describe the inner crust. The re-
sults by Shen et al. (1998a,b; Sumiyoshi 2015; label Shen-TM1)
were computed in the TF approach with trial nucleon density
distributions. Finally, in the recent EoS of the Brussels-Montreal
BSk21 force (Pearson et al. 2012; Fantina et al. 2013; Potekhin
et al. 2013; Goriely et al. 2010) the inner crust was calculated
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Fig. 10. Energy per baryon relative to the neutron rest mass as a function
of the average baryon density in the inner crust for the BCPM functional
and other EoSs.

in the extended TF approach with trial nucleon density profiles
and with proton shell corrections incorporated by means of the
Strutinsky method.

The energy in the inner crust is largely influenced by
the properties of the neutron gas and, therefore, the EoS of
neutron matter of the different calculations plays an essen-
tial role. The NV calculation (Negele & Vautherin 1973) is
based on a local energy density functional that closely re-
produces the Siemens-Pandharipande EoS of neutron matter
(Siemens & Pandharipande 1971) in the low-density regime.
The Moskow calculation (Baldo et al. 2007) employs a semi-
microscopic energy density functional obtained by combining
the phenomenological functional of Fayans et al. (2000) inside
the nuclear cluster with a microscopic part calculated in the
Brueckner theory with the Argonne v18 potential (Wiringa et al.
1995) to describe the neutron environment in the low-density
regime (Baldo et al. 2004). The BBP calculation (Baym et al.
1971a,b) gives the EoS based on the Brueckner calculations
for pure neutron matter of Siemens (Siemens & Pandharipande
1971). The LS-Ska (Lattimer & Swesty 1991; Lattimer 2015)
and DH-SLy4 (Douchin & Haensel 2001) EoSs were constructed
using the Skyrme effective nuclear forces Ska and SLy4, re-
spectively. The SLy4 Skyrme force (Chabanat et al. 1998) was
parametrized, among other constraints, to be consistent with the
microscopic variational calculation of neutron matter of Wiringa
et al. (1988) above the nuclear saturation density. The Shen-TM1
EoS (Shen et al. 1998b,a; Sumiyoshi 2015) was computed us-
ing the relativistic mean field parameter set TM1 for the nuclear
interaction. The calculations of LS (Lattimer & Swesty 1991;
Lattimer 2015) and Shen et al. (Shen et al. 1998b,a; Sumiyoshi
2015) are the two EoS tables in more widespread use for as-
trophysical simulations. The BSk21 EoS (Pearson et al. 2012;
Fantina et al. 2013; Potekhin et al. 2013; Goriely et al. 2010) is
based on a Skyrme force with the parameters accurately fitted to
the known nuclear masses and constrained, among various phys-
ical conditions, to the neutron matter EoS derived within modern
many-body approaches which include the contribution of three-
body forces.

It can be realized in Fig. 10 that the energies per baryon
predicted in the inner crust by the BCPM functional and by
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Fig. 11. Pressure as a function of the average baryon density in the in-
ner crust for the BCPM functional and other EoSs. The figure starts at
nb = 3 × 10−4 fm−3 where Fig. 2 ended.

the NV calculation (Negele & Vautherin 1973) lie close over a
wide range of densities, as also noticed before (Schuck & Viñas
2013). The result of the BBP model (Baym et al. 1971a,b) agrees
similarly with BCPM and NV at low densities, while above
nb ∼ 0.02 fm−3 it predicts somewhat larger energies than BCPM
and NV. The DH-SLy4 calculation (Douchin & Haensel 2001)
consistently predicts throughout the inner crust the largest en-
ergies of all the models analyzed in Fig. 10. The energies of
the BSk21 calculation (Pearson et al. 2012; Fantina et al. 2013;
Potekhin et al. 2013; Goriely et al. 2010) are very close to those
of DH-SLy4 up to nb ∼ 0.03−0.04 fm−3. When the transition to
the core is approached, the BSk21 energies become closer to the
BCPM and NV results than to the DH-SLy4 result. The Moskow
calculation (Baldo et al. 2007) predicts lower energies than the
previous models. However, the most remarkable differences are
found with the results of the LS-Ska (Lattimer & Swesty 1991;
Lattimer 2015) and Shen-TM1 (Shen et al. 1998b,a; Sumiyoshi
2015) calculations. It seems evident that the BCPM functional,
as well as the results of the models constrained by some informa-
tion of microscopic calculations (NV, Moskow, BBP, DH-SLy4,
and BSk21), predicts overall substantially larger energies per
baryon in the inner crust than the LS-Ska and Shen-TM1 models
that do not contain explicit information of microscopic neutron
matter calculations.

The pressure in the crust is an essential ingredient en-
tering the Tolman-Oppenheimer-Volkoff equations (Shapiro &
Teukolsky 1983) that determine the mass-radius relation in
neutron stars. The crustal pressure has also significant impli-
cations for astrophysical phenomena such as pulsar glitches
(Piekarewicz et al. 2014). As expressed in Eq. (28), the pressure
in the inner crust is provided by the free gases of the electrons
and of the interacting dripped neutrons (aside from a correction
from Coulomb exchange). We note, however, that the pressure
obtained in a WS cell in the inner crust differs from the value in
homogeneous npe matter in β-equilibrium at the same average
density nb owing to the lattice effects, which influence the elec-
tron and neutron gases. The lattice effects take into account the
presence of nuclear structures in the crust and are automatically
included in the self-consistent TF calculation.

The pressure predictions in the inner crust by the BCPM
functional are shown in Fig. 11 in comparison with the
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Fig. 12. Adiabatic index from the EoSs of BCPM and DH-SLy4
(Douchin & Haensel 2001). The result calculated in homogeneous npe
matter is also shown.

predictions by the same models discussed in Fig. 10. The initial
baryon density in Fig. 11 corresponds to the last density shown
in Fig. 2 when we studied the EoS of the outer crust in Sect. 3. In
the inner crust, the pressure from the BCPM functional is com-
parable in general to the results of the NV, BBP, DH-SLy4, and
BSk21 calculations. Particular agreement is observed in the in-
ner crust regime between the BCPM and BSk21 pressures up
to relatively high crustal densities. In contrast, large differences
are found when the BCPM pressure is compared with the values
from the Moskow, LS-Ska, and Shen-TM1 models. As the crust-
core transition is approached, these differences can be as large as
a factor of two, which may have an influence on the predictions
of the mass-radius relationship of neutron stars, particularly in
small mass stars. In addition to the spherical shape, we have eval-
uated the pressure for the non-spherical WS cells and the hollow
shapes in the regime of high average baryon densities using the
BCPM functional. However, on the one hand, as noted before,
the pasta phases appear as the preferred configuration only in a
relatively narrow range of densities between nb � 0.067 fm−3

and nb � 0.08 fm−3. On the other hand, the differences between
the pressure of the spherical shape and the pressure from the
successively favoured shapes are small, generally of the order of
1–2 keV/fm3 or less. Therefore, as we did in (Baldo et al. 2014),
we have taken as a representative result for the whole inner crust
the pressure calculated in the spherical droplet configurations.
The corresponding EoS data are collected in Table 7.

An important quantity, which actually determines the re-
sponse of the crust to the compression or decompression of mat-
ter, is the so-called adiabatic index

Γ =
ε + P

P
dP
dε
=

nb

P
dP
dnb
, (36)

where P is the pressure, ε the mass density of matter, and nb the
average baryon density. In Fig. 12 we plot the adiabatic index
from the BCPM and DH-SLy4 (Douchin & Haensel 2001) EoS
in the region from the last layers of the outer crust until a density
well within the NS core (discussed in the next section). In the
bottom layers of the outer crust the pressure is governed almost
entirely by the ultra-relativistic electron gas, so that the value
of Γ is quite close to 4/3. At the neutron drip point, Γ sharply

Table 7. Equation of state of the inner crust.

nb ε P Γ

(fm−3) (g cm−3) (erg cm−3)

0.0003 5.0138E+11 8.2141E+29 0.443
0.0005 8.3646E+11 1.0417E+30 0.560
0.00075 1.2555E+12 1.3844E+30 0.747
0.0010 1.6746E+12 1.6984E+30 0.874
0.0014 2.3456E+12 2.3837E+30 1.004
0.0017 2.8488E+12 2.8551E+30 1.070
0.0020 3.3522E+12 3.4653E+30 1.121
0.0025 4.1915E+12 4.4319E+30 1.183
0.0030 5.0310E+12 5.6159E+30 1.226
0.0035 5.8706E+12 6.7099E+30 1.257
0.0040 6.7106E+12 8.0318E+30 1.280
0.0050 8.3909E+12 1.0646E+31 1.307
0.0060 1.0072E+13 1.3476E+31 1.319
0.0075 1.2594E+13 1.8085E+31 1.322
0.0088 1.4781E+13 2.2469E+31 1.318
0.0100 1.6801E+13 2.6490E+31 1.312
0.0120 2.0168E+13 3.3595E+31 1.303
0.0135 2.2694E+13 3.9198E+31 1.299
0.0150 2.5221E+13 4.5016E+31 1.297
0.0170 2.8591E+13 5.2957E+31 1.300
0.0180 3.0276E+13 5.7163E+31 1.303
0.0200 3.3648E+13 6.5647E+31 1.314
0.0225 3.7864E+13 7.6683E+31 1.334
0.0250 4.2081E+13 8.8299E+31 1.360
0.0275 4.6299E+13 1.0060E+32 1.392
0.0300 5.0519E+13 1.1361E+32 1.427
0.0325 5.4740E+13 1.2746E+32 1.466
0.0350 5.8962E+13 1.4221E+32 1.507
0.0375 6.3186E+13 1.5794E+32 1.550
0.0400 6.7411E+13 1.7473E+32 1.594
0.0425 7.1637E+13 1.9266E+32 1.638
0.0450 7.5864E+13 2.1181E+32 1.681
0.0475 8.0092E+13 2.3227E+32 1.725
0.0500 8.4322E+13 2.5411E+32 1.767
0.0520 8.7706E+13 2.7258E+32 1.800
0.0540 9.1092E+13 2.9200E+32 1.832
0.0560 9.4478E+13 3.1239E+32 1.864
0.0580 9.7865E+13 3.3370E+32 1.893
0.0600 1.0125E+14 3.5604E+32 1.922
0.0620 1.0464E+14 3.7946E+32 1.950
0.0640 1.0803E+14 4.0390E+32 1.976
0.0650 1.0973E+14 4.1651E+32 1.988
0.0660 1.1142E+14 4.2941E+32 2.000
0.0680 1.1481E+14 4.5601E+32 2.023
0.0700 1.1821E+14 4.8370E+32 2.045
0.0720 1.2160E+14 5.1245E+32 2.065
0.0740 1.2499E+14 5.4230E+32 2.083
0.0750 1.2669E+14 5.5763E+32 2.091
0.0760 1.2839E+14 5.7321E+32 2.100
0.0770 1.3008E+14 5.8903E+32 2.107
0.0780 1.3178E+14 6.0502E+32 2.114
0.0790 1.3348E+14 6.2077E+32 2.121
0.0800 1.3518E+14 6.3548E+32 2.127

decreases by more than a factor of two due to the dripped neu-
trons that strongly soften the EoS. The just dripped neutrons con-
tribute to the average baryon density but exert very little pres-
sure. In the inner crust region, when the density increases the
adiabatic index grows because the pressure of the neutron gas
also increases. In our EoS the adiabatic index of the inner crust
changes from Γ � 0.45 after the neutron drip point up to Γ � 2.1
near the crust-core transition (nb � 0.08 fm−3).
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Fig. 13. Shear modulus from the EoS of BCPM and DH-SLy4 (Douchin
& Haensel 2001).

In the same Fig. 12 we report Γ computed in a single phase of
homogeneous npe matter in β-equilibrium. It is observed that Γ
in the inner crust almost coincides with the result in a single
phase for densities between nb ∼ 0.01 fm−3 and 0.05 fm−3.
Above 0.05 fm−3, the adiabatic index of homogeneous npe mat-
ter grows faster than in the inner crust, because the latter is
softened by the presence of nuclear structures and the coexis-
tence between the two phases. The predictions of the DH-SLy4
EoS (Douchin & Haensel 2001) for Γ in the inner crust show
a similar qualitative behaviour but differ quantitatively from the
BCPM EoS. For example, at the bottom of the inner crust the
adiabatic index in the DH-SLy4 EoS is Γ ∼ 1.6, while it takes
a value of 2.1 in BCPM. This difference seems to indicate that
the interacting part of the neutron gas at densities near the crust-
core transition is weaker in SLy4 than in the BCPM functional
(also see in this respect Fig. 1 of Baldo et al. 2004). When the
transition to the core is reached, Γ increases in a discontinuous
way from 2.1 to 2.5 in the BCPM EoS, due to the change from
two phases to a single phase. With higher density in the core,
the adiabatic index stiffens from the increase of the repulsive
contributions in the nucleon-nucleon interaction. It is interest-
ing to note that Γ exhibits a small sharp drop at the muon onset,
which in BCPM is located at a density nb � 0.13 fm−3. It arises
from the appearance of muons that replace some high-energy
electrons and effectively reduce the pressure at this density. At
higher densities Γ remains roughly constant, which is partly due
to the increasing proton fraction in the npeμ matter of the core.

Quasi-periodic oscillations in giant flares emitted by highly-
magnetized neutron stars are signatures of the fundamental seis-
mic shear mode, which is specially sensitive to the nuclear
physics of neutron-star crusts (Steiner & Watts 2009; Sotani
et al. 2012). An important quantity for describing shear modes
is the effective shear modulus μ. It can be estimated from the
known formula for a bcc Coulomb crystal at zero temperature
(Steiner & Watts 2009; Sotani et al. 2012; Strohmayer et al.
1991):

μ = 0.1194 nb
(Ze)2

Rc
, (37)

where Z and Rc are the proton number and the radius of a spher-
ical WS cell having average baryon density nb. In Fig. 13 we
display the effective shear modulus from our calculation with the

BCPM functional along with the result from DH-SLy4 (Douchin
& Haensel 2001). Because the elasticity for pasta phases, with
the exception of spherical bubbles, is expected to be much lower
than for spherical nuclei (Sotani et al. 2012), we restrict the plot
in Fig. 13 to spherical configurations, i.e. up to an average den-
sity nb = 0.067 fm−3 where pasta phases start to be the most
favourable configuration in the BCPM calculation. The effec-
tive shear modulus (37) depends on the composition of the crust
through the proton number Z, which has a rather smooth varia-
tion along the inner crust with BCPM (see Fig. 7), and on the
size of the WS cells that decreases from the neutron drip till
the bottom layers of the inner crust (see Fig. 6). The difference
between the predictions of BCPM and SLy4 for μ in Fig. 13
increases with density. At the higher densities of Fig. 13 the
DH-SLy4 result is about twice the BCPM result, pointing out the
different composition and sizes of the WS cells in the DH-SLy4
(Douchin & Haensel 2001) and BCPM models. Lower values
of μ for the BCPM case point in the direction of lower frequen-
cies of the fundamental shear mode, but a complete analysis is
beyond the scope of the present paper.

6. The liquid core

The EoS for the liquid core is derived in the framework of the
Brueckner-Bethe-Goldstone theory (Baldo 1999) as described in
Sect. 2. The Argonne v18 potential (Wiringa et al. 1995) is used
as the NN interaction and three-body forces based on the so-
called Urbana model are included in the calculation to reproduce
the nuclear matter saturation point (Schiavilla et al. 1986; Baldo
et al. 1997, 2012; Taranto et al. 2013).

In order to study the structure of the NS core, we have to cal-
culate the composition and the EoS of cold, neutrino-free, cat-
alyzed matter. As we discussed in the Introduction, we consider
a NS with a core of nucleonic matter without hyperons or other
exotic particles. We require that it contains charge neutral mat-
ter consisting of neutrons, protons, and leptons (e−, μ−) in beta
equilibrium, and compute the EoS for charge neutral and beta-
stable matter in the following standard way (Baldo et al. 1997;
Shapiro & Teukolsky 1983). The Brueckner calculation yields
the energy density of lepton/baryon matter as a function of the
different partial densities,

ε(nn, np, ne, nμ) = (nnmn + npmp) + (nn + np)
E
A

(nn, np)

+ ε(nμ) + ε(ne), (38)

where we have used ultrarelativistic and relativistic approxima-
tions for the energy densities of electrons and muons (Shapiro
& Teukolsky 1983), respectively. In practice, it is sufficient to
compute only the binding energy of symmetric nuclear matter
and pure neutron matter, since within the BHF approach it has
been verified (Baldo et al. 1998, 2000a; Lejeune et al. 1986; Zuo
et al. 1999; Bombaci & Lombardo 1991) that a parabolic approx-
imation for the binding energy of nuclear matter with arbitrary
proton fraction xp = np/nb, nb = nn + np, is well fulfilled,

E
A

(nb, xp) ≈ E
A

(nb, xp = 0.5) + (1 − 2xp)2Esym(nb) , (39)

where the symmetry energy Esym can be expressed in terms of
the difference of the energy per particle between pure neutron
(xp = 0) and symmetric (xp = 0.5) matter:

Esym(nb) = −1
4
∂(E/A)
∂xp

(nb, 0) ≈ E
A

(nb, 0) − E
A

(nb, 0.5) . (40)
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Fig. 14. Populations vs. nucleon density for the BCPM EoS discussed
in the text. The full red dot indicates the value of the nucleon density at
which direct Urca processes set in.

Knowing the energy density Eq. (38), the various chemical po-
tentials (of the species i = n, p, e, μ) can be computed straight-
forwardly,

μi =
∂ε

∂ni
, (41)

and the equations for beta-equilibrium,

μi = biμn − qiμe, (42)

(bi and qi denoting baryon number and charge of species i) and
charge neutrality,∑

i

niqi = 0, (43)

allow one to determine the equilibrium composition ni at given
baryon density nb and finally the EoS,

P(nb) = n2
b

d
dnb

ε(ni(nb))
nb

= nb
dε
dnb
− ε = nbμn − ε. (44)

In Table 8 the populations are reported for a fixed nucleon den-
sity, and are plotted in Fig. 14. The full red dot indicates the
value of the nucleon density at which direct Urca processes set
in. We remind that Urca processes play an important role in
the neutron star cooling (Lattimer et al. 1991; Yakovlev et al.
2001). We notice that the BCPM EoS predicts a density onset
value close to 0.53 fm−3, and therefore with our EoS medium
mass NS can cool very quickly. In Table 9 we report the cor-
responding EoS, which is represented in Fig. 15 by a red solid
curve. We notice a remarkable similarity with the EoS derived
by (Douchin & Haensel 2001; black curve), based on the ef-
fective nuclear interaction SLy4 of Skyrme type. On the other
hand, a strong difference with the Lattimer-Swesty EoS (dashed
blue), the Shen EoS (dot-dashed, green), and the BSk21 EoS
(dot-dashed-dashed, magenta) is observed at high densities. We
recall that the pressures from the Lattimer-Swesty EoS and the
Shen EoS had already been found to differ significantly from
BCPM and SLy4 for the matter at subsaturation density in the
inner crust (see discussion of Fig. 11). However, the BCPM and
SLy4 pressures in the inner crust showed a concordance with
BSk21 that remains within the core region up to about 0.2 fm−3

(see inset of Fig. 15) but is not maintained in the extrapolation to
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Fig. 15. Pressure vs. nucleon density for the several EoSs discussed in
the text, i.e. the BCPM (solid, red), the BSk21 (dot-dashed-dashed, ma-
genta), the Lattimer-Swesty (Ska, dashed, blue), the Shen (dot-dashed,
green), and the Douchin-Haensel (SLy4, dot-dot-dashed, black). A de-
tail of the region between nb = 0.05 fm−3 and 0.30 fm−3 is shown in
the inset. The incompressibility coefficients at nuclear saturation den-
sity for these models are K = 214 MeV (BCPM), 230 MeV (SLy4),
246 MeV (BSk21), 263 MeV (Ska), and 281 MeV (Shen).

Table 8. Populations of the liquid core.

nb xp xe xμ
(fm−3) (%) (%) (%)

0.0825 2.950 2.950 0.000
0.085 3.023 3.023 0.000
0.090 3.165 3.165 0.000
0.100 3.429 3.429 0.000
0.110 3.667 3.667 0.000
0.120 3.882 3.882 0.000
0.130 4.082 4.075 0.007
0.160 4.864 4.480 0.384
0.190 5.598 4.771 0.827
0.220 6.274 5.022 1.253
0.250 6.935 5.273 1.662
0.280 7.615 5.544 2.071
0.310 8.336 5.847 2.489
0.340 9.105 6.183 2.922
0.370 9.918 6.548 3.371
0.400 10.762 6.933 3.829
0.430 11.622 7.330 4.292
0.460 12.361 7.665 4.697
0.490 13.108 8.005 5.102
0.520 13.859 8.352 5.507
0.550 14.614 8.702 5.912
0.580 15.371 9.055 6.315
0.610 16.126 9.409 6.717
0.640 16.879 9.764 7.115
0.670 17.628 10.117 7.510
0.700 18.371 10.469 7.902
0.750 19.591 11.048 8.542
0.800 20.784 11.616 9.167
0.850 21.944 12.170 9.775
0.900 23.069 12.707 10.363
0.950 24.156 13.226 10.930
1.000 25.201 13.726 11.475
1.100 27.167 14.667 12.501
1.200 28.966 15.527 13.439
1.300 30.601 16.309 14.292
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Table 9. Equation of state of the liquid core.

nb ε P Γ

(fm−3) (g cm−3) (erg cm−3)

0.0825 1.394E+14 6.916E+32 2.494
0.085 1.437E+14 7.454E+32 2.526
0.090 1.522E+14 8.626E+32 2.593
0.100 1.692E+14 1.138E+33 2.666
0.110 1.863E+14 1.472E+33 2.728
0.120 2.034E+14 1.869E+33 2.765
0.130 2.206E+14 2.333E+33 2.755
0.160 2.723E+14 4.120E+33 2.749
0.190 3.244E+14 6.618E+33 2.764
0.220 3.770E+14 9.930E+33 2.771
0.250 4.303E+14 1.416E+34 2.783
0.280 4.842E+14 1.943E+34 2.808
0.310 5.385E+14 2.592E+34 2.856
0.340 5.938E+14 3.425E+34 2.909
0.370 6.501E+14 4.407E+34 2.946
0.400 7.073E+14 5.546E+34 2.951
0.430 7.655E+14 6.851E+34 2.926
0.460 8.247E+14 8.323E+34 2.890
0.490 8.852E+14 9.986E+34 2.861
0.520 9.467E+14 1.183E+35 2.840
0.550 1.009E+15 1.386E+35 2.821
0.580 1.073E+15 1.609E+35 2.803
0.610 1.139E+15 1.853E+35 2.786
0.640 1.206E+15 2.118E+35 2.771
0.670 1.274E+15 2.404E+35 2.756
0.700 1.344E+15 2.712E+35 2.743
0.750 1.464E+15 3.275E+35 2.723
0.800 1.588E+15 3.902E+35 2.706
0.850 1.717E+15 4.595E+35 2.691
0.900 1.850E+15 5.357E+35 2.678
0.950 1.988E+15 6.190E+35 2.667
1.000 2.132E+15 7.095E+35 2.658
1.100 2.435E+15 9.135E+35 2.643
1.200 2.760E+15 1.149E+36 2.634
1.300 3.108E+15 1.418E+36 2.628

higher densities, where the BSk21 and Lattimer-Swesty models
predict the stiffest EoSs of Fig. 15.

Once the EoS of the nuclear matter is known, one can solve
the Tolman-Oppenheimer-Volkoff (Shapiro & Teukolsky 1983)
equations for spherically symmetric NS:

dP
dr
= −G

εm
r2

(
1 +

P
ε

) (
1 +

4πPr3

m

) (
1 − 2Gm

r

)−1

dm
dr
= 4πr2ε , (45)

where G is the gravitational constant, P the pressure, ε the en-
ergy density, m the mass enclosed within a radius r, and r the
(relativistic) radius coordinate. To close the equations we need
the relation between pressure and energy density, P = P(ε), i.e.
the EoS. The integration of these equations produces the mass
and radius of the star for given central density. It turns out that
the mass of the NS has a maximum value as a function of radius
(or central density), above which the star is unstable against col-
lapse to a black hole. The value of the maximum mass depends
on the nuclear EoS, so that the observation of a mass higher
than the maximum mass allowed by a given EoS simply rules
out that EoS. We display in Fig.16 the relation between mass
and radius (left panel) and central density (right panel). The ob-
served trend is consistent with the equations of state displayed
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Fig. 16. Gravitational mass, in units of the solar mass M� = 2 ×
1033 g vs. radius (left panel) and central density (right panel) in units of
the saturation density n0 = 0.16 fm−3. See text for details.

Table 10. Properties of the maximum mass configuration for a given
EoS.

EoS Mmax/M� R (km) R1.5 (km)

BCPM 1.982 9.95 11.63
SLy4 2.05 10. 11.62
Ska 2.21 10.98 12.9

Shen 2.2 12.77 14.35
BSk21 2.28 11.03 12.57

Notes. The value of the radius R is given, as well as the radius for a star
of mass equal to 1.5 M�.

in Fig. 15. As expected, when the stiffness increases the NS cen-
tral density decreases for a given mass. The considered EoSs
are compatible with the largest mass observed up to now, i.e.
MG = 2.01 ± 0.04 M� in PSR J0348+0432 (Antoniadis et al.
2013), and displayed in Fig. 16, along with the previously ob-
served mass of PSR J1614-2230 (Demorest et al. 2010) having
MG = 1.97 ± 0.04 M�. We also notice that the maximum mass
calculated with the BCPM and the SLy4 EoSs is characterized
by a radius of about 10 km, which is somewhat smaller than
the radius calculated with the other considered EoSs. Recent
analyses of observations on quiescent low-mass X-ray binaries
(QLMXB) (Guillot & Rutledge 2014) and X-ray bursters (Güver
& Özel 2013) seem to point in this direction, though more stud-
ies could be needed (Lattimer & Steiner 2014b). For a NS of
1.5 solar masses, the BCPM EoS predicts a radius of 11.63 km
(see Table 10), in line with the recent analysis shown in Ozel
et al. (2015); see also Chen & Piekarewicz (2015). For complete-
ness, we also display in the orange hatched band the probability
distribution for MG and R deduced from five PRE (Photospheric
Radius Expansion) burst sources and five QLMXB sources, af-
ter a Bayesian analysis (Lattimer & Steiner 2014a). We see that,
except the Shen EoS, all EoSs are compatible with the obser-
vational data. High-precision determinations of NS radii that
may be achieved in the future by planned observatories such
as the Neutron star Interior Composition ExploreR (NICER)
(Arzoumanian et al. 2014), should prove a powerful complement
to maximum masses for resolving the equation of state of the
dense matter of compact stars.

In Fig. 17 we report the density profiles for three values of
the mass calculated with the EoS of the present work. The tran-
sition density between the inner crust and the core is indicated
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Fig. 17. Density profiles for fixed mass configurations, i.e. MG = Mmax

(solid blue curve), MG = 1.4 M� (dashed red curve), and MG = 1.0 M�
(dot-dashed green curve). Full dots indicate the onset of the crust. In the
inset the crust thickness is displayed for each fixed gravitational mass.
See text for details.

by a dot along the curves. Accordingly, in the inset we report
the ratio of the crust thickness and the total radius of the star.
These informations can be relevant for phenomena occurring in
the star, like glitches and deep crustal heating.

7. Summary and outlook
We have derived a unified equation of state for neutron stars
with a microscopic model which is able to describe on the same
physical framework, both the core and the crust regions. We de-
scribe the neutron star structure based on modern Brueckner-
Hartree-Fock calculations performed in symmetric and neutron
matter. These microscopic calculations are also the basis of
the Barcelona-Catania-Paris-Madrid energy density functional,
devised to reproduce accurately the nuclear binding energies
throughout the nuclear mass table. This functional is used to
describe the finite nuclei present in the crust of neutron stars.
To our knowledge, this is the first time that a whole equation of
state directly connected to microscopic results has been reported
in the literature.

The equation of state in the outer crust is obtained using the
Baym-Pethick-Sutherland model, which requires the knowledge
of atomic masses near the neutron drip line. In our calculation
we use the experimental masses, when they are available, to-
gether with the values provided by a deformed Hartree-Fock-
Bogoliubov calculation performed with the Barcelona-Catania-
Paris-Madrid energy density functional to estimate the unknown
masses. We find that for average densities above ε � 5 ×
1010 g cm−3, where the experimental masses are unknown, the
composition of the outer crust is similar to the one predicted by
the Finite Range Droplet Model of Möller and Nix.

We describe the structure of the inner crust in the Wigner-
Seitz approximation using the selfconsistent Thomas-Fermi
method together with the Barcelona-Catania-Paris-Madrid
energy density functional. Electrons are considered as a rel-
ativistic Fermi gas with a constant density, which fill up the
whole Wigner-Seitz cell. To obtain the optimal configuration
in a cell for a given average density and size, the energy per
baryon is minimized by solving self-consistently the coupled
Euler-Lagrange equations for the neutron, proton and electron
densities. To obtain the most stable configuration for a given

average density, an additional minimization with respect to the
size of the Wigner-Seitz cell is required.

Because the Thomas-Fermi model does not include shell cor-
rections, the mass and atomic numbers corresponding to the con-
figuration of minimal energy vary smoothly as a function of the
average density. For spherical shapes, the mass number along
the whole inner crust lies in the range between A � 110 and
A � 850 with a maximum around A = 1100 for an average den-
sity nb � 0.025 fm−3. The atomic number shows a roughly de-
creasing tendency from Z � 35 at the neutron drip up to Z � 25
at the crust-core transition.

Using the same Thomas-Fermi model, we have also inves-
tigated the possible existence of pasta phases. To this end we
have computed the minimal energy per baryon in Wigner-Seitz
cells with planar and cylindrical geometries for average densities
above nb � 0.005 fm−3 and for tube and bubble configurations
from nb = 0.07 fm−3 and nb = 0.072 fm−3, respectively, until the
crust-core transition density, which is reached in our model at
nb = 0.0825 fm−3. Our model predicts that up to average densi-
ties of nb = 0.067 fm−3, spherical nuclei are the minimal energy
configurations. With growing average densities, our model pre-
dicts the successive appearance of rods, slabs, tubes and spheri-
cal bubbles as the most stable shape.

To describe the core of neutron stars within our model we
consider uniform matter containing neutrons, protons, electrons
and eventually muons in β-equilibrium, which determines the
asymmetry of the homogeneous system. To derive the Equation
of State in the core, we use directly the microscopic Brueckner-
Hartree-Fock results in symmetric and neutron matter, which al-
low us to easily obtain the pressure as a function of the density in
this regime. The npeμmodel is expected to be valid at least up to
densities of about three times the saturation density, above which
exotic matter could appear. However, we restricted ourselves to
a NS nucleonic core and extrapolated the npeμ matter to higher
densities as was done in earlier literature (Wiringa et al. 1988;
Douchin & Haensel 2001).

We have compared the predictions of our Equation of State,
derived on a microscopic basis from the outer crust to the core,
with the results obtained using some well-known Equations of
State available in the literature. Our Equation of State clearly
differs from the results provided by the Lattimer and Swesty
and Shen models, obtained in a more phenomenological way
and widely used in astrophysical calculations. Our calculation
agrees reasonably well in the crust with the predictions of the
Equation of State of Douchin and Haensel and with the results
of the BSk21 model of the Brussels-Montreal group, both based
on Skyrme forces but including some microscopic information,
and also shows a remarkable similarity with the former in the
core but differs more of the latter in this region of the neutron
stars.

The mass and radius of non-rotating neutron stars are ob-
tained by solving the Tolman-Oppenheimer-Volkov equations.
Our model predicts a maximal mass of about two solar masses,
compatible with the largest mass measured up to now, and a
radius of about 10 km. The radius obtained with our model is
within the range of values estimated from observations of qui-
escent low-mass X-ray binaries and from type I X-ray bursts.
The mass-radius relationship computed with our model is com-
parable to the results obtained using the Equation of State of
Douchin and Haensel above the standard mass of neutron stars
(1.4 solar masses) and differs from the predictions of the BSk21,
Lattimer and Swesty and Shen models in this domain of neutron
star masses. The maximal masses of the neutron stars are deter-
mined by the stiffness of the equation of State at high densities.
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As can be observed in Figs. 15 and 16, where the equation of
State, the maximal mass and the central density obtained using
the different models considered in this work are displayed, when
the stiffness increases the maximum value of the mass increases
and, for a fixed mass, the central density decreases.

However, there are some theoretical caveats to be consid-
ered. It can be expected that quark matter appears in the cen-
tre of massive NS. To describe these “hybrid” NS one needs to
know the quark matter EoS. Many models for the deconfined
quark matter produce a too soft EoS to support a NS of mass
compatible with observations (Burgio et al. 2002a,b; Baldo et al.
2003, 2008a; Maieron et al. 2004; Nicotra et al. 2006; Chen et al.
2011). The quark-quark interaction in the deconfined phase must
be more repulsive in order to stiffen the EoS, and indeed, with
a suitable quark-quark interaction, mixed quark-nucleon mat-
ter can have an EoS compatible with two solar masses or more
(Alford et al. 2013). An additional problem arises if strange mat-
ter is introduced in the NS matter. It turns out that BHF cal-
culations using realistic hyperon-nucleon interactions known in
the literature produce a too soft NS matter EoS and the max-
imum mass is reduced to values well below the observational
limit (Schulze et al. 2006; Schulze & Rijken 2011). Although
relativistic mean field models can be adjusted to accomodate
NS masses larger than two solar masses (Oertel et al. 2015), and
additional terms in the hyperon-nucleon interaction can provide
a possible solution (Yamamoto et al. 2014), this “hyperon puz-
zle” has to be considered still open (Fortin et al. 2015). In any
case the nuclear EoS with the inclusion of quarks and/or hyper-
ons at high density must reach a stiffness at least similar to the
EoS with only nucleons if the two solar masses problem has to
be overcome.

The full BCPM EoS from the outer crust to the core in a tab-
ulated form as a function of the baryon density as well as some
other useful information is given in the text as well as supple-
mentary material. There are different improvements that would
be welcome but are left for a future work. In particular, we shall
take into account shell effects and pairing correlations for pro-
tons in order to obtain a more accurate information about the
compositions of the different WS cells along the inner crust. This
can be done in a perturbative way on top of the TF results by us-
ing different techniques such as the Strutinsky integral method
developed by Pearson and coworkers. On the other hand, the
self-consistent TF-BCPM model is well suited for performing
calculations at finite temperature, which can be of interest to in-
vestigate the melting point of the crystal structure. Another nat-
ural extension of this work using the TF formalism at finite tem-
perature can be to obtain the EoS in the conditions of supernova
matter.
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Appendix A: Expression of the pressure
in the inner crust

In this appendix we derive the expression of the pressure in the
model of the inner crust described in Sect. 4. To this end we fol-
low closely Appendix B of Pearson et al. (2012). For the sake of

simplicity we work in spherical symmetry, although the calcula-
tion can be extended to the cylindrical and planar geometries and
to tube and bubble configurations as well. The thermodynamical
definition of the pressure allows one to write

P = −
(
∂E
∂V

)
T,A,Z

= − 1

4πR2
c

(
∂E
∂Rc

)
A,Z

, (A.1)

where the volume V is identified with the volume Vc of the
WS cell by treating the inner crust as a perfect crystal. With
use of Leibniz’s rule for differentiation of a definite integral, the
derivative of the energy (see Eq. (19)) with respect to the ra-
dius Rc of the WS cell is

∂E
∂Rc

= 4πR2
c

[
H

(
nn, np

)
+ mnnn + mpnp + Eel (ne)

+ Ecoul

(
np, ne

)
+ Eex

(
np, ne

) ]
r=Rc

+ 4π
∫ Rc

0

[
μn
∂nn

∂Rc
+ μp
∂np

∂Rc
+ μe
∂ne

∂Rc

]
r2dr. (A.2)

For the calculation of the pressure this derivative is to be taken
at constant mass and atomic numbers. If the neutron, proton, and
electron numbers in the WS cell are fixed, we have

0 =
∂

∂Rc

∫ Rc

0
4πr2ni(r)dr

= 4πR2
c ni(Rc) + 4π

∫ Rc

0

∂ni

∂Rc
r2dr (A.3)

for i = n, p, e, which in view of Eq. (A.2) allows writing(
∂E
∂Rc

)
A,Z

= 4πR2
c

[
H

(
nn, np

)
+ mnnn + mpnp + Eel (ne)

+ Ecoul

(
np, ne

)
+ Eex

(
np, ne

)

− μnnn − μpnp − μene

]
r =Rc
. (A.4)

In the inner crust of a neutron star it is assumed that
there are no protons in the gas of dripped neutrons and,
consequently, np (Rc) = 0. Therefore, at the edge of the
cell we have H

(
nn, np

)
= H (nn(Rc), 0) and Ecoul (Rc) =

− 1
2 ne

(
Vp (Rc) − Ve (Rc)

)
. Charge neutrality implies Ecoul (Rc) =

0, because Vp (Rc) = Ve (Rc). Taking into account these con-
straints, it is easy to show that the nuclear contribution to the
pressure is provided by only the interacting neutron gas at the
edge of the WS cell. This neutron gas pressure is given by Png =
μnnn(Rc) − [H (nn(Rc), 0) + mnnn(Rc)

]
. The variational Eq. (26)

taken at r = Rc implies μe =

√
k2

Fe + m2
e−

(
3
π

)1/3
e2n1/3

e , and there-

fore the total pressure from the electrons is Pel = ne

√
k2

Fe + m2
e −

Eel(ne) − 1
4

(
3
π

)1/3
e2n4/3

e . We see that the free electron pressure

Pfree
el = ne

√
k2

Fe + m2
e − Eel(ne) is modified by the electronic

Coulomb exchange by an amount Pex
el = − 1

4

(
3
π

)1/3
e2n4/3

e (that is,
Pex

el = Eex
el /3, where Eex

el is the contribution to the energy density
due to electronic Coulomb exchange).

Putting together the previous results, Eq. (A.4) can be writ-
ten as(
∂E
∂Rc

)
A,Z

= −4πR2
c

[
Png + Pfree

el + Pex
el

]
. (A.5)
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Thus, comparing with Eq. (A.1), we see that the pressure of the
system takes the form P = Png + Pfree

el + Pex
el , as stated in Sect. 4.

Appendix B: The minimization procedure
in the inner crust revisited

As alluded to in Sect. 4, in this appendix we show explicitly
that when the minimization of the energy per unit volume with
respect to the radius Rc of the WS cell is attained, the Gibbs
free energy per particle G/A equals the neutron chemical poten-
tial μn. For simplicity we restrict the derivation to the case of the
spherical shape.

The optimal size Rc of the WS cell that minimizes the energy
per unit volume under the constraints of a given average baryon
density nb and charge neutrality is the solution of the equation

d
dRc

[E
V

]
=

1
V

[
− dV

dRc

E
V
+
∂E
∂Rc

]
= 0, (B.1)

which results in the condition

4πR2
c

E
V
=
∂E
∂Rc
· (B.2)

The total number of neutrons, protons, and electrons in the
WS cell is given by

4π
3

R3
cnb(1 − xp) = 4π

∫ Rc

0
nn(r)r2dr,

4π
3

R3
cnbxp = 4π

∫ Rc

0
np(r)r2dr,

4π
3

R3
cnbxp =

4π
3

R3
cne, (B.3)

where xp is the proton fraction. Next we take the derivative of
(B.3) with respect to Rc. We note that in the present calculation,
where we are looking for the minimum of E/V vs. Rc, the num-
ber of neutrons and protons in the WS cell is not to be assumed
fixed, and therefore Eq. (A.3) does not apply. From the deriva-
tive of (B.3) with respect to Rc, and recalling Leibniz’s rule for
differentiation of integrals, one has

4πR2
c
[
nb(1 − xp) − nn(Rc)

]
= 4π

∫ Rc

0

∂nn(r)
∂Rc

r2dr,

4πR2
c
[
nbxp − np(Rc)

]
= 4π

∫ Rc

0

∂np(r)

∂Rc
r2dr,

4πR2
c
[
nbxp − ne

]
= 4π

∫ Rc

0

∂ne

∂Rc
r2dr. (B.4)

The expression for ∂E/∂Rc has been given in Eq. (A.2). Using
Eqs. (B.4) in (A.2) and taking into account that np(Rc) = 0 be-
cause there are no drip protons in the gas, one obtains

∂E
∂Rc

= 4πR2
c

[
H (nn, 0) + mnnn + Eel (ne) − 3

4

(
3
π

)1/3

n4/3
e

− μnnn + μnnb − μene − nbxp(μn − μp − μe)
]
r=Rc
.

(B.5)

Recalling that the pressure of the system is P = Png+Pfree
el +Pex

el ,
the result (B.5) can be recast as

∂E
∂Rc
= 4πR2

c

[
−P + μnnb − nbxp(μn − μp − μe)

]
. (B.6)

The minimization condition (B.2) implies

4πR2
c

E
V
= 4πR2

c

[
−P + μnnb − nbxp(μn − μp − μe)

]
, (B.7)

and consequently,

P +
E
V
= μnnb − nbxp(μn − μp − μe). (B.8)

When the system is in β-equilibrium, the chemical potentials ful-
fill μn − μp − μe = 0, and thus Eq. (B.8) gives

PV + E = μnA ⇒ G = μnA, (B.9)

which confirms that at the minimum of the energy per unit vol-
ume with respect to the size of the cell, the Gibbs free energy
equals the neutron chemical potential times the total number of
baryons inside the WS cell.
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