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Abstract

Epithelial-mesenchymal-transition promotes intra-tumoral heterogeneity, by enhancing

tumor cell invasiveness and promoting drug resistance. We integrated transcriptomic data

for two clonal subpopulations from a prostate cancer cell line (PC-3) into a genome-scale

metabolic network model to explore their metabolic differences and potential vulnerabilities.

In this dual cell model, PC-3/S cells express Epithelial-mesenchymal-transition markers and

display high invasiveness and low metastatic potential, while PC-3/M cells present the oppo-

site phenotype and higher proliferative rate. Model-driven analysis and experimental valida-

tions unveiled a marked metabolic reprogramming in long-chain fatty acids metabolism.

While PC-3/M cells showed an enhanced entry of long-chain fatty acids into the mitochon-

dria, PC-3/S cells used long-chain fatty acids as precursors of eicosanoid metabolism. We

suggest that this metabolic reprogramming endows PC-3/M cells with augmented energy

metabolism for fast proliferation and PC-3/S cells with increased eicosanoid production

impacting angiogenesis, cell adhesion and invasion. PC-3/S metabolism also promotes the

accumulation of docosahexaenoic acid, a long-chain fatty acid with antiproliferative effects.

The potential therapeutic significance of our model was supported by a differential sensitivity

of PC-3/M cells to etomoxir, an inhibitor of long-chain fatty acid transport to the

mitochondria.

Author summary

The coexistence within the same tumor of a variety of subpopulations, featuring different

phenotypes (intra-tumoral heterogeneity) represents a challenge for diagnosis, prognosis

and targeted therapies. In this work, we have explored the metabolic differences underly-

ing tumor heterogeneity by building cell-type-specific genome-scale metabolic models
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that integrate transcriptome and metabolome data of two clonal subpopulations derived

from the same prostate cancer cell line (PC-3). These subpopulations display either highly

proliferative, cancer stem cell (PC-3/M) or highly invasive, epithelial-mesenchymal-tran-

sition-like phenotypes (PC-3/S). Our model-driven analysis and experimental validations

have unveiled a differential utilization of the long-chain fatty acids pool in both subpopu-

lations. More specifically, our findings show an enhanced entry of long-chain fatty acids

into the mitochondria in PC-3/M cells, while in PC-3/S cells, long-chain fatty acids are

used as precursors of eicosanoid metabolism. The different utilization of long-chain fatty

acids between subpopulations endows PC-3/M cells with a highly proliferative phenotype

while enhances PC-3/S invasive phenotype. The present work provides a tool to unveil

key metabolic nodes associated with tumor heterogeneity and highlights potential sub-

population-specific targets with important therapeutic implications.

Introduction

Prostate cancer (PC) is the most commonly diagnosed non-cutaneous malignancy among

Western men and accounts for the second leading cause of cancer-related death [1]. In the

majority of cases, PC eventually becomes independent of androgens, resuming growth after

androgen-deprivation therapies in a more aggressive and therapy-refractory form [2].

The coexistence within the same tumor of a variety of cell subpopulations, featuring differ-

ent phenotypes (intra-tumoral heterogeneity) associated with tumor evolution and progres-

sion reflects extreme plasticity and adaptation capability of neoplastic cells. This diversity is

reached through genetic evolution of neoplastic cells and epigenetic and metabolic reprogram-

ming of neoplastic and non-neoplastic tumor components that enhance tumor progression

and represent a challenge for targeted therapies [3,4].

A major driver of intra-tumor heterogeneity is Epithelial-Mesenchymal transition (EMT),

which induces alterations in the intricate and large cancer cell gene regulatory and metabolic

networks (metabolic reprogramming) [5]. However, although EMT-mediated molecular and

cellular changes have been widely studied, the EMT-induced metabolic changes remain poorly

understood. In this sense, it is widely accepted that metabolic reprogramming is one of the ten

hallmarks of cancer [6] which endows cancer cells with a phenotype characterized by a rapid

and continuous proliferation, metastasis, invasion, and treatment resistance. Thus, study of

the metabolism in these heterogeneous cellular populations is of special interest and must be

approached from a global perspective integrating global metabolism with consideration of dif-

ferent subpopulations.

In this context, integration of omics data from high-throughput technologies, such as

transcriptomics, into a genome-scale metabolic network reconstruction analysis, has been suc-

cessfully used to study the metabolic mechanisms underlying different cancer types [7,8].

However, the differences in metabolic physiology between intra-tumoral subpopulations have

not yet been taken into account in these computational approaches.

Here, we have built comparative genome-scale metabolic network models based on tran-

scriptomic data for two clonal sub-populations isolated and separated from an established

prostate cancer cell line (PC-3): i) a Cancer Stem Cell subpopulation -CSC- with high meta-

static potential, low invasiveness and a higher proliferation rate (PC-3/M cells) and ii) a non-

CSC subpopulation expressing EMT markers with high invasiveness and low metastatic poten-

tial (PC-3/S cells) [9]. These neoplastic cell sub-populations, capturing extreme epithelial vs.
mesenchymal phenotypes, were derived from the same tumor cell line and represent an
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excellent cellular model to study how intra-tumoral heterogeneity and the different pheno-

types endowed by the different subpopulations provides advantages to the tumor in terms of

metastatic capability and drug resistance.

Our computational analysis has unveiled several subpopulation-specific metabolic alter-

ations associated with long-chain fatty acids (LCFA) metabolism. First, we have identified an

increased transport activity of LCFA into the mitochondria via Carnitine palmitoyl transferase

I (CPT1), suggesting an increased β-oxidation, which could enhance proliferation in the PC-3/

M subpopulation. Second, PC-3/S cells are predicted to have enhanced conversion of LCFA to

arachidonic acid (AA), the precursor of a variety of eicosanoids that enhance angiogenesis, cell

adhesion and invasion. Finally, the lower CPT1 activity predicted in PC-3/S cells leads to

Docosahexaenoic acid (DHA) accumulation, a LCFA with antiproliferative effects [10]. The

latter prediction is consistent with the lower proliferation rate observed in PC-3/S cells.

Next, using targeted metabolomics measurements, we experimentally confirmed these pre-

dictions and demonstrated that: i) the low proliferative rate of PC-3/S cells compared with PC-

3/M subpopulation is consistent with higher intracellular concentrations of DHA ii) PC-3/M

cells presents a higher CPT1 and β-oxidation activity that can be associated with their observed

higher proliferative rate and iii) in PC-3/S, the reported cell adhesion and enhanced invasive

capability can be explained by higher levels of AA and eicosanoids, PGE2 and 12S-HETE.

Finally, we experimentally showed that the low efficacy of etomoxir (a CPT1 inhibitor) in met-

astatic PC tumors is conferred by the low sensitivity of non-metastatic subpopulation (PC-3/S)

towards this drug in contrast with the high sensitivity showed by metastatic subpopulation

(PC-3/M) and can be explained by altered LCFA transport activity facilitated by CPT1. The

approach presented hereby provides a tool to unveil key metabolic nodes and vulnerabilities

specific to distinct cancer cell subpopulations and opens new avenues in the development of

more specific and efficient anti-tumoral therapies.

Results

Metabolic network analysis unveils marked differences in LCFA

metabolism between PC-3 subpopulations

To infer the activity states of the metabolic networks of PC-3/S and PC-3/M subpopulations,

we used previously generated transcriptomic data for PC-3/S and PC-3/M cells based on

microarray technology [9] which was integrated into a genome-scale reconstruction of the

human metabolic network [11]. In brief, this integrative method defines an upper threshold

above which the genes are considered highly expressed and a lower threshold below which the

genes are considered lowly expressed and seeks a network activity state in which the number

of active reactions associated with highly expressed genes and the number of inactive reactions

associated with lowly expressed genes are maximized [12,13]. In other words, this approach

defines an objective function intended to maximize the similarity between gene expression

and the activity state of the metabolic network rather than predefine an objective function that

may not properly describe the cellular phenotype (i.e. biomass maximization). Next, we identi-

fied a set of reactions whose activity state was unambiguously different between subpopula-

tions using sensitivity analysis (see Methods and Supplementary information S1 File and S1

Text).

Finally, our computational analysis permitted to infer, for each subpopulation, a set of

active reactions, either intracellular or nutrients uptake/secretion between cell and media (see

Fig 1 and Supplementary information S1 Text). The predicted metabolic uptake/secretion

rates were in accordance with experimental measurements (true positive rate of 70% with an

associated p-value< 0.001; [14]). For instance, our model-driven analysis successfully
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predicted the consumption / production patterns of most of the bioactive amino-acids, as well

as glucose consumption and lactate production in both subpopulations (Supplementary infor-

mation S1 Text).

This model-driven analysis revealed two major differences between the two subpopulations.

First, the activity of fatty acid oxidation predicted by the model is higher in PC-3/M than in

PC-3/S cells. The oxidation of fatty acids in the mitochondria produces NADH, FADH2 and

acetyl-CoA that fuels the production of energy via TCA cycle and the electron transport chain.

Most of the reactions differentially activated in this pathway involve carnitine palmitoyl trans-

ferase 1 (CPT1). This mitochondrial membrane protein actively transports LCFA from cytosol

into the mitochondria [15]. Our analysis provided a set of eight cytosolic LCFAs that were pre-

dicted to be substrates of CPT1 exclusively in PC-3/M cells. Interestingly, it has been reported

that five of these eight LCFAs, including DHA, have antiproliferative effects [15–20]. Second,

the analysis predicted an increased activity of eicosanoid metabolism in PC-3/S cells that is

associated with angiogenesis, cell invasion and adhesion [21–23]. Arachidoic acid metabolism

Fig 1. Subpopulation-specific active metabolic reactions and their associated metabolic pathways: This figure illustrates the number of

reactions active only in one of the subpopulations and the corresponding pathway. Blue bars are the active reactions in PC-3/M cells and inactive

in PC-3/S cells. Green bars are the reactions active in PC-3/S cells and inactive in PC-3/M cells. The p-value associated to the significance of reaction

activity prediction is below 0.01 (Supplementary information S2 File).

https://doi.org/10.1371/journal.pcbi.1005914.g001
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(AA) is the main precursor of this pathway that in turn is fueled by a fraction of the LCFA pre-

viously mentioned. Finally, our analysis revealed other significant differences between the met-

abolic activities of the two PC-3 subpopulations that are consistent with published evidences.

For example, Vitamin D3 metabolism was predicted to be more active in the PC-3/S subpopu-

lation. This molecule controls proliferation in prostate cells [24] and has antiproliferative

effects on a number of cancer cell lines, being PC-3 cells (parental cell line) one of the few cell

lines insensitive to this drug [25]. Taken together, the in silico analysis suggests the occurrence

of metabolic alterations that correlate with a more proliferative phenotype in PC-3/M cells and

with a less proliferative and more invasive phenotype in PC-3/S cells. These predictions are

consistent with the reported phenotypes of both PC3 subpopulations [9].

Differential fatty acid uptake into mitochondria may explain the higher

proliferative rate and etomoxir sensitivity of PC-3/M cells

Our computational analysis predicts both a higher LCFA entry into the mitochondria via

CPT1 and a more active LCFA β-oxidation in PC-3/M cells. LCFA must be imported into

mitochondria to be degraded via β-oxidation and CPT1, a mitochondrial membrane enzyme

that plays a critical role in its transport into the mitochondrial matrix [15,26]. To experimen-

tally verify that CPT1 protein levels differ between PC-3/M and PC-3/S cells, we compared

CPT1 levels in PC-3/M and PC-3/S subpopulations by western blotting (Fig 2C). In line with

the computational inference, we found that PC-3M cells express 30% higher levels of CPT1

than PC-3/S cells. As CPT1 mRNA levels are not significantly different between the two sub-

populations (7.68±0.22 A.U in PC-3/M cells and 7.13±0.033 A.U. in PC-3/S cells and p-

value > 0.01 using T-test), this highlights the power of the data integration approach to infer

metabolic alterations even if mRNA and protein-level changes do no match owing to post-

transcriptional regulation [13].

To experimentally determine whether β-oxidation activity is higher in PC-3/M, we mea-

sured acylcarnitine levels. These molecules are CPT1 activity intermediates in the entry of acyl-

CoAs into the mitochondrial matrix and are used to experimentally infer the β-oxidation activ-

ity [27]. Here we found that acylcarnitine levels were significantly higher in PC-3/M compared

with PC-3/S cells (Fig 2E and Supplementary information S6 File), which is in accordance with

our computational predictions and supports the hypothesis that PC-3/M cells present a more

active β-oxidation. Etomoxir is a CPT1 inhibitor that consequently inhibits β-oxidation and its

associated oxygen consumption [15, 26]. Since in many cancer types, tumor onset and progres-

sion relies more on lipid fuel than on aerobic glycolysis, this compound is widely used in cancer

research [15] but not in clinical practice due to its hepatotoxicity. However, as stated above, its

antiproliferative efficacy on PC-3 cells is the lowest among the different PC cell lines studied

[15]. Based on these evidences and the results of our analysis, we hypothesized that this could be

explained by a low activity of CPT1 in the PC-3/S subpopulation.

To experimentally test this hypothesis, we measured the oxygen consumption rate (OCR)

before and after exposure to etomoxir of both subpopulations (Fig 2B, see Methods). We

found that PC3/M cells show a 30% higher sensitivity to CPT1 inhibition than PC-3/S

cells, implying that CPT1 and hence β-oxidation is more rate-limiting in the PC-3/M

subpopulation.

In addition, we studied the dose-effect relation between etomoxir and the proliferation of

PC-3/M, PC-3/S and parental PC-3 cells. This experiment also showed a higher sensitivity of

PC-3/M cells towards the antiproliferative effects of etomoxir and the difference in the prolif-

erative rate between subpopulations increased with higher concentrations of etomoxir (Fig 2F

and Supplementary information S5 File). These experimental observations are in accordance
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with our computational predictions. Furthermore, PC-3 cells that represent a heterogeneous

population containing cells with “PC-3/M-like” and “PC-3/S-like” phenotypes showed an

intermediate sensitivity which supports our hypothesis that the low sensitivity of PC-3 cells to

etomoxir may be conferred by tumor cell subpopulations with PC-3/S-like metabolic features.

We also hypothesized that, as a side effect of the relatively low CPT1 activity in PC-3/S cells,

the levels of some LCFAs would be higher in this subpopulation compared to PC-3/M cells.

More specifically, we focused on determining the levels of docosahexaenoic acid (DHA), a

compound with antiproliferative effects in cancer [28–31]. To this aim, we used a targeted

approach based on the Biocrates platform Assay [32] to quantitatively measure the concentra-

tion of DHA in both PC-3 subpopulations. We found that the concentration of DHA was

262% higher in PC-3/S cells compared to PC-3/M cells (Fig 2D, see Methods), which supports

our model-driven predictions and is consistent with the lower proliferation rate reported in

the PC-3/S subpopulation.

Differential arachidonic acid and eicosanoid metabolism may explain the

lower proliferative rate and high invasiveness of PC-3/S

A further key prediction of our model-driven analysis is that the eicosanoid metabolism is

more active in PC-3/S cells. Arachidonic acid (AA) is the precursor of this pathway, which in

turn is metabolized from some of the eight LCFAs that are predicted to be transported by

CPT1 into the mitochondria exclusively in PC-3/M cells. Based on these results, we hypothe-

sized that the levels of AA and other eicosanoids were higher in PC-3/S than in PC-3/M cells.

To validate this hypothesis, we applied a targeted approach using the Biocrates platform Assay

[32], which allows quantitative measurements of arachidonic acid, eicosanoids and other oxi-

dation products of polyunsaturated Fatty Acids (PUFAs). Among all the metabolites measured

by this platform (Supplementary information S4 File), AA, Prostaglandin E2 (PGE2) and 12

(S)-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (12S-HETE) were significantly higher in

PC-3/S than in PC3-M cells (Fig 3). 12-HETE is the dominant AA metabolite in PC3 cells and

its levels in human prostate cancer tissues exceed by > 9-fold its levels in normal human pros-

tate tissue [34]. Furthermore, in PC3 cells, 12(S)-HETE increases the expression of ITGA3V
gene, which is associated with cell adhesion [20] and promotes PGE2 metabolism in cultured

PC3 cells [35]. High PGE2 levels are associated with cancer [36–38] and affects different mech-

anisms that have been shown to play a role in carcinogenesis such as cell invasion via the Akt

signaling pathway [22] or angiogenesis by over-expressing the VEGF gene [23,39]. Consistent

with these regulatory effects of AA metabolites, the expression level of ITGA3V, VEGF and

AKT genes were significantly higher in PC-3/S than in PC-3/M cells (Log2 FC of 1.24 ± 0.27,

0.79 ± 0.25, 1.46 ± 0.4 respectively). Taken together, these results indicate a higher activity of

Fig 2. Differences in LCFA metabolism activity between the PC-3/M and PC-3/S cells. A: Computational analysis

predicts long chain fatty acid transport (LCFA) from cytosol into the mitochondria via CPT1 and LCFA β-oxidation to be

more active in PC-3/M cells. B: PC-3/M cells show a higher sensitivity to CPT1 inhibition. Validation of model predictions by

measuring Oxygen consumption rate (OCR) before and after inhibition of CPT1 with etomoxir. Measurement values were

normalized to pre-inhibition OCR values. Green line, OCR associated with PC-3/S cells; blue line, OCR associated with

PC-3/M cells (mean value of three replicates). The end-point values are represented as means ± SD. p-value < 0.001,

calculated using Mann-Whitney U test. C: PC-3/M cells present higher levels of CPT1 protein. Validation of model

prediction by measuring CPT1 protein levels by western blotting. β-Actin levels were used as a protein loading and transfer

control. On the right, quantification of western blot by using ImageJ software [33]. D: The concentration of DHA, a LCFA

with anti-proliferative properties, is significantly higher in PC-3/S cells (p-value < 0.05 calculated with one tail Mann-Whitney

U test). Values represent means ± sd of three replicates. PC-3/S: 3143.38 ± 857.98 fmol/10^6 cells; PC-3/M:

1195.91 ± 219.19 fmol/10^6 cells. E: PC-3/M cells present significantly higher levels of acylcarnitines (p-value < 0.001). F:

Dose-effect relationship between the antiproliferative effects of etomoxir and cell proliferation in PC-3/M and PC-3/S

subpopulations and parental PC-3 cells.

https://doi.org/10.1371/journal.pcbi.1005914.g002
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eicosanoid metabolism in PC-3/S cells leading to higher levels of eicosanoid pathway interme-

diates and the upregulation of genes associated with angiogenesis, cell adhesion and invasion,

all of which are consistent with the phenotype observed in this subpopulation.

Discussion

Intratumoral heterogeneity is key to understanding the hierarchical and functional relation-

ships between different neoplastic cell populations within a given tumor, with direct implica-

tions on tumor dynamics and progression [40]. Here we have focused on the study of the

metabolic profiles of two clonal cell sub-populations isolated from an established prostate can-

cer cell line (PC-3): PC-3/M and PC-3/S cells [9]. These sub-populations were derived from

the same PC cell line and thus they can be assumed to coexist within the same tumor, repre-

senting an excellent model to study how intra-tumoral heterogeneity benefits the tumor in

terms of invasiveness, metastatic capability and drug resistance. This fact also enables us to

Fig 3. Metabolomic measurements reveal major differences in eicosanoid metabolism between PC-3/M and PC-3/S cells. A: Computational

predictions of Eicosanoid metabolism and reported effects on tumor progression involving several gene regulatory mechanisms. The computational analysis

predicts a more active eicosanoid metabolism in PC-3/S cells. The left-most box (Metabolic Model prediction) represents a set of eicosanoid metabolism

intermediates with significant differences between subpopulations and their associated reactions. Black solid arrows, metabolic reactions; nodes, metabolites;

green highlight, measured metabolites. Long-chain fatty acids, Arachidonic acid, 12S-HETE: 12(S)-hydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid, PGH2:

Prostaglandin H2, PGE2: Prostaglandin E2. The central box (Gene regulation) illustrates the gene regulatory interactions associated with eicosanoid

metabolism. Green highlight, measured genes; black non-continuous arrows, gene regulatory pathways. ITGA3V: Integrin alpha v3; VEGF: Vascular

Endothelial Growth Factor; PI3K: Phosphoinositide 3-kinase; AKT. Right panel (phenotype): reported effects on tumor progression, connected to the

associated metabolite or gene through gray solid arrows. B: Metabolic measurements of detected species in both PC-3/M (blue bars) and PC-3/S cells (green

bars). Shown are mean values ± sd. The units are in fmol/106cells. C: Transcript levels of genes associated with eicosanoid metabolism and tumor

progression. The figure represents the mean value of log2 FC between PC-3/S (green bars) and PC-3/M (blue bars) ± sd. Both, metabolite level and gene

expression were determined by measuring three independent samples. The level of significance was calculated using the Wilcoxon-Mann-Whitney U test,

where p-values < 0.05 are indicated as “*” and < 0.1 as “**”.

https://doi.org/10.1371/journal.pcbi.1005914.g003
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investigate the relationships between gene expression and metabolism with tumor-initiating

cell or mesenchymal-like attributes in neoplastic cells.

Here, we inferred the metabolic activity states of these PC-3 subpopulations by integrating

transcriptomic data with a genome-scale metabolic network reconstruction. The applied con-

straint-based method treats gene expression levels merely as cues for the likelihood that their

associated reactions carry metabolic fluxes and hence allowing for potential post-transcrip-

tional regulatory effects. For example, a reaction associated with a highly expressed gene does

not necessarily entail a high flux. As a consequence, the method allows us to infer metabolic

activity patterns that go beyond conventional gene expression analysis. Indeed, some of the

inferred metabolic differences between PC-3/M and PC-3/S cells do not correlate with the

expression patterns of the underlying genes. One example is provided by the expression levels

of genes associated with the fatty-acyl-ACP hydrolase reaction that participates in the oxida-

tion of fatty acids. The transcriptomic profiles suggest that these genes are more active in PC-

3/S cells, which is in contrast to our computational analysis identifying the corresponding

reaction to be active only in the PC-3/M subpopulation (See Supplementary information S3

File). Importantly, we have provided experimental support for this prediction by observing a

significantly higher sensitivity of PC-3/M cells to CPT1 and β-oxidation inhibition by eto-

moxir compared to PC-3/S cells, thereby demonstrating the importance of considering the

network context when inferring metabolic changes from transcriptomic data. Overall, our

approach has revealed two major metabolic differences at the level of LCFA utilization with

relevance for tumor proliferation, invasiveness and metastasis in our dual cell model.

First, it has unveiled an increased CPT1 activity in PC-3/M cells. CPT1 has numerous cyto-

solic substrates, including cervonyl coenzyme A (DHA precursor), eicosatetranoyl coenzyme

A, arachidyl coenzyme A (arachidonic acid precursor), trans-2-octadecenoyl-CoA(4-), palmi-

tate, Malonyl-CoA, linoelaidyl coenzyme A (linoleic acid precursor) and vaccenyl coenzyme

A. Interestingly, it has been reported that five of these eight LCFAs have antiproliferative

effects [16–20]. Thus, the higher CPT1 and β-oxidation activities in PC-3/M cells may have

two roles: i) first, and probably the most evident, is to maintain the energetic requirements

imposed by the high proliferation rates of PC-3/M cells and ii) to eliminate LCFAs with anti-

proliferative effects. The predicted differences in CPT1 activity were supported experimentally

by the finding of 33% higher CPT1 protein levels in PC-3/M than PC-3/S cells. Further, we

demonstrated that β-oxidation activity was more sensitive to the inhibition of CPT1with eto-

moxir in PC-3/M than in PC-3/S cells (see Fig 2B) which highlights the importance of this

enzyme in the energy metabolism of this subpopulation. This is of special interest since fatty

acid oxidation plays a key role as source of NADH, NADPH, ATP and FADH2, all providing

survival advantage to cancer cells [41]. Finally, we showed that the concentration of DHA is

significantly higher in PC-3/S than in PC-3/M cells (Fig 2D). Several studies have reported

anti-proliferative effects of DHA in tumors, consistent with the high proliferative rate observed

in PC-3/M cells and support the hypothesis that an increased activity of CPT1 is also necessary

to eliminate anti-proliferative molecules in PC-3/M cells. Taken together, our findings sup-

ports the key role played by CPT1 to sustain the high proliferation rate of PC-3/M cells by

degrading LCFAs through energy metabolism while avoiding their antiproliferative effects.

Secondly, our analysis predicted a higher activity of the eicosanoid metabolism in PC-3/S

cells. Most of the LCFAs described in this study are AA precursors that in turn fuel this path-

way. Eicosanoid metabolism produces a variety of molecules with reported tumorogenic activ-

ity in prostate cancer [42]. Importantly, these processes are predicted to occur in the lysosome,

in which is reported that may produce pro-oncogenic alterations [43]. Here we validated this

prediction by using metabolomic measurements which revealed higher levels of AA in PC-3/S

(see methods and Fig 3). In addition, in line with the computational predictions, the
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concentrations of several products of eicosanoid metabolism, such as 12S-HETEand PGE2,

were significantly higher in the PC-3/S subpopulation. Prior evidence suggests that these com-

pounds are associated with the upregulation of ITGA3V, VEGF and AKT [21–23, 39], which

promote cell adhesion, angiogenesis and cell invasion. Importantly, we have found that these

genes are indeed upregulated in PC-3/S cells. Thus, our findings suggest that higher levels of

AA, 12S-HETE and PGE2, associated with a more active eicosanoid metabolism in PC-3/S

cells, contribute to increased angiogenesis, cell adhesion and invasion potentials of these cells.

Overall, our findings support the view that the relatively high activity of CPT1 in PC-3/M

cells increases the entry of LCFAs into the mitochondria to be oxidized and to produce energy

to sustain a high proliferation rate (Fig 4). This process decreases the levels of LCFAs such as

DHA, thus preventing their antiproliferative effects. In contrast, the lower CPT1 activity in

PC-3/S cells would lead to an accumulation of anti-proliferative LCFAs in the cytosol, thereby

reducing the growth rate in PC-3/S cells and increasing the availability of substrates for eicosa-

noid synthesis (Fig 4A). Summing up, we propose that the metabolic reprogramming involv-

ing LCFA utilization enhances the metastatic potential and proliferation in PC-3/M cells while

in PC-3/S subpopulation increases cell adhesion, invasion and angiogenic capability and pro-

motes DHA accumulation which reduces its proliferation.

The model-driven analysis employed here has provided additional insights into metabolic

changes linked to cancer phenotypes. For example, our analysis further predicted acid cerami-

dase (ASAH1) to be active predominantly in PC-3/M cells, a prediction consistent with experi-

mental evidences showing a higher ASAH1 enzymatic activity in this subpopulation [44]. Our

analysis also predicts that calcitriol metabolism is mainly active in PC-3/S cells. This molecule

has antiproliferative activity in a variety of human cancer cells [25] which is consistent with

the low proliferative rate of PC-3/S cells compared with PC-3/M cells [9]. Our model predic-

tion also suggests that the reported low sensitivity of PC-3 cells towards Vitamin D3 [24] could

Fig 4. Proposed mechanism of metabolic reprogramming and the resultant phenotypes associated

with PC-3/M and PC-3/S cells. A: Metabolic pathways predominantly active in PC-3/S cells (black solid

arrows). Inactive/poorly active pathways are represented as blurred arrows. B: Metabolic pathways

predominantly active in PC-3/M cells (black solid arrows). Inactive/poorly active pathways are represented as

blurred arrows.

https://doi.org/10.1371/journal.pcbi.1005914.g004
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be conferred by the low Vitamin D metabolism activity in the PC-3/M subpopulation. In addi-

tion, this prediction is consistent with the lower proliferative rate observed in PC-3/S cells,

which would be more sensitive to Vitamin D3 anti-proliferative effects.

Our analysis of a dual-cell model representing distinct and opposing neoplastic phenotypes

allows us to propose subpopulation-specific and complementary therapeutic interventions.

The results of the experiment determining the dose-effect relation between etomoxir concen-

tration and cell proliferation showed that PC-3/M cells are more sensitive to etomoxir than

PC-3/S cells, and that the parental PC-3 cell line presents an intermediate sensitivity. Thus, the

poor performance of etomoxir at inhibiting the growth of PC-3 cells compared to other pros-

tate cell lines may be explained by the low metabolic dependence of the PC-3/S subpopulation

on CPT1. In other words, androgen-independent prostate cancer cells with CSC attributes

similar to PC-3/M cells would be sensitive to etomoxir, while this drug would be less efficient

in tumor cell subpopulations with EMT attributes similar to PC-3/S cells with a phenotype

characterized by high cell invasion and adhesion and angiogenic capability.

Finally, it has been reported that the cox-2 reaction, which produces PGE2 and is over-

expressed in prostate cancer [45], is activated by 12S-HETE [46] which is in turn metabolized

by the 12-LOX reaction. Interestingly, a number of drugs such as cinnamyl-3,4-dihydroxy-

alpha-cyanocinnamate (CDC) or baicalein, that inhibit 12-LOX activity, have been shown to

present strong anti-tumoral effects in prostate cancer [47].

Our study represents a novel approach to discern metabolic vulnerabilities associated with

heterogeneous tumor cell populations. However, future studies measuring the effects of single

and combinatorial drug treatments affecting subpopulation-specific targets on heterogeneous

co-culture of non-CSC (PC-3/S) and CSC (PC-3/M) subpopulations are needed to determine

the significance of these findings. For instance, the combinatorial effect of CDC or baicalein

with drugs such as oxfenicine or perhexiline (CPT1 inhibitors without the hepatotoxicity of

etomoxir–[48]) could be tested as potential anti-tumoral drug treatments targeting the key

metabolic processes preferentially active in PC-3/S or PC-3/M cells, respectively. Additionally,

as gene networks associated with progression and metastasis in our PC-3 dual model is signifi-

cantly correlated with those in other tumor types [14], the metabolic reprogramming proposed

here could be extrapolated to different cancer types. Our findings will facilitate a better under-

standing of the EMT-induced metabolic changes and their role in tumor heterogeneity and

opens new avenues for the development of new subpopulation-specific anti-cancer therapies.

Methods

Experimental data

Transcriptomic data: Gene expression levels of each cell subpopulation (three replicates per

subpopulation GSE24868, [9]) by microarray analysis (Affymetrix genechip u133a 2.0) and

normalized by RMA [49]. Transcriptomic data was integrated into a genome-scale metabolic

network reconstruction analysis to infer the activity state of the metabolic reactions in both

subpopulations.

Consumption and production of metabolites: Additionally, we used the measured con-

sumption and production of some metabolites [14] to assess the reliability of model predic-

tions (Supplementary information S1 Text). These metabolites were: glucose, lactate, pyruvate,

glutamate and aminoacids.

Metabolic model

To obtain accurate cell-specific genome-scale metabolic models of the PC-3 subpopulations,

we performed a subpopulation-specific genome-scale network reconstruction analysis by
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integrating the transcriptomic data into the most recent reconstruction of human metabolism

(Recon2) [11]. Recon2 is a genome-scale stoichiometric model that represents the entire net-

work of human metabolic reactions. This generic genome-scale metabolic model provides the

appropriate transcript-protein-reaction associations that permit the integration of the previ-

ously mentioned transcriptomic data for which we used a widely tested constraint-based

method [12].

Model reduction

In order to reduce the computational time necessary to perform the analysis, the metabolic

model (Recon2) [11] was reduced. The reduction was done by removing the blocked reactions

from the model. These reactions are those incapable of carrying any metabolic flux in steady

state [50]. To this aim we first performed a Flux Variability Analysis (FVA) [51–53] using Fas-

imu software [54]. This analysis computes minimal and maximal flux in each reaction. Each

analysis evaluates the feasibility of the simulation. The reactions in which their maximization

and minimization simulations were not obtained any feasible solution were considered as

blocked reactions. In order to ensure that the reduced model was able to consume/produce the

experimentally measured extracellular metabolites, we forced the corresponding exchange reac-

tions to be always active. It was achieved by splitting all the exchange reactions in a forward and

a backward reaction and the lower/upper bounds of the reactions associated to the experimen-

tally measured metabolites were fixed at 0.001/1000 in the forward reactions and at -1000/-0.001

in the backward reactions. Once determined, the blocked reactions were removed from the

model, as well as those metabolites that were neither products nor substrates of any reaction.

Transcriptomic data integration

We integrated the transcriptomic data into Recon2 [11] by using the gene-protein-reaction

(GPR) associations included in the model. These associations are “and/or” logical sentences

that establish a relation between the metabolic reactions and the genes encoding the enzymes

that catalyze them. GPR associations include information related with isoenzymes (using the

logical “or”), complexes (using the logical “and”) or direct gene-reaction relations (i.e. the

activity of Reaction1 depends on: “(geneA and geneB) or (geneC and geneD)”). To integrate

the gene expression data from PC-3/M and PC-3/S subpopulations into Recon2 and determine

the gene expression level associated to the metabolic reactions in each subpopulation, we

substituted the logical “and” and “or” by “minimum” and “maximum”. Thus, for example, if

the activity of a given reaction depends on the expression of different genes and it is defined by

the following logical expression “(geneA and geneB) or (geneC and geneD)”, and the expres-

sion of the gene A, B, C and D are 0.5, 3, 1 and 0.1 respectively. Then, by integrating the gene

expression levels into the logical sentence and replacing the logical operators by “minimum”

and “maximum” we obtained the following expression: “max(min(0.5,3),min(1,0.1))”. Thus,

based on the transcriptomic data and the GPR association, the gene expression associated with

the reaction is 0.5. Finally, we obtained a numerical value for each reaction indicating the level

of expression of their corresponding associated genes.

Expression-based activity prediction

We used gene expression levels associated with the metabolic reactions to infer the activity

states of reactions in the network by using a recently developed constraint-based method [12].

This method solves a mixed integer linear programming (MILP) problem to obtain a flux dis-

tribution in which the number of reactions associated with highly expressed genes is maxi-

mized (RH), and the number of reactions associated with lowly expressed genes is minimized
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(RL) while satisfying the thermodynamic and stoichiometric constrains imposed by the model:

maxv;yþ ;y� ¼ ð
P

i2RH
ðyþi þ y�i Þ þ

P
i2RL

yþi Þ

S 2 v ¼ 0 ð1Þ

The mass balance constraint: where v is the flux vector and S is a n x m stoichiometric

matrix, in which n is the number of metabolites and m is the number of reactions.

vmin � v � vmax ð2Þ

Thermodynamic constraints, that restrict flow direction, are imposed by setting vmin and

vmax as lower and upper bounds respectively.

yþi ; y
�

i ½0; 1� ð3Þ

The Boolean variables y+ and y–. In RH reactions represent whether the reaction is active or

not respectively. In RL y+ represents the reaction is not active.

vi þ yþi ðvmin;i � εÞ � vmin;i; i 2 RH ð4Þ

A highly expressed reaction is considered to be active if it carries a significant positive flux

that is greater than a positive threshold Ɛ. In our study Ɛ = 1. Consequently the ith reaction is

active if: vi� 1

vi þ y�i ðvmin;i þ εÞ � vmax;i; i 2 RH

or has a significant negative flux<–Ɛ (as our model didn’t consider reversible reactions it can-

not occur)

vminð1 � yþi Þ � vi � vmax;ið1 � yþi Þ; i 2 RL ð5Þ

Lowly expressed reactions are considered to be inactive if they carry zero metabolic flux,

though changing Eq (5) to enable these reactions to carry a low metabolite flux (that is, with an

upper bound lower than Ɛ) and still be considered inactive provides qualitatively similar

results. The Fig 5 illustrates the process.

This method defines an upper threshold above which the expression of a given gene is con-

sidered high and another threshold below which gene expression is considered low. In our

study, the chosen upper and lower thresholds were those symmetric percentiles that maximize

the cases where the number of reactions associated with highly expressed genes in one subpop-

ulation were associated with lowly expressed gene in the other subpopulation and vice versa.

Thus, we defined the upper threshold at the 66th percentile and the lower threshold at the 33th

percentile. The method also uses the parameter that represents the flux above which a given

reaction is considered to carry a significant metabolic flux. As is defined in [12] we gave to Ɛ a

value of 1. Once the thresholds were fixed, we performed the expression-based activity predic-

tion analysis with Fasimu software by applying “compute-FBA–xs” option (See Fasimu tutorial

[54]).

Sensitivity analysis

In the Expression-based activity prediction analysis we found an optimal solution in terms of

the objective function maximization, although this solution may not be unique. A space may

exist of alternative optimal solutions that represent alternative steady-state flux distributions

yielding the same similarity with the gene expression data (the same objective function value).
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To account for these alternative solutions, we employed Sensitivity analysis [12].

This is performed by solving two MILP problems (as is described in Expression-based activ-

ity prediction) for each reaction to find the maximal attainable similarity with the expression

data when the reaction is: (i) forced to be activated and (ii) forced to be inactivated.

Thus, a reaction is considered to be active if a higher similarity with the expression data is

achieved when the reaction is forced active than when it is inactive (the objective function is

higher when the reaction is active). Conversely, it is considered to be inactive if the similarity

is higher when the reaction is forced to be inactive. If the similarities with the experimental

data are equal in both cases the activity state of the reaction is considered to be undetermined.

From this analysis we could infer which pathways are more active in each subpopulation.

Reliability of model predictions

By analyzing the predicted activity state of the exchange reaction we can infer which metabo-

lites are consumed and/or produced. In order to determine the goodness of our model predic-

tions we compared qualitatively the consumption and production of some experimentally

measured metabolites [14] with the corresponding model predictions (Supplementary infor-

mation S1 Text). This comparison was done by constructing a 2x2 contingency matrix and the

levels of significance were determined using Fisher exact test (Supplementary information S1

Text).

Fig 5. Transcriptomic-based algorithm on a toy metabolic network. Here the nodes from Met_A to Met_I represents the metabolites involved

in this network, the metabolic reactions are represented by continuous arrows, nodes Enz_1 to Enz_7 represent the enzymes that catalyze the

metabolic reactions and the discontinuous arrows indicate the enzyme to which each metabolic reaction is associated. The enzymes associated

with highly expressed genes are highlighted in green, those associated with lowly expressed genes in red and enzymes associated with moderately

expressed genes in white. The algorithm penalizes the use of reactions associated with lowly expressed genes and rewards the use of those

associated with highly expressed genes. Thus, based on the expression of the genes associated with this metabolic network, the algorithm predicts

that the reactions highlighted in purple will be active while the reactions in black will be inactive. Consequently the metabolite Met_I will be secreted

but not Met_G or Met_H.

https://doi.org/10.1371/journal.pcbi.1005914.g005
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Robustness analysis

The algorithm used to integrate the information from gene expression levels into a Genome-

scale metabolic network reconstruction defines a threshold above which gene expression levels

are considered high and a second threshold below which they are considered low. It calls for

the performance of a robustness analysis in order to demonstrate the lack of dependency of

our predictions on the thresholds used in the analysis. In order to determine the robustness of

our prediction, we performed the analysis previously described in sensitivity analysis defining

different sets of thresholds:

• upper threshold: 25th percentile; lower threshold: 75th percentile

• upper threshold: 33th percentile; lower threshold: 66th percentile

• upper threshold: 40th percentile; lower threshold: 60th percentile

Thereby, we defined a set of reactions that were predicted to be active, inactive or undeter-

mined (the method cannot predict their activity state) independently of the thresholds.

Oxygen consumption rate (OCR)

Cells were seeded in XF24-well microplates (Seahorse Bioscience) at 4.5�104 cells/well and

9.0�104 cells/well, respectively, in 100 μL of growth medium, adding 100 μL more after 3–5 h,

and then incubated at 37˚C with 5% CO2 overnight. After overnight incubation and 1 h before

the assay, growth media was replaced by basal media (unbuffered DMEM; Sigma-Aldrich)

with 3 mM glucose and 5 mM carnitine. The sensor cartridge was loaded with etomoxir and

calibrated prior to the start of the experiment. Determinations were performed on a XF24

Extracellular Flux Analyzer (Seahorse Bioscience). Responses to etomoxir (Signma-Aldrich)

treatment (final concentration 30 μM) were expressed as LOG2 to indicate the fold change

comparing the measured point immediately after and before the corresponding injection.

Eicosanoid and other oxidation products of polyunsaturated fatty acids

(PUFAs)

To determine eicosanoids and oxidation products of polyunsaturate fatty acids levels in PC-3/

M and PC-3/S cells we used Biocrates triple quadrupole MS-based platforms [32]. This plat-

form enables the systematic quantification of relevant biological metabolites. The method is a

quantitative screen of selected metabolites detected with multiple reaction monitoring, neutral

loss and precursor ion scans. Metabolites are then quantified by comparison to structurally

similar molecules labeled with stable isotopes added to the samples in defined concentrations

as internal standards. The process is controlled by MetIDQ Software which controls sample

management, data collection, data validation, and analysis.

Western blotting

Cell extracts were obtained from frozen cell pellets using RIPA buffer (50 mM Tris,pH 8.0, 150

mM NaCl, 0.1% SDS, 1% Triton X-100 and 0.5% sodium deoxycholate) supplemented with

protease inhibitor cocktail (Sigma-Aldrich). Protein concentrations from the supernatant were

determined by the BCA assay. Thirty-five mg of protein per sample were loaded and separated

by 10% SDS-PAGE and transferred to PVDF membranes. Membranes were blocked by incu-

bation with PBS-Tween (0.1% (v/v)) containing 5% non-fat dried milk for 1 hour at room tem-

perature. Then, membranes were incubated with CPT1 primary antibody (Sigma-Aldrich,

SAB1410234, 1/200), rinsed with PBS-Tween (0.1% (v/v)) and finally incubated with the
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secondary antibody anti-rabbit (Amersham Biosciences, NA934V, 1/3000) for 1 hour at room

temperature. Blots were treated with the Immobilon ECL Western Blotting Detection Kit

Reagent (Millipore) and developed after exposure to Fujifilm X-ray film.

Acylcarnitines measurement

For sample acquisition and processing, 5 106 cells of PC-3M and PC-3S cell lines were tripsi-

nized and washed twice with ice-cold PBS prior to snap-freezing in liquid nitrogen. Cell pellets

were stored at -80˚C until measure. Right before measuring, cell pellets were thawed at room

temperature and resuspended in 70 μL of 85:15 EtOH:PBS solution. Cells were disrupted by

two sonication/freezing/defreezing cycles using titanium probe (VibraCell, Sonics & Materials

Inc., Tune: 50, Output: 25), liquid N2 and a 95˚C heat block. Cell lysates were then centrifuged

at 20,000 rcf for 5 minutes at 4˚C. Supernatants were collected into new tubes and total protein

content was determined by Bichinconinic acid (BCA) assay (Thermo Fisher Scientific, Wal-

tham, MA USA).

Then, standards, internal standards, quality controls (10 μL of each), and samples (30 μL)

were loaded into the Biocrates AbsoluteIDQ1 p180 plates (BIOCRATES Life Sciences AG,

Innsbruck, Austria), processed according to manufacturer instructions and measured by

FIA-MS/MS using a SCIEX 4000 QTRAP mass spectrometer.

Concentrations for metabolites were determined using the MetIDQ™ software package,

which is an integral part of the AbsoluteIDQ1 kit. The obtained metabolite concentrations

were corrected considering the loaded volume of cell lysates and normalized by protein

content.
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rat Rohit, Foguet Carles, Milà Enric, Papp Balázs, Josep J. Centelles, Cascante Marta. Cancer cell

metabolism as new targets for novel designed therapies. Future Med Chem. 2014; 6(16):1791–810.

PMID: 25574531.

9. Celià-Terrassa T, Meca-Cortés O, Mateo F, de Paz AM, Rubio N, Arnal-Estapé A, Ell BJ, Bermudo R,
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