
Treball final de grau

GRAU DE MATEMÀTIQUES
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Abstract

The Axiom of Choice is an axiom of set theory which states that, given a collection of

non-empty sets, it is possible to choose an element out of each set of the collection. The

implications of the acceptance of the Axiom are many, some of them essential to the de-

velopment of contemporary mathematics. In this work, we give a basic presentation of

the Axiom and its consequences: we study the Axiom of Choice as well as some of its

equivalent forms such as the Well Ordering Theorem and Zorn’s Lemma, some weaker

choice principles, the implications of the Axiom in different fields of mathematics, so-

me paradoxical results implied by it, and its role within the Zermelo-Fraenkel axiomatic

theory.
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Introduction

The Axiom of Choice states that, given a family X of non-empty sets, there exists a

function f such that for all A ∈ X, f(A) ∈ A. In other words, it says that given a

collection of non-empty sets, it is possible to choose an element out of each set in the

collection. This may seem quite obvious, in fact, one can prove its truth when dealing

with a finite collection of non-empty sets. However, if we want this principle to hold for all

families of non-empty sets, and not just the finite ones, we have to postulate it as an axiom.

The role that the Axiom of Choice plays in contemporary mathematics is far from neg-

ligible: an important number of theorems and propositions that nowadays are regarded

as essential for the development and study of different branches of mathematics depend

on this axiom or are equivalent to it. It is not an overstatement to say that without the

Axiom of Choice, contemporary mathematics would be very different as we know it today.

However, the acceptance of the Axiom also leads to some counter-intuitive results. Al-

though today almost all mathematicians accept the Axiom of Choice as a valid principle

and use it whenever necessary to prove new results, the first explicit mention of the Axiom

on Zermelo’s proof of the Well Ordering Theorem was not free of controversy. The Axiom

implies the existence of some mathematical objects that cannot be explicitly defined and

this conflicts with a constructivist view of mathematics, which states that it is necessary

to define or construct a mathematical object to prove it exists. Furthermore, accepting

the Axiom leads to the Hausdorff Paradox or the Banach-Tarski Paradox which, although

not being literally paradoxes (for they can be proved), may conflict with our intuition.

The aim of this work is to explore the Axiom of Choice and the implications and conse-

quences of its acceptance in mathematics. In the introductory chapter we will give some

important definitions and propositions regarding ordinals, cardinals and well-orders, for

they will be relevant for some of the proofs given later on. In the next section, we will

give a brief insight on the historical background of the Axiom: when did it first appear,

what was the original controversy, how it was progressively accepted, etc. In chapter 2, we

will give a formal definition of the Axiom and state some of its most important equivalent

forms. In chapter 3, we will see some weaker choice principles and how they follow from

the Axiom of Choice. In chapter 4, we will explore the consequences and implications
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of the Axiom of Choice in different branches of mathematics, namely set theory, algebra,

analysis, topology, graph theory, and logic. In chapter 5, we will study those ‘paradoxical’

implications that follow from the acceptance of the Axiom. Finally, in chapter 6 we will

see the relation of the Axiom with the other axioms of Zermelo-Fraenkel set theory, as

well as a possible substitute for it, the Axiom of Determinacy.
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0 Some preliminary notes on well-orders, ordinal

and cardinal numbers

In this introductory chapter we will give some basic definitions and propositions regarding

well-orders, ordinal numbers and cardinal numbers, that will be relevant for some of the

proofs given during this work.

Definition 0.1. A partial order over a set non-empty A is a binary relation ≤ on A that

satisfies:

(a) ≤ is reflexive, i.e., for all a ∈ A, a ≤ a.

(b) ≤ is antisymmetric, i.e., for all a, b ∈ A, if a ≤ b and b ≤ a then a = b.

(c) ≤ is transitive, i.e., for all a, b, c ∈ A, if a ≤ b and b ≤ c then a ≤ c.

The pair (A,≤) is called a partially ordered set or a partial ordering.

Definition 0.2. A strict ordering over a non-empty set A is a binary relation < on A

that satisfies:

(a) < is asymmetric, i.e., for all a, b ∈ A, if a < b then it is not the case that b < a. In

other words, a < b and b < a cannot both be true.

(b) < is transitive, i.e., for all a, b, c ∈ A, if a ≤ b and b ≤ c then a ≤ c.

The following definitions make also sense for strict orderings.

Definition 0.3. Let (A,≤) be a partially ordered set. Two elements a, b ∈ A are compa-

rable in the ordening ≤ if either a ≤ b or b ≤ a.

Definition 0.4. An ordering ≤ of A is called a lineal ordering or a total ordering if any

two elements of A are comparable. The pair (A,≤) is then called a linearly ordered set.
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Definition 0.5. Let ≤ be a partial ordering over A, and let B ⊆ A. An element b ∈ B is

the least element of B in the ordering ≤ if b ≤ x for every x ∈ B.

Definition 0.6. A set W is well ordered by the relation ≤ if

(a) (W,≤) is a linearly ordered set.

(b) Every nonempty subset of W has a least element.

Definition 0.7. A set T is transitive if every element of T is a subset of T .

Definition 0.8. A set α is an ordinal number if

(a) α is transitive.

(b) α is well-ordered by ∈α (the membership relation restricted to α).

An ordinal can be equivalently defined as a well-ordered set (α,<) such that β = {x ∈
α | x < β} for every β ∈ α.

Theorem 0.1. Every well-ordered set is isomorphic to a unique ordinal number.

Proof. See [1], page 111.

Definition 0.9. If W is a well-ordered set, then the order type of W is the unique ordinal

number isomorphic to W .

Lemma 0.1. If α is an ordinal, then α ∪ {α} is an ordinal.

Proof. If α is transitive and totally ordered by ∈, so too is α ∪ {α}. �

Definition 0.10. An ordinal number α is called a successor ordinal if there exists an

ordinal β such that α = β + 1 := β ∪ {β}. Otherwise, it is called a limit ordinal.

Definition 0.11. Two sets A and B are equipotent or have the same cardinality if there

exists a bijection f : A→ B.

Definition 0.12. An ordinal number α is called an initial ordinal if it is not equipotent

to any β < α.
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Theorem 0.2. Each well-ordered set A is equipotent to a unique initial ordinal number.

Proof. See [1], page 130

In Zermelo-Fraenkel set theory, the natural numbers are the finite ordinals, and N is iden-

tified with the first infinite ordinal, namely ω. The natural numbers and ω are initial

ordinals. The next initial ordinals are ω1, ω2, ω3, and so on.

Definition 0.13. If A is a well-ordered set, then the cardinal number of A, denoted |A|,
is the unique initial ordinal equipotent to A.

In particular, |A| = ω for any infinite countable set A and |A| = n for any finite set of n

elements.

Theorem 0.3. There are arbitrarily large initial ordinals.

Proof. See [1], pages 130-131.

Definition 0.14. If α is an ordinal, an α-indexed sequence of the elements of a set A is

a function from α to A. An α-indexed sequence is called transfinite if α ≥ ω

Definition 0.15. Let ωα be a transfinite sequence of infinite initial ordinal numbers

where α ranges over all ordinal numbers. Infinite initial ordinals are, by definition, the

cardinalities of infinite well-ordered sets, and are thus the infinite cardinal numbers. This

cardinal numbers are called alephs and are defined as follows:

ℵ0 = ω

ℵα = ωα, for each α
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1 Historical background

The first appearance of the Axiom of Choice, in a letter sent by Ernst Zermelo to David

Hilbert in 1904, was surrounded by controversy. In it, Zermelo gave a proof of the Well-

Ordering Theorem, which states that every set can be well-ordered, using what he first

called the ‘choice principle’ (and would later be known as the Axiom of Choice). This

result didn’t go unnoticed amongst the mathematical community. The acceptance of this

axiom led to significant consequences and even questioned the concept of existence in

terms of mathematical objects. Most mathematicians of the time were not willing to ac-

cept what the axiom implied (even though some of them had implicitly used it in the past)

and it wasn’t until years later that it became widely accepted and recognised.

The question of whether any set can be well-ordered had been on the table for some years

prior to Zermelo’s publication. In 1882 Cantor introduced the notion of a well-ordering of

a set and formulated the Well-Ordering Principle, which he believed was a law of thought

that didn’t require any proof. In order to ‘label’ the elements of a well-ordered set he

brought in the notion of ordinal numbers, which extended the naturals in a simple way.

Cantor then defined the second number-class as the set of all ordinals representing well-

orderings of the natural numbers, which had to be of greater cardinality than the set

of all natural numbers. The set of all ordinals representing well-orderings of the second

number-class would then be the third number-class and so on. This process gives birth

to an infinite sequence of cardinalities, the aleph-sequence: ℵ0 (the set of all naturals), ℵ1
(the second number-class), ℵ2 (the third number-class), ...

In 1878, Cantor formulated the Continuum Hypothesis, which states that every infinite

subset of R is either denumerable or has the power of the continuum. In other words,

there is no set with cardinality greater than ℵ0 and less than the continuum, that is, 2ℵ0 ,

the cardinality of the set of the real numbers. But how are the Continuum Hypothesis

and the Well-Ordering Principle related? If every set can be well-ordered, then every set

is bijectable with an ordinal and therefore must have an aleph-number representing its

size. This means that any cardinality is represented in the aleph-sequence, all infinite

cardinalities are comparable, and the Continuum Hypothesis could be rewritten in the

form 2ℵ0 = ℵ1.
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Cantor, however, began to doubt that both the Continuum Hypothesis and the Well-

Ordering Principle were true, since he tried unsuccessfully to prove them. Many mathe-

maticians believed that R could not be well-ordered and therefore that the Well-Ordering

Principle was false. Some years later, in 1900, Hilbert brought attention to the problem

again, when he stated the Continuum Hypothesis as the first in the list of his famous 23

unsolved problems presented during the Second International Congress of Mathematicians.

In 1904, the Hungarian mathematician Julius König claimed to have proven that the power

of the continuum was not an aleph and hence that the set of the real numbers could not

be well-ordered. Later that year, Hausdorff pointed out a mistake in Bernstein’s lemma,

which was used by König in his demonstration, invalidating, consequently, his proof. It

was that same year that Zermelo published his proof of the Well-Ordering Principle (that

became the Well-Ordering Theorem) using the Axiom of Choice as the basis for it.

Zermelo’s publication was immediately controversial. Its consequences were not only math-

ematical, but also philosophical, for it postulated the existence of certain mathematical

objects that were not explicitly defined (the axiom explicits no rule by which the choices

are made), and therefore questioned the very notion of what a mathematical object is

and what does it mean that it exists. The discussion about whether or not the Ax-

iom of Choice and what it implied should be accepted arose a heated debate between

constructivist mathematicians and non-constructivist ones. Borel, Baire and Lebesgue,

French mathematicians who were on the constructivism side, opposed the axiom; Hilbert,

Haussdorf, Hadamard and Keyser accepted the axiom and the proof; Hardy and Poincaré

accepted the axiom but questioned the proof. However, none of Zermelo’s critics were

able to give a precise formulation of what it means to be definable. The axiom also ques-

tioned whether the use of infinitely many arbitrary choices was or wasn’t a valid method

in mathematics, although some of the axiom critics had unconsciously used this procedure

in the past. To give just a few examples, Borel used it in his proof of Cantor’s result

that every infinite set has a denumerable subset, Baire used it to prove the Baire Cate-

gory Theorem and W.H. Young, another future critic, used it implicitly to demonstrate

Cantor’s topological theorem that every family of disjoint open intervals on R is countable.

In 1908, Zermelo published a second proof of the Well-Ordering Theorem with the aim

to reply to some of the criticism and clarify several aspects of the previous proof. In it
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he proposed to use the axiom only if there are no means to avoid it, and in such cases

he recommended to state and study the proof’s dependance on the axiom. Two weeks

later, Zermelo published his famous axiomatic system, which included, of course, the Ax-

iom of Choice. Zermelo’s axiomatic system, along with Abraham Fraenkel’s subsequent

contributions, would later become a solid base for the future developments in set theory,

although at first mathematicians were reluctant to accept it. Today, it is known by its

abbreviation ZFC, or ZF if we take out the Axiom of Choice.

Regarding the Axiom of Choice’s acceptance within the mathematical community, during

the following years the abstract approach began to gain ground, mostly due to Hilbert’s

influence. Mathematicians began to increasingly recognise its implicit uses although some

of them still raised objections to its use. During the first half of the century, Steinitz used

it for his algebraic work and even made a plea for its acceptance. As modern algebra

developed during the following years, the axiom was regarded as a crucial tool for the

discipline. In 1918, the axiom found in Sierpiński a strong defender. He analysed the

axiom and published a survey of its uses. Not only that, he also encouraged his students

to do the same and continue with further study of the uses of the axiom and its equivalent

forms. Over the next decades, mathematicians began to use it in topology, analysis,

algebra, set theory and mathematical logic. In 1935, Zorn formulated Zorn’s Lemma and

claimed its equivalence with the Axiom of Choice. In that same decade, Gödel proved its

consistency with ZF and, in 1963 Paul Cohen proved its independence by showing that

it cannot be deduced from just ZF. Today, we can confirm that without the Axiom of

Choice the nature of modern mathematics would be very different and some of the most

important results of the last years would not have been possible.
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2 The Axiom of Choice and its Equivalent Forms

2.1 The Axiom of Choice

There are many ways to formulate the Axiom of Choice. Accepting the axiom is the same

as accepting any of its equivalent forms, some of which are well known and widely used in

different areas of mathematics. In this chapter we will see one of the simplest formulations

of the axiom, which is probably the most famous one and some of its equivalents, amongst

which we find the Well Ordering Theorem and Zorn’s Lemma.

In order to properly formulate the axiom in its simplest form, we need the following defi-

nition.

Definition 2.1.1. Let X be a collection of non-empty sets. A function f defined on X is

called a choice function if f(A) ∈ A for all A ∈ X.

Now, we may enunciate the axiom as follows:

Axiom of Choice (AC). There exists a choice function for every collection of non-empty

sets.

What the axiom is essentially saying is that, given a collection of non-empty sets it is

possible to choose an element out of each set in the collection. This might seem obvious

when dealing with a finite collection of sets (in fact, the existence of a choice function for

a finite family of sets can be proved without the need of the axiom, i.e., in ZF, as it shows

the theorem below) but it is not so when it comes to infinite collections.

Theorem 2.1.1. There exists a choice function for every finite collection of non-empty

sets.

Proof. See [1], page 139.

So the Axiom of Choice assures us that there exists a choice function for every collection of
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non-empty sets, a function that allows us to select an element of each set in the collection.

However, it does not say anything about how the choice function is defined, that is, how

the choices are made; it simply postulates its existence. That was the main reason why

the introduction of the axiom was controversial, as we have seen in the chapter above.

When one accepts the Axiom of Choice, one is in fact accepting that it is valid to use

a hypothetical choice function, even in the cases when one is unable to give an explicit

example of it.

2.2 The Well Ordering Theorem

The first explicit appearance of the axiom came together with the Well Ordering Theorem,

which states the following:

Well Ordering Theorem (WO). Every set can be well-ordered.

In the proof of the equivalence between AC and WO we will use the concepts of transfinite

recursion and the Hartogs Number of an ordinal.

Definition 2.2.1. For any set A, the Hartogs number of A or h(A) is the least ordinal α

such that there is no injection from α to A.

Lemma 2.1.1. The Hartogs number of A exists for all A.

Proof. See [1], pages 130-131.

Theorem 2.2.1. The Transfinite Recursion Theorem. Given a class function1 G :

V → V where V is the class of all sets, there exists a unique transfinite sequence F : Ord

→ V , where Ord is the class of all ordinals, such that for all ordinals α, F (α) = G(F � α),

where � denotes the restriction of the domain of F to all ordinals β such that β < α.

Proof. See [1], pages 115-116.

1A class function is a rule, given by a logical formula, that assigns to each element in the lefthand class

an element in the righthand class. It is not a function since its domain and codomain need not be sets,

just classes.
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Theorem 2.2.2. AC ⇐⇒ WO

Proof. Let’s see the left to right implication. Suppose AC holds and let A be a set. We

want to well-order A, that is, construct a bijection G between A and some ordinal λ. We

will proceed by transfinite recursion. Let a be a set such that a /∈ A and let f be the

choice function on the set of all non-empty subsets of A. We now define the function G

as follows:

For all ordinals α, G(α) =

f(A− ran(G � α)) if A− ran(G � α) 6= ∅

a otherwise

By transfinite recursion, G is defined for all ordinals α. G is the bijection we were looking

for: it lists the elements of A one by one until A gets exhausted: at that pointG has value a.

We observe that, for α < β, if G(β) 6= a, then G(β) ∈ A − ran(G � β) and G(α) ∈
ran(G � β) and, therefore, G(α) 6= G(β). Also, G gets exhausted at some point λ < h(A),

where h(A) is the Hartogs number of A. If G(α) 6= a for all α ≤ h(A), then G would

be a one-to-one mapping of h(A) into A, contradicting the definition of h(A) as the least

ordinal which cannot be mapped into A by a one-to-one function. So, let λ be the smallest

ordinal number such that λ ∈ {α : G(α) = a}. G is a bijection between the set A and the

ordinal λ and therefore, A is well-ordered and has order type λ.

Now let’s see the left to right implication. Assuming WO, we want to see that any family

of non-empty sets has a choice function. Let A be a family of non-empty sets and < a

well order in
⋃
A. We can define a choice function f in P(A) as follows:

f(B) =

the least element of B in the well order < if B 6= ∅

∅ if B = ∅

�

As we have seen, the Well Ordering Theorem states that every set can be well-ordered,

in particular, R can be well-ordered. Even if we cannot give an explicit well-order of the

reals, by accepting the Axiom of Choice, we accept that there is, in fact, one.
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2.3 Zorn’s Lemma

Another important algebraic result equivalent to the Axiom of Choice is Zorn’s Lemma.

Zorn’s Lemma (ZL). If (A,<) is a partial ordering such that every chain of A has an

upper bound, then A has at least a maximal element under <.

Theorem 2.3.1. AC ⇐⇒ ZL

Proof. Let’s prove the left to right implication. Suppose AC holds and let (A,≤A) be a

partially ordered set that satisfies Zorns’s Lemma’s hypotheses. We will show that A has

a maximal element. By Theorem 2.2.2., A is well-ordered, so there exists a bijection G

between some ordinal λ and A. Then,

A = {aγ | γ < λ}, where for each γ < λ, aγ = G(γ).

We now define by recursion the function f : Ord → λ + 1 where f(0) = 0 and for every

ordinal α > 0,

f(α) =

the least ζ such that γ < α→ af(γ) <A aζ if such a ζ exists

λ otherwise

Suppose there is no α such that f(α) = λ. Then, X = f [Ord] would be a well-defined

subset of X. Since f is one-to-one, it has a well-defined inverse f−1 : X → Ord, which is

surjective. By the Axiom of Replacement2, f−1[X] is a set, which leads to contradiction,

because the set of all ordinals is not a set. Thus, we have that f(α) = λ at some point α.

Then, let α be the least ordinal such that f(α) = λ. If α were a limit ordinal, then the

sequence 〈af(γ) | γ < α〉 would be a chain in A with no upper bound, which contradicts

the hypothesis of Zorn’s Lemma. Therefore, α is a successor ordinal, that is α = β+ 1 for

some β. Thus, af(β) is a maximal element of A.

Now let’s prove the other implication. Suppose ZL holds and let X be a collection of

nonempty sets. We want to see that X has a choice function. Let F be the collection of

all functions f such that dom f ⊆ X and f(A) ∈ A for all A ∈ X. The set F is ordered by

2See section 6.1

12



inclusion ⊆ and if F0 is a linearly ordered subset of (F,⊆), then f0 =
⋃
F0 is a function

such that f0 ∈ F and f0 is an upper bound on F0 in (F,⊆). By Zorn’s Lemma, we have

that (F,⊆) has a maximal element f̄ . We will see that dom f̄ = X, and consequently that

f̄ is the choice function for X. If dom f̄ 6= X, we could select a subset A ∈ X− dom f̄ and

a ∈ A. In that case, ¯̄f = f̄ ∪{(A, a)} ∈ F and f̄ ⊂ ¯̄f , contradicting the maximality of f . �

2.4 Other equivalent forms

Some other equivalent forms of the axiom of choice are the following. In section 4 we will

prove how the Axiom of Choice implies these results.

• Tukey’s Lemma. Let X be a collection of nonempty sets. If X has finite character,

then X has a maximal element with respect to inclusion ⊆.

• Every infinite set A has the same cardinality as the cartesian product A×A.

• An arbitrary cartesian product of nonempty sets is nonempty.

• Every non-empty set can be given a group structure.

• Every vector space has a basis.

• Every surjective function has a right inverse.

• Krull’s Theorem. If A is a ring different from the trivial ring, then A has a

maximal ideal.

• Tychonoff’s Theorem. The product of compact topological spaces is compact.

• Every connected graph has a spanning tree.

It is important to point out that when we say that a certain proposition φ is equivalent

to the axiom of choice what we are saying is that ZF3 +φ proves AC and ZFC proves φ.

3The ZF axiomatic system will be presented in section 6.1
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3 Weaker Forms of the Axiom of Choice

There are several statements or choice principles that are not equivalent to the Axiom of

Choice, but are implied by it. These weaker forms of the axiom are of great importance: in

many proofs the full strength of the Axiom of Choice is not needed, instead the use of one

of its weaker forms is enough. Besides, some of this forms avoid some of the ‘paradoxes’

that the Axiom of Choice implies, for instance, when dealing with the Lebesgue measura-

bility of all sets of real numbers4. As we have stated in the Historical Background section,

Zermelo himself advised to avoid the use of the Axiom of Choice whenever possible. In

this section some of the most important weaker forms of the AC are presented, as well as

the proof that they follow from the axiom.

3.1 The Axiom of Dependent Choice

Axiom of Dependent Choice (DC). For any nonempty set X and any entire5 binary

relation R on X, there exists a sequence (xn) in X such that xnRxn+1 for each n ∈ N.

Theorem 3.1.1. AC ⇒ DC

Proof. Let X be a non empty set and let R be an entire binary relation on X. For each

element x ∈ X we define R(x) as the range of x in R, that is, R(x) = {y ∈ X | xRy}. As

R is an entire relation in X, for all x ∈ X there exists some y ∈ X such that xRy, so by

assumption R(x) is non-empty.

Now, we consider the indexed family of sets 〈R(x)〉x∈X . By the Axiom of Choice, there

exists a choice function f for this family of nonempty sets that satisfies f(R(x)) ∈ R(x)

for all x ∈ X. For simpler notation, we define now the function g(x) = f(R(x)), that in

turn satisfies g(x) ∈ R(x), that is, xRg(x).

4See section 5.1
5An entire binary relation R on X is a relation R such that for all a ∈ X, there exists some b ∈ X such

that aRb.
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We can now define the sequence 〈xn〉n∈N = 〈gn(x)〉n∈N, where gn denotes the composition

of g with itself n times. This sequence satisfies xnRxn+1 for all n ∈ N, that is, what the

Axiom of Dependent Choice states. �

3.2 The Axiom of Countable Choice

Axiom of Countable Choice or Axiom of Denumerable Choice (CC). If 〈Xn〉n∈N
is a collection of non-empty sets, then there exists a sequence 〈xn〉n∈N such that xn ∈ Xn

for all n ∈ N. Equivalently, any countable collection of nonempty sets has a choice func-

tion.

Theorem 3.2.1. DC ⇒ CC

Proof. Let 〈Xn〉n∈N be a collection of nonempty sets and X =
⊔
n∈N

Xn =
⋃
n∈N
{(x, n) | x ∈

Xn} the disjoint union of the elements of the collection. We define the following relation

R in X:

(x,m) R (y, n)⇔ n = m+ 1

By definition, R is an entire relation and by the Axiom of Dependent Choice, there exists

a sequence 〈yn〉n∈N such that ynRyn+1 for all n ∈ N. If yn = (an, Nn) for all n ∈ N, by the

definition of R, Nn+1 = Nn + 1. By induction, we obtain that Nn = n + N for a certain

N ∈ N and thus an ∈ Xn+N .

We are now in a position to create a sequence 〈xn〉n∈N such that xn ∈ Xn for all n ∈ N, as

the Axiom of Countable Choice states. Since the cartesian product X0 ×X1 × ...×XN−1

is non-empty6, there exists a sequence x0, x1, ..., xN−1 such that xn ∈ Xn for all n < N .

For n ≥ N , we define xn = an−N ∈ Xn. �

6See Theorem 4.1.5
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3.3 The Boolean Prime Ideal Theorem

To introduce the Boolean Prime Ideal Theorem, another weaker form of the Axiom of

Choice, we have to give first the following definitions:

Definition 3.3.1. A partial ordering ≤ of a boolean algebra B is defined by a ≤ b ⇐⇒
a+ b = b.

Definition 3.3.2. An ideal I of a Boolean algebra B is a non-empty proper subset of B

such that:

(a) If a ∈ I and b ≤ a, then b ∈ I.

(b) If a, b ∈ I, then a+ b ∈ I.

Definition 3.3.3. An ideal I of a Boolean algebra B is a prime ideal if

(c) For each a ∈ B, either a ∈ I or −a ∈ I.

Lemma 3.3.1. In a Boolean algebra B, an ideal I is a prime ideal ⇐⇒ I is maximal.

Proof. See [2], page 15.

Boolean Prime Ideal Theorem (BPI). Every Boolean algebra has a prime ideal.

Theorem 3.3.1. AC ⇒ BPI.

Proof. Let B be a Boolean Algebra and let Σ be the set containing all the ideals of B,

which is partially ordered by inclusion (⊆). Let C be a chain in Σ and we define U :=
⋃
S∈C

S.

Let’s see that U is an ideal: if a ∈ U and b ≤ a, then a ∈ S for some S ∈ C. Since S is

an ideal and, b ∈ S ⊆ U we obtain that b ∈ U . If a, b ∈ U , there exist some S1, S2 ∈ C
such that a ∈ S1 and b ∈ S2. Since C is a chain, we have that either S1 ⊆ S2 or S2 ⊆ S1.
Suppose the former: then a, b ∈ S2 and, since S2 is an ideal, a+b ∈ S2 ⊆ U , which implies

a+ b ∈ U .
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Therefore, U ∈ Σ and for every S ∈ C, S ⊆ U . U is an upper-bound of C so, by Zorn’s

Lemma, Σ has a maximal element, M . In a Boolean Algebra, if an ideal is maximal then

it is also a prime ideal, so M is a prime ideal of the Boolean Algebra B. �

The Prime Ideal Theorem is equivalent to its stronger version: In every Boolean algebra,

every ideal can be extended to a prime ideal. It has also another equivalent form, analo-

gous to these two forms given but related to the notion of filters and ultrafilters, which we

define below.

Definition 3.3.4. A filter F of a Boolean algebra B is a non-empty proper subset of B

such that:

(a) If a ∈ F and b ≥ a, then b ∈ F .

(b) If a, b ∈ I, then a · b ∈ F .

Definition 3.3.5. A filter F of a Boolean algebra B is an ultrafilter if

(c) For each a ∈ B, either a ∈ F or −a ∈ F .

Given the duality between ideals and filters, we have also these two equivalent formulations

of the Prime Ideal Theorem: Every Boolean algebra has an ultrafilter and Every filter in

a Boolean algebra can be extended to an ultrafilter. It is also equivalent to the Ultrafilter

Theorem, that applies to sets: Every filter over a set X can be extended to an ultrafilter7.

The notions of filter and ultrafilter on a set are defined as follows:

Definition 3.3.6. Given a set X, a filter F on X is a non-empty subset of P(X) that

satisfies:

(a) ∅ /∈ F .

(b) If A,B ∈ F , then A ∩B ∈ F . That is, F is closed under intersection.

(c) If A ∈ F and A ⊆ B ⊆ X, then B ∈ F .

Definition 3.3.7. A filter F on a set X is an ultrafilter if

(d) For each A ⊆ X, either A ∈ F or X −A ∈ F .

Note that a filter on a set has the finite intersection property.

7Proofs and clarifications on these statements can be found in [2], pages 14-16.
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3.4 Other Weaker Forms

The Ordering Principle (OP). For every set X there is a linear ordering for X.

Theorem 3.4.1. BPIT ⇒ OP

Proof. For this proof we will need to use the fact that the BPIT is equivalent to the Com-

pactness Theorem for First Order Logic8. We will prove a stronger statement, namely that

every partial ordering of a set X can be extended to a linear ordering of X.

Let (X,≤) be a partially ordered set and let L be a language that contains constants for

all x ∈ X and a binary predicate �. Let Σ be the set containing the following sentences

of L:

x � y ∧ y � x→ x = y for every x, y ∈ X
x � y ∧ y � z → x � z, for every x, y, z ∈ X

x � y ∨ y � x for every x, y ∈ X
x � y for every x, y ∈ X such that x ≤ y.

Every finite subset of Σ has a model. This can be proved by induction on the cardinality

of a finite subset of Σ. Suppose that all A ⊂ Σ with |A| = n − 1 can be linearly ordered

preserving the order ≤ of X. We will see that this also holds for A ∪ {x}, where x ∈ X.

For every element a ∈ A such that a ≤ x, we define a � x and b � x for all b ∈ A such

that b � a. Otherwise, given b ∈ A, if there does not exist a ∈ A such that a ≤ x and

b � a, we state x � b. A ∪ {x} is also linearly ordered and preserves the order ≤ of X.

Since every finite subset of Σ has a model, then, the Compactness Theorem tells us that

Σ has a model as well: it produces a linear ordering � of X, which extends ≤. Now, since

every set has the trivial partial ordering (x ≤ y ⇐⇒ x = y), then it can be extended to

a linear ordering, as we have just seen. Therefore, every set can be linearly-ordered. �

8This equivalence is proved in [2]. In section 4.6 we will prove that the Axiom of Choice implies the

Compactness Theorem.
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Axiom of Choice for Finite Sets (ACF). Every family of finite non-empty sets has a

choice function.

Theorem 3.4.2. OP ⇒ ACF

Proof. Let X be a family of finite non-empty sets and let U :=
⋃
X be the generalised

union of X. By OP, U has a linear ordering ≤. For each A ∈ X, A is a finite chain in U ;

therefore, each A ∈ X has a minimal element. We can now define the function f : X → U

such that f(A) = min(A) ∈ A for all A ∈ X. f is a choice function for X. �

Axiom of Choice for Finite Sets of n Elements (Cn). Every family of n-element

non-empty sets has a choice function.

Theorem 3.4.3. ACF ⇒ Cn.

Proof. If every family of finite non-empty sets has a choice function, then in particular

every family of n-element sets has a choice function. �

Axiom of Choice for Well-Orderable Sets (ACWO). Every family of non-empty

well-orderable sets has a choice function.

Theorem 3.4.4. AC ⇒ ACWO

Proof. If every family of non-empty sets has a choice function (AC), then, in particular,

every family of non-empty well-orderable sets has a choice function. �

Theorem 3.4.5. ACWO ⇒ ACF

Proof. Since ACWO holds and every finite set is well-orderable, then in particular, every

family of finite non-empty sets has a choice function. �

Having proved the theorems above we obtain the following implications, which may be

shown to be irreversible (see, e.g., [2]).

AC ⇒ DC ⇒ CC

AC ⇒ BPI ⇒ OP ⇒ ACF ⇒ Cn

AC ⇒ ACWO ⇒ ACF ⇒ Cn
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4 Consequences of the Axiom of Choice

As we have seen in the section above, the Axiom of Choice has many equivalent and weaker

forms, some of which are essential and widely-used to prove statements in different fields

of modern mathematics. Unquestionably, we can affirm that without the Axiom of Choice

or some of its weaker forms, mathematics would have been very different as we know it

today: more than a few results that nowadays are regarded as essential could not have

been proved in a world without choice. In this section we will see some of the implications

of the Axiom in different areas of mathematics and in which way it is involved, paying

attention on which part of some well-known proofs does the axiom play its role.

The consequences of the Axiom of Choice that are also equivalent to it will be marked

with an *.

4.1 The Axiom of Choice in Set Theory

Theorem 4.1.1. AC ⇒ The notion of cardinality defined in 0.13. can be extended for all

infinite sets, i.e., for every infinite set A there exists a unique aleph ℵα such that A has

cardinality ℵα, that is, |A| = ℵα.

Proof. If the Axiom of Choice holds, A can be well-ordered. Therefore, it is equipotent

to some infinite ordinal, and hence to a unique initial ordinal number ωα = ℵα. �

Corollary 4.1.1. AC ⇒ For any sets A and B either |A| ≤ |B| or |B| ≤ |A|.

Proof. By the AC, every set can be well-ordered, that is, is equipotent to some ordinal

(hence, to some cardinal). Let α be the cardinality of A (|A| = α) and β the cardinality

of B (|B| = β). As α and β are ordinals, either α ≤ β or β ≤ α. Therefore, |A| ≤ |B| or

|B| ≤ |A|. �

Without the Axiom of Choice we would not be able to prove that the ordering |A| ≤ |B|
is a linear ordering, it would only be possible to prove that it is a partial ordering. How-

ever, thanks to the axiom we can guarantee that any two cardinalities are comparable. It
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also gives us a proper way to define the cardinality of a set, as the unique initial ordinal

equipotent to it. The Axiom allows us to extend the notion of cardinality presented in

0.13.: since all sets can be well-ordered, the definition of the cardinality of a set can now be

applied to all sets. Furthermore, the arithmetic of cardinal numbers is simplified with the

help of the axiom; without it many formulas used to operate with infinite cardinals would

be very hard to prove, or would just become false. One example of this simplification

could be Theorem 4.1.6. Another consequence of the fact that each infinite cardinality is

an aleph, is a reformulation of the Continuum Hypothesis:

Definition 4.1.1. The Continuum Hypothesis (CH) states that there exists no set X

such that ℵ0 < |X| < 2ℵ0 .

Since 2ℵ0 is the cardinality of R, the Continuum Hypothesis asserts that every infinite

subset of X ⊂ R must have either the cardinality of R or be countable.

Corollary 4.1.2 AC ⇒ The Continuum Hypothesis can be reformulated as 2ℵ0 = ℵ1.

Proof. Since CH states that there is no cardinality between ℵ0 and 2ℵ0 and, given AC,

each infinite cardinality must be of the form ℵα for some ordinal α, we have 2ℵ0 = ℵ1. �

Theorem 4.1.2. AC ⇒ Every infinite set has a countable subset.

Proof. Let A be an infinite set. A can be well-ordered and therefore put in the form of a

transfinite one-to-one sequence 〈aα | α < λ〉, where the infinite ordinal λ is the order type

of A. The range X = {aα | α < ω} of the initial segment of this sequence is a countable

subset of A. �

However, this proposition does not require the full strength of the Axiom of Choice to be

proved, the weaker version CC (Axiom of Countable Choice) is sufficient. Let us see this.

Theorem 4.1.3. CC ⇒ Every infinite set has a countable subset.

Proof. Let A be an infinite set. We consider all finite one-to-one sequences Ak = 〈ai | i <
k〉, where ai ∈ A for all i and k < ω. By the Axiom of Countable Choice, we are able to
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pick one k-sequence (Ak) for every k ∈ N and construct the set B = {Ak : k < ω}. B has

a choice function f such that f(Ak) ∈ Ak for all k. The set X = {f(Ak) | k < ω} is a

countable subset of A. �

From now on we will, whenever possible, use the weakest possible version of AC to prove

the statements presented in this section. However, when the avoidance of the full Axiom

derives in a significant complication of the proof, we will use AC and state that the proof

can be done with a weaker version of it.

Theorem 4.1.4. CC⇒ The union of a countable collection of countable sets is countable.

Proof. Let A be a countable set whose elements are also countable and let X =
⋃
A.

We will show that X is countable. A is countable, so there exists a one-to-one sequence

〈Xn | n ∈ N〉 such that A = {Xn | n ∈ N}. For each n ∈ N, the set Xn is countable, so

there exists a countable sequence whose range is Xn. By the Countable Axiom of Choice,

it is possible to choose one such sequence for every n, that is, it is possible to pick one

sequence an = 〈xn(k) | k ∈ N〉 out of all the sequences whose range is Xn. If we choose

one an for every n ∈ N , we can obtain a mapping f of N×N onto X by f(n, k) = xn(k).

Since N× N is countable and X is its image under f , X is also countable. �

Theorem 4.1.5.* AC ⇒ An arbitrary cartesian product of non-empty sets is non-empty.

Proof. Let X = {Xi | i ∈ I} a family of non-empty sets. By the Axiom of Choice,

there exists a choice function f such that f(Xi) ∈ Xi. Then, the element (f(Xi))i∈I is an

element of the cartesian product
∏
i∈I

Xi. �

Theorem 4.1.6.* AC ⇒ Every infinite set A has the same cardinality as the cartesian

product A × A. That is, |A| = |A|2.

Proof. By Theorem 4.1.1, and since A is an infinite set, we have that |A| = ℵα = ωα,

where ωα is an initial ordinal. We want to see that the order types of ωα and ωα×ωα are

the same. We define the following order ≺ of ωα × ωα:
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(α1, α2) ≺ (β1, β2) ⇐⇒


max{α1, α2} < max{β1, β2}, or

max{α1, α2} = max{β1, β2} ∧ α1 < β1, or

max{α1, α2} = max{β1, β2} ∧ α1 = β1 ∧ α2 < β2

First, we show that ≺ defines a well order in ωα × ωα:

(a) ≺ is asymmetric: It follows from the definition, if (α1, α2) ≺ (β1, β2), clearly the

opposite does not hold.

(b) ≺ is transitive: Suppose (α1, α2) ≺ (β1, β2) and (β1, β2) ≺ (γ1, γ2) for some pair of

ordinals. We have max{α1, α2} ≤ max{β1, β2} ≤ max{γ1, γ2}. If max{α1, α2} <
max{γ1, γ2}, then clearly (α1, α2) ≺ (γ1, γ2). Suppose then, that max{α1, α2} =

max{β1, β2} = max{γ1, γ2}. In this case we have α1 ≤ β1 ≤ γ1. If α1 < γ1, then

(α1, α2) ≺ (γ1, γ2). If α1 = β1 = γ1, in this case we have α2 < β2 < γ2. Since α2 < γ2,

(α1, α2) ≺ (γ1, γ2).

(c) Any two elements are comparable: For any two different pairs of ordinals (α1, α2), (β1, β2)

we want to see that either (α1, α2) ≺ (β1, β2) or (α1, α2) � (β1, β2). Clearly, fone of

the two conditions holds.

(d) There exists a least-element for every non-empty set X of pairs of ordinals. Let

δ be the least-element of the set {max{α, β} | (α, β) ∈ X} and let Y = {(α, β) ∈
X |max{α, β} = δ}. Then, we define α0 as the least-element of the set {α | (α, β) ∈
Y } and the set Z = {(α, β) | α = α0}. If β0 is the least-element of the set {β | (α, β) ∈
Z}, then clearly and by definition, (α0, β0) is the least element of X.

Now, we will use transfinite induction9 on α to show that |ωα×ωα| ≤ |ωα|. Equivalently,

ℵα · ℵα ≤ ℵα. Since ℵα ≤ ℵα · ℵα, by proving this we will show that ℵα · ℵα = ℵα.

The property holds for α = 0, since for every set (n,m), the set of �-predecessors of (m,n)

is finite We have, then, ℵ0 · ℵ0 = ℵ0. Now consider α > 0 and suppose that the property

holds for every β < α. If the order-type of the set ωα × ωα was greater than ωα, then

there would exist a pair (α1, α2) and a set X = {(γ1, γ2) ∈ ωα × ωα | (γ1, γ2) ≺ (α1, α2)}
9Transfinite induction is an extension of mathematical induction to well-ordered sets, for example

ordinal or cardinal numbers. Suppose a property P defined for all ordinals α is true for all ordinals β < α.

If P holds for α, then it is true for all ordinals.
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such that |X| ≥ ℵα. We will show that this does not happen, that is, that for any pair

(α1, α2), the set X satisfies |X| < ℵα.

Let β = max{α1, α2} + 1. We have that β ∈ ωα and X ⊆ β × β, since max{γ1, γ2} ≤
max{α1, α2} < β and thus γ1, γ2 ∈ β. Now, consider λ < α such that |β| ≤ ℵλ. By

applying the inductive hypothesis we obtain that |X| ≤ |β × β| = |β| · |β| ≤ ℵλ · ℵλ ≤
ℵλ < ℵα. �

By induction, this process can be generalised, and we can obtain that, for each n ∈ N,

|A| = |A|n.

Definition 4.1.2. A family of non-empty sets X is of finite character if it satisfies:

(a) For every A ∈ X, every finite subset of A belongs to X

(b) If A is a set such that every finite subset of A belongs to X, then A belongs to X

Theorem 4.1.7.* AC ⇒ Tukey’s Lemma: If X is a collection of non-empty sets of finite

character, then X has a maximal element with respect to inclusion ⊆.

Proof. Let X be a collection of non-empty sets of finite character. X is partially ordered

by inclusion ⊆. Let C be a chain in X and we define U :=
⋃
A∈C

A. Since for every finite

subset B ∈ U , we have B ∈ X, it follows that U ∈ X. So, U is an upper bound of C.

Applying Zorn’s Lemma, we obtain that X has a maximal element. �

Definition 4.1.3. A set X is called Dedekind infinite if there exists some proper subset

Y of X with |X| = |Y |. Otherwise, X is called Dedekind finite.

The usual definition of an infinite set (that is, a set with an infinite cardinality) is only

equivalent to the definition of a Dedekind infinite set under the assumption of the Axiom

of Countable Choice.

Theorem 4.1.8. CC ⇒ For every set X, X is Dedekind infinite iff X is infinite.

This proposition was assumed by most mathematicians before the foundational crisis of

mathematics, but it is in fact impossible to prove without the Axiom of Countable Choice.

As a matter of fact, there exists a model of ZF where there exists an infinite set that is at
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the same time Dedekind-finite.

Proof. First, we will see that every Dedekind infinite set is infinite. For this implication

we don’t need CC. Let X be a finite set. So, there exists a bijection between X and some

ordinal n ∈ N, hence |X| = n. Let us see by induction on n that X is not Dedekind

infinite. For |X| = 0, X = ∅, it has no proper subset. Suppose the property holds for n

and let X be a set of cardinality n+ 1. Let a be an element in X and X̄ = X\{a}. X̄ has

cardinality n and by the induction hypothesis, every proper subset has cardinality strictly

less than n. Since every proper subset of X is either X̄, of cardinality n < n + 1, or of

the form A, A ∪ {a}, where A is a proper subset of X̄ which has cardinality strictly less

than n and n+ 1 respectively. In either case, we obtain that every proper subset B of X

satisfies |B| < n+ 1.

Now, we will show that every infinite set is also Dedekind infinite. We define a function

g : N → P(X) such that g(n) is the set of finite subsets of X of size n. Since X is an

infinite set, g(n) is non-empty for each n ∈ N. We have now the countable family of

non-empty sets {gn | n ∈ N} and, by the Axiom of Countable Choice, there exists a choice

function f such that f(g(n)) ∈ g(n). We may now define the set F = {f(g(n)) | n ∈ N},
where for each n, f(g(n)) is a subset of X of size n and the set U as the union of members

in F . U is a countable union of finite sets, therefore it is a countable set and a bijection

h : N→ U can be defined. We may now define a bijection B : X → X\{h(0)} as follows:

B(x) =

x if x /∈ U

h(n+ 1) if x = h(n)

B is a bijection from X to a proper subset of X and, therefore, X is Dedekind infinite. �

4.2 The Axiom of Choice in Algebra

As we have seen in the chapter above, three equivalents of the Axiom of Choice are of

huge importance for the development of modern algebra: Zorn’s Lemma, Krull’s Theorem

and the fact that every vector space has a basis. We have seen that the axiom implies the

first of these. Let us see now how the axiom implies the last two.
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Theorem 4.2.1.* AC ⇒ Every vector space has a basis.

Proof. Let V be a vector space and let L be the set containing all linearly independent

subsets of V , which is partially ordered by inclusion (⊆). Now let C be a chain in L and

we define U :=
⋃
S∈C

S.

U is linearly independent: if t1, t2, ..., tn ∈ U , then each ti belongs to some Si ∈ C and,

since C is a chain, there must be some Sk ∈ C such that t1, t2, ...tn ∈ Sk. As Sk is

linearly independent there cannot be any non-trivial combination of t1, ..., tn that equals

zero. Therefore, U ∈ L and U is an upper bound of C. If the Axiom of Choice holds, so

does Zorn’s Lemma and, hence, L has a maximal set, M . M is a linearly independent set

of vectors of V , let us see that it is also a basis of the vector space.

Suppose M is not a basis of V , then there must exist some vector v which cannot be

written as a linear combination of the elements in M . This implies that M ∪ {v} is a

linearly independent set and hence M ∪ {v} ∈ L. But M ( M ∪ {v}, which contradicts

the maximality of M in L. Therefore, M forms a basis for V . �

Theorem 4.2.2.* AC ⇒ Krull’s Theorem: If A is a ring different from the trivial ring,

then A has a maximal ideal.

Proof. Let A be a ring and let Σ be the set of all the proper ideals of A. Clearly, Σ 6= ∅,
since {0} ∈ Σ and Σ is partially ordered by ⊆. Let C be a chain in Σ and we define

U :=
⋃
B∈C

B.

U is an ideal of A: if a, b ∈ U , then there are some ideals B1, B2 in C such that a ∈ B1 ∈ C
and b ∈ B2 ∈ C. Suppose B1 ⊆ B2, then a, b ∈ B2, a+ b ∈ B2 ⊆ U and, for every λ ∈ A,

λa ∈ B2 ⊆ U . Furthermore, U 6= {1}, for if 1 ∈ U , then 1 ∈ Bi for some Bi in C and this

would result as Bi = A, which leads to contradiction, because Bi is a proper ideal of A.

Therefore we have that U ∈ Σ and for every B ∈ C, B ⊆ U . U is an upperbound of C, so

by Zorn’s Lemma, Σ has a maximal element. �

Theorem 4.2.3.* AC ⇒ Every non-empty set can be given a group structure.

Proof. Let X be a non-empty set. If X is finite, then it has a group structure as a cyclic

group generated by any element x ∈ X. If |X| = n, then let f be a bijection between X
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and Z/(n). We define the group operation in X as x ? y = f−1(f(x) + f(y)). Suppose X

is infinite and let F be the set whose elements are all the finite subsets of X. We define

the following operation in F :

For all U, V ∈ F , U∆V = (U − V ) ∪ (V − U)

(F,∆) is a group, where ∅ is the identity for all U ∈ F , U−1 = U , since U∆U = ∅. Clearly,

U∆V ∈ F for each U, V ∈ F and, given the properties of the union and difference in sets,

one can verify that the associative products in the defined operation ∆ holds. Thus, (F,∆)

is a group. Now, it remains to be seen that X is also a group. For that, we will see that

assuming the Axiom of Choice, X can be put into bijection with F and become a group

via the bijection.

We will show that |X| = |F |, and hence that such a bijection exists. For each n ∈ N, let

Fn ⊂ F be the set of all subsets of F of cardinality n. F is then the disjoint union of the

Fn. Since every subset with n elements is an element of the n-fold cartesian product Xn

of X, then the number of subsets in Fn is at most |X|n. We have |Fn| ≤ |X|n and, by AC,

we get |X|n = |X| for all n. To continue the proof we will first need the following Lemma,

Lemma 4.2.1. AC ⇒ For any set X, |
⋃
X| ≤ |X|· sup {|Y | : Y ∈ X}

Proof. See [3], page 49.

Now, taking into account the result of the previous lemma and the fact that |Fn| ≤ |X|
for all n, we have |F | = |

⋃
n
Fn| ≤ |X| · ℵ0 = |X|. But since F contains all singletons, we

also have that |X| ≤ |F | and hence, |F | = |X|. There exists, then, a bijection f : X → F .

We can now define the group (X, ?): for every x, y ∈ X, x ? y = f−1(f(x)∆f(y)). �

Definition 4.2.1. Let F be a group and let X ⊂ F . F is called a free group generated

by X if for every function f from X to any group G, there exists a unique homomorphic

extension of f , f̄ : F → G. X is called a set of free generators of F .

Theorem 4.2.4. AC⇒ Nielsen-Schreier Theorem. Every subgroup of a free group is free.

Although different proofs of the Nielsen-Schreier Theorem are known, all of them depend

on the Axiom of Choice. We will not present any proof here, for all of them are rather

involved. For a proof of the theorem, see [4].
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Definition 4.2.2. The algebraic closure of a field K is an extension K̄ of K such that K̄

is the smallest algebraically closed field that contains K.

Theorem 4.2.5. AC ⇒ For any field K, there exists a unique algebraic closure of K.

Here we will use a proof that depends on Zorn’s Lemma, but this theorem is in fact weaker

than the Axiom of Choice. In fact, it can be proved with the Compactness Theorem (see

Theorem 4.6.1.), which is a consequence of the Boolean Prime Ideal Theorem. We will

only prove the existence of an algebraic closure, the proof of its uniqueness also requires

the use of the Axiom of Choice, since it uses Zorn’s Lemma.

Proof. To prove the existence, the following Lemma will be used:

Lemma. 4.2.2. Let E be an algebraically closed field and K a subfield of E. Then,

{x ∈ E | x is algebraic over K} is an algebraic closure over K.

Proof. See [5].

Now, applying the previous Lemma it will be sufficient to see that there exists an al-

gebraically closed field E that contains K. Let F be the set of all polynomials in one

variable with coefficients in K and of degree ≥ 1. Let’s consider an indeterminate xf

for each polynomial f ∈ F and let K[xf ] be the polynomial ring in the indeterminates

{xf}f∈F . Let I be the ideal of K[xf ] generated by the polynomials f(xf ) ∈ F [xf ].

I is a proper ideal: If it wasn’t, there would exist a set of polynomials g1, ..., gt ∈ K[xf ]

such that 1 = g1f1(xf1) + ... + gtft(xft). Let L be a finite extension of K in which every

fi has a root αi, for 1 ≤ i ≤ t. If we evaluate the previous equation on α1, ..., αt, we end

up with 1 = 0. Hence, I is a proper ideal.

Now, by the Axiom of Choice there exists a maximal ideal M that contains I. We can

now consider the field K[xf ]/M = K1. The composition K ↪−→ K[xf ] → K[xp]/M = K1

is injective and K identifies with a subfield of K1. If f ∈ K[xf ] has degree ≥ 1, then he

class x̄f in K1 is a root of f .

Inductively, we obtain a succession of fields K = K0 ⊆ K1 ⊆ ... ⊆ Kn ⊆ ..., where Kn

is obtained from Kn−1 the same way K1 is obtained from K. Let K ′ be the union of all

the fields in the succession, K =
⋃
Ki. K

′ has a field structure (for every a, b ∈ K, there
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exists some n such that a, b ∈ Kn). If g ∈ K ′[x], then g ∈ Kn[x] for some n and hence has

a root in Kn+1 ⊆ K ′. Since K ′ is algebraically closed and K ⊆ K ′, we can conclude the

that {x ∈ K ′ | x is algebraic over K} is an algebraic closure over K. �

Theorem 4.2.6. AC ⇒ The additive groups of R and R2 are isomorphic.

Proof. Let B be a basis of R as a vector space over Q. We have seen that the Axiom of

Choice implies the existence of such basis in Theorem 4.2.1. Since R is uncountable, B

is uncountable. Since B and C = (B × {0}) ∪ ({0} ×B) have the same cardinality, there

exists a bijection h between these sets. Furthermore, C is a basis of R2, again as a vector

space over Q. We define f : R→ R2 as follows: if x ∈ R, there exists a unique expression

of x of the form x =
∑
b∈B

ab · b, where ab ∈ Q for all b ∈ B and ab 6= 0 for a finitely many b.

Now, f(x) =
∑
b∈B

ab · h(b). f is an isomorphism between R and R2 as additive groups. �

4.3 The Axiom of Choice in Topology

Theorem 4.3.1. CC ⇒ The following are equivalent: for a subset X of a metric space

M and every x ∈M , x is in the closure of X if

(a) every neighborhoud of x intersects X.

(b) lim
n→∞

xn = x for some sequence (xn)n of points in X.

Proof. Let us see (a) ⇒ (b). Let x be a point in the closure of X. Let Bn be a ball of

center x and radius 1
n . By (a), Bn ∩X 6= ∅. By the Axiom of Countable Choice we are

able to choose a point xn for each Bn and we obtain that the sequence (xn)n of points in

X converges to x.

(b) ⇒ (a) does not require the axiom. Let N be an open neighbourhood of x. There

exists ε > 0 such that the ball Bε of center x and radius ε satisfies Bε ⊆ N . Since (b)

holds, there exists nε such that d(x, xn) ≤ ε for all n ≥ nε, where xn ∈ X for all n. In

fact, xnε ∈ X and xnε ∈ Bε ⊆ N . Hence, N ∩X 6= ∅. �

Definition 4.3.1. A topological space X is compact if for every family (Ui)i of open sets

such that
⋃
i
Ui = X, there exists i1, ..., in such that X = Ui1 ∪ ... ∪ Uin .
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Theorem 4.3.2.* AC⇒ Tychonoff’s Theorem: The product of compact topological spaces

is compact.

Proof. Let {Ki | i ∈ I} be a collection of compact spaces and let K be its product. Let

A be a set of closed subsets of K having the finite intersection property (FIP), that is,

that the intersection over any finite subcollection of A is not empty. We will show that⋂
A is not empty (and hence, that K is compact).

Proceeding in the same way we have done in previous proofs, we can see that every chain

in the set of all subsets (not necessarily closed) of K with the FIP has an upper bound

and thus, by Zorn’s Lemma, there exists a maximal set B of subsets of K with the FIP

and such that A ⊆ B.

If πi(B) is the i-th canonical projection, we have that the πi(B), B ∈ B, have the FIP

and since the Ki are compact, we have that for each i there exists a bi that belongs to the

closure of πi(B) for all B ∈ B. If we let b = (bi | i ∈ I), then it is sufficient to check that

the neighbourhoods of b are contained in B. This will imply that the neighbourhoods of

b intersect all B ∈ B and thus that b is in the closure of B for all B ∈ B and hence in all

A ∈ A.

For each i, we pick a neighbourhood Ni of bi, such that Ni = Ki for almost all i. Let N be

the cartesian product of all Ni, it is clear that N is a neighbourhood of b and it is enough

to see that N ∈ B. Even more, since N is the intersection of finitely many π−1i (Ni), it

suffices to see that π−1i (Ni) ∈ B for all i. But since bi is in the closure of πi(B), we have

that Ni ∩ πi(B) 6= ∅ for all B ∈ B. Hence, π−1i (Ni) ∩ B 6= ∅ for all B ∈ B, and by the

maximality of B, we have π−1i (Ni) ∈ B �

4.4 The Axiom of Choice in Analysis

Theorem 4.4.1. CC ⇒ The following definitions are equivalent: A function f : R → R
is continuous at a point x if

(a) ∀ε > 0, ∃δ > 0 such that ∀y, if |x− y| < δ then |f(x)− f(y)| < ε.

(b) lim
n→∞

xn = x ⇒ lim
n→∞

f(xn) = f(x).
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Proof. The implication (a)⇒ (b) doesn’t need the axiom: we pick ε > 0 and find a δ > 0

that satisfies (a). If we have a sequence (xn)n that converges to x, then there exists n0

such that |xn − x| < δ for all n ≥ n0. Since (a) holds, then |f(xn) − f(x)| < ε for all

n ≥ n0, therefore, (f(xn))n converges to f(x).

Assume CC. Let’s see (b) ⇒ (a). If (a) is false, then there exists some ε > 0 such that

∀δ > 0, there exists some y such that |x − y| < δ but |f(x) − f(y)| ≥ ε. Given that ε,

for δ = 1
n , we can define the set Xn = {y : |x − y| ≤ δ}. By the CC we are able to

choose xn ∈ Xn for each n, such that |x − xn| < δ but |f(x) − f(xn)| ≥ ε. Then, we got

lim
n→∞

xn = x but lim
n→∞

xn = x is false. Contradiction, so (a) is true. �

Theorem 4.4.2.* AC ⇒ every surjection has a right inverse.

Proof. Let f : X → Y be a surjection, where X,Y are two sets. We want to see that

there exists a function g : Y → X such that f(g(y)) = y for all y ∈ Y . We consider the

family of non-empty sets {f−1(y)}y∈Y , where f−1 denotes the preimage of y under f . By

the Axiom of Choice, there exists a choice function g : Y → X such that for every f−1(y),

g(y) ∈ f−1(y) for all y ∈ Y . Hence, f(g(y)) = y. �

Definition 4.4.1. A function f defined on a vector space V over R is called a linear

functional on V if f(a · u) + f(b · v) = a · f(u) + b · f(v) for all a, b ∈ R and u, v ∈ V .

Definition 4.4.2. A function p defined on a vector space V is called a sublinear functional

on V if p(u+v) ≤ p(u)+p(v) for all u, v ∈ V and p(a ·u) = a ·p(u) for all a ≥ 0 and u ∈ V .

Theorem 4.4.3. AC ⇒ Hahn-Banach Theorem. Let p be a sublinear functional on a vec-

tor space V and let f0 be a linear functional on a subspace V0 of V such that f0(v) ≤ p(v)

for all v ∈ V0. Then, there exists a linear functional f such that f0 ⊆ f and f(v) ≤ p(v)

for all v ∈ V .

The Hahn-Banach Theorem is an essential theorem in functional analysis. It is strictly

weaker than the Axiom of Choice, in fact, it is implied by the Ultrafilter lemma, which as

stated in 3.3, is an equivalent form of the Boolean Prime Ideal Theorem.

Proof. Let F be the set of all linear functionals g defined on some W ⊆ V and that
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satisfy f0 ⊆ g and g(w) ≤ p(w) for all w ∈W . We will show by Zorn’s Lemma that (F,⊆)

has a maximal element f .

Let C be a chain in F and we define ḡ :=
⋃
g∈C

g. Let’s show that ḡ ∈ F . Clearly ḡ is a

function with values in R and f0 ⊆ ḡ. Also, dom ḡ =
⋃
g∈C

dom g, which is the union of

⊆-chain of subspaces of V and hence, a subspace of V . Let’s see now that ḡ is a linear

functional. Consider a, b ∈ R and u, v ∈ dom ḡ. Then, there exist some g1, g2 ∈ C such

that u ∈ dom g1 ∈ C and v ∈ dom g2 ∈ C. Since C is a chain, either g1 ⊆ g2 or

g2 ⊆ g1. Consider the first case (the other one is analogous): then u, v ∈ dom g2 and

ḡ(a · u + b · v) = g2(a · u + b · v) = a · g2(u) + b · g2(v) = a · ḡ(u) + b · ḡ(v), since g2 is

linear. Finally, ḡ(u) = g(u) ≤ p(u) for u ∈ dom ḡ and g ∈ C such that u ∈ dom g. ḡ is

an upper-bound of C, since for every g ∈ C, g ⊆ ḡ. Therefore, by Zorn’s Lemma, F has a

maximal element f .

Suppose now that dom f 6= V , that is, dom f ⊂ V and let u ∈ V− dom f and W be

the subspace of V spanned by u and dom f . Every w ∈ W can be uniquely written

as w = x + a · u, where x ∈ dom f and a ∈ R. Now, for every c ∈ R, the function

fc(x+ a · u) = f(x) + a · c is a linear function in W (since f is linear) and satisfies f ⊂ fc.
If such function also satisfies fc(x + a · u) ≤ p(x + a · u) for some c ∈ R and for all

x ∈ dom f and a ∈ R, then it would contradict the maximality of f and by reductio ad

absurdum we could conclude that, as a matter of fact, dom f = V and f is the function

that Hahn-Banach Theorem describes. To finish the proof, then, we need to find such c.

For all a > 0 and x, y ∈ dom f , the c we are looking for has to satisfy f(x)+a·c ≤ p(x+a·u)

and f(y) − a · c ≤ p(y − a · u) (if a = 0, then since f ∈ F , the property is immediately

satisfied). This is equivalent to

f(y)− p(y − a · u) ≤ a · c ≤ p(x+ a · u)− f(x)

which in turn, is equivalent to

f(
y

a
)− p(y

a
− u) ≤ c ≤ p(x

a
+ u)− f(

x

a
)

But since f ∈ F , for all v, t ∈ dom f , we have that f(v) + f(t) = f(v + t) ≤ p(u + v) ≤
p(v − u) + p(t + u) and hence f(v) − p(v − u) ≤ p(t + u) − f(t). If we let A = sup

{f(v) − p(v − u) | v ∈ dom f} and B = inf {p(t + u) + f(t) | t ∈ dom f}, then clearly

A ≤ B. We can then choose c ∈ R such that A ≤ c ≤ B. �
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Theorem 4.4.4. AC ⇒ Every Hilbert space has an orthonormal basis.

Proof. Let H be a Hilbert space and let O bethe set containing all orthonormal subsets

of H, partially ordered by inclusion (⊆). Let C be a chain in O and we define U :=
⋃
S∈C

S.

U is clearly an orthonormal set, since ||u|| = 1 for all u ∈ U and it is orthogonal (because

all S ∈ C are orthonormal). U is an upper bound of C and, by Zorn’s Lemma O has a

maximal element B. B is a maximal orthonormal set and this suffices to see that it is a

basis for H. �

4.5 The Axiom of Choice in Graph Theory

Definition 4.5.1. In Graph Theory, a tree is a connected graph without cycles. A span-

ning tree is a tree T of a graph G that contains all the vertices of G.

Theorem 4.5.1.* AC ⇒ Every connected graph has a spanning tree.

Proof. Let G = (V,E) be a connected graph. We choose r ∈ V and for each v ∈ V \{r}
we define X(v) = {v′ ∈ V | v′ is adjacent to v ∧ d(v′, r) < d(v, r)}, where d defines the

distances between two vertices. Every X(v) is non-empty, since for every v there is a path

from r to v: (r = v0, ..., vn−1, vn = v) with minimum distance and hence vn−1 ∈ X(v). By

the Axiom of Choice, there exists a choice function f that allows us to pick a vertex for

each set X(v) : f(X(v)) = v′ ∈ X(v). If we define X as the set of all edges {v, v′}, then

G∗ = (V,X) is a spanning tree.

By induction on d(v, r) from a vertex v to r, we will show that G∗ is connected. If

d(v, r) = 1, then X(v) = {r}, so v′ = r. If d(v, r) > 1, suppose all u ∈ V such that

d(u, r) < d(v, r) are connected to r. Since v′ ∈ X(v) satisfies d(v′, r) < d(v, r), v′ is

connected to r and since it is adjacent to v, v is also connected to r.

G∗ has no cycles: Suppose v1v2...vnv1 is a cycle C in G∗. Then {v1, v2} ∈ C, which

means that d(v1, r) < d(v2, r) or d(v2, r) < d(v1, r). Suppose the former, this means that

X(v2) = v1. Then, since {v2, v3} ∈ C, we have that d(v2, r) < d(v3, r) and X(v3) = v2. If

we iterate this process, we end up obtaining that d(v1, r) < d(v2, r), ..., d(vn, r) < d(v1, r),

which leads to contradiction. Since G∗ is connected and has no cycles, we can conclude

that it is a spanning tree of G. �
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4.6 The Axiom of Choice in Logic

Theorem 4.6.1. AC ⇒ The Compactness Theorem for First Order Logic. If every finite

subset of Σ has a model, then Σ has a model. Equivalently, if every finite subset of Σ is

satisfiable, then Σ is satisfiable.

The Compactness Theorem is implied by the Boolean Prime Ideal Theorem (in fact, it

is equivalent to it). A proof of this can be found in [2], pages 17-18. We will give here

a simpler proof that depends on the Axiom of Choice. However, if we want to prove the

Compactness Theorem for a countable language L where we have a recursive enumeration

of the formulas, then neither the Axiom nor a weaker choice principle is needed. However,

if we want to prove it (as we will do here) in a general way, for any language L, we cannot

do it without the Axiom or the Boolean Prime Ideal Theorem.

Proof. In order to prove the implication above we will use the Ultrafilter lemma, the

equivalence of the BPI presented in section 3.3 which states that every filter can be ex-

tended to an ultrafilter and  Loś’s theorem, that will be stated below. A proof of it can be

found in [6].

Let Σ be a collection of sentences in a first order languace L such that every finite subset

of Σ has a model. Let I be the collection of all finite subsets of Σ and, for every i ∈ I let

Mi be a model for the sentences in i (note that by choosing a model for every i we have

already used the Axiom of Choice). Also, for every i ∈ I we define Ji = {j ∈ I | i ⊆ j}
and let F = { J ⊆ I | Ji ⊆ J for some i ∈ I }.
We will see that F is a filter. F is closed under finite intersection since the collection of

all Ji is also closed under finite intersection (indeed: Ji1 ∩ Ji2 = Ji1∪i2). Also, F is by

definition closed under containment (J ⊆ F and J ⊆ K, clearly K ⊆ F ) and it does not

contain the empty set since Ji is non-empty for all i ∈ I. So F is a filter and by the

Ultrafilter Lemma, it can be extended to an ultrafilter U .

Now,
∏
i∈I

dom Mi is the cartesian product of the domains of the Mi and we can define

the following equivalence relation on
∏
i∈I

dom Mi:

f ∼U g ⇔ {i ∈ I | f(i) = g(i)} ∈ U
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We may now define the ultraproduct10 M =
∏
i∈I
Mi/U as the quotient set with respect to

∼U .  Loś’s theorem states that for any formula σ, M |= σ ⇐⇒ {i ∈ I | Mi |= σ} ∈ U .

Now, in our case, for any σ ∈ Σ we have that {σ} ∈ I and J{σ} ⊆ {i ∈ I | Mi |= σ}.
Since J{σ} ∈ F ⊆ U , we have that J{σ} ∈ U and thus {i ∈ I | Mi |= σ} ∈ U . By  Loś’s

theorem,M |= σ. Since this is true for any σ ∈ Σ, we obtainM |= Σ, so Σ has a model. �

Theorem 4.6.2. AC ⇒ Gödel’s Completeness Theorem for First Order Logic. Every

consistent set of formulas is satisfiable.

The Completeness Theorem for first order logic is equivalent to the Compactness Theorem

for first order logic and both of them are equivalent to the Boolean Prime Ideal Theorem.

It is enough for our purposes to prove that Compactness Implies Completeness. A proof

of this can be found in [8].

Theorem 4.6.3.: Diaconescu’s Theorem. AC ⇒ Law of the Excluded Middle: p∨¬p

This theorem states that the Axiom of Choice is sufficient to derive the Law of the Ex-

cluded Middle in constructive set theory. That is specially problematic in intuitionistic

logic, which has a constructivist approach and does not accept the law of the excluded

middle: one can only prove the truth of p∨¬p for a specific p once either p or ¬p has been

proved.

Proof. Let C = {0, 1} and let p be a proposition. Now, we define the two following sets:

A = {x ∈ C | (x = 0) ∨ p}, B = {x ∈ C | (x = 1) ∨ p}

Since 0 ∈ A and 1 ∈ B both sets are non-empty and X = {A,B} is a collection of finite

non-empty sets. By AC, X has a choice function f : X → C such that f(A) ∈ A and

f(B) ∈ B. So, by definition of A and B, we have f(A) = 0 ∨ p and f(B) = 1 ∨ p. So,

(f(A) = 0 ∧ f(B) = 1) ∨ p. Since p → (A = B), we have p → (f(A) = f(B)). So,

if f(A) = 0 ∧ f(B) = 1, then f(A) 6= f(B), hence ¬p. And if it is not the case that

f(A) = 0 ∧ f(B) = 1, then p. �

10For more information on ultraproducts and a more detailed proof, see [7] and [6].
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5 Paradoxical results implied by the Axiom of

Choice

Besides implying the existence of mathematical objects that cannot be explicitly defined,

such as a well order of the reals, the acceptance of the Axiom of Choice also leads to

some paradoxical or counter-intuitive results, like the ones we will present in this section.

For example, the Axiom of Choice implies that it is impossible to extend the Lebesgue

measure to all subsets of R since with the help of the Axiom one can easilt construct

non-measurable sets. These results are one of the main arguments against the Axiom of

Choice. Let’s see them in detail.

5.1 Existence of non Lebesgue mesurable sets in R

Definition 5.1.1. Given an open interval I = (a, b) ⊂ R, we define its length by l(I) =

b− a. The Lebesgue outer measure of a set A ⊆ R is defined by

λ∗(A) = inf
{ +∞∑
k=1

l(Ik) : Ik, k ∈ N, is an open interval and A ⊆
∞⋃
k=1

Ik

}
Definition 5.1.2. The Lebesgue σ-algebra is the collection of all sets E that satisfy

For all subsets A ∈ R, λ∗(A) = λ∗(A ∩ E) + λ∗(A ∩ R\E)

Definition 5.1.3. Let E be a set contained in the Lebesgue σ−algebra. The Lebesgue

measure of E, λ(E) is given by λ(E) = λ∗(E).

The Lebesgue measure satisfies the following properties:

(a) for all a, b ∈ R with a ≤ b, λ((a, b)) = b− a

(b) λ(∅) = 0 and λ(R) = +∞

(c) λ is countably additive, that is, if {Ei}i∈N is a collection of pairwise disjoint sets in

the Lebesgue σ−algebra, then λ(
∞⋃
i=1

Ei) =

+∞∑
i=1

λ(Ei)
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(d) λ is translation invariant, that is, if a ∈ R, E ⊆ R and we let E+a = {x+a | x ∈ E},
then λ(E) = λ(E + a)

At first sight, it may seem logical to want a function with these properties to be extended

to all subsets of the real numbers, that is, to be defined over P(R). It is in fact an impor-

tant problem in analysis to extend the notion of length of an interval to more complicated

subsets of R. However, the Axiom of Choice guarantees that such function does not exist

by implying the existence of certain subsets of the reals that are non Lebesgue measurable.

One example of such sets is the Vitali set.

Definition 5.1.4. The Vitali set is a subset V ⊂ [0, 1] such that for all x ∈ R there exists

a unique v ∈ V such that x− v is a rational number.

Theorem 5.1.1. AC ⇒ The Vitali set exists.

Proof. We define the following relation on [0, 1] by: x ∼ y if and only if x − y is a

rational number. By the Axiom of Choice, there exists a choice function that chooses

an element out of each equivalent class. Let V be the set containing all these elements.

Clearly V ⊂ [0, 1] and for each x ∈ R, there exists a unique v ∈ V such that x − v is a

rational number. Therefore, V is a Vitali set. �

Theorem 5.1.2. The Vitali set V is not Lebesgue measurable.

Proof. For each q ∈ Q we define Vq = {v + q | v ∈ V }. The Vq, q ∈ Q, yield a partition

of R into countably many disjoint sets: R =
⋃
q∈Q

Vq. Suppose now that V is Lebesgue

measurable. If λ(V ) = 0, then λ(R) = 0, since λ is countably additive and translation

invariant. Hence, λ > 0. However, this is not possible either, since in that case we would

obtain

λ([0, 2]) ≥ λ
( ⋃
q∈[0,1]∩Q

Vq

)
=

∑
q∈[0,1]∩Q

λ(Vq) =∞

since for each q ∈ [0, 1] ∩Q, λ(Vq) = λ(V ) > 0. Having reached a contradiction, we must

conclude that V is non Lebesgue measurable. �

However, if instead of the Axiom of Choice we use the Axiom of Countable Choice, then,
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the existence of Vitali sets cannot be proved. Note that when we use AC to choose an

element x out of each equivalent class of the relation ∼ we are, in fact, dealing with an

uncountable number of classes. Indeed, each class is of the form {x+ qi | qi ∈ Q} for some

x. Clearly, each class has a countable number of elements, since Q is countable. Therefore,

the total number of classes must be uncountable, since its union must be the set of all real

numbers contained in [0, 1], which is uncountable.

In fact, a stronger version of CC can also hold without implying the existence of Vitali

sets. In 1970, Robert Solovay proved, assuming the consistency of an inaccessible cardi-

nal11, the existence of a model where all the axioms of ZF hold, the axiom of Dependent

Choice (DC) holds and all sets of reals are Lebesgue measurable.

Another construction of a set that is not Lebesgue measurable, this time in R2 can be

defined using the fact that the set of the reals is well-orderable. Indeed, Sierpiński proved

that no well-ordering of a non-empty set of the reals is Lebesgue measurable. A proof of

this can be found in [9].

5.2 The Hausdorff Paradox

Definition 5.2.1. Let A,B ⊂ R3. We say that A and B are congruent (A ∼= B) if one

can be obtained from the other by translation, rotation and/or reflection. Equivalently,

A ∼= B if there exists an isometry f : A→ B.

Lemma 5.2.1. ∼= is an equivalence relation.

Proof. ∼= is obviously reflexive, it is symmetric since each isometry f : A→ B has an in-

verse function f−1 : B → A, and it is transitive since if we have f : A→ B and g : B → C,

we have f ◦ g : A→ C. �

Hausdorff Paradox. The sphere S2 = {x ∈ R3 | ||x|| = 1} can be descomposed into four

disjoint sets A,B,C,D such that A,B,C and B∪C are all congruent and D is countable.

11An uncountable cardinal κ is called inaccessible if it is regular and 2λ < κ, for all cardinals λ < κ. If

the Axiom of Choice holds, an infinite cardinal κ is regular if and only if it cannot be expressed as the

cardinal sum of a set of cardinality less than κ.
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The paradox shows that no finitely additive and isometry invariant measure on a sphere

can be defined for all its subsets. If there existed a measure µ satisfying said conditions,

then, since B ∼= C, we would have µ(B) = µ(C), and since A ∼= B∪C, it would also be true

µ(A) = µ(B∪C) = µ(B)+µ(C) = 2µ(B). But B ∼= A and, hence, µ(B) = µ(A) = 2µ(B).

Therefore, such a measure cannot exist. The role of the Axiom of Choice in the proof of

the paradox is crucial and again leads to an undesirable consequence: the impossibility to

define such a measure on S2.

Proof. In order to prove the ‘paradox’ we must first consider two axes of rotation aφ and

aψ going through the center of S2 and the following rotations about them:

φ =


−cosθ 0 sinθ

0 −1 0

sinθ 0 cosθ

 ψ =


−1
2

√
3
2 0

−
√
3

2
−1
2 0

0 0 1


Note that φ is a rotation of π radians about aφ and ψ is a rotation of 2π

3 radians about

aψ. θ is the angle between the axes.

Let G be the group obtained by the free product of the groups {1, φ} and {1, ψ, ψ2}, that

is, the group of all transformations obtained by successive applications of φ and ψ an

arbitrary finite number of times, with the specification φ2 = ψ3 = 1. Now, we want to

choose θ in such a way that different elements of G represent different rotations generated

by φ and ψ. In order to achieve that, we have to choose a θ that satisfies that no element

of G different than 1 represents the identity rotation. Hausdorff proved in 1914 that when

we pick θ such that cos θ is transcendental, then such condition is satisfied.

It suffices, then, to pick θ such that cos θ is transcendental. Under this condition, different

elements of G represent different rotations. Indeed, suppose σ1...σn = τ1...τm, where σ1

and τ1 are of the form φ or ψ±1, properly alternated. Then, if σn = τm we can simplify

them from the right until the term on the left differs (it is not possible to end up with

σ1...σr = 1, with r < n, since that would contradict Hausdorff’s proof). If, on the contrary,

σn 6= τm, then we have that σ1...σnτ
−1
m ...τ−11 = 1 and σn cannot be simplified with τm, so

we end up with a contradiction to Hausdorff’s result.

Since for every n ∈ N, the set of rotations expressed by a combination of n rotations of

the form φ, ψ or ψ2 = ψ−1 is finite and G is the countable union of these finite sets, G is

a countable group.

Now let’s consider a partition of G into three subgroups GA, GB and GC constructed by
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recursion on the lengths of the elements of G. We let 1 ∈ GA, φ, ψ ∈ GB and ψ2 ∈ GC
and then, for any α ∈ G,

If α ends with ψ±1,


αφ ∈ GB if α ∈ GA

αφ ∈ GA if α ∈ GB

αφ ∈ GA if α ∈ GC

If α ends with φ,


αψ ∈ GB and αψ−1 ∈ GC if α ∈ GA

αψ ∈ GC and αψ−1 ∈ GA if α ∈ GB

αψ ∈ GA and αψ−1 ∈ GB if α ∈ GC

Lemma 5.2.2. GA, GB and GC satisfy

GAφ = GB ∪GC , GAψ = GB, GAψ
2 = GC .

Proof. Let α ∈ GA. If α ends with ψ±1, then by definition αφ ∈ GB. If α ends with φ,

that is, α = βφ, then β /∈ GA (in that case, βφ ∈ GB) and thus βφφ = φ ∈ GB ∪GC . We

have GAφ ⊂ GB ∪GC .

If α ∈ GB ends with ψ±1, then αφ ∈ GA by definition, and hence αφφ = α ∈ GAφ. If

α ends with φ, that is, α = βφ, then β /∈ GB (in that case, βφ ∈ GA) and β /∈ GC for

the same reason. Consequently, β ∈ GA and α = βφ ∈ GAφ. So we get GB ⊂ GAφ. An

analogous argument can be applied to GC and obtain GC ⊂ GAφ. Hence, GB∪GC ⊂ GAφ
and we obtain GB ∪GC = GAφ.

The proof in the other cases is analogous. �

Now let’s consider the sphere S2. Each element of G different from the identity leaves

unchanged at most two points of S. We call D the set of points that remain unchanged

by at least one element of G. Since G is countable, D is also countable.

For all α ∈ G, α is a rotation defined on S2\D: α : S2\D → S2\D. Indeed, if x ∈ S2\D,

then α(x) ∈ S\D. If α(x) /∈ S2\D, then there would exist some β ∈ G such that

β(α(x)) = α(x) and hence α−1(β(α(x))) = x, with α−1βα ∈ G, contradicting the fact

that x ∈ S2\D.

Let’s consider the following relation ∼ on S\D: x ∼ y if and only if, there exists some

α ∈ G such that α(x) = y. Since G is a group, ∼ is an equivalence relation. Now,

proceeding in a similar way as in the proof of the existence of Vitali sets, we use the Axiom
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of Choice to pick an element out of every class of equivalence defined by the relationship

∼ and let M be the set containing all these elements. We now define the following sets:

A = {α(x) | x ∈M and α ∈ GA}
B = {α(x) | x ∈M and α ∈ GB}
C = {α(x) | x ∈M and α ∈ GC}

With these sets defined, we can prove that A∪B∪C = S2\D. Indeed, for all y ∈ G, there

exists some x ∈M and some α ∈ G such that y = α(x). Hence, y ∈ A,B or C, depending

on whether α ∈ GA, GB or GC . The three sets are disjoint: suppose there exists some

x ∈ S2\D such that x ∈ A and x ∈ B. Then, there would be some y ∈ M,α ∈ GA and

z ∈ M,β ∈ GB such that α(y) = β(z), and then we would have y = α−1(β(z)), which

implies y ∼ z. In that case, by the definition of M , we would have y = z, and thus

y = α−1(β(y)), which means that y ∈ D or that α−1β = 1, and thus α = β. Both cases

are impossible, since y ∈ M and α ∈ GA and β ∈ GB, which are disjoint groups. Hence,

A ∪B ∪ C ∪D = S2.

Lemma 5.2.3.A,B and C satisfy:

φ[A] = B ∪ C, ψ[A] = B, ψ2[A] = C.

Proof. x ∈ φ(A) ⇐⇒ there exists some y ∈ A such that x = φ(y) ⇐⇒ x = φ(α(z)) for

some z ∈M and α ∈ GA ⇐⇒ x = β(z) for some β ∈ GAφ = GB ∪GC and some z ∈M
⇐⇒ x ∈ B ∪ C.

x ∈ ψ(A) ⇐⇒ there exists some y ∈ A such that x = ψ(y) ⇐⇒ x = ψ(α(z)) for some

z ∈M and α ∈ GA ⇐⇒ x = β(z) for some β ∈ GAψ = GB and some z ∈M ⇐⇒ x ∈ B.

x ∈ ψ2(A) ⇐⇒ there exists some y ∈ A such that x = ψ2(y) ⇐⇒ x = ψ2(α(z))

for some z ∈ M and α ∈ GA ⇐⇒ x = β(z) for some β ∈ GAψ
2 = GC and some

z ∈M ⇐⇒ x ∈ C. �

Therefore, A ∼= B ∪ C, A ∼= B and A ∼= C. We have obtained a partition of the sphere

S2 = A ∪B ∪ C ∪D that satisfies the desired conditions. �

Again, we see that the proof breaks down if instead of the full strength of AC we only use

CC. The situation is analogous as in 5.1. The Axiom of Choice is used to choose an element

out of each equivalence class. The equivalence classes are of the form Mx = {y | α(x) = y
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for some α ∈ G}, where x is the representative of the class given by the choice function.

But, since G is countable, the set of the elements in a certain equivalence class is also

countable. However, S2\D is uncountable and, hence, there must be an uncountable

number of equivalence classes. Therefore, CC is not enough to carry out the argument.

5.3 The Banach-Tarski Paradox

Definition 5.3.1. Two sets X,Y are equidecomposable (X ≈ Y ) is there is a finite

decomposition of X into disjoint sets, X = X1 ∪ ... ∪ Xn and a finite decomposition of

Y into the same number of disjoint sets Y = Y1∪...∪Yn such that Xi
∼= Yi for all i = 1, ..., n.

Lemma 5.3.1. ≈ satisfies the following properties:

(a) ≈ is an equivalence relation

(b) If X is the disjoint union of X1 and X2, Y is the disjoint union of Y1 and Y2, X1 ≈ Y1
and X2 ≈ Y2, then X ≈ Y .

(c) If X ⊆ Y ⊆ Z and Z ≈ X, then Z ≈ Y .

Proof. (a) By definition and since ∼= is an equivalence relation, it can clearly be seen that

≈ is reflexive, symmetric and transitive.

(b) If X1 = X11 ∪ ... ∪ X1n, Y1 = Y11 ∪ ... ∪ Y1n where X1i
∼= Y1i for all i = 1, ...n and

X2 = X21 ∪ ... ∪X2m, Y21 ∪ ... ∪ Y2m with X2j
∼= Y2j for all j = 1, ...,m then, clearly the

decompositions X = X11∪ ...∪X1n∪X21∪ ...∪X2m and Y = Y11∪ ...∪Y1n∪Y21∪ ...∪Y2m
satisfy the requirements for equidecomposability.

(c) Let X = X1 ∪ ... ∪Xn and Z = Z1 ∪ ... ∪ Zn such that Zi ∼= Xi for all i = 1, ...n. Let

fi : Zi → Xi be an isometry for each i = 1, ...n and f : Z → X, where f =
⋃
i
fi . Now we

define the following succession by recursion:

Z0 = Z, Z1 = f [Z0] = f [Z] = X, Z2 = f [Z1], ...

Y0 = Y, Y1 = f [Y0], Y2 = f [Y1], ...

If we let W =
∞⋃
i=0

Zi − Yi, then f [W ] and Z −W are disjoint sets, W ≈ f [W ] and we

get Z = W ∪(Z−W ) and Y = f [W ]∪(Z−W ). Therefore, applying (b), we get Z ≈ Y . �
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The Banach-Tarski Paradox. There exists a decomposition of the closed ball B = {x ∈
R3 | ||x|| ≤ 1} into disjoint sets X and Y such that B ≈ X and B ≈ Y .

Proof. In order to prove the paradox, we will use the same sets A,B,C and D defined

in Hausdorff’s Paradox Proof, as well as the rotations φ and ψ. Now, we define A′ as the

set containing all the radii of B with one of the extremes in the center of B ({0}) and the

other one in some point of A. Equivalently, A′ is the set of all points of B\{0} such that

its projection onto the surface belongs to A. In an analogous way, we define B′, C ′ and

D′ with the sets B,C and D from S2 respectively. We have

B = A′ ∪B′ ∪ C ′ ∪D′ ∪ {0}
φ[A′] = B′ ∪ C ′, ψ[A′] = B′, ψ2[A′] = C ′

and clearly,

A′ ≈ B′ ≈ C ′ ≈ B′ ∪ C ′

Now we define the sets X = A′ ∪D′ ∪ {0} and Y = B−X = B′ ∪ C ′.
By lemma 5.3.1.(b), we have that B′ ∪C ′ ≈ A′ ∪B′ ∪C ′, since B′ ≈ A′ and C ′ ≈ B ∪C ′.
Hence, we also have A′ ≈ A′ ∪B′ ∪ C ′ and then,

X = A′ ∪D ∪ {0} ≈ A′ ∪B′ ∪ C ′ ∪D′ ∪ {0} = B.

It remains to see that Y ≈ B. To do that, we must first prove the following Lemma,

Lemma 5.3.2.There exists some rotation α such that α[D′] ⊂ A′ ∪B′ ∪ C ′.
Proof. It suffices to prove that there exists a rotation α such that α[D] ⊂ A ∪ B ∪ C.

We fix an axis aα such that it does not intersect with points belonging to the countable

set D. For every angle θ, let αθ be the rotation of angle θ about the chosen axis. Then, if

we enumerate the points in D, and let D = {xn | n ∈ N}, we can define Xn = {θ ∈ [0, π]

| αθ(xn) ∈ D}. Since the application Xn → D, where θ 7→ αθ(xn) is injective, Xn is

countable, and so it is
⋃
n
Xn. Therefore, it is enough to choose some θ ∈ [0, π]\

⋃
nXn,

which is an uncountable set, in order to obtain a rotation αθ that satisfies the conditions

required. �

Since C ′ ≈ A′ ∪ B′ ∪ C ′, and using the fact that there exists some α[D′] ⊂ A′ ∪ B′ ∪ C ′,
and thus, clearly α[D′] ≈ D′, we obtain that there exists a set R ⊂ C, such that R′ ≈ D′.
Now, if we pick a point p ∈ C ′\R′, we obtain
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B′ ∪R′ ∪ {p} ≈ A′ ∪D′ ∪ {0} = X ≈ B.

And since

B′ ∪R′ ∪ {p} ⊆ Y ⊆ B

applying Lemma 5.3.1.(c), we end up with Y ≈ U , as desired. �

Obviously, in the proof of the Banach-Tarski paradox the Axiom of Choice is also essential

and unavoidable, since it depends on the proof of Hausdorff paradox, which in turn, relies

on the Axiom. As well as with Hausdorff paradox, the proof cannot be completed if

instead of using the full strength we only use the Axiom of Countable Choice or even DC,

for the same reasons. In the Solovay model mentioned above, there is also no paradoxical

decomposition of the sphere, so we conclude that ZF + the Axiom of Dependent Choice

does not imply the Banach-Tarski paradox.

The Banack-Tarski paradox can be generalised for n > 3, and so the impossibility of

defining a finitely-additive and translation invariant measure also apply to all Rn, n ≥ 3.
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6 The Axiom of Choice and the ZF axiomatic sys-

tem

6.1 The ZF axiomatic system

As we have briefly seen in section 1, the publication of Zermelo’s proof of the Well Order-

ing Theorem using the Axiom of Choice was followed by his publication in 1908 of a list

of principles or axioms that attempted to axiomatize set theory and provide a foundation

for mathematics. Zermelo’s axioms tried to capture the intuitive notion of what it means

to be a set but at the same time avoided the paradoxes that arose from Frege’s näıve set

theory.

The most famous of those paradoxes is Russell’s paradox. One of Frege’s basic axioms

stated the existence of a set X = {Y | φ(Y )}, where φ is any property definable in the

theory. In other words, it asserted that for every φ, there exists a set whose elements are

exactly the sets that satisfy φ. This leads to contradiction, for it postulates the existence

of the set A = {X | X /∈ X}, that is, the set of all sets that do not belong to themselves.

If such set exists, then we end up with the contradiction A ∈ A ⇐⇒ A /∈ A. Russell

himself, along with Alfred N. Whitehead, proposed in their Principia Mathematica an-

other axiomatic system, apparently exempted of contradictions, but rather complicated.

Zermelo’s axioms were simpler and also avoided Frege’s paradoxes, so it prevailed amongst

set theorists.

However, the original list of axioms given by Zermelo had still some shortcommings: it

lacked a proper notion of ”definable property”, and was unable to prove the existence of

certain cardinals and sets that mathematicians took for granted. With the contributions

made during the following years by Fraenkel, Skolem and von Neumann, the axiomatic

system was improved and completed to avoid these shortcommings. The result of those

additions to the original Zermelo’s list of axioms is what we know today as the Zermelo-

Fraenkel axiomatic system or ZF.

There are different equivalent formulations of the axioms in ZF, here we give one of them
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along with its formalisation in the language of first-order logic for sets: formal logic with

quantifiers (∃,∀), equality (=) and the non-logical symbol ∈ that represents the binary

relation expressing membership relation.

1. Axiom of Extensionality. If two sets have the same elements, then they are equal.

∀x ∀y (∀z (z ∈ x↔ z ∈ y)→ x = y)

2. Axiom of Pairing. For any sets x, y there exists a set {x, y} containing exactly x

and y.

∀x ∀y ∃z ∀u (u ∈ z ↔ (u = x ∨ u = y))

3. Axiom Schema of Separation.12 For any set x and any definable property φ,

i.e., any formula of the first order language of set theory which may contain free

variables other than z in this case, here exists a set whose elements are the elements

of x that satisfy the property φ.

∀x ∃y ∀z (z ∈ y ↔ z ∈ x ∧ φ(z))

Note that this is not ’an’ axiom, but an axiom schema, for it postulates the existence

of different axioms given by different properties.

4. Axiom of Union. For every set x, there exists a set y =
⋃
x whose elements are

the elements of the elements of x.

∀x ∃y ∀z (z ∈ y ↔ ∃u (z ∈ u ∧ u ∈ x))

5. Power Set Axiom. For every set x, there exists a set P(x) whose elements are all

and only the subsets of x.

∀x ∃y ∀z (z ∈ y ↔ ∀u (u ∈ z → u ∈ x))

6. Axiom of Infinity. There exists an infinite set i.

12The Axiom Schema of Separation is essential for avoiding Russell’s paradox: it allows only the con-

struction of subsets satisfying a given property, but it does not postulate the existence of the set {x | φ(x)},

which led to paradoxes.
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∃i (∃x (x ∈ i ∧ ∀y ¬(y ∈ x)) ∧
∀z (z ∈ i→ ∃u (u ∈ i ∧ ∀w (w ∈ u↔ u ∈ z ∨ u = z))))

Note that the existence of the empty set can be derived from the Axiom of Infinity,

which postulates the existence of a certain set and the Axiom Schema of Separation:

∅ = {x ∈ I | ¬(x = x)}. In some formulations of the axioms of ZF, the Axiom of

the Empty Set, which postulates the existence of the empty set, is given as a basic

axiom. The Axiom Schema of Separation may also be seen to follow from the Axiom

of Replacement together with the remaining axioms.

7. Axiom Schema of Replacement. For every set X, if f is a class function re-

stricted to X, then there exists a set Y = f [X].

A class function is different from the usual notion of function in that it is defined

on all sets and the set of all sets is not a set. To formalise it we consider a formula

in the language of first order logic φ(x, y, u) such that if φ(x, y, u) = φ(x, z, u), then

y = z (this represents that y = z is the image of x).

∀u (∀x ∀y ∀z((φ(x, y, u) ∧ φ(x, z, u))→ y = z)→
∀X ∃Y ∀y (y ∈ Y ↔ ∃x (x ∈ X ∧ φ(x, y, u))))

8. Axiom of Foundation. Every non-empty set x has a ∈-minimal element. Equiv-

alently, for every non-empty set x there exists a y ∈ x such that x ∩ y = ∅.

∀x (∃u(u ∈ x)→ ∃y (y ∈ x ∧ ¬∃z (z ∈ y ∧ z ∈ x)))

If we add to the given list of axioms the Axiom of Choice then we get the Zermelo-Fraenkel

axiomatic system with Choice, or ZFC.

ZFC is today the standard axiomatic system used in set theory and it provides the standard

foundation for mathematics: from those axioms it is possible to derive all the theorems of

usual mathematics; mathematical objects may be regarded as sets and all theorems can

be proved from the ZFC axioms using the logic rules.
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6.2 Consistency and independence of the Axiom of Choice

from ZF

Two questions arise when we consider the relationship of the Axiom of Choice with the

ZF axioms. Since the acceptance of the Axiom of Choice leads to some problematic and

counterintuitive consequences, it would be reasonable to ask if it is consistent with the

axioms of ZF. That is, if accepting the axioms in ZF along with AC can lead to some con-

tradiction. Another important question is if the Axiom of Choice is independent from ZF:

can it be proved from ZF or, on the contrary, it is necessary to postulate it as a new axiom?

Regarding the first question, Gödel proved in 1938 that if ZF is consistent, then so is

ZFC. He achieved that by constructing a certain model, (the constructible universe, which

is represented by the letter L), and showing that, assuming ZF, the structure (L,∈) is

a model of both ZF and AC, proving therefore its relative consistency. However, due to

Gödel’s second incompleteness theorem, it is impossible to prove the consistency of ZF in

ZF, and the same happens with ZFC (assuming they are consistent).

With regards to the second question, the independence of the Axiom of Choice from the

other axioms in ZF was proved by Paul Cohen in 1963. Assuming that ZF is consistent,

he used the forcing technique to construct a model of ZF in which there is a set of reals

that cannot be well-ordered, and thus a model where both ZF and the negation of AC

hold. This showed that, provided that ZF is consistent, ZF + ¬C (ZF with the negation

of the Axiom of Choice) is also consistent. Thus, the results of Gödel and Cohen, taken

together, prove the independence of AC from ZF, i.e., ZF, if consistent, can neither prove

nor refute AC.

6.3 The Axiom of Choice and the Generalised Continuum

Hypothesis

We already mentioned in 4.1. that the Axiom of Choice implies the reformulation of the

Continuum Hypothesis into the form 2ℵ0 = ℵ1. This formulation can be generalised, into

what is known as the Generalised Continuum Hypothesis, or GCH.
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Generalised Continuum Hypothesis. For every ordinal α, 2ℵα = ℵα+1.

Sierpńnski proved in 1945 that ZF together with GCH implies the Axiom of Choice. Thus,

the Generalised Continuum Hypothesis and the Axiom of Choice are not independent of

each other in ZF, there does not exist a model of ZF where the former holds and the

latter fails. The Generalised Continuum Hypothesis is, therefore, a stronger version of the

Axiom of Choice, relative to ZF.

GCH has been proved independent from ZFC, that is, within the ZFC system it is im-

possible to prove GCH nor its negation. If GCH is accepted as an axiom, then, since the

Axiom of Choice is implied by it, it would no longer be a basic axiom, but a consequence

of the other axioms.

6.4 The Axiom of Determinacy: a possible substitute for

the Axiom of Choice?

Due to its problematic character, the Axiom of Choice has always had some detractors,

the number of which has progressively decreased since its origins. However, there has

always been a search for better alternatives, i.e., alternatives that maintain some of its

most used and widely accepted implications but that at the same time escape from its

counterintuitive consequences. One of those alternatives is the Axiom of Determinacy,

introduced by Jan Mycielski and Hugo Steinhaus.

To state the Axiom of Determinacy we must first consider, for each set A ⊆ ωω the

following associated game GA: two players I and II successively choose natural numbers

I : a0 a1 a2 ...

II : b0 b1 b2 ...

If the produced sequence 〈a0, b0, a1, b1, ...〉 belongs to A, then player I wins; otherwise

player II wins the game.

Definition 6.4.1. A strategy σ for player I is a function defined on finite sequences of

numbers with values in ω. A strategy for player II is defined analogously.
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Definition 6.4.2. A strategy σ is a winning strategy for player I in GA if, whenever he

chooses an = σ(b0, b1, ...bn−1), then I wins the game, independently of the numbers that

player II chooses. A winning strategy for player II is defined analogously.

Definition 6.4.3. The game GA is determined if either player I or II has a winning

strategy.

We may now formulate the Axiom of Determinacy:

Axiom of Determinacy (AD). For every A ⊆ ωω, the game GA is determined.

The acceptance of this axiom contradicts the Axiom of Choice, since if we accept AC we

can prove that there exists an A ⊆ ωω such that GA is not determined.

Theorem 6.4.1. AC ⇒ There exists a set A ⊆ ωω such that GA is not determined.

Proof. Since AC holds, there exists an ordinal number γ such that 2ℵ0 = ℵγ . That is, the

cardinality of the set of real numbers is equal to a certain aleph. We now construct, by

transfinite recursion, the sets Xα and Yα both belonging to ωω , monotonically increasing

(if β < α, then Xβ ⊆ Xα and Yβ ⊆ Yα), disjoint for each α and such that |Xα| ≤ |α| and

|Yα| ≤ |α|.
We well-order the set of different strategies {σα | α < 2ℵ0 = ℵγ}13, to construct the sets

Xα and Yα. To construct such sets, we proceed as follows: if α is a limit ordinal, then

Xα =
⋃
β<α

Xβ, Yα =
⋃
β<α

Yβ. And if α = β + 1 we do the following: for all b = (b0, b1, ...),

consider σβ,I [b] = (a0, b0, a1, b1, ...) as the set of sequences played in a game where a0, a1, ...

are chosen according to the strategy σβ,I . The set of all σβ,I [b] has cardinality 2ℵ0 , since

that is the cardinality of all the possible sequences played by player II. Since |Xβ| ≤
|β| < 2ℵ0 = ℵγ we can choose b ∈ ωω such that σβ,I [b] /∈ Xβ. We pick the least b in the

well-ordering of ωω such that it satisfies the said condition and let Yβ+1 = Yβ ∪ {σβ,I [b]}.
Analogously, we consider for all a = (a0, a1, ...) the set σβ,II [a] as the set of all sequences

played in a game where b0, b1, ... are chosen according to σβ,II . In that case, there exists

13The set of all functions f : N → N has cardinality 2ℵ0 .
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some a ∈ ωω such that σω,II [a] /∈ Yβ+1. We pick the least a satisfying this condition and

let Xβ+1 = Xβ ∪ {σβ,II [a]}.
We now define A =

⋃
α<ℵγ

Xα. By the construction of the Xα, A defines a game GA that

is not determined since the sequences generated by the strategies σβ,II of player II belong

to A and the sequences generated by the strategies σβ,I are not. �

Therefore, if we want to incorporate AD to ZF we must renounce AC, since AD is incon-

sistent with ZFC. But what are the consequences of AD that make it such an interesting

alternative? Firstly, the acceptance of AD does not led to undesirable consequences such

as the Banach-Tarski paradox and it implies that every set of real numbers is Lebesgue

measurable. Besides, it implies the Axiom of Countable Choice and the Axiom of De-

numerable choice restricted to subsets of R, so we are still able to maintain some weaker

choice principles and those statements implied by them. Furthermore, AD implies the con-

sistency of ZF, hence, by Gödel’s second incompleteness theorem, the relative consistency

of ZF+AD from ZF cannot be proved. It also implies a weaker version of the Continuum

Hypothesis, namely that every uncountable set of reals has the same cardinality as R .

However, as it implies the negation of the Axiom of Choice, it also implies the negation of

the Generalised Continuum Hypothesis.

AD is also intimately related to the study of large cardinals, such as the measurable car-

dinals. An uncountable cardinal κ is measurable if there exists a κ-additive14, non-trivial

and 0-1 valued measure on P(κ). Whereas the Axiom of Choice implies that a measurable

cardinal must be very large and its existence cannot be proved in ZFC, the Axiom of

Determinacy implies that ℵ1 is in fact, measurable.

Nevertheless, if we renounced the Axiom of Choice in favour of the Axiom of Determinacy,

we would also lose the AC equivalent forms, some of which, as we have previously stated,

are of vital importance for contemporary mathematics: the fact that every vector space

has a basis, the Well-Ordering Theorem, Zorn’s Lemma, Krull’s Theorem, etc. Although

AD is an attractive substitute for AC, it wouldn’t be able to compensate for the loss of

these nowadays basic mathematical principles.

14A measure µ on κ is κ-additive if for any λ < κ and any sequence Aα with α < λ of pairwise disjoint

subsets of κ, µ(
⋃
α

Aα) =
∑
α

µ(Aα)
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7 Final Remarks

As we have seen along this work, the implications of the Axiom of Choice in mathemat-

ics are many. It does not only imply crucial and widely used propositions in different

branches of mathematics, but it is also equivalent to some of them. Not all these state-

ments, though, require the full strength of the Axiom to be proved; in some cases a weaker

version is sufficient.

Within set theory, by implying that every set can be well-ordered, the Axiom provides a

good way of defining the cardinality of an infinite set, as well as a simplification of cardi-

nal arithmetic. It also implies that every infinite set has a countable subset or that the

countable union of countable sets is countable, statements that mathematicians take for

granted, but where the Axiom of Countable Choice plays an essential role. In Algebra,

Zorn’s Lemma, another important equivalent of the Axiom of Choice, is widely used to

prove the existence of maximal elements, for example in Krull’s Theorem, or to prove that

every vector space has a basis, and every field an algebraic closure. In topology, Zorn’s

Lemma also plays a role in the proof of Tychonov’s theorem, which states that the product

of compact topological spaces is compact. The Boolean Prime Ideal Theorem is necessary

to prove the Hahn-Banach Theorem, which plays an important role in functional analysis,

and the Compactness and Completeness Theorems for first order logic (in their most gen-

eral form). Within graph theory, the Axiom is equivalent to the fact that every graph has

a spanning tree. These implications of the Axiom of Choice are of great importance for

their respective fields and many other statements and further developments on those fields

depend on them. That is why the implications of the Axiom of Choice in mathematics

cannot be underestimated.

However, as we have also seen, the Axiom of Choice has also a problematic side. It implies

the existence of mathematical objects that cannot or are not explicitly defined, such as a

well-order of the reals. Also, by implying the existence of sets of the reals that are not

Lebesgue measurable, the Hausdorff paradox, and the Banach-Tarski paradox, it conflicts

with our intuition. One of its consequences is the impossibility of defining a measure which

is countably additive and translation invariant measuring all subsets of R, or Rn. As we

have also seen, these consequences can be avoided if we are willing to accept only a weaker
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version of the Axiom, namely the Axiom of Dependent Choice.

Although having such non-desirable consequences, as we have seen in section 5 the Axiom

of Choice is relatively consistent with the other axioms of ZF, which means that if ZF is

consistent, then so is ZFC. This some implications of AC may not be desirable, or they

may conflict with our intuition, but they don’t imply any contradiction (as long as the

other axioms in ZF don’t imply one either). That means that we can confidently accept

the Axiom to establish a solid base for the foundation of mathematics. The Axiom of

Determinacy presented in section 6.4. avoids such consequences, but as we have seen, it

is incompatible with the Axiom of Choice. However, if we replaced the Axiom of Choice

by the Axiom of Determinacy we would loose a great number of mathematical theorems

that are essential in contemporary mathematics and for which the Axiom of Choice is

essential.
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