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We perform calculations of nuclear pasta phases in the inner crust of
neutron stars with the Thomas–Fermi method and the Compressible Liquid
Drop Model using the Barcelona–Catania–Paris–Madrid (BCPM) energy
density functional and several Skyrme forces. We compare the crust–core
transition density estimated from the crust side with the predictions ob-
tained from the core by using the thermodynamical and dynamical meth-
ods. Finally, the correlation between the crust–core transition density and
the slope of the symmetry energy at saturation is briefly analyzed.
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1. Introduction

Neutron stars (NS) are among the most fascinating objects of the uni-
verse. They are ultradense and compact remnants formed at the last stage of
life of massive stars [1,2]. An NS is composed by neutrons, protons, leptons
and eventually other exotic particles distributed in a solid crust encompass-
ing a dense core in a liquid phase. The full NS is electrically neutral and the
distribution of nucleons and leptons is such that the system is maintained
locally in β-equilibrium. The structure of the crust consists of clusters of
positive charge distributed in a solid lattice embedded in a bath of neu-
trons and free electrons. This complicated structure is often referred to as
a “nuclear pasta” and makes the derivation of the Equation of State (EOS)
in this region a difficult task, in particular, in the inner crust owing to the
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presence of a fraction of free neutrons. The formation and properties of
nuclear pasta have been investigated through 3-dimensional Hartree–Fock
(HF), relativistic mean field (RMF) and Thomas–Fermi (TF) calculations
in cubic boxes, which avoid assumptions about their geometry. Unfortu-
nately, these calculations are so time consuming that it is difficult to obtain
with them a detailed EOS for the whole inner crust (see [3] for recent ref-
erences to such calculations). Large scale calculations of the inner crust
and nuclear pasta have often been performed with the help of semiclassical
methods such as the Compressible Liquid Drop Model (CLDM) [4–6] and
the TF approach [3, 7, 8]. Our aim in this contribution is twofold. First,
we want to discuss the pasta phases present in the inner crust of NS ob-
tained through TF and CLDM calculations. To this end, we employ the
recent BCPM energy density functional [9–11], which consists of a fully mi-
croscopic bulk part obtained from the Brueckner–Hartree–Fock calculations
including three-body forces plus a phenomenological finite range term of
Gaussian type, and some Skyrme forces. Second, we want also to analyze
the transition density between the crust and the core of NS. Although large
scale calculations of the inner crust could provide such densities, there are
not many calculations of this type available in the literature. Therefore, it
is easier to go in the opposite direction and examine the stability conditions
of the core against small-amplitude density fluctuations using the so-called
thermodynamical and dynamical methods (see [12, 13] for references and
more details). The paper is organized as follows. In the first part, we briefly
revise the TF and CLDM approaches for describing pasta phases. In a sec-
ond part, we estimate the transition density from the crust side using several
Skyrme forces and compare with the predictions obtained from the core side.
Finally, we give our conclusions in the last section.

2. Thomas–Fermi approximation to the neutron star inner crust

In this approximation, as well as in the CLDM, the crust is treated at
the Wigner–Seitz (WS) level assuming a single nuclear cluster inside a cell
with a given geometry, which is electrically neutral and does not interact
with other WS cells. The total energy of an ensemble of neutrons, protons
and electrons in a WS cell of volume Vc is given by [3, 7, 14]

E =

∫
Vc

dV

[
H(nn, np) + Eelec + ECoul −

3

4

(
3

π

)1/3

e2
(
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4/3
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+mnnn +mpnp

]
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where nn, np and ne are the neutron, proton and electron number densities,
and mn and mp are the neutron and proton masses. The nuclear energy
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density H (nn, np) in the TF approach reads

H(nn, np) =
3

5

(
3π2
)2/3 [ ~2

2mn
n5/3n (r) +

~2

2mp
n5/3p (r)

]
+ V(nn(r), np(r)) .

(2)
In this equation, V (nn(r), np(r)) is the nuclear potential energy density,
which in this work we take from the BCPM and Skyrme models. At the
densities prevaling in the inner crust of NS, the Fermi energy is much higher
than the Coulomb energy and, therefore, we can treat the electrons as a free
relativistic Fermi gas of energy density Eelec uniformly distributed in the
cell with a constant density ne. The Coulomb energy density coming from
the direct part of the proton–proton, electron–electron and proton–electron
interactions is given by

ECoul =
1

2
(np(r)− ne)(Vp(r)− Ve(r))

=
1

2
(np(r)− ne)
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|r−r′|
(
np
(
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)
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)
dr′ , (3)

where Vp(r) and Ve(r) are the proton and electron direct Coulomb poten-
tials.

We perform a fully variational calculation of the energy in a WS cell
of size Rc under the constraints of a given average density nb and charge
neutrality. Taking functional derivatives with respect to the neutron, proton
and electron densities, one finds

δH (nn, np)

δnn
+mn − µn = 0 , (4)

δH (nn, np)

δnp
+ Vp(r)− Ve(r)−

(
3

π

)1/3

e2n1/3p (r) +mp − µp = 0 , (5)√
k2F +m2

e − Vp(r) + Ve(r)−
(
3

π

)1/3

e2n1/3e − µe = 0 , (6)

together with the β-equilibrium condition imposed by the aforementioned
constraints

µe = µn − µp , (7)

where µe, µn and µp are the electron, neutron and proton chemical poten-
tials, respectively.
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For a given average density nb and a size Rc of the WS cell, we obtain
the composition and energy per baryon in this cell by solving the above
equations. Next, we perform a search of the optimal size Rc to find the
absolute minimum of the energy per baryon for the average density nb. The
EOS is provided by the sum of pressures of the neutron and electron gases
plus a corrective term due to the electron Coulomb exchange [3, 7]. The
same TF method used for spherical WS cells can be easily extended to deal
with other geometries, such as the cylindrical (rods) and the planar (slabs)
ones. The length of the rods and the area of the slabs are considered infinite,
which simplifies the treatment of the Coulomb interaction and provides a
finite energy per baryon. With a suitable choice of the initial conditions,
the same TF formalism can describe hollow spheres (bubbles) and cylinders
(tubes). In summary, the TF method is a reasonable tool to estimate the
EOS in the inner crust of NS by two main reasons. First, the EOS in this
region is largely driven by the neutron gas, therefore, it is expected that the
contributions to the EOS due to shell effects and pairing correlations play a
minor role. Second, as far as shell effects are neglected in the TF method,
it is well-suited for dealing with non-spherical shapes of the WS cells.

The self-consistent TF approximation has been applied recently to obtain
the EOS of the inner crust of NS [3, 7] using the BCPM energy density
functional [9–11]. The energy per baryon corresponding to different shapes,
relative to the value of uniform npematter, is displayed in figure 1, where the
bottom of the inner crust is displayed in two panels in order to appreciate the
appearance of the different pasta phases. The order in which the different
phases appear is consistent with earlier literature [2]. In our calculation using
the BCPM functional, the shape transition from droplets to rods appears at
a density of 0.067 fm−3, from rods to slabs at 0.076 fm−3, from slabs to tubes
at 0.082 fm−3 and, finally, from tubes to bubbles almost at the transition
density to the core, which is found at 0.0825 fm−3.
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Fig. 1. Energy per baryon of different shapes relative to uniform npe matter as a
function of the baryon density in the inner crust. Adapted from Ref. [3].
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3. Compressible Liquid Drop Model

The CLDM was introduced by Baym, Bethe and Pethick [4], see also [6]
and references therein. One assumes that each WS cell contains two phases
of asymmetric nuclear matter in equilibrium. The phase of highest density,
which fills a fraction χ of the total volume of the cell Vc, is formed by
neutrons and protons and corresponds to the nuclear cluster. The phase of
lowest density, which fills the remaining volume of the cell, is associated to
the neutron gas. Charge neutrality is provided by a uniform free electron
gas filling the whole cell. The energy in the cell is the sum of the bulk
energies of the cluster and the neutron and electron gases supplemented
by the repulsive surface energy of the cluster and the Coulomb proton and
electron self-interactions plus the attractive proton–electron contribution.
The corresponding energy density, constrained to a given average baryon
density nb, is given by

ε = χε(nn, np) + (1− χ)ε(nd, 0) +
3σχ

R

+
4π

5
e2R2n2pχ

(
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2
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2
χ

)
+

3

4

(
3π2
)1/3

n4/3e

−λ [χ(nn + np) + (1− χ)nd − nb] , (8)

where nn and np are the neutron and proton densities in the cluster and nd
is the neutron density in the dripped gas. The surface tension σ in (8) is
a function of the average density nb and, in our calculation, is taken from
a self-consistent extended TF calculation performed in semi-infinite nuclear
matter [15]. Taking variations with respect to the variables nn, np, R and
Rc, which means requiring mechanical and chemical equilibrium among the
different subsystems, one arrives at the following set of equations:
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)
, (Esurf = 2ECoul) ,

nb = χ(nn + np) + (1− χ)nd , (9)

which allow one to determine the unknowns nn, np, nd, R and χ. The first
equation implies the equality of the neutron chemical potential in the bulk
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and in the neutron gas. The second equation corresponds to the β equi-
librium, modified with respect to the uniform case by the effect of the
lattice. The third and fourth equations concern the mechanical equilib-
rium. The third one gives the difference of pressures between the cluster
and the gas due to the surface and the lattice and the fourth one, known
as “virial theorem”, determines the equilibrium size of the WS cell, which
involves only the Coulomb and surface contributions. The total pressure
in a WS cell is given by P = Po + PL + Pe, where Po is the pressure
due to the neutron gas, PL = −∂ECoul/∂Vc is the lattice pressure with
ECoul being the Coulomb energy, and Pe is the contribution of the elec-
trons. The CLDM approach can be easily extended to cylindrical and
plane geometries. The nuclear bulk and electron contributions are shape-
independent but the surface and Coulomb terms depend on the dimension-
ality d as εsurf = χd

R [(nn − nd)µnsn + σ] and εCoul =
4π
5 (npeR)

2fd(χ), re-
spectively, where fd(χ) = 5

d+2 [
1
d−2(1 −

1
2χ

1−2/d) + 1
2χ] if d = 1 or 3 and

fd=2 = 5
8(χ − 1 − lnχ). In the case of holes (tubes and bubbles), one has

to change the sign of the surface term and replace χ by 1 − χ (see Ref. [2]
for more details).

In figure 2, we display the total number of nucleons (Acell) and protons
(Zcluster) present in spherical WS cells against the average density nb. The
number of neutrons in the cluster (Ncluster) and in the gas (Ngas) are also
shown. The results are obtained with the SLy4 Skyrme interaction using the
self-consistent TF approximation and an improved CLDM, which includes
neutron skin thickness corrections and curvature and surface width correc-
tions [16]. It can be seen that there is an excellent agreement between the
predictions of both semiclassical methods. The total number of nucleons
in the cluster, Acluster, increases monotonically from ∼ 120, when neutrons
start to drip, till ∼ 200, when the transition to the core takes place. How-
ever, the proton number in the clusters remains rather constant, around 42.
The number of neutrons in the gas increases up to ∼ 1000 at an average
density close to 0.02 fm−3 and then decreases up to ∼ 800 at the edge of the
inner crust. A similar trend is followed by the total number of nucleons in
the cell, which are largely driven by the neutron gas. These behaviors of the
clusters and the neutron gas are quite general and the predictions of other
Skyrme forces will follow a similar tendency. We have solved the CLDM
equations corresponding to the different shapes using the SLy4, MSL0, SkX
and UNEDF1 Skyrme forces. For these forces, the spherical droplet is the
most stable shape up to densities around 0.075 fm−3, where non-spherical
geometries become the preferred shapes, which indicates the appearance of
pasta phases. For the mentioned Skyrme forces, nuclear pasta only appears
in the case of the SkX force, whose transition density of 0.086 fm−3 is high
enough to allow non-spherical shapes as the most stable configurations.
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Fig. 2. Mass and atomic numbers in spherical WS cells as a function of the average
density predicted by the SLy4 interaction using the TF approach and the CLDM.

4. The crust–core phase transition

The bottom of the inner crust is reached when a homogeneous phase,
consisting of neutrons, protons and electrons filling uniformly the whole
WS cell, becomes energetically more stable than the possible phases of the
inner crust. The determination of the transition density from the crust side
requires large scale calculations. Even using simplified methods such as the
TF or CLDM described in the previous sections, these calculations are rather
time consuming and in practice there are not many calculations of this type
available in the literature [3, 5, 6, 8]. To avoid this problem, the crust–core
phase transition has been also studied from the core side. There are mainly
three well-established methods, namely the thermodynamical method [17],
the dynamical method [18, 19] and the random phase approximation (for
more details, see [12, 13] and references therein). These methods are based
on the onset of violation of the stability conditions of the homogeneous core
against small-amplitude density fluctuations, which indicates the formation
of inhomogeneous nuclear structures, i.e. the appearance of the inner crust.
The thermodynamical method corresponds to the long wavelength limit of
the dynamical method and both give similar results. The transition density
predicted by the dynamical method is slightly smaller due to the inclusion
of Coulomb effects and inhomogeneities in the density [12].

In figure 3, we display the crust–core transition density, computed with
the thermodynamical and dynamical methods, as a function of slope of the
symmetry energy L for a large set of Skyrme interactions. The transition
density shows, roughly, a linear decreasing trend with increasing value of L,
in agreement with the findings in earlier literature [12]. In the same figure,
we show the transition density predicted by the CLDM calculations in the
inner crust using the Skyrme interactions considered in the previous section.
The CLDM transition densities are 0.065, 0.071, 0.072 and 0.086 fm−3 with
the MSL0, UNEDF1, SLy4 and SkX forces, respectively. These values can be
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compared with the dynamical estimates, which for the same interactions are
0.070, 0.078, 0.080 and 0.094 fm−3, respectively. We see that, roughly, there
is a difference of about 10% between the estimates from the crust and core
sides (also see [19]). These differences may be related to the approximations
used to compute the transition density. For example, estimating the crust–
core transition density with the more elaborated TF approach, one obtains
a value of 0.076 fm−3 using the SLy4 force, which is closer to the dynamical
estimate than the CLDM prediction. When the transition density is high
enough, it is possible that the pasta shapes appear before the spherical nuclei
dissolve [20]. Thus, the decreasing tendency of the transition density with
the slope of the symmetry energy and the discussion of the previous section
also suggest that the appearance of pasta phases in the inner crust may be
favored by a soft symmetry energy, which implies a relatively high transition
density.
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Fig. 3. Transition density against the slope of the symmetry energy for several
Skyrme forces, calculated using the thermodynamical (filled dots) and the dynam-
ical (unfilled dots) methods in the core, and using the CLDM (unfilled triangles)
in the crust. Gray/green symbols correspond to the Skyrme forces used in Sec. 3.

5. Conclusions

We have analyzed the shape transitions in the inner crust of neutron
stars using the self-consistent Thomas–Fermi approximation and the Com-
pressible Liquid Drop Model. These semiclassical methods allow to study
in a rather simple way not only conventional spherical droplets but also
other geometries such as cylinders, plates, tubes and bubbles, which simu-
late complicated pasta phases in the inner crust. The study of these pasta
phases is very delicate from a numerical point of view due to the extremely
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small differences among the energies per baryon computed in the different
geometries. It is found that calculations performed with the Compressible
Liquid Drop Model are in a good agreement with the predictions of the
Thomas–Fermi approximation.

We have also studied the crust–core phase transition from the core side
through the thermodynamical and dynamical methods, which estimate the
density of the core that becomes unstable against small-amplitude fluctu-
ations. Proceeding from the crust side and using the Compressible Liquid
Drop Model, we have determined the transition density as the value for
which the homogeneous phase is the most favorable one from an energetic
point of view. It is found that the estimates of the transition density from
the crust and core sides are in harmony. The transition density determined
in both ways follows a decreasing tendency with the slope of the symmetry
energy. This correlation also suggests that the appearance of pasta phases
may be favored by nuclear models with soft symmetry energy.
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