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Chiral approach to antikaon s- and p-wave interactions in dense nuclear matter
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The properties of the antikaons in nuclear matter are investigated from a chiral unitary approach which
incorporates the s- and p-waves of the K̄N interaction. To obtain the in-medium meson-baryon amplitudes we
include, in a self-consistent way, Pauli blocking effects, meson self-energies corrected by nuclear short-range
correlations and baryon binding potentials. We pay special attention to investigating the validity of the on-shell
factorization, showing that it cannot be applied in the evaluation of the in-medium corrections to the p-wave
amplitudes. In nuclear matter at saturation energy, the � and � develop an attractive potential of about −30 MeV,
while the �∗ pole remains at the free space value although its width gets sensibly increased to about 80 MeV.
The antikaon also develops a moderate attraction that does not support the existence of very deep and narrow
bound states, confirming the findings of previous self-consistent calculations.
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I. INTRODUCTION

The interaction of K̄ with nucleons and nuclei has captured
much interest in recent times [1]. The elementary interaction
close to threshold is linked to the presence below threshold
of the �(1405) resonance, long claimed to be a dynamically
generated resonance in coupled channels [2,3] more than a
genuine three constituent quark state. The advent of chiral
theories [4–8] and unitarization extensions in coupled channels
has brought a new perspective into the topic and reconfirmed
these first claims [9–13]. It has also allowed us to tackle the
problem in a more systematic way and has brought some
surprises, as the existence of more dynamically generated
resonances like the �(1670) [14–16], the �(1620) [17], the
�(1690) [18], hints of some resonance in I = 1 and S = −1
in Ref. [11], etc. A thorough work, looking at the SU(3) group
structure of the generated states, has allowed a generalization
of the problem concluding that there is a singlet and two
octets of states which are dynamically generated in the
interaction of the octet of pseudoscalar mesons with the octet
of 1/2+ baryons [16,18]. There is also a surprise in this
investigation which concludes that the actual experimental
�(1405) is a superposition of two states and that this should
have experimental repercussions by making the �(1405)
appear with different energy and width in different reactions.
This claim had a recent experimental confirmation in the
experiment of Ref. [19] and the posterior analysis of the
experiment in Ref. [20].

The interaction of K̄ in nuclei has had a parallel and equally
exciting development. The K−N scattering matrix at threshold
is repulsive. However, the phenomenology of kaonic atoms
demands an attractive potential [21,22], which is telling us
that, in spite of the small nuclear densities experienced by the
K− atoms, the low density theorem � = tρ, where � is the K−

self-energy (2ωVopt), t the scattering matrix and ρ the nuclear
density, breaks down already at these small densities. The
presence of the �(1405) resonance just below K̄N threshold
is at the root of this problem. The first step to understand this
change of sign was given in Ref. [23] (see also Ref. [24])
which showed that the consideration of Pauli blocking in the
intermediate K̄N states moved the position of the �(1405)
resonance, or, equivalently, the zero of the real part of the K̄N

amplitude, to higher energies, hence passing from a free-space
repulsive scattering matrix at threshold to an attractive one in
the medium. The problem is more subtle, as was shown in
Ref. [25] (see also Ref. [26]), since the self-consistent consid-
eration of the generated attractive self-energy in the K̄ has as
a consequence the shift of the resonance position to lower
energies introducing a repulsion. The final self-consistent
solution still leads to a moderate attraction on the K̄ , but
much smaller than by just considering the Pauli blocking
effect. A further consideration of the self-energies of the pions
and baryons in the intermediate states was done in Ref. [27]
opening new decay channels for the K̄ but not modifying
much the real part of the potential. Moderate attractions of the
order of −50 MeV at full nuclear matter density are found
in these approaches and the potential obtained is shown to
fairly reproduce the data on kaonic atoms [28]. This fairness is
further investigated in Ref. [22] where a fit to data is made in
order to see how far is the calculated potential from an optimal
one. The potential of Ref. [27] also leads to deeply bound K−

states in medium and heavy nuclei which are bound by about
30–40 MeV but have a width of about 100 MeV [28].

Different steps in this problem were given in Ref. [29],
constructing a kaon-nucleus potential with very large strength
and predicting strongly bound states in few body systems.
This phenomenological potential has been critically discussed
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in Ref. [30], where it is shown that the omission of the direct
coupling of the π� channel to itself, the assumption of the
nominal �(1405) as a single bound K̄ state—while there are
two states in the chiral unitary approach—the lack of self-
consistency in the calculations and the seemingly too large
nuclear densities obtained of around ten times normal nuclear
matter density at the center of the nucleus, lead altogether
to a much larger potential than that obtained in the chiral
approaches. With the potential of Ref. [29] a bound state of
K− in 3He by 108 MeV was predicted in I = 0. Later on
an experiment at KEK found a peak in the proton spectrum
following the absorption of stopped K− by 4He [31], which
was interpreted as a strange tribaryon with I = 1, and not as
a kaon atom, since its interpretation as a kaon atom required
195 MeV binding and the isospin was also different than the
predictions made in Ref. [29]. However, further work done in
Ref. [32] including relativistic corrections (always considered
in the chiral approaches), spin orbit effects and some further
ad hoc changes produced a binding in the three body system
compatible with the association of the tribaryon state claimed
in Ref. [31] to the kaon bound state. At this point the K−-
nucleus potential has a strength of 615 MeV at the center of the
nucleus, roughly 20 times what one would get from the chiral
theories for this problem. Such disparate approaches led the
authors of Ref. [30] to search for a different interpretation of
the peaks found in the experiment of Ref. [31], and an expla-
nation of the peaks was found based on the mechanism of
K− absorption in nucleon pairs leading to �p and �p without
further interaction of the final pair of particles with the nucleus.

Another experiment, looking at the �p invariant mass after
K− absorption in different light and medium nuclei, inter-
preted a broad peak as a bound state of K−pp by 115 MeV
[33]. Such a large number and the alternative explanation found
for the KEK peaks, motivated the authors of Ref. [34] to look
for another interpretation of the peak, which was found in the
process of K− absorption by pairs of nucleons leading to �N ,
followed by the scattering of the � or the N with the daughter
nucleus.

On the theoretical side there have been further advances
by looking at the p-wave contribution to the optical potential
[35–37]. In Ref. [35] the p-wave K−-nucleus optical potential
was studied for atoms and found to be basically negligible.
Yet, for other situations where the momenta of the kaon could
be larger than in the atoms, this contribution could be bigger
and it is thus mandatory to address this problem. Some work
in this direction has already been done in Ref. [36], where the
momentum dependence of the antikaon potential in nuclear
matter was obtained from a self-consistent calculation using
the meson-exchange Jülich interaction. At momenta as large
as 500 MeV/c, the higher partial waves beyond L = 0 modify
strongly the K̄ potential.

In view of the interest and controversy of the subject, the
importance of having an accurate as possible description of
the interaction of K̄ with nucleons in nuclear matter is rather
evident and it is our purpose to present here the results of a
careful study of the s- and p-wave contributions to the K̄ nu-
cleus potential. The work follows closely the lines of Ref. [27],
incorporating the many-body corrections to the p-wave K̄N

interaction studied in Ref. [38] within the same chiral unitary

approach. An evaluation of the antikaon propagation in matter
based on chiral dynamics including s-, p- and d-waves was
already performed in Ref. [37]. We will investigate the validity
of the on-shell factorization of the kernel in the Bethe-Salpeter
equation. This approach is often used in the study of the
hadron-hadron collisions and finds its justification in the
N/D dispersion relation method used in Refs. [11] and [39].
However, this is not justified when one goes to the nuclear
medium since there are new sources of imaginary part different
from those of the free case. As we shall see, the use of this
prescription in the nuclear medium for p-waves leads to a
violation of causality, producing negative decay widths in
some cases. A different sort of on shell approximation is done
in Ref. [37], which in practice leads to quite different results
for p-waves than those reported here.

A byproduct of any calculation including a self-consistent
propagation of p-waves in a coupled-channel scheme is the
self-energy of the hyperons involved in the p-wave K̄N

interaction kernel. At variance to Ref. [37], the in-medium K̄N

amplitudes calculated in the present work include self-energy
insertions not only on the antikaons but also on the pions
present as intermediate states in the coupled-channel scheme.
This gives rise to a more realistic derivation of the hyperon
self-energies, as we shall see, since important YN interaction
pieces, such as �N → �N , conveniently modified by the
effect of short-range correlations are also included in the
present work.

The paper is organized as follows. We first recall in
Sec. II the structure of the s- and p-wave K̄N amplitudes in
free space. Next, in Sec. III, we describe how the different
medium effects are incorporated into our scheme, paying
special attention to discussing the validity of the on-shell
factorization in the medium as well as to showing how the
intermediate meson propagators get modified by the effect of
short-range correlations. In Sec. IV we present and discuss
our results for the in-medium amplitudes and the antikaon
properties, such as the spectral function or the optical potential.
Finally, our concluding remarks are given in Sec. V.

II. MESON-BARYON AMPLITUDES IN FREE SPACE

The lowest order chiral Lagrangian which couples the octet
of pseudoscalar mesons to the octet of 1/2+ baryons is given
by [5–8]

L(B)
1 = 〈B̄iγ µ∇µB〉 − M〈B̄B〉

+ 1
2D〈B̄γ µγ5{uµ, B}〉 + 1

2F 〈B̄γ µγ5[uµ, B]〉, (1)

where B is the SU(3) matrix for baryons, M is the baryon
mass, u contains the 	 matrix of mesons and the symbol 〈〉
denotes the trace of SU(3) flavor matrices. The SU(3) matrices
appearing in Eq. (1) are standard and can be seen in the former
references. The couplings D and F are chosen as D = 0.85
and F = 0.52.

At lowest order, the BB		 interaction Lagrangian reads

L(B)
1 =

〈
B̄iγ µ 1

4f 2
[(	∂µ	 − ∂µ		)B

−B(	∂µ	 − ∂µ		)]

〉
. (2)

015203-2



CHIRAL APPROACH TO ANTIKAON s- AND p-WAVE . . . PHYSICAL REVIEW C 74, 015203 (2006)

For low energies, one derives the s-wave amplitude

V s
ij = −Cij

1

4f 2
(2

√
s − MBi

− MBj
)

×
(

MBi
+ Ei

2MBi

)1/2 (
MBj

+ Ej

2MBj

)1/2

, (3)

being MBi
and Ei the mass and energy of the baryon

in the i channel, respectively. The coefficients Cij form a
symmetric matrix and are written explicitly in Ref. [10].
Following Ref. [10], the meson decay constant f is taken as an
average value f = 1.123fπ [14]. The channels included in our
study are K−p, K̄0n, π0�,π0�0, η�, η�0, π+�−, π−�+,

K+�−,K0�0. We note, for later purposes, that this equation
can be written to a good approximation as

V s
ij � −Cij

1

4f 2

(
k0
j + k0

i

)
, (4)

where k0
i and k0

j are the initial and final meson energies in
the center-of-mass (c.m.) frame. The lagrangian in Eq. (2)
provides also a small part of the p-wave, which in the c.m.
frame reads

V c
ij = −Cij

1

4f 2
aiaj

(
1

bi

+ 1

bj

)
(�σ · �qj )(�σ · �qi), (5)

with

ai =
√

Ei + Mi

2Mi

, bi = Ei + Mi, Ei =
√

M2
i + �qi

2.

(6)
The main contribution to the p-wave amplitude comes from

the � and � pole terms which are obtained from the D and
F terms of the Lagrangian of Eq. (1) [38]. The �∗ pole term
is also included explicitly with couplings to the meson-baryon
states evaluated using SU(6) symmetry arguments [40]. These
contributions are given by

V �
ij = D�

i D�
j

1√
s − M̃�

(�σ · �qj )(�σ · �qi)

×
(

1 + q0
j

Mj

)(
1 + q0

i

Mi

)
,

V �
ij = D�

i D�
j

1√
s − M̃�

(�σ · �qj )(�σ · �qi) (7)

×
(

1 + q0
j

Mj

)(
1 + q0

i

Mi

)
,

V �∗
ij = D�∗

i D�∗
j

1√
s − M̃�∗

(�S · �qj )(�S† · �qi),

with S† being the spin transition operator from spin 1/2 to spin
3/2 and

D�
i = c

D,�
i

√
20

3

D

2f
− c

F,�
i

√
12

F

2f
,

D�
i = c

D,�
i

√
20

3

D

2f
− c

F,�
i

√
12

F

2f
, (8)

D�∗
i = c

S,�∗
i

12

5

D + F

2f
.

The constants cD, cF , cS are SU(3) Clebsch-Gordan coeffi-
cients which depend upon the meson and baryon involved
in the vertex and are given in Table I of Ref. [38]. The
masses M̃�, M̃�, M̃�∗ are bare masses of the hyperons (M̃� =
1030 MeV, M̃� = 1120 MeV, M̃�∗ = 1371 MeV), which will
turn into physical masses upon unitarization.

Once the tree level contributions to the s- and p-wave
meson-baryon scattering are known, the Bethe-Salpeter equa-
tion can be solved using the tree level contributions as the
kernel of the equation. In Ref. [10] it was shown that the
kernel for the s-wave amplitude can be factorized on the mass
shell in the loop functions, by making some approximations
typical of heavy-baryon perturbation theory. Then the Bethe-
Salpeter equation turns out to be simpler to solve. Furthermore,
the factorization for p-waves in meson-meson scattering is
also proved in Ref. [41] along the same lines. A more
general proof of the factorization is done in Ref. [39] for
meson-meson interactions and in Ref. [11] for meson-baryon
ones.

The formal result obtained is schematically given by

T = V + V GT, (9)

that is

T = [1 − V G]−1V, (10)

where V is the kernel (potential), given by the s- and p-wave
amplitudes of Eqs. (3), (5) , (7), and G is a diagonal matrix ac-
counting for the loop function of a meson-baryon propagator,
which needs to be regularized. This can be done by adopting
either a cutoff method or by using dimensional regularization.
The cutoff method is easier and more transparent when dealing
with particles in the medium as it will be our case. The use
of this cutoff scheme or the dimensional regularization are
in practice identical, given the matching between the two
loop functions done in Sec. II of Appendix A of Ref. [42].
There, one finds that the dimensional regularization formula
and the one with cutoff have the same analytical properties
(the log-terms) and are numerically equivalent for values
of the cutoff reasonably larger than the on-shell momentum
of the states in the loop, which is a condition respected
in our calculations. By fine tuning the subtraction constant
in dimensional regularization, or fine tuning the cutoff, one
can make the two expressions identical at one energy and
practically equal in a wide range of energies, sufficient for
studies like the present one. Using the cutoff regularization
the loop function reads in the c.m. frame

Gl(
√

s) = i

∫
d4q

(2π )4

Ml

El(−�q)

1√
s − q0 − El(−�q) + iε

× 1

q2 − m2
l + iε

=
∫

|�q|<qmax

d3q

(2π )3

1

2ωl(�q)

Ml

El(−�q)

× 1√
s − ωl(�q) − El(−�q) + iε

, (11)

with
√

s = k0 + p0, being p0(k0) the energy of the initial
baryon (meson) and qmax = 630 MeV.
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The p-wave amplitudes of Eqs. (5) and (7) cannot be used
directly in Eq. (10) since, due to their spin structure, there is a
mixture of different angular momenta. As done in Ref. [38], we
separate the p-wave amplitudes according to the total angular
momentum. With the partial-wave amplitude written for L = 1
as

T (�q ′, �q) = (2L + 1)
(
f (

√
s)q̂ ′ · q̂

− ig(
√

s)(q̂ ′ × q̂) · �σ )
(L = 1) , (12)

one defines the two amplitudes at tree level, f tree
− (L = 1, J =

1/2) and f tree
+ (L = 1, J = 3/2), as

f tree
+ = f + g,

(13)
f tree

− = f − 2g,

with

fij (
√

s) = 1

3

{
− Cij

1

4f 2
aiaj

(
1

bi

+ 1

bj

)

+
D�

i D�
j

(
1 + q0

i

Mi

) (
1 + q0

j

Mj

)
√

s − M̃�

+
D�

i D�
j

(
1 + q0

i

Mi

) (
1 + q0

j

Mj

)
√

s − M̃�

+ 2

3

D�∗
i D�∗

j√
s − M̃∗

�

}
qiqj , (14)

gij (
√

s) = 1

3

{
Cij

1

4f 2
aiaj

(
1

bi

+ 1

bj

)

−
D�

i D�
j

(
1 + q0

i

Mi

) (
1 + q0

j

Mj

)
√

s − M̃�

−
D�

i D�
j

(
1 + q0

i

Mi

) (
1 + q0

j

Mj

)
√

s − M̃�

+ 1

3

D�∗
i D�∗

j√
s − M̃∗

�

}
qiqj , (15)

where i, j are channel indices. Using Eq. (10), one obtains

f+ = [1 − f tree
+ G]−1f tree

+ ,
(16)

f− = [1 − f tree
− G]−1f tree

− .

These two equations are analogous to solving the Bethe-
Salpeter equation. The �∗ pole for I = 1 is contained in the f+
amplitude while the f− amplitude includes the � and � poles
for I = 0 and I = 1, respectively. As mentioned in Ref. [38],
the unitarization procedure will shift the mass from a starting
bare mass M̃�, M̃�, M̃�∗ to the physically observed mass.

As one can see from these equations, the amplitudes
f tree

+ , f tree
− in the diagonal meson-baryon channels contain the

factor �q 2, with �q the on-shell c.m. momentum of the meson

in this channel. For transition matrix elements from channel
i to j the corresponding factor is qiqj , where the energy and
momentum of the meson in a certain channel are given by the
expressions

Ei = s + m2
i − M2

i

2
√

s
; qi =

√
E2

i − m2
i , (17)

which also provide the analytical extrapolation below the
threshold of the channel, where qi becomes purely imaginary.

III. IN-MEDIUM K̄ N INTERACTION

The properties of the K̄ in the nuclear medium are obtained
by incorporating the corresponding medium modifications in
the effective K̄N interaction.

A. Pauli blocking and self-energy effects

One of the sources of density dependence comes from the
Pauli principle, which prevents the scattering to intermediate
nucleon states below the Fermi momentum. This is imple-
mented by replacing the free nucleon propagator in the loop
function by the corresponding in-medium one.

Another source of density dependence is related to the fact
that all mesons and baryons in the intermediate loops interact
with the nucleons of the Fermi sea and their properties are
modified with respect to those in free space.

The binding effects on the baryons are taken within a
mean-field approach consisting in adding, to the single-particle
energies, a momentum-independent potential. In the case of
nucleons, we take U = U0ρ/ρ0, where ρ0 = 0.17 fm−3 is
normal nuclear matter density, and U0 = −70 MeV, which
is in agreement with numerous nuclear matter calculations
with realistic interactions [43,44]. On the other hand, we
use the parametrization of Ref. [45] for �,U� = Aρ + Bργ

with A = −340 fm−3, B = 1087.5 fm6 and γ = 2. This
parametrization shows a saturation behavior and can be used
in the study of densities beyond ρ0. Finally, since the
situation for the �-nucleus potential is unclear, we use for
our calculations the attractive potential U� = −30ρ/ρ0 MeV,
as commonly accepted for low densities [46,47]. One of the
outputs of the present study is the � and � self-energies
in the medium, which we obtain by looking at the shift of
their respective poles in the scattering matrix. A good degree
of self-consistency is obtained between the input � and �

potentials and their corresponding output, which agree within
10% as will be seen in Sec. IV.

The nuclear medium effects on the mesons will be included
through the corresponding self-energy. We will consider the
dressing of the K̄ and π mesons. The π self-energy can be
found in Refs. [27,48]. It consists of a small s-wave part
plus a p-wave part, which is constructed by allowing the
pion to couple to particle-hole, �-hole and two-particle-hole
excitations modified by nuclear short-range correlations. The
K̄ self-energy is obtained from the s- and p-wave contributions
to the in-medium K̄N amplitude as explicitly shown in
Sec. III D.
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(a) (b) (c)

FIG. 1. On-shell (a), off-shell (b), and tadpole (c) contributions
for the s-wave amplitude in free space.

From the meson self-energies, we can construct the dressed
meson propagator (i = K̄, π )

Di(q
0, �q, ρ) = 1

(q0)2 − �q 2 − m2
i − �i(q0, �q, ρ)

, (18)

and the corresponding spectral density

Si(q
0, �q, ρ) = − 1

π
ImDi(q

0, �q, ρ)

= − 1

π

Im�i(q0, �q, ρ)

|q0 − �q2 − m2
i − �i(q0, �q, ρ)|2 . (19)

B. s-wave in-medium amplitudes

The calculation of the in-medium amplitudes requires a
similar unitarization procedure as that performed in free space.
A key simplification in evaluating the free space amplitudes
was the factorization of the on-shell interaction kernel out
of the loop function. In this section we will show that the
on-shell factorization is still valid for the in-medium s-wave
amplitudes.

We first recall the arguments given in Ref. [10] to justify the
validity of the on-shell factorization in free space. Taking the
structure of the s-wave kernel given in Eq. (4), the off-shell
dependence of the loop function of Fig. 1(a) from the two
vertices goes as

(k0 + q0)2 = (2 k0 + q0 − k0)2

= (2 k0)2 + 4 k0 (q0 − k0) + (q0 − k0)2. (20)

The first term on the right-hand side of this equation accounts
for the on-shell contribution in the vertices. The second and
third terms cancel the intermediate baryon propagator in the
loop in the heavy baryon approach [p0 ≈ E( �P − �q)], which
becomes (k0 − q0)−1, as can be seen from Eq. (11). The
resulting off-shell contribution has the structure of Fig. 1(b),
which will be conveniently canceled by a tadpole term,
Fig. 1(c), in a suitable renormalization scheme.

In the nuclear medium, when we make self-energy at-
tachments in the meson line, we find contributions as that
shown in Fig. 2 and, given the structure of the off-shell part,
Fig. 2(b), and the tadpole, Fig. 2(c), the cancellation that we
had before still holds. This justifies the use of the on-shell
vertices in the medium for the s-wave. Actually, the changes

(a) (b) (c)

FIG. 2. On-shell (a), off-shell (b), and tadpole (c) contributions
for the s-wave amplitude including self-energy insertions.

due to Pauli blocking in the nucleon line for the off-shell
terms are shown to vanish below. Indeed, the Pauli blocking
correction to the loop integral of diagram 1(a) from the first
off-shell contribution of Eq. (20) is

δGPauli
l = i

∫
d4q

(2π )4

Ml

El( �P − �q)
(q0 − k0)

1

q2 − m2
l + iε

×
{

1 − n( �P − �q)

P 0 − q0 − El( �P − �q) + iε

+ n( �P − �q)

P 0 − q0 − El( �P − �q) − iε

− 1

P 0 − q0 − El( �P − �q) + iε

}
, (21)

with P 0 = k0 + p0. Since the Pauli blocking corrections are
only operative at the nucleon pole, one finds

δGPauli
l = i

∫
d4q

(2π )4

Ml

El( �P − �q)
(q0 − k0)

1

q2 − m2
l + iε

× 2iπn( �P − �q) δ(p0 + k0 − q0 − El( �P − �q)).

(22)

Since p0 − El( �P − �q) ≈ 0 in the heavy-baryon approach,
the delta function forces the factor (q0 − k0) to be zero
and the correction δGPauli

l vanishes. An identical argument
holds for the other off-shell term, which is proportional to
(q0 − k0)2.

Generalizing these findings to all orders, it is concluded that
the on-shell factorization can be applied for the in-medium
s-wave amplitudes and the loop function is simply the integral
of a meson and a baryon propagator, conveniently modified by
self-energy insertions and binding corrections, namely

Gs
K̄N

(P 0, �P , ρ) =
∫

|�q|<q lab
max

d3q

(2π )3

MN

EN ( �P − �q)

×
[∫ ∞

0
dωSK̄ (ω, �q, ρ)

1 − n( �P − �q)

P 0 − ω − EN ( �P − �q) + iε

+
∫ ∞

0
dωSK (ω, �q, ρ)

n( �P − �q)

P 0 + ω − EN ( �P − �q) + iε

]
,

(23)

for K̄N states and

Gs
πY (P 0, �P , ρ) =

∫
|�q|<q lab

max

d3q

(2π )3

MY

EY ( �P − �q)

×
∫ ∞

0
dωSπ (ω, �q, ρ)

× 1

P 0 − ω − EY ( �P − �q) + iε
, (24)

for π� or π� states, where P = (P 0, �P ) is the total four-
momentum and �q is the meson momentum in the laboratory
system.

For η�, η� and K� states, no self-energy insertions are
incorporated in the meson lines and we can use the loop integral
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(a) (b) (c)

FIG. 3. On-shell (a), off-shell (b), and tadpole (c) contributions
for the p-wave amplitude in free space.

in free space of Eq. (11), modified by including the binding
potential in the baryon energy.

The in-medium s-wave amplitudes are then obtained by
solving the coupled-channel Eq. (10) with these medium
modified loop functions.

C. p-wave in-medium amplitudes

The situation is different for the p-wave amplitudes. The
�q2 dependence from the vertices in the one-loop contribution
to the p-wave amplitude can be separated into an on-shell
part, �q2

on, and an off-shell part, �q 2 − �q2
on. In free space, the

one-loop contribution, splitted into its on-shell and off-shell
parts, is represented by the diagrams of Figs. 3(a) and 3(b),
respectively. The factor �q 2 − �q2

on can be shown to cancel the
meson propagator (see Ref. [41]) and, hence, the off-shell
contribution, Fig. 3(b), is canceled by the tadpole term of
Fig. 3(c).

In the medium, when the meson propagator is dressed,
one encounters the situation of Fig. 4, where in the diagram
4(b) it is seen that the factor �q2 − �q2

on only cancels one of
the two intermediate meson propagators and, furthermore,
there are no medium corrections for the self-energy insertion
in the inexistent intermediate mesons of the tadpole term in
Fig. 4(c). Hence, in the medium, we do not find the cancellation
between the off-shell part and the tadpole term that applied
to the s-wave amplitudes. However, there is no problem if
we add, to the free loop function (for which the on-shell
prescription is valid) the medium corrections calculated using
the full off-shell �q 2 contribution of the vertices, according to
the following replacement:

G
p

l (s) → G
p

l (s) + 1

�q2
on

[Imed(s) − Ifree(s)], (25)

where

Imed(s) = i

∫
d4q

(2π )4
�q 2DM (q)GB(P − q)

(26)

Ifree(s) = i

∫
d4q

(2π )4
�q 2D0

M (q)G0
B(P − q),

where G
p

l is the free loop of Eq. (11), DM (q) and GB(P − q)
stand for the meson and baryon propagator in the medium,
respectively, while D0

M (q) and G0
B(P − q) correspond to those

(a) (b) (c)

FIG. 4. On-shell (a), off-shell (b), and tadpole (c) contributions
for the p-wave amplitude including self-energy insertions.

N

K

K

Σ

Λ

Λ
p

k

q

k

π

FIG. 5. p-wave contribution to the K̄ self-energy.

in free space. The tadpole terms have been assumed to cancel
in the difference on the r.h.s. of Eq. (25).

In order to see explicitly the problems of the on-shell
factorization, let us evaluate the contribution to the antikaon
self-energy shown in Fig. 5, where the K̄ couples to a �N−1

excitation and the � line contains a �π self-energy insertion.
The corresponding expression for the self-energy is

−i�(k) = g2
N�Kg2

��π

∫
d4p

(2π )4
(−2�k 2)

in( �p)

p0 − E( �p) + iε

×
(

i

p0 + k0 − E�( �p + �k) + iε

)2

×
∫

d4q

(2π )4
(−�q 2)

i

p0 + k0 − q0 − E�( �p + �k − �q)

× i

q0 2 − �q 2 − m2
π + iε

. (27)

Applying Cutkosky rules

�(k) → 2i Im �(k)

GN (p) → 2iθ (p0) Im GN (p) (28)

G�(p + k − q) → 2iθ (p0 + k0 − q0) Im G�(p + k − q)

Dπ (q) → 2iθ (q0) Im Dπ (q)

to evaluate the imaginary part corresponding to a cut producing
�πN−1 states, we obtain

Im �(k) = −g2
N�Kg2

��π
�k 2

∫
d3p

(2π )3
n( �p)

×
(

1

p0 + k0 − E�( �p + �k)

)2 ∫
d3q

(2π )3

�q 2

2ω(�q)

× δ[k0 + EN (p) − ω(�q) − E�( �p + �k − �q)].

(29)

If one blindly applies the on-shell factorization to this
p-wave contribution, the factor �q 2 would be replaced by �q 2

on
and taken out of the integral over the running variable �q. For an
incident antikaon energy, k0, such that mπ + M� < k0 + MN

we would find �q2
on > 0. If this value of the kaon energy is

below the kaon mass, namely k0 + MN < mK + MN , then
the corresponding on-shell antikaon momentum would fulfill
�k 2 < 0 and, in this case, we would end up having a positive
contribution to the imaginary part of the K̄ self-energy, hence
violating the principle of causality. However, this would not
be a real problem since, in the medium, one needs to keep the
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FIG. 6. Diagrams contributing to the K̄N

p-wave amplitude including intermediate pions (a),
(b) and intermediate kaons (a’), (b’).

proper independence of the kaon energy-momentum variables,
and this amplitude will be corrected, as explained at the
end of this section, by a factor k2

lab/k
2, where �klab is the antikaon

momentum in the laboratory system, which is a well defined
real quantity. Having this correction in mind, the pathology
would then occur when k0 + MN < mπ + M� , since in this
case �q2

on < 0, hence leaving a positive contribution to the
imaginary part of the K̄ self-energy for a kaon with momentum
�klab and energy k0 < mπ + M� − MN .

Another ingredient that has to be considered when dealing
with p-wave amplitudes in the medium is the effect of nuclear
short-range correlations. Diagrams such as that of Fig. 6
are present in the in-medium p-wave K̄N amplitude and,
therefore, the π (K̄) propagators connecting a bubble to a
baryonic line [see Figs. 6(b) and 6(b’)] or to another bubble
should be modified in order to account for the fact that the
nucleon-nucleon (hyperon-nucleon) interaction is not only
driven by one-pion (one-kaon) exchange.

Let us take the case of pions explicitly. The contribution of
the diagram of Fig. 6(b) reads

F 4(�q)�qD0(q0, �q)

(
fπNN

mπ

)2

U (q0, �q)�q 2D0(q0, �q)�q

= F 4(�q)δilqiD
0(q0, �q)

(
fπNN

mπ

)2

×U (q0, �q)qjqjD
0(q0, �q)ql, (30)

where U (q0, �q) corresponds to the Lindhard function and
F (�q) = �2/(�2 + �q 2) with � = 1 GeV. The effect of short-
range correlations is incorporated by replacing the exchanged
pion in Fig. 6(b) by a fully correlated interaction, which is
achieved by the following replacement in Eq. (30):

F 2(�q)2qiqjD
0(q0, �q) → Vlq̂i q̂j + Vt (δij − q̂i q̂j ), (31)

where

Vl = (�q 2D0(q0, �q) + g′)F 2(�q), Vt = g′F 2(�q),

with g′ � 0.6 being the usual Landau-Migdal parameter [49].
Then Eq. (30) reads

δil[Vlq̂i q̂j + Vt (δij − q̂i q̂j )]

(
fπNN

mπ

)2

×U (q0, �q)[Vlq̂j q̂l + Vt (δjl − q̂j q̂l)]

= δil

[
V 2

l q̂i q̂l + V 2
t (δil − q̂i q̂l)

](
fπNN

mπ

)2

U (q0, �q). (32)

Since the longitudinal and transverse components are decou-
pled from each other, successive iterations lead to

V 2
l

(
fπNN

mπ

)2
U (q0, �q)

1 − Vl

(
fπNN

mπ

)2
U (q0, �q)

+ 2
V 2

t

(
fπNN

mπ

)2
U (q0, �q)

1 − Vt

(
fπNN

mπ

)2
U (q0, �q)

.

(33)

Using the fact that the Lindhard function and p-wave
self-energy are related by (fπNN/mπ )2 U (q0, �q) =
�p(q0, �q)/[�q 2F 2(�q)] and summing the contribution of
the first diagram, Fig. 6(a), the full dressed pion propagator
without correlations D(q0, �q) has to be substituted by

F 2(�q)�q 2D(q0, �q) → F 2(�q)�q 2 1

q0 2 − �q 2 − m2
π − �s

π

+ V 2
l �p(q0, �q)/[�q 2F 2(�q)]

1 − Vl�p(q0, �q)/[�q 2F 2(�q)]

+ 2
V 2

t �p(q0, �q)/[�q 2F 2(�q)]

1 − Vt�p(q0, �q)/[�q 2F 2(�q)]
,

(34)

where the s-wave piece of the self-energy has been included
in the definition of the free pion propagator. Alternatively,

F 2(�q)�q 2D(q0, �q) → 1 − g′F 2(�q)Vl
−1 + g′�p(q0, �q)/�q 2

Vl
−1 − �p/[�q 2F 2(�q)]

+ 2
V 2

t �p(q0, �q)/[�q 2F 2(�q]

1 − Vt�p(q0, �q)/[�q 2F 2(�q)]
.

(35)

A similar expression is obtained for the antikaon propagator
when the diagram of Fig. 6(b’) and its subsequent iterations,
all corrected by the short-range effects of the hyperon-nucleon
interaction, are added to the diagram of Fig. 6(a’).

The in-medium p-wave amplitudes are finally obtained
by solving the same equations as in free space, Eqs. (16),
taking the tree amplitudes from Eqs. (13)–(15), evaluated
with on-shell momentum values depending on

√
s, and

using the in-medium meson-baryon propagator of Eq. (25),
which incorporates the proper �q 2 dependence in the medium
corrections to the p-wave amplitudes, as well as Pauli blocking
effects, dressing of the mesons, binding potentials for the
baryons and nuclear short-range correlations.

Finally, the amplitudes need to be corrected to incorporate,
in the external states, the proper off-shell momentum, which
we write for convenience in terms of the laboratory variables.
Furthermore, in going from c.m. to lab momenta, the vertex
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recoil factors also need to be corrected. Technically this is
implemented by the following expression:

(f+)med
ij = ([1 − f tree

+ G]−1f tree
+ )ij

(qlab)i(qlab)j
(qon)i(qon)j

×
(

1 −
(
q0

lab

)
i

M�∗

) (
1 −

(
q0

lab

)
j

M�∗

)
(36)

(f−)med
ij = ([

1 − f tree
− G

]−1
f tree

−
)
ij

(qlab)i(qlab)j
(qon)i(qon)j

×
(

1 − (q0
lab)i

2M

) (
1 − (q0

lab)j
2M

)
(

1 + (q0
on)i

2M

) (
1 + (q0

on)j
2M

) ,

where qon and qlab stand, respectively, for the on-shell
momentum and the momentum in the laboratory system, M is
the nucleon mass and M is the average �-� mass. Actually,
for the f− amplitude we could separate between the I = 0 and
I = 1 amplitudes and introduce the recoil corrections with the
corresponding � and � masses, respectively. However, given
the similar masses of the � and �, the use of an averaged mass
induces errors of less than 1%. We note that, by correcting
the external meson-baryon channels with the relativistic recoil
factors appropriate for pole-type terms, we are also performing
an unnecessary correction on the contact term of the p-wave
amplitudes, the first term in Eqs. (14) and (15). However,
this induced error is negligible since this term is very small
compared to the �,� and �∗ pole contributions to the p-wave
amplitude.

D. K̄ self-energy

The K̄ self-energy in dense nuclear matter is obtained by
summing the in-medium K̄ interaction TK̄N for s- and p-
waves over the Fermi sea of nucleons according to

�K̄ (q0, �q, ρ) = 4
∫

d3p

(2π )3
n( �p)TK̄N (P 0, �P , ρ), (37)

where P 0 = q0 + E(p) and �P = �q + �p are the total energy
and momentum in the lab frame and the values (q0, �q ) stand
for the energy and momentum of the K̄ in this frame. Note that
the K̄ self-energy must be determined self-consistently, since
it is obtained from the in-medium interaction which uses K̄

propagators which themselves include the self-energy being
calculated.

We finally remark that the recoil corrections discussed at
the end of the previous section assumed the nucleons to be at
rest in the laboratory frame. However, in the evaluation of the
K̄ self-energy, one works in a frame where the nuclear Fermi
sea is at rest and the recoil corrections will then have to take
into account the Fermi motion of nucleons. These corrections,
which induce a small contribution to the s-wave amplitudes,
are studied in detailed in Ref. [50] and are incorporated in
our calculations. For completeness, we reproduce here the
expression for these p-wave induced Fermi motion corrections

to the s-wave self-energy:

�
(s,ind)
K̄

(q0, �q, ρ) = 3

5
k2
F (q0)2

×
[

1

4

(
1

MN

+ 1

M�

)2

D2
K̄N�

U�(q0, �q)

+ 1

4

(
1

MN

+ 1

M�

)2

D2
K̄N�

U�(q0, �q)

+
(

1

M�∗

)2

D2
K̄N�∗U�∗ (q0, �q)

]
, (38)

where UY stands for the hyperon-hole Lindhard function and
DK̄NY is the coupling constant of the K̄NY vertex.

IV. RESULTS

In Fig. 7 we present our results for the I = 0 JP = 1/2+
resonances, the s-wave �(1405) (right panel) and the p-wave
�(1115) (left panel). We show the imaginary part of the
K̄N → K̄N amplitude as a function of

√
s for two values

of the momentum P . The p-wave amplitude is divided by
the square of the K̄N on-shell momentum corresponding to
each value of

√
s. The free space amplitudes (dotted lines) are

compared with the in-medium ones at ρ = ρ0 = 0.17 fm−3 for
two approximations: dressing the antikaons self-consistently
(dashed lines) and considering also the in-medium effects
on the properties of the pions (solid lines). The apparent
width of the P = 0 �(1115) is fictitious and comes from a
small width inserted in the � and � pole driving terms to
facilitate the convergence of the self-consistent calculations.
At finite total momentum the width is physical since the �

can excite, via its interactions with nucleons in the Fermi
sea, intermediate �NN−1 states having the same total mom-
entum P . We find, similarly to what is found in the model of
Ref. [37], that the �(1115) acquires an attractive shift of about
10 MeV when the self-consistent dressing of the antikaons
is considered. If the in-medium pion self-energy is also
incorporated, the �(1115) develops an attraction three times
larger, of 28 MeV, in accordance to what is demanded by
hypernuclear spectroscopic data [51] and also to what is
obtained from nuclear matter microscopic calculations using
the recent meson-exchange YN potentials [52–55]. The reason
lies in that the dressing of the pions implicitly incorporates,
through the coupling of the pion to ph states, an important
piece of the �N interaction, namely the �N → �N transition
potential mediated by pion-exchange.

The �(1405) shows the features that were already observed
in our earlier paper [27] and which we summarize here.
Since the self-consistent dressing lowers the antikaon mass
by about 50 MeV and, in addition, a stronger binding potential
is taken for nucleons than for hyperons, the K̄N threshold
gets effectively lowered in the medium and the �(1405) is
dynamically generated at a lower value of

√
s (dashed line).

When pions are dressed new channels are available, such as
�NN−1 or �NN−1, so the �(1405) gets strongly diluted
and the peak appears very close to the free space position.
We note the cusp effect that appears at an energy corresponding
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FIG. 7. Imaginary part of the I = 0, J P = 1/2+, K̄N → K̄N amplitude as a function of
√

s for two values of the momentum | �P |, in the
s- (right panel) and p- (left panel) waves. The free space amplitudes (dotted lines) are compared with the in-medium amplitude at ρ = ρ0

dressing only antikaons (dashed lines) or dressing also the pions (solid lines).

to the in-medium π� threshold as a consequence of the
opening of this channel on top of the already opened �NN−1

and �NN−1 ones.
The I = 1 resonances are shown in Fig. 8. The left panels

display the imaginary part of the K̄N → K̄N amplitude
divided by the square of the K̄N on-shell momentum in
the J = 1/2+p-wave corresponding to the �(1195), while
the right panels show the imaginary part of the π� → π�

amplitude divided by the square of the π� on-shell momentum
in the J = 3/2+p-wave corresponding to the �(1385). The
width of the �(1195) is a reflection of the decay channel
�N → �N , which is incorporated as soon as the antikaon
or/and the pions are dressed. However, we expect pion
dressing to play a stronger role due to the larger value of the
coupling constants involved and to the relative size between
the pion and kaon propagators. We indeed observe that pion
dressing produces an additional attraction of about 35 MeV
to that obtained with the approximation of dressing only the
antikaons, which only produces an attraction of 2 MeV. This
last value is in contrast with the 10 MeV attraction found in
Ref. [37].

The �(1385) moves very little in the medium, around
7 MeV from its free space position, for both approximations.
Again, in the approximation that only dresses the antikaons
this moderate effect differs from the 60 MeV attraction quoted
in Ref. [37]. The 30 MeV width of the �(1385) in free space
increases by about 10 MeV when antikaons are dressed, due to
the opening of new decay channels such as �∗N → �N,�N

through the coupling of the K̄ to YN−1 excitations. For similar
reasons mentioned above in the case of the �(1195), the decay

width into these new decay channels increases spectacularly
when the pions are also dressed, giving rise to a �∗ in the
medium having a width of around 80 MeV, consistently to what
is found in Ref. [56], where the self-energy of the �(1385) is
evaluated explicitly. Here, instead, we make a complete unitary
theory of the p-wave K̄N scattering in the medium, where all
particles and resonances are renormalized automatically at the
same time.

As one can see from Fig. 8 we obtain an attractive
� self-energy in the medium of around 35 MeV at ρ = ρ0,
much in line with what one obtains from Refs. [46] and [57].
In the literature one finds potentials coming from fits to data of
�-atoms with a chosen parametrization that leads to repulsion
at short distances [58], while they are attractive at large
distances. A similar behavior is obtained in models using Dirac
phenomenology [59]. Other theoretical studies using chiral
perturbation theory find a net repulsion at long distances of the
order of 59 MeV at nuclear matter density [60]. The situation
is thus confusing and the only experimental evidence is that
atoms require an attraction at the relatively large distances
probed.

There is another type of experimental information provided
by the study of the �-production spectrum in the (π−,K+)
reactions. Analysis of the spectra within the distorted wave
approximation for the pion and kaon waves leads to a repulsive
�-nucleus potential [61–63]. Yet, here we must make some
comment to clarify the origin of these results. The analyses
of Refs. [61–63] use distorted waves for the pions and kaons
or make use of the efficient and equivalent Green’s function
method [64]. This is appropriate when one studies coherent
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production or elastic scattering, but not for inclusive reactions
as is the case there. The reason is simple: the optical potentials
used for pions and kaons have an imaginary part that comes
from quasielastic collisions and absorption. This separation
is done in potentials like the one given in Ref. [65] for pions

or in Ref. [40] for kaons. In the use of the distorted waves
the imaginary part of the potential depletes the strength of
the waves, in other words, every time there is a quasielastic
collision or absorption of the K or π the event is removed. This
is correct when one looks at the formation of the ground state
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FIG. 9. Real part (upper panels) and imaginary part (lower panels) of the antikaon self-energy as functions of the antikaon energy q0, for
two values of the antikaon momentum, q = 0 MeV/c (left panels) and q = 450 MeV/c (right panels).
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(left panels) and q = 450 MeV/c (right panels), and three values of density, ρ = 0.5ρ0, ρ0 and 2ρ0. These results have been obtained for the
approximation in which only the antikaons are dressed self-consistently.
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FIG. 11. The same as Fig. 10 but with the approximation that also considers the dressing of the pions.
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for three values of density, ρ = 0.5ρ0, ρ0 and 2ρ0 and two approximations, dressing only kaons (left panels) and dressing also the pions (right
panels).

since any quasielastic collision excites the nucleus. However,
in inclusive reactions where one sums over all final nuclear
states, this is not correct because if there is a quasielastic
collision the particle is still there and can be detected, while the
calculation has removed it. It is then clear that the calculation
will push to get a repulsive �-nucleus potential to prevent the
� from being too close to the nucleus where the inappropriate
calculation of the distorted pion and kaon waves would remove
too many events. The experimental situation is thus confusing
and the only firm information is the attractive potential felt by
the �− at the small densities probed by the atoms.

The self-energy of the antikaon at ρ = 0.17 fm−3 as a
function of the antikaon energy is displayed in Fig. 9 for two
values of the antikaon momentum, q = 0 and 450 MeV/c.
We show the s-wave component of the self-energy for the
approximation that only dresses antikaons self-consistently
(dotted line) and when the dressing of pions is also incor-
porated (dashed lines). These results correspond to those
obtained in Ref. [27]. The small amount of imaginary part
at subthreshold antikaon energies and zero momentum is
due to s-wave excitations of the type K̄NN → �N,�N ,
where the nucleons have assumed to feel a potential of
−70 MeV and the hyperons one of −30 MeV. Note that some
extra enhancement of the imaginary part would be visible
in that region if we used a more moderate attraction for
the nucleon potential. The solid line shows the results when
the new p-wave components calculated in the present work
are also incorporated. In the case of zero antikaon momentum,
the additional p-wave strength corresponds to the p-wave
induced s-wave corrections described in Sec. III D (see also

Ref. [50]), which produce a slight repulsion in the real part
of the self-energy at the antikaon mass since the energies that
come into play are above �,� and �∗ excitation. The role
of the p-wave self-energy is more evident for an antikaon
momentum of 450 MeV/c. The imaginary part of the corre-
sponding self-energy clearly displays the signals of �N−1

and �∗N−1 components around 300 MeV and 550 MeV,
respectively. More specifically, around 200 MeV below the
antikaon mass, the width, −2 Im�K̄/(2q0), increases con-
siderably to about 160 MeV. At the same energy but for a
more moderate momentum of 200 MeV/c, this quantity would
be divided by a factor (450/200)2 � 5. Should the antikaon
mode achieve such an amount of attraction, these results show
that the width of the bound state would be appreciable due to
the p-wave components of the K̄ self-energy.

We next comment our results on the antikaon spectral
function for the approximation that only dresses the antikaons
in Fig. 10 and when pions are also dressed in Fig. 11, for
three different densities, ρ = 0.5ρ0, ρ0 and 2ρ0. As it is
evident from these plots, the antikaon spectral function is
far from having a Breit-Wigner type of behavior. At zero
momentum, one observes the antikaon quasiparticle peak,
located at a lower energy than the position of the free
antikaon pole, superimposed to a shoulder of slow fall off
on the right-hand side, which corresponds to �(1405)N−1

excitation. At normal nuclear matter density, the quasiparticle
peak at zero momentum is displaced by about −60 MeV with
respect to the free space position, while at a momentum of
450 MeV/c the displacement only amounts to about −5 MeV.
We observe that, even at zero momentum, there is a change in
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the s-wave spectral function (dashed lines) when the p-wave
strength is also included (solid lines), which is due to the
p-wave induced s-wave Fermi motion corrections. As density
increases, the quasiparticle peak at zero momentum gains
attraction while the spectral function at an antikaon momentum
of 450 MeV/c gets strongly diluted, especially when p-waves
are incorporated. The small peak in Fig. 10 to the right of the
main quasiparticle peak for the q = 0 spectral function at 2ρ0

is due to the p-wave induced s-wave component associated
to �∗N−1 excitations, which are located close to the dressed
antikaon quasiparticle peak. When pions are also dressed the
antikaon spectral functions displayed in Fig. 11 show similar
features, although somewhat wider and more diluted.

We finally present in Fig. 12 results for the antikaon
optical potential calculated as �k[q, ε(q)]/[2ε(q)], where
ε(q) is the quasiparticle energy fulfilling ε(q)2 = m2

K + q2 +
Re �[q, ε(q)], for three different densities ρ = 0.5ρ0, ρ0 and
2ρ0. The real and imaginary parts of the antikaon optical
potential as functions of q are shown on the left panels,
for the approximation that only dresses the antikaons, and
on the right panels, when pions are also dressed. As density
increases, the real part of the optical potential becomes more
attractive. In the approximation that only dresses the antikaons
self-consistently, the value of the optical potential at zero
momentum goes from around −40 MeV at ρ0/2 to −70 MeV
at 2ρ0. The width of this zero momentum state, which is
twice the size of the corresponding imaginary part of the
optical potential, decreases with density due to the loss of
decaying phase-space as the antikaon gains attraction. This
picture gets somewhat distorted when pions are also dressed.
Whereas, in this case, the real part of the optical potential at
zero momentum goes from about −30 MeV at ρ0/2 to almost
−80 MeV for 2ρ0, the size of the imaginary part first increases
(from ρ0/2 until ρ0) and then decreases fast (from ρ0–2ρ0).
This is because part of the loss of decaying phase space with
increasing density is compensated by the appearance of new
decaying states, YNN−1, the amount of which increases with
increasing density. Our results are qualitatively very similar to
those shown in Ref. [36], where a self-consistent calculation
of the antikaon optical potential using the meson-exchange
Jülich K̄N interaction was presented.

V. CONCLUSIONS

We have investigated the properties of the K̄ self-energy in
nuclear matter after incorporating the medium modifications
on the s-wave and p-wave K̄N amplitudes, within the context
of a chiral unitary approach. The s-wave interaction is taken

from the Weinberg-Tomozawa term and the p-wave collects
a small contribution from this source and a large contribution
from the �,� and �(1385) pole terms. To account for the
medium renormalization of the amplitudes, we include, in
a self-consistent way, Pauli blocking effects, meson self-
energies corrected by nuclear short-range correlations and
baryon binding potentials.

We have payed a special attention to the modification of the
p-waves, showing that for the in-medium corrections it is not
possible to apply the on-shell factorization of the amplitudes,
which is the standard procedure in free space.

The � and � in nuclear matter at saturation density feel
an attractive potential of around −30 MeV, while the �∗ stays
pretty much at its free space position but its width is sensibly
increased to about 80 MeV.

The K̄ self-energy is evaluated as a function of laboratory
energy q0 and momentum �q, which are independent variables
in the medium. The p-wave contributions to the antikaon
self-energy are small for low momentum kaons. However,
at large momentum values of about 450 MeV/c, one finds
considerable strength at subthreshold energies coming from
K̄N → � conversion.

The K̄ spectral function shows a distinct quasiparticle
peak around 60 MeV below the antikaon mass from zero
momentum. The peak moves to higher energy and gets closer
to the free space position as the K̄ picks up momentum. Thus,
the consideration of p-waves does not help in increasing
the binding energy of the K̄ mode. The increased amount
of strength at low antikaon energies of around 300 MeV
when p-waves are included implies that, if the kaon mode
was able to generate such an amount of attraction, the bound
state would have an appreciable width. However, the antikaon
optical potential obtained in the present work can only give
K̄ states in matter bound by no more than 50 MeV and having
a width of the order of 100 MeV, in qualitative agreement with
all existing self-consistent calculations.

ACKNOWLEDGMENTS

L.T. wishes to acknowledge support from Gesellschaft für
Schwerionenforschung and Alexander von Humboldt Foun-
dation. This work is partly supported by contracts BFM2003-
00856 and FIS2005-03142 from MEC (Spain) and FEDER,
the Generalitat de Catalunya contract 2005SGR-00343, and
the E.U. EURIDICE network contract HPRN-CT-2002-00311.
This research is part of the EU Integrated Infrastructure
Initiative Hadron Physics Project under contract number RII3-
CT-2004-506078.

[1] J. A. Oller, E. Oset, and A. Ramos, Prog. Part. Nucl. Phys. 45,
157 (2000).

[2] R. H. Dalitz and S. F. Tuan, Ann. Phys. (NY) 10, 307 (1960).
[3] B. K. Jennings, Phys. Lett. B176, 229 (1986).
[4] J. Gasser and H. Leutwyler, Nucl. Phys. B250, 465 (1985).
[5] U. G. Meissner, Rep. Prog. Phys. 56, 903 (1993).

[6] V. Bernard, N. Kaiser, and U. G. Meissner, Int. J. Mod. Phys.
E 4, 193 (1995).

[7] A. Pich, Rep. Prog. Phys. 58, 563 (1995).
[8] G. Ecker, Prog. Part. Nucl. Phys. 35, 1 (1995).
[9] N. Kaiser, T. Waas, and W. Weise, Nucl. Phys. A612, 297 (1997).

[10] E. Oset and A. Ramos, Nucl. Phys. A635, 99 (1998).

015203-13
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