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D mesons in nuclear matter: A DN coupled-channel equations approach
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A set of coupled two-body scattering equations is solved for the DN system embedded in an isosymmetric
nuclear matter. The in-medium behavior of charmed D mesons, (D+, D0), is investigated from the self-consistent
solution within this scheme. The effective meson-baryon Lagrangian in charm quantum number one sector, the
key ingredient in the present study, is adopted from a recent model by Hofmann and Lutz that has aimed at
combining the charmed meson degree of freedom in a consistent manner with chiral unitary models. After
a critical examination, the original model is modified in several important aspects, such as the method of
regularization, to be more consistent and practical for our objective. The resultant interaction is used to reproduce
the position and width of the s-wave �c(2593) resonance in the isospin zero DN channel. In the isospin one
channel, it generates a rather wide resonance at ∼2770 MeV. The corresponding in-medium solution is then
sought by incorporating Pauli blocking and the D- and π -meson dressing self-consistently. At normal nuclear
matter density, the resultant �c(2593) is found to stay narrow and shifted at a lower energy, whereas the I =
1 resonance is lowered in position as well and broadened considerably.
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I. INTRODUCTION

The present article is devoted to the study on the behavior
of the D meson in a cold symmetric (viz. total isospin zero)
nuclear matter by employing a set of in-medium DN coupled-
channels equations to be solved self-consistently.

Of numerous theoretical investigations to date on the
properties of mesons in nuclear medium, one may notice a
recent interest directed toward the in-medium behavior of the
(open charm) D mesons in studying the existing, anticipated,
or speculative experimental outcome in relativistic heavy-ion
collisions, antiproton reactions with nuclei, possible D-nuclear
bound states, etc. [1–7]. The primary theoretical effort in
this regard has been to understand how the mass of the D

meson gets modified in nuclear matter: either normal or hot
and/or dense. The main objective is to know, for example,
if the D-meson mass is reduced significantly in a medium
formed by heavy-ion collisions. If this were the case, then that
could lead to an enhanced D production during the processes,
bringing a possible conventional hadron physics scenario for
the suppression of the J/� production, often attributed to the
long-time speculated and more exotic process of the formation
of the quark-gluon plasma due to deconfinement. In the present
work we shall adopt a self-consistent many-body coupled-
channels method based on a hadronic effective Lagrangian
that has enjoyed its success in studying the physics of K̄

and K mesons in nuclear matter. As a matter of fact the
methods of study on this subject as employed in the above
publications follow rather closely the ones as applied to the
study of these mesons in nuclear medium which was initially
triggered by the issue of possible kaon condensate [8,9]. They
are (i) the quantum chromodynamics (QCD) sum rule method
(QCDSR), (ii) the nuclear mean-field approach (NMFA), and
(iii) the so-called self-consistent coupled-channels method
(SCCM). However, there are approaches based on effective
quark potentials such as in Refs. [10] and [11] which are in

a way complementary to these three approaches. We do not
discuss those quark-model methods here.

The organization of the present article goes as follows.
In Sec. II we have a critical retrospect of the related works
within the three methods stated above to motivate the present
one. Section III is devoted to critically reviewing a series of
works [7,12] which had motivations close to ours and then
explain why we have come to adopt a somewhat different
method by modifying what was used in those works. Section
IV presents the results of our study of the DN interaction
obtained from a coupled-channels equation in free space. The
implementation of various medium effects on the properties of
the D meson in nuclear matter is discussed in Sec. V and our
results are presented in Sec. VI. Section VII is devoted to our
conclusion and final remarks. Those who are familiar with the
subject might skip some parts of the next section.

II. CRITICAL RETROSPECT

In what follows, we outline each of the methods mentioned
above (QCDSR, NMFA, and SCCM) as the basis of why we are
motivated to take the steps presented in this work. We believe
this to be appropriate because, to date, no such account has
been given to compare different approaches. For this objective
our subsequent discussion will be heavily inclined to review
the approaches employed in the physics of K̄ in nuclear matter
because the methods listed above for the D meson have been
extensively used for the former. This is due to the apparent
similarity between the K̄ and D [6] as discussed later in the
section.

To begin with we note that in all these three approaches
(except for Refs. [3,4], to be touched on later) the central
entity is the meson propagator (or the correlator) in the nuclear
environment, 〈T [D(x)D̄(y)]〉nuc, where D(x) is the D-meson
interpolating field.
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A. QCDSR

The method [1,2] exploits the quark-hadron duality to
calculate the D-meson propagator in two different ways. On
the one hand it is written in terms of the underlying quark
fields. Then by means of short-distance operator product
expansion (OPE) within perturbative QCD, it is expressed
in terms of basic QCD constants and condensates. On the
other hand, within the hadronic picture it is expressed in a
spectral representation with a few adjustable parameters. Then
the two sides are matched in deep Euclidean region to extract
hadronic quantities. In the OPE expression it is shown [2]
that the essential ingredient is the product of the charm quark
mass, mc, and the in-medium light scalar q̄q condensate,
〈q̄q〉nuc. Following Ref. [13], the in-medium q̄q condensate is
approximated by a sum of the vacuum part and the in-medium
correction, the latter being the product of nuclear density and
the nucleon matrix element of q̄q,

〈q̄q〉nuc ≈ 〈0|q̄q|0〉 + ρN 〈N |q̄q|N〉. (1)

On the other hand, by a factorization ansatz combined with
a linear density approximation [14] valid for low nuclear
density, the in-medium D propagator is written as a sum
of the free space part and the in-medium correction that is
proportional to the nuclear density ρN times the free space
DN scattering amplitude, which is further approximated by
the DN scattering length. Then QCDSR is eventually used
to express the free-space DN scattering length in terms of a
few QCD parameters, mc〈N |q̄q|N〉 in particular [1]. Finally,
by matching, the in-medium meson mass shift is obtained as
proportional to the nuclear density times the thus obtained
DN scattering length. This relation is naturally expected
from optical models in standard scattering theory in which
one obtains the in-medium meson self-energy as the product
(or convolution) of nuclear density and the meson-nucleon
scattering amplitude. Similar quantities appear in NMFA and
SCCM to be discussed later. In the present approach the
medium effect enters through the linear dependence in ρN

only. At normal nuclear matter density the isospin averaged D

mass shift is obtained as ≈−50 MeV. In Ref. [2] an additional
mass shift due to the time component of the in-medium
vector q̄q condensate is reported as ∼±25 MeV for D̄(D). A
rather strong sensitivity to the assumed high energy behavior
of the spectral function is noted in Ref. [2], which may
be related to the difficulty in determining the free space D

mass in QCDSR [15]. So along with various approximations
stated earlier, results mentioned here should be regarded as
semiquantitative. However, an important finding is the large
(attractive) contribution induced by ≈mc〈N |q̄q|N〉 from OPE.
This term, which is of scalar-isoscalar in nature, enters just like
the familiar pion-nucleon σ term. But it is at least two orders
of magnitude larger because the charm quark mass: mc ≈
1400 MeV, is multiplied instead of the average light quark
mass.

B. NMFA

We first outline prototype of this approach used in the first
kaon condensation study in Refs. [8,9]. There, the leading

term in the Lagrangian is from the non-linear realization of
chiral symmetry for the interaction of Goldstone bosons with
octet baryons. This is supplemented by symmetry breaking
terms linear in the quark mass matrix. With N and K being
the nucleon and kaon fields, respectively, the resulting kaon-
nucleon interaction reads,

LKN = −i
3

8f 2
N̄γ µNK̄

↔
∂ µ K + �KN

f 2
N̄NK̄K, (2)

where K̄
↔
∂ µ K ≡ K̄∂µK − (∂µK̄)K and f is the Goldstone

boson decay constant. The first term is the Tomozawa-
Weinberg (T-W) vector interaction. The second term provides
a scalar-isoscalar attraction characterized by �KN . This
quantity, called the � term, is expressed by three low-energy
constants that may be written in terms of the πN and KN σ

terms: σπ and σ
(i)
K (i = 1, 2), which are the measures of chiral

symmetry breaking. In NMFA, the meson (here it is the
kaon) self-energy, 	K (p0, �p), which provides the dispersion
equation relating the energy (p0) and momentum ( �p), is density
times the nuclear expectation value of the above meson-
nucleon interaction: −ρN 〈LKN 〉nuc. With a simple Fermi gas
model for an isosymmetric nuclear matter, the energy of the
kaon at rest is obtained as (notice the difference between
the in-medium kaon and antikaon due to the T-W vector
interaction),

p0(K,K̄) =
√(

ms
K

)2 +
(

3ρ0

8f 2

)2

± 3ρ0

8f 2
, (3)

where (ms
K )2 = m2

K − ρs�KN/f 2 is the square of the in-
medium (scalar) kaon mass with ρs being the nuclear scalar
density, and the ordinary nuclear matter (vector) density is
ρ0 ≡ ρN . In the non-relativistic limit, ρ0 = ρs . From the
above result, a considerable reduction in the kaon mass (more
precisely the energy at zero momentum) in a high-density
medium might be expected (for both K and K̄) if the
strength �KN becomes sizable, leading even to a possible
kaon condensation. Further investigation on the K mesons
in hot and/or dense nuclear medium with refinement may be
found, for example, in Refs. [16,17]. See Ref. [18] for an
extensive set of references.

The above method has been extended to the study of the
D(D̄) mesons in an isospin symmetric nuclear matter in
Ref. [5]. Two steps are required to reach the goal. The first
is to describe the static nuclear properties, viz. binding energy
per nucleon, compressibility, etc., in a mean-field approach
imposing SU(3) symmetry with the non-linear realization
of chiral symmetry [19]. It is an extention of the original
Walecka “σ -ω” model [20]. The optimal solution is found
by imposing a stationary condition on the free energy of
the system with respect to the variation of the mean scalar-
and vector-meson fields for a given value of nuclear density.
The meson-nucleon coupling constants are fixed at the normal
nuclear saturation density. The second step is to construct an
in-medium D-meson-nucleon interaction. The approach used
for the in-medium kaon is extended to incorporate the D meson
by using gauged SU(4) vector mesons, a method adopted in
part from Ref. [21]. The outcome is a Lagrangian similar to
Eq. (2) in Refs. [8,9], but with a few additional terms (see
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Ref. [17] for the case of kaons in matter). Of particular interest
are the ones describing the interaction of the D with mean
scalar- (σ ) and vector- (ω) meson fields. They are made to
contribute to the in-medium D-meson interaction Lagrangian
as

gDσ D̄Dσ − igDωD̄
↔
∂ µ Dωµ, (4)

where the mean density-dependent scalar- and vector-meson
fields are complicated functions of nuclear density, effective
(mean field) meson-nucleon coupling constants, and so on.
Those D interactions with in-medium mesons contribute to the
meson self-energy. For example, the mean ω field contribution
gDωω0 is to be added to the one from the T-W interaction, viz.
the 3ρ0/(8f 2) term in Eq. (3).

In the zero-nuclear-density limit, the model is constructed
such that the in-medium scalar meson contribution in
Eq. (4) reduces to the meson mass term in the total D-meson
Lagrangian, viz. m2

DD̄D, as the free D Lagrangian should have
only the kinetic energy part to begin with. This is consistent
with the corresponding limit in the light quark condensate:
〈q̄q〉nuc → 〈0|q̄q|0〉 in QCDSR; recall Eq. (1). However, there
is a touchy issue that needs clarification regarding the D

interaction with the mean vector-meson field. At zero-nuclear-
density limit it is plausible that this contribution vanishes so
only the T-W interaction remains. But as touched on later,
the latter arises from vector-meson exchanges between D

and N in the low-energy and low-momentum-transfer limit
as inferred from the hidden local symmetry picture of vector
mesons [22] or from the success, for example, of the ρ-ω
model for the KN interaction [23] (see also Ref. [24]). So at
finite nuclear density there may well be some double counting
in the vector-meson exchange contribution. In this respect we
refer to an interesting finding in Ref. [17]. There a transport
equation simulation for heavy ion on heavy ion was compared
with available data in the spectra of K+ and K− produced
in the reactions. The model-data consistency has found to
become troublesome upon including the in-medium kaon-ω
interaction. This might actually point to an inadequacy of
including the mean vector-meson interactions for the case of
the D meson as well.

In the end, the quantitative details of the NMFA prediction
on the D mass shift vary depending on the details of
models adopted (see Ref. [17]). However, a global feature
is characterized by moderate drop in the mass, obtained for
the simple chiral Lagrangian of Eq. (2), viz. about 70 MeV
for D and 20 MeV for D̄ at normal nuclear matter density.
The average of those two values is a rough measure of the
scalar-isoscalar interaction. So just as from QCDSR, one sees
a potentially important role played by this attractive force
between the D and nucleon.

Another mean-field approach that directly solves for the
D-meson binding in nuclear medium is presented in Refs. [3,4]
within the quark-meson coupling model [25]. Schematically,
it is the “σ -ω” at the level of the u and d quarks confined in the
nucleon and D-meson bags. More concretely, on optimizing
the mean scalar- (σ ) and vector- (ρ and ω) meson fields by
reproducing the static properties of nuclei (or nuclear matter),
those meson fields are used to describe the in-medium D

interaction at the light quark level. Note that by construction
there is no explicit T-W interaction between D and N . The
in-medium D(D̄) mass is obtained by a stationary condition
on varying the heavy meson bag radius. It is found that
the magnitude of the vector and scalar contributions to the
mass shift are comparable in magnitude. In particular, the
average mass shift of the D and D̄ mesons due to the scalar
meson interaction is about 60 MeV downward for normal
nuclear matter density. Again, the importance of the attractive
scalar-isoscalar interaction (represented here by the σ -meson
exchange) is visible here.

Before reviewing SCCM, we simply summarize the com-
mon feature of the result from QCDSR and NMFA discussed
so far: (i) the D-meson interactions are due to both static
in-medium scalar- and vector-type interactions and (ii) a large
reduction in the D-meson mass to which a scalar-isoscalar
attraction appears to play an important role.

C. SCCM

The approaches discussed so far are static in that the
meson-nuclear interaction is introduced such that it does not
disturb the mean nuclear configuration. This is achieved when
the meson scattering is elastic and nearly forward by each
nucleon (and by mean meson fields) in nuclear medium. Also
the meson-nucleon scattering should be reasonably weak. In
this respect we recall that in NMFA the meson self-energy
is obtained from the meson-nucleon interaction (or potential)
rather than from its full iteration: the T matrix. Therefore,
the methods would become inappropriate when the two-body
meson-nucleon interaction is (i) strong and, in particular,
dominated by intermediate bound or resonant states and/or
(ii) strongly coupled to other meson-baryon channels. The
low-energy K̄N interaction is a typical case that does not fit
into the static mean-field description. Its coupling to other
meson-baryon channels such as π�, η�, . . . , etc., is strong.
Close to threshold, this interaction is dominated by the nearby
�(1405) resonance, which is now strongly believed to be
a combination of K̄N and π� s-wave molecules [26,27]
embedded in the continuum of lower-threshold channels.
Because of the apparent similarity between the K̄N and
DN systems in their coupled-channels nature as well as
their association with the �-like resonances, �(1405) and
�c(2593), we think it very useful to outline the SCCM used in
the study of K̄ in nuclear matter. A good part of its practical
aspects is effective for our present in-medium D study. See a
prototype of this approach in Ref. [28].

Here again one needs two steps to achieve the goal. But
unlike NMFA the first step is for the two-body aspect, then
the many-body aspect enters later. First, the free-space K̄N

multi-channel Bethe-Salpeter equation:

T = V + V GT, (5)

is solved. Here, T is the transition operator matrix, G a
diagonal matrix each element of which is the product of
single-particle propagators for a meson and a baryon, and the
potential (driving term) V is a matrix whose elements are T-W
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type meson-baryon interactions from the lowest-order terms in
the nonlinear chiral Lagrangian. In on-shell approximation the
solution T was shown to successfully reproduce the �(1405)
resonance and other reaction observables [29,30].

Next, the same set of equations is solved in nuclear
medium. The underlying assumption is that the potential
term V is unaltered in nuclear medium, but that all the
medium effects enter through the intermediate meson-baryon
propagators [31–36]. This in-medium propagator includes
the effects from (i) Pauli blocking, (ii) binding of baryons
by nuclear mean field, and (iii) dressing (or self-energy) of
intermediate state mesons (K̄, π , or η) due to their interactions
with surrounding nucleons. The resultant quantity is denoted
as G̃. The in-medium equation now reads

T̃ = V + V G̃T̃ . (6)

Because of the meson dressing, particularly the dressing
of K̄ that creates nested K̄N interactions, this in-medium
equations must be solved self-consistently. The thus obtained
diagonal amplitude, T̃ (K̄N → K̄N ), already demonstrates
certain essential features of in-medium K̄ . But a more suitable
quantity to study is the kaon spectral function SK̄(K)(p0, �p)
which is proportional to the imaginary part of the kaon
self-energy 	K̄(K)(p0, �p). In free space, we have a trivial on-
mass shell relation: SK̄(K)(p0, �p) = δ[p0 − E( �p )]/(2p0), with

E( �p) =
√

m2
K + �p 2. In the nuclear medium, this structure

changes substantially, such that the K̄ meson mass pole is
not only shifted somewhat downward but also broadened.
Moreover, there is an additional structure due to the in-medium
�(1405) resonance [31–36]. These aspects cannot be obtained
from the NMFA or QCDSR approaches discussed earlier.
Notably, within SCCM there has been no indication of a
possible onset of kaon condensation even at higher densities.
So one sees the possible importance of medium effects taken
care of self-consistently which have made the difference.
However, this difference might also be due, in part or to a
good extent, to the fact that so far the equations in SCCM
have been driven only by the T-W vector interaction without
any additional ones such as the attractive �KN -term in the
diagonal K̄N channel present in NMFA. Recently, there have
been several works on the improved coupled K̄N equations
in free space which incorporate the next-to-leading-order
interactions, including the corresponding scalar-isoscalar (or
�KN term) contribution [37–40]. Such additional terms have
certainly improved the fit to available data by ≈20% thanks
to several additional parameters related to them. With such a
new type of interactions, one may wonder if the kaon mass
could reduce sufficiently in the nuclear medium to give rise to
kaon condensation. However, according to a recent work on
in-medium K̄ in isospin asymmetric matter which incorporates
this type of contribution [35], kaon condensation does not
appear to set in below eight times the nuclear matter saturation
density. This is well beyond the limit of applicability of the
model; certainly around this critical density new degrees of
freedom, both hadronic and subhadronic, will have to be taken
into account.

We now refer to a couple of exploratory works on the D

meson within the same framework. First, a coupled-channels

calculation for the D mesons in cold nuclear matter was
done [6], motivated by the similarity between the DN and K̄N

systems once the s quark in the later is replaced by a c quark.
This is further reinforced by an apparent correspondence
between the two I = 0, s-wave resonances: �(1405) and
�c(2593), in the coupled K̄N and DN channels, respectively.
To make this analogy more concrete, free space amplitudes are
obtained from a set of separable coupled-channels potentials
simulating the T-W type interactions to reproduce the I = 0
�c(2593) as a DN s-wave hadronic molecular state of binding
energy of ≈200 MeV with a width of ≈3 MeV, sitting very
close to the π�c threshold. In the I = 1, s-wave channel,
the model appears to have generated a resonance at about
2800 MeV but is less conspicuous than the fitted one in
the I = 0 channel. Then the corresponding interaction is
fed into the in-medium equation. A notable feature is the
relative importance of the intermediate state pion dressing. The
final result has found a slight upward-shifted and broadened
D meson pole with a wiggle in the spectral function at
normal nuclear matter density. One of the peaks in the
wiggle corresponds to the shifted-broadened D pole, whereas
the other seems to originate from the resonant structure in the
in-medium I = 1 DN amplitude. Somewhat surprising is the
apparent absence of an anticipated peak due to the �c(2593)
resonance. The peak is visible when pion dressing is ignored
in the coupled-channels problem. This work has been recently
extended to finite temperature in Ref. [41].

Here a question remains as to if the simple prescription
of s → c quark replacement be adequate to model the DN

coupled-channels interaction. By so doing all the two-body
channels with strangeness, such as Ds�, have been excluded.
However, as we will show later, they have an important effect
in the DN coupled-channels problem. In addition, from the
point of view of symmetries, one must recall the following
well-known fact: although the light Goldstone bosons such as
π and K mesons are dictated by chiral symmetry, the charmed
mesons such as D are quite heavier and obey the heavy-quark
symmetry, the extreme opposite to the former. A blind s → c

replacement breaks both of those symmetries.
A different approach, which respects the proper symme-

tries, was attempted in Ref. [42]. There, charmed baryon reso-
nances are generated dynamically from the scattering of Gold-
stone bosons off ground-state charmed baryons with JP =
1
2

+
. The C = 1, S = I = 0 resonance found at 2650 MeV

was identified with the �c(2593) in spite of the fact that the
width, due to the strong coupling to π�c states, is obtained as
more than 20 times the experimental value of about 4 MeV.
The trouble with this model is that couplings to DN and DsY

are completely absent. We recall that in Ref. [6] the former
channel is essential in the formation of the �c(2593).

A satisfactory improvement came in a recent work [12]
where the alleged shortcomings have been overcome by
exploiting the universal vector-meson coupling hypothesis to
break the SU(4) symmetry in a convenient and well-defined
manner. More precisely, this is done via t-channel exchange
of vector mesons between pseudoscalar mesons and baryons
in such a way to respect chiral symmetry for the light meson
sector and the heavy quark symmetry for charmed mesons,
as well as to maintain the interaction to be of the T-W vector
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type. The model generates the �c(2593) resonance in the C =
1, S = I = 0 s-wave channel, as well as an almost degenerate
s-wave resonance at 2620 MeV in the C = 1, I = 1, S = 0
channel not found experimentally so far. An application of
this model to a preliminary study of D and Ds mesons in
nuclear matter may be found in Ref. [7]. There the D-meson
spectral function is found to have a peak, embedding the two
resonances mentioned above, and another structure signaling
the D-meson pole position, which is shifted upward by about
30 MeV and has a finite width. So, with respect to the
D-pole mass shift, the two SCCM results show the opposite
tendency to the one found both in QCDSR and NMFA, upon
disregarding other attributes such as finite widths, and so on.
Then one may wonder from where this difference originates:
is it attributable to the coupled-channels aspect or to the
absence of an extra scalar-isoscalar attraction in the two SCCM
models?

Having discussed salient aspects of various models to date,
we have naturally adopted SCCM in the present study of the D

meson in symmetric nuclear matter. In particular, we employed
a modified version of the coupled-channels method developed
by Hofmann and Lutz [12] after its critical analysis in the next
section. Specifically, we introduced a cut-off regularization as
well as an extra phenomenological scalar-isoscalar attraction
in the diagonal DN channel in a simplistic manner to study its
implication.

III. WHY HAVE WE ADOPTED BUT MODIFIED THE
HOFMANN-LUTZ MODEL?

The original Hofmann-Lutz model [12] is ambitious enough
to include all the JP = 1

2
−

s-wave pseudoscalar-baryon
interactions with charm quantum number values up to 3 in
an attempt to interpret/predict various baryon resonances as
molecular states. Our present interest in this model is only
in the sectors with quantum numbers C = 1, S = 0, I = 0
and I = 1 which are associated with the DN channel. As
for the D̄N sector with quantum numbers C = −1, S = 0,
QCDSR [1,2], the quark-meson coupling model [3,4], as well
as the simple quark model suggest that the interaction is weak
and quite likely repulsive. See also Ref. [7]. Hence we are not
concerned with this sector in the present work.

The Hofmann-Lutz model connects two sets of character-
istic pseudoscalar meson-baryon sectors with one charmed
quark belonging either to mesons, e.g., DN , or to baryons,
such as π�c, etc., by means of the universal vector-meson cou-
pling hypothesis equipped with the Kawarabayashi-Suzuki-
Fayyazuddin-Riazudden (KSFR) condition [43]. Its modern
theoretical support is offered in the hidden local symmetry
picture of vector mesons; see Ref. [22]. In this respect the
model is an important first step for improvement because
heavy-quark effective theory equipped with chiral symmetry,
chiral heavy-quark effective theory (χHQET), can deal only
with Goldstone bosons interacting with charmed baryons
(or charmed mesons); see Refs. [42,44–46]. It cannot be
applied to channels of our interest such as DN . While re-
taining the physical hadron masses, the Hofmann-Lutz model
uses SU(4) symmetry to construct the effective interaction

between pseudoscalar mesons in 16-plet with baryons in
20-plet representations through a t-channel exchange of a
16-plet of vector mesons. The universal vector-meson coupling
hypothesis provides the global interaction strength among the
above SU(4) multiplets. Then, aided by the KSFR relation
that is consistent with chiral symmetry at very low energy and
momentum transfer, the resultant lowest-order meson-baryon
interaction is found to take a near T-W form in the t = 0 limit.
An interesting and important consequence of this picture is
that, compared with the ones that exploit SU(4) symmetry
alone, the T-W interactions resulting from an exchange of a
charmed meson are reduced by an extra factor, ∼(mV /mc

V )2,
where the masses here are the typical (uncharmed) vector
meson and a (singly) charmed meson, respectively. We discuss
this aspect further below.

Now we are in the position to obtain the interaction V in
our present work based, in good part, on the Hofmann-Lutz
model. The two sectors of our interest are all s-wave and have
JP = 1

2
−

. We retain the following channels:

π�c(2589), DN(2810), η�c(2835), K�c(2960),

K�′
c(3071), Ds�(3085), η′�c(3245)

for the C = 1, I = S = 0 sector, and

π�c(2425), π�c(2589), DN(2810), K�c(2960),

η�c(3005), K�′
c(3071), Ds�(3160), η′�c(3415)

for the C = 1, I = 1, S = 0 sector. Here, channels containing
charmed pseudoscalar mesons are denoted in bold letters. The
values between parentheses following each channel in the
above expressions are the corresponding channel thresholds
in MeV. The transition interaction (potential) for i ↔ j due
to t-channel exchanges of vector meson “X” reads (note a
somewhat different notation from Ref. [12])

Vij (qi, qj ;
√

s) =
∑
X

g2CX
ij ū( �pi)γ

µ

[
gµν − kµ̄kν

m2
X

]

× 1

t − m2
X

(
qi + qj

)ν
u
( �pj

)
, (7)

where g (≈6.6) is the universal vector-meson coupling con-
stant, CX

ij is the product of relevant SU(3) Clebsch-Gordan
coefficients associated with quantum numbers of the vertices
projected to the ij channels, and pi, qi, pj , qj are the four
momenta of the baryon and meson in channels i and j ,
respectively. As usual, s = (pi + qi)2 = (pf + qf )2 and the
momentum transfer is k ≡ qi − qj = pj − pi , with t ≡ k2 =
kµkµ.

The next step is to expand 1/(t − m2
X) in powers of

t/m2
X. The second term in this expansion, viz. t/m2

X, tends
to compensate to a good extent the term kµkν/m2

X in the
numerator of the vector-meson propagator, so to a good
approximation, the t dependence is at most O[(t/m2

X)2].
Thus for our objective it is consistent to disregard the terms
O(1/m2

X) altogether and make the interaction to be of zero
range. Note that the Hofmann-Lutz model has retained the
O(1/m2

X) term in the numerator. The effect due to this
additional contribution is examined later, particularly for
charmed vector-meson exchanges. Then we adopt the average
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mass m̄V for all the uncharmed nonet vector mesons as well as
m̄c

V for the anti-triplet charmed vector mesons. The difference
caused by this simplification is found to be quite small. By
dropping the p-wave contribution from ū( �pi)u( �pj ), we now
have an s-wave, zero-range limit of the above interaction
in the following T-W form upon adopting the normalization
convention (ūu = 1) used in Ref. [26],

V I
ij (

√
s) = −κCij

4f 2

(
2
√

s − Mi − Mj

) (
Mi + Ei

2Mi

)1/2

×
(

Mj + Ej

2Mj

)1/2

. (8)

Here the left-hand side is the ij element of the (on-shell)
interaction matrix V in Eqs. (5) and (6). On the right-hand side,
Cij = ∑

X CX
ij ,Mi and Mj , as well as Ei and Ej are the masses

and energies of baryons in channels i and j , respectively. In
addition, f is the pseudoscalar meson decay constant from
the KSFR relation: m̄2

V /g2 = 2f 2. We also introduced κ , a
reduction factor which is unity for transitions i ↔ j , driven
by (uncharmed) vector-meson exchanges (ρ, ω, φ,K∗), etc.,
but is equal to κc = (m̄V /m̄c

V )2 for charmed vector-meson
exchanges such as D∗ and D∗

s . The transition coefficients
C̃ij ≡ κCij , which are symmetric with respect to the indices,
are listed in Tables I and II. The reader may notice that the
thus obtained T-W interaction strengths Cij are simply the
consequence of SU(4) symmetry modulo sign convention and
that the vector-meson exchange picture shows a definite pattern
of breaking the SU(4) symmetric interaction.

Before testing and then using the resultant interaction, we
want to check one important aspect of the approximation
we have made to reach the T-W form. Let us take Eq. (7)
for nondiagonal transition interactions by charmed meson
exchanges and, as an extreme case, consider the one for
DN ↔ π�c. Here the variable t = k2 in 1/[t − (mc

V )2] is
far from zero but could be as large as t ≈ +M2

N , where MN is
the nucleon mass. Also, in such a transition, the kµkν/(mc

V )2

contribution in the numerator, which we have disregarded,
might significantly affect the magnitude of the driving term:
in the channel under consideration it reduces the size of the
driving term by more than 50% in the energy range of our
interest. However, we have confirmed numerically that in the

TABLE I. The C̃ij coefficients for the C = 1, S = 0 meson-
baryon interaction for isospin I = 0.

π�c DN η�c K�c K�′
c Ds� η′�c

π�c 4
√

3
2 κc 0 0

√
3 0 0

DN 3 − 1√
2
κc 0 0 −√

3 − κc

η�c 0 −√
3 0 −

√
2
3 κc 0

K�c 2 0 − 1√
2
κc 0

K�′
c 2 −

√
3
2 κc 0

Ds� 1 1√
3
κc

η′�c 0

TABLE II. The C̃ij coefficients for the C = 1, S = 0 meson-
baryon interaction for isospin I = 1.

π�c π�c DN K�c η�c K�′
c Ds� η′�c

π�c 0 0 −
√

3
2 κc 1 0 0 0 0

π�c 2 1 κc 0 0
√

2 0 0

DN 1 0 1√
6
κc 0 −1 1√

3
κc

K�c 0 0 0
√

3
2 κc 0

η�c 0 −√
3

√
2
3 κc 0

K�′
c 0 − 1√

2
κc 0

Ds� 1 − 1√
3
κc

η′�c 0

same energy range those two contributions tend to mutually
compensate such that neglecting the two together makes a
maximum deviation of O

[
(t2/(m̄c

V )4
] ≈ 25% as compared

with the original t-channel charmed vector-meson exchange
interaction projected on to the s wave. Near and above the
DN threshold it is only 10% or less. Thus as stated earlier,
our procedure has turned out to be not only simpler but more
consistent than what is adopted in Ref. [12]. Combined with the
reduction factor κc already multiplied to this type of transitions,
our ordinary T-W form of the interaction is consistent with the
lowest-order chiral symmetry as well as heavy quark symmetry
by use of the extended KSFR relation. In actual calculations
we simply set κc = 1/4 and the resulting amplitudes are found
stable against a small variation around this value.

The next step is to confirm the relevance of the interaction
as obtained above. We first check the resulting amplitudes in
free space. Here an on-shell ansatz (equivalent to the N/D

method) has been employed which allows for reducing the
coupled integral equations, Eq. (5), to a single matrix equation
whose solution may be written as

T = (I − V Ĝ)−1V, (9)

where Ĝ is a diagonal matrix whose elements are now
four-momentum integrated propagators of the channels in-
volved. Momentum integrations have been regularized by a
dimensional method as found in Refs. [26,47]:

Gi(
√

s) = i2Mi

∫
d4q

(2π )4

1

(P − q)2 − M2
i + iε

1

q2 − m2
i + iε

= 2Mi

16π2

[
ai(µ) + ln

M2
i

µ2
+ m2

i − M2
i + s

2s
ln

m2
i

M2
i

+ q̄i√
s

ln
M2

i + m2
i − s − 2q̄i

√
s

M2
i + m2

i − s + 2q̄i

√
s

]
, (10)

where q̄i is the on-shell momentum and mi and Mi are the
meson and baryon masses in channel i. With the regularization
scale set to µ = 1.0 GeV and imposing the subtraction points
following [12], we found that all the corresponding subtraction
constants ai(µ) stay close to the natural size, viz. ≈−2.0
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FIG. 1. Imaginary part of the DN amplitude in the dimensional
regularization scheme as a function of

√
s for I = 0 (left panel) and

I = 1 (right panel).

[26,47]. With this we calculate the C = 1, S = 0, I = 0, 1
amplitudes and find the positions of the �c and �c resonances
at ≈2620 and ≈2680 MeV, respectively, as in Ref. [12]
for the model they refer to as the SU(4) symmetric case.
With a very small change in the value of the subtraction
constant for the DN channel in the I = 0 sector, namely
aDN (µ): − 1.92 → −1.97, we were even able to adjust the
position of the resonance to the empirical one for �c(2593).
However, a larger change in the corresponding aDN (µ) value
appears to have been required to shift the position of the I = 1
resonance down to 2620 MeV as predicted in Ref. [12] for
the model in which SU(4) symmetry is broken upon shifting
the value of the universal vector-meson coupling constant by
up to ≈20% in some channels. In the present work, we have
not adopted any such modifications. Our results are shown by
the solid lines in Fig. 1. The meaning of the other two vertical
lines is discussed in the next section.

As for the widths of those resonances, our values are
far larger than those by Hofmann and Lutz for both isospin
sectors. The Hoffman-Lutz prediction for the I = 0 resonance
is no more than 0.2 MeV, whereas our estimate is ∼3.0 MeV,
closer to the experimental value. A more dramatic difference
is found in the I = 1 sector: the Hofmann-Lutz prediction is
∼3.3 MeV or lower, which is in sharp contrast to our large
estimated value of ∼35 MeV. We have been able to trace the
origin of this difference to the kµkν/(mc

V )2 term, retained in
the Hofmann-Lutz model. Because this term can reduce the
charm exchange transition interaction by about a factor of 2
or more, the width of the DN -type resonances decaying into
π�c, π�c states are correspondingly smaller. As discussed
earlier, this term should not be retained for consistency,
hence our larger resonance widths should be preferred. The
prediction for the position of the I = 1 resonance is revisited
in the next section, where we will introduce an explicit cut-off
regularization.

Upon confirming that we have properly adopted the
Hofmann-Lutz model with a few simplifications, some of
which have led to improvements, we go on to include in-
medium effects in the amplitude. To achieve this we have
followed Refs. [33] and [7] and solved

T̃ = T + T (G̃ − G)T̃ , (11)

which results from combining Eqs. (5) and (6), where we have
included the Pauli blocking effect as well as the D-meson

dressing. Much of the method of solution has been taken from
Ref. [32] and will be briefly described in Sec. V. Equation (11)
must be solved self-consistently just like Eq. (6) as the dressed
propagator G̃ contains the solution T̃ . So we have iterated the
equation by starting from the free-space solution T . Although
the input T has been obtained by dimensional regularization,
it is found that an explicit cutoff must be introduced in
calculating (G̃ − G) to extract a tempered in-medium solution.
The exception to this is when only Pauli blocking is taken into
account. Simply this is because of the vanishing contribution
to (G̃ − G) from momenta outside the nuclear Fermi sea.
In Refs. [7] and [33] an explicit cut-off value of 800 MeV
was used, which appears reasonable as an educated guess.
However, it is important to check the stability of the solution
against the change in the cut-off value. So we have varied the
upper limit of the momentum integration within the range
accepted in effective hadron physics. As demonstrated in
Fig. 2, the physics extracted in this way varies wildly as a
function of the cut-off value, thus no reliable prediction of
in-medium amplitudes appears possible.

In an attempt to overcome this trouble, we went back
and took another look at the two original equations, Eqs. (5)
and (6). Regarding the free-space one, viz. Eq. (5), one must
remember that the resonance positions and widths which
it generates depend inherently on how one regularizes the
divergent integral of the loop G. Employing a dimensional
regularization scheme, as in Ref. [12] and in several other
works, has the advantage that the divergent part can be isolated
analytically. But for the in-medium equation, Eq. (6), the diver-
gent part cannot be identified unambiguously as G̃ is available
only numerically, so one is forced to introduce an explicit
cutoff. Then in the absence of any well-defined rule to relate
the two regularization schemes, one would have no idea as to
what cut-off value is relevant, nor to what extent the properties
of the free space solution T might have been carried over to the
in-medium solution T̃ . Furthermore, mathematically the free
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FIG. 2. Imaginary part of the in-medium DN amplitude at total
momentum �P = 0 as a function of total energy P0 for I = 0 (left
panel) and I = 1 (right panel). The free amplitude in the dimensional
regularization scheme of Fig. 1 (solid lines) is modified by medium
corrections calculated according to Eq. (11) with various values of
the cutoff: 700 MeV (short-dashed lines), 800 MeV (long-dashed
lines), and 1000 MeV (dot-dashed lines). The dependence of the
corrections on the cutoff is evident, except when one only considers
Pauli blocking (dotted line) where the correction affects only loop
momenta up to pF = 270 MeV, well below any of the cut-off values
explored.
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and in-medium equations cannot be combined into a single
one, viz. Eq. (11), when the support of the integration in the
two equations is not identical. Hence, the method employed
above to solve Eq. (11) is an inconsistent one. In view of
this, we discarded the dimensional method but adopted the
conventional cut-off method for the solution to the free-space
equation as well. This is described in the next section.

IV. FREE SPACE AMPLITUDES IN CUT-OFF METHOD

From our discussion in the last section, we conclude that
only the direct cut-off regularization method is left to us as
appropriate and practical for our later study of the in-medium
D properties. So here we apply it identically to both free and
in-medium equations in a manner used in Ref. [32] for the
study of K̄ in nuclear matter. In this section we construct a set
of free-space amplitudes in this scheme. A novel feature here is
that we supplement the T-W vector interaction discussed in the
previous section, viz. Eq. (8), with a scalar-isoscalar attraction:
recall again our discussion on its possible importance in
Sec. II. Here we follow a simple and conventional treatment
of this term used in the kaon condensate studies and write it
as (see Ref. [5,18] and also the last term in Eq. (2)):

L� ≡ �DN

f 2
D

N̄ND̄D. (12)

In the above expression fD is the D meson weak decay
constant, and �DN is the strength of this interaction. Note
that for simplicity we introduce this only in the diagonal DN

interaction: presumably similar terms might claim their right
in the diagonal DsY, (Y = �,�) interactions because these
channels couple strongly to DN as understood from Tables I
and II. However, we want to look for possible effects from such
scalar-isoscalar attractions in a semi-quantitative manner, thus
preferring to contain the number of parameters. The s-wave
projection of this interaction is simply equal to

V�(
√

s) = −�DN

f 2
D

(
MN + E

2MN

)
, (13)

for both I = 0, 1DN channels. Concerning fD , its most recent
extraction from the branching ratios of D+ → µ+ν is about
223 MeV [48]. Various calculations and measurements as cited
in this reference do seem to agree within about 10%. For sim-
plicity we adopted fD = 200 MeV. As for the value of �DN ,
we simply follow what QCDSR [1] and NMFA of Ref. [5]
suggest and estimate it conservatively as �DN ≈ 2000 MeV.
We also accommodate the case where no such attraction is
added, hence �DN = 0 then.

With the above preparation, we solve the coupled-channels
equations in free space and reproduced the �c(2593) resonance
in the I = 0 sector, as seen on the left panel of Fig. 3,
which shows the imaginary part of the diagonal I = 0 DN

amplitude for both models. The parameters for those two
cases are as follows: model A: f = 1.15fπ ,� = �DN/f 2

D =
0.05 MeV−1,� = 727 MeV, and model B: f = 1.15fπ ,� =
�DN/f 2

D = 0 MeV−1,� = 787 MeV, where � is the ultravi-
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FIG. 3. Imaginary part of the DN amplitude as a function of
√

s

for I = 0 (left panel) and I = 1 (right panel), obtained by using the
cut-off scheme with model A (solid lines) and model B (dotted lines).

olet cut-off value for the integration in the loop G (the value
of f is loosely fixed in conformity with Ref. [29]). The width
of the I = 0 resonance is found to be ∼4 MeV for model A
and ∼5 MeV for model B, respectively. Note that in the same
isospin sector, another resonance very close to �c(2593) but
far wider has been identified, as in Ref. [12] that is due to the
chiral excitation in the charmed hyperon channels [42] and
is connected to the DN channel by a charmed vector-meson
exchange. So this is more easily seen in the π�c channel. The
same two sets of parameters are now used in the I = 1 coupled
channels, and we found a somewhat different prediction as
seen in the right panel of Fig. 3 for the diagonal I = 1DN

amplitude. Although a resonance is generated in both models,
the one with an extra attractive �DN interaction (model A)
pulls the resonance lower to about 2770 MeV (with a width
∼25 MeV), whereas the one without it (model B) keeps the
resonance position at ≈2795 MeV, not very far from the DN

threshold: ≈2810 MeV, together with a width of ∼20 MeV.
Tentatively we call this I = 1 resonance as �c(2770).

To understand how the difference in the two isospin sectors
comes about, it should be useful to have an anatomical
study of the underlying mechanism for resonance formation.
The following argument can be made qualitatively, based on
Tables I and II, and can then be substantiated quantitatively
by actual calculations. First, we see that the T-W diagonal
DN interaction is attractive in both isospin channels, hence
when channel couplings are turned off, the s-wave DN state
may form a bound state in both I = 0 and I = 1 sectors, as
seen by the dotted lines in Fig. 4, corresponding to model A,
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FIG. 4. Imaginary part of the DN amplitude as a function of
√

s

for I = 0 (left panel) and I = 1 (right panel) obtained by using the
cut-off scheme (model A).
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although the same behavior is found for model B, viz. with
and without the additional attraction by �DN . The binding
is, of course, deeper for I = 0 because the T-W interaction
is three times stronger. Next, we introduce channel couplings
DN-DsY (Y = �,�). Note that this type of coupling is absent
in Ref. [6], where particles with strangeness are excluded.
In both isospin channels the corresponding strengths are
comparable to the DN diagonal interaction. Because the
thresholds for these Ds involved channels are higher than those
with D, the channel coupling brings additional attraction to
the DN binding, an effect that can be easily justified from
second-order perturbation arguments. Third, the remaining
couplings with the DN channel are from those connected
by a charm transfer, hence suppressed by κc ≈ 1/4, so the
additional shift in the bound-state pole positions is smaller. The
only apparent effect from coupling to κc-suppressed channels
on the diagonal DN amplitudes is the finite width due to those
channels with lower thresholds, hence transforming the bound
states to resonances.

By comparing the results of our explicit cut-off models as
in Figs. 3 and 4 with the ones from the dimensional scheme
shown in Fig. 1, one sees rather large differences in the I = 1
sector. In the latter the downshift in the DN bound-state pole
position due to coupling to the DsY channel is found larger
than in the I = 0 sector, just the opposite to what one finds
in the explicit cut-off scheme. In addition, the dimensional
scheme finds the I = 1 resonance position at 2680 MeV, quite
lower than the one from the cut-off method. To understand the
possible origin of the differences, we look at the choice of the
subtraction point in the dimensional approach as discussed in
Ref. [12], which was taken in each sector (with a set of definite
quantum numbers) at µ = √

m2 + M2, where m and M are the
meson and baryon masses in the channel in which m + M is
minimum. In the present C = 1, S = 0 case, m = mπ for both
isospin sectors, whereas M = M�c

for I = 0 and M = M�c

for I = 1. This definition is somewhat different from the one
used in Refs. [49,50]; presumably, the choice in Ref. [12]
would make more sense numerically when both m and M are
relatively large and/or comparable in size but is not an absolute
measure. In due consideration of such a difference, there seems
to be no reason to insist on choosing different subtraction
points for the two present isospin sectors where the difference
in the value of the subtraction constants is practically the pion
mass, M�c

− M�c
∼ mπ . In addition, as stated in our anatomy

study above, the I = 1 bound or resonant state should come
visibly higher than the one for the I = 0 sector. So it should
make sense to adopt the subtraction point for I = 0 also in
the I = 1 sector as viewed from the DN channel. In addition,
such a minor change will not disturb the approximate crossing
symmetry as promoted in Ref. [12]. In fact, when we made this
increase in µ: µI=1 → µI=0, then the I = 1 channel resonance
position goes up from 2680 to ∼2750 MeV, the new value
being closer to the one produced in our cut-off scheme. The
sensitivity of the I = 1 resonance pole position to a relatively
small shift in the subtraction point had been least anticipated
and thus is a little surprising.

Before finishing this section, devoted to our study of the
two-body input for the in-medium calculation, we note that
the Belle Collaboration has recently measured in this energy

range an isotriplet of excited charmed baryons decaying into
�+

c π−,�+
c π0, and �+

c π+ [51]. It is interpreted as a new
charmed baryon, the �c(2800), having a width of around 60
MeV, measured with more than 50% error. This baryon has
been tentatively identified with a d-wave resonance to conform
to quark-model predictions [52], although the expected width
� ∼ 15 MeV [53] is smaller than the observed one. Actually,
the fits performed in Ref. [51] were not too sensitive to varying
the signal parametrization using s-wave or p-wave Breit-
Wigner functions, hence this resonance could still qualify as
an s-wave meson-baryon molecule of the type found in the
present work around the same energy and having a width of
∼40 MeV, which is compatible with the experimental one.

V. DN COUPLED-CHANNELS EQUATION IN NUCLEAR
MATTER

The first obvious medium effect to be included in the
DN coupled-channels equations is the Pauli blocking on the
intermediate nucleon states. This is a particularly important
one in the vicinity of a dynamically generated resonance,
as was explicitly shown in Ref. [28] for the �(1405) in the
context of K̄N scattering. Here, intermediate nucleons need
more energy to access states that are not occupied, so the
resonance is generated at higher energies, moving from below
to above the K̄N threshold. This induces, in turn, strong
changes in the K̄N amplitude near the threshold. Namely, the
threshold behavior of the amplitude changes from repulsive in
free space to attractive in the medium upon including Pauli
corrections. When this attraction felt by the K̄ is now fed into
the solution of the in-medium amplitude, the resonance moves
back to lower energies. This thus necessitates a self-consistent
calculation, which was done in Ref. [31], where the resonance
was found practically at the same location as in free space. This
behavior was confirmed in Ref. [32], which incorporated also
the self-energy of the pions present in the coupled-channels
problem along with the baryon binding.

Based on the above observation on the in-medium K̄

behavior, we also consider those medium effects in our present
study on the properties of the D meson following the approach
presented in Ref. [32]. For this purpose, we have only to
incorporate them in the meson and baryon propagators of the
loop function G, which is then denoted as G̃. Note that here
we have not included baryon binding energies altogether due
to our lack of knowledge of the charmed baryon mean-field
potentials.

The effects of Pauli blocking are simply included by
replacing the free nucleon propagator by the in-medium one,

GN (p0, �p) = 1 − n( �p)

p0 − EN ( �p) + iε
+ n( �p)

p0 − EN ( �p) − iε
, (14)

where n( �p ) is the nucleon occupation with value 1 (0) for
nucleons below (above) the Fermi momentum and EN ( �p ) is
the nucleon energy. For the D (and π ) mesons we incorporate
the corresponding self-energy (dressing) in the propagator

DD(q0, �q ) = 1

q2
0 − �q 2 − m2

D − 	D(q0, �q, ρ)
, (15)
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which is done, in practice, through the corresponding Lehmann
representation:

DD(q0, �q ) =
∫ ∞

0
dω

SD(ω, �q )

q0 − ω + iε
−

∫ ∞

0
dω

SD̄(ω, �q )

q0 + ω − iε
,

(16)

where SD(D̄)(q0, �q ) is the spectral function of the D(D̄) meson.
In free space it is simply

SD(D̄)(q0, �q ) = �(q0)δ
(
q2

0 − �q 2 − m2
D

)
, (17)

where �(q0) is the Heaviside step function. In the nuclear
medium the spectral function becomes

SD(q0, �q ) = − 1

π
ImDD(q0, �q )

= − 1

π

Im	D(q0, �q )∣∣q2
0 − �q 2 − m2

D − 	D(q0, �q )
∣∣2 . (18)

With these medium modifications the propagator loop function
G̃ reads:

G̃DN (P0, �P ) =
∫

|�q|<q lab
max

d3q

(2π )3

MN

EN ( �P − �q )

×
[∫ ∞

0
dωSD(ω, �q )

× 1 − n( �P − �q )

P0 − ω − EN ( �P − �q ) + iε

+
∫ ∞

0
dωSD̄(ω, �q )

× n( �P − �q )

P0 + ω − EN ( �P − �q ) − iε

]
, (19)

for DN states and

G̃πYc
(P0, �P ) =

∫
|�q|<q lab

max

d3q

(2π )3

MYc

EYc
( �P − �q )

∫ ∞

0
dωSπ (ω, �q )

× 1

P0 − ω − EYc
( �P − �q ) + iε

, (20)

for π�c or π�c states, where P = (P0, �P ) is the total two-
particle four-momentum and �q is the meson momentum in the
nuclear matter rest frame.

For η(η′)Yc,K�c(�′
c), and DsY states, the corresponding

meson lines are not dressed by self-energy insertions, viz.
we use the loop integral for free space. The reasons are as
follows: (i) the coefficients coupling the η(η′)Yc channels with
the DN channel are small, as shown in Tables I and II, and
(ii) containing an s̄-quark, the K couples weakly to nucleons
and its spectral function may be approximated by the free-
space one, viz. by a delta function. Note that this last
prescription applies also to SD̄(ω, �q) in Eq. (19). As for the
spectral function of the D+

s meson appearing in the in-medium
DsY channels, it has been shown [7] that, in addition to
the quasi-particle peak, it presents a lower energy mode
associated with an exotic resonance predicted around 75 MeV
below the D+

s N threshold [12]. Therefore, with large coupling
coefficients for transitions DN ↔ DsY , as seen in Tables I

and II, one may eventually have to solve an extended in-
medium self-consistent coupled-channels problem combining
the C = 1, S = 0(DN) and C = 1, S = 1(DsN ) sectors. This
arduous task will be relegated to a future work.

Now the in-medium amplitudes T̃ are obtained by directly
solving the coupled-channels Eq. (6) with the medium mod-
ified loop function G̃ discussed above or from the equivalent
Eq. (11), where, formally, the medium correction appears as
the second term on the right hand side.

The in-medium D self-energy is finally obtained by
integrating T̃DN over the nucleon Fermi sea as

	D(q0, �q ) = 2
∫

d3p

(2π )3
n( �p )

[
T̃Dn(P0, �P ) + T̃Dp(P0, �P )

]
=

∫
d3p

(2π )3
n( �p )

[
T̃ (I=0)(P0, �P )

+ 3T̃ (I=1)(P0, �P )
]
, (21)

where P0 = q0 + E( �p ) and �P = �q + �p are the total energy
and momentum of the DN pair in the nuclear matter rest frame
and the values (q0, �q ) stand for the energy and momentum of
the D meson also in this frame. Recall that 	D(q0, �q) must
be determined self-consistently because it is obtained from
the in-medium amplitude T̃DN , which contains the DN loop
function G̃DN , and this last quantity itself is a function of
	D(q0, �q ).

VI. RESULTS AND DISCUSSION

Before starting our discussion on the various medium
effects, let us first explore what is the mass shift of the
D meson in isospin symmetric nuclear matter for various
simple approximations. We define the effective mass as
m∗

D = ωqp(�q = 0), where the quasi-particle energy, ωqp, is
the solution to the equation

ωqp(�q )2 = �q 2 + m2
D + Re 	D(ωqp(�q ), �q ). (22)

The mass shift can then be approximated by the D-meson
optical potential at zero momentum:

m∗
D − mD  UD(0) ≡ Re 	D(m∗

D, �q = 0)

2mD

. (23)

First, when one adopts a mean-field type of approximation
and replaces T̃DN by the diagonal VDN in Eq. (21), the mass
shift is found as ∼−60 MeV for model A that considers
�DN �= 0 or −43 MeV for model B, viz. in the absence of the
�DN term. This amount of attraction is comparable to what
was obtained in QCDSR and NMFA models as discussed in
Sec. II [1–3,5]. This may be regarded as the calibration of our
diagonal DN interaction with respect to those earlier works.

Next we go one step to replace VDN by the free-space
TDN . Due to the presence of resonances generated, the latter
quantity is obviously distinct from the former. So we expect
a better description than the first one by using TDN in
Eq. (21), a procedure that is referred to as the TρN approx-
imation to the D-meson self-energy. With this the D meson
feels a repulsion of ∼25 MeV, rather than attraction, indicating
the importance of a non-perturbative treatment of the problem
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FIG. 5. Imaginary part of the in-medium DN amplitude for total
momentum P = 0 as a function of the total energy P0 for I = 0 (left
panels) and I = 1 (right panels), obtained in the cut-off scheme using
model A (upper panels) and model B (lower panels).

once resonances are present. As discussed later, in the present
model this drastic change is caused mainly by the isospin one
�c(2770) resonance which lies below but close to the DN

threshold.
Then we go further to consider the medium effects, Pauli

blocking, and the self-consistent inclusion of the D-meson
self-energy in the coupled-channels equations. When Pauli
blocking alone is considered, the amount of repulsion increases
up to 40 MeV, whereas when meson dressings are incorporated
in addition, the repulsive mass shift goes down to 5 MeV.
Note, however, that the actual shift of the D-meson mass is
eventually determined by the position of the quasi-particle
peak in the spectral function, which has a complex structure
determined both by the real and the imaginary parts of the
self-energy. We will come back to this point toward the end of
this section.

Being convinced of the importance of a proper treatment
of in-medium effects, we now discuss more explicitly the
changes induced in the DN amplitude and, as a result, on
the D-meson self-energy and its spectral density. In Fig. 5 we
display the imaginary part of the I = 0 (left panels) and I = 1
(right panels) DN amplitude at normal nuclear matter density,
ρ0 = 0.17 fm−3, as a function of the total energy P0 and total
momentum �P = 0. The results of model A and B are presented
in the two upper and two lower panels, respectively. With Pauli
blocking (dashed lines), the resonances are produced at higher
energies than in the free amplitudes (dotted lines), in exact
analogy to the behavior of the K̄N in-medium amplitudes
described at the beginning of this section. When one adds
the D-meson dressing, the I = 0 and I = 1 resonances move
down (solid lines), even below their corresponding free space
location. This effect is especially pronounced for model A,
which contains a nonvanishing �DN term. In particular, the
�c(2593) appears about 50 MeV lower in energy than in
free space. The reason for this additional attraction when the
D self-energy is included self-consistently is that the DN

amplitudes develop strengths at much lower energies than

their free-space thresholds, starting actually at the threshold
for the π�c states, 2422 MeV. This enhances the phase space
for intermediate states, inducing effectively a strong attraction
in the coupled-channels equations. The result is the lowering
of resonance positions below their free-space counterparts.
These in-medium resonances will be denoted from now on
as �̃c(2593) and �̃c(2770). In particular, the mass of the
�̃c(2593) is lowered by about 50 MeV in nuclear matter at
normal density. Note that the width of the in-medium �̃c(2593)
is not zero even if it now appears below the free space
I = 0 coupled-channels threshold, π�c. This is due to the
process �̃c(2593)N → πN�c, which opens up as soon as the
in-medium D-meson self-energy is incorporated. A similar ar-
gument holds for explaining the much larger width of the I = 1
resonance, which can also decay through nucleon absorption
processes of the type �̃c(2770)N → πN�c, πN�c. When the
pions are also dressed (dot-dashed lines in the same figure),
the tendency does not change much, even if two-nucleon ab-
sorption channels, �̃c(2593)NN → �cNN,�cNN , are now
possible through the coupling of the pion to particle-hole con-
figurations. This is in contrast to what is observed for K̄N dy-
namics [32] and also to what is found in Ref. [6] for in-medium
D mesons. The reason is that, in the present model, the interac-
tion DN → πYc is reduced by the factor κc  1/4 originating
from the t-channel exchange of a charmed vector meson.

The results for models A and B are qualitatively similar.
The only noticeable difference is that, due to the absence of
attractive scalar-isoscalar �DN term, model B produces in-
medium resonances at higher energies. Correspondingly, their
widths are larger due to the increased decaying phase space.

To illustrate the effect of each approximation on the sign
and strength of the in-medium DN amplitude, we display its
real part in Fig. 6 for the same cases as in Fig. 5 but focusing
on the energy region close to the free-space DN threshold.
The bare interaction V , represented by the thin solid line, is
attractive both in the I = 0 and I = 1 channels. The dotted
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momentum �P = 0 as a function of total energy P0 for I = 0 (left
panels) and I = 1 (right panels) obtained in the cut-off scheme with
model A (upper panels) and model B (lower panels). The selected
range of energies covers values around the DN threshold.
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nuclear matter density. Results are shown for
model A (solid lines) and model B (dotted lines).
Thin vertical lines display the location of the
D-meson pole in free space.

line represents the free DN amplitude, for which we see that
the repulsive effect induced by the I = 0 �̃c(2593) is still
visible at energies around 2800 MeV. This effect is more
pronounced for the I = 1 channels because the �̃c(2770)
resonance is just below the DN threshold. When Pauli
blocking effects are included (dashed lines), we observe the
same qualitative behavior except that the amplitudes are shifted
to higher energies. The fully self-consistent amplitudes, both
with pion dressing (dot-dashed lines) or without (solid lines)
show similar features in the I = 0 channels as in the other
approximations. But in the I = 1 channel a drastic dilution of
the �̃c(2770) resonance ends up producing a mildly attractive
interaction that partly compensates the repulsion found in the
I = 0 sector.

Finally, in Figs. 7 and 8 we present our results for the
imaginary part of the D-meson self-energy (upper panels), as

well as the corresponding spectral function (lower panels), as
functions of the meson energy q0 for nuclear matter densities
ρ = ρ0 and 2ρ0, respectively. We show results for two values of
the meson momentum, q = 0 (left panels) and q = 450 MeV
(right panels) and for models A (solid lines) and B (dot-
ted lines). The self-energy presents two peaks, the more
pronounced one at lower energy is built up from �̃cN

−1

configurations, whereas the peak at higher energy is due to
the coupling of the D meson to �̃cN

−1 states.
Each peak of the imaginary part of the D-meson self-energy

has a direct association with the structure observed in the
spectral function at a slightly lower energy, as seen in the
lower panels. The narrower peak is the one associated with
�̃cN

−1 configurations and, for model A, it lies about 50 MeV
below what would have been the corresponding location if
the �c(2593) had not been modified by medium effects. The
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FIG. 8. The same as described in the legend to

Fig. 7 for nuclear matter density ρ = 2ρ0.
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in-medium attraction of this lower energy mode is more
moderate for model B. By inspecting Fig. 8, we also observe
that the amount of attraction of these �̃cN

−1 configurations
increases by an additional 50 MeV or slightly more when going
to twice nuclear matter density. The structure in the spectral
function connected to the bump in the self-energy associated
with the I = 1 resonance is very faint. It stands out only in
model B and at normal nuclear matter density because of its
proximity to the D-meson quasi-particle peak.

The location of the quasi-particle peak is mainly driven by
the value of quasi-particle energy [Eq. (22)]. At normal nuclear
matter density, the quasi-particle energy was found to be
5 MeV above the D-meson mass. However, as commented
at the beginning of this section, the actual quasi-particle peak
of the spectral function can appear slightly shifted due the
energy dependence of the imaginary part of the D-meson
self-energy. At normal nuclear matter density and for both
models A and B, we find the quasi-particle peak about
20 MeV above the D-meson pole position in free space
(denoted by thin vertical lines in the figures). At twice nuclear
matter density, the quasi-particle peak is shifted mildly below
the free D-meson pole in model A, while staying practically
at the same position in model B.

Our results are qualitatively similar to those found in
Ref. [6] but differ considerably from those in Ref. [7],
especially at 2ρ0 where the latter reference finds 60 MeV
repulsion for the quasi-particle peak of the in-medium D

meson. This is due to the fact that the I = 1 resonance is
found at a much lower energy than in the present work,
influencing differently the DN interaction around threshold,
which becomes substantially more repulsive. Correspondingly,
the contribution of the I = 1 DN amplitude will affect the
D-meson spectral function at lower energies. In fact, due to
the almost degeneracy between the I = 0 and I = 1 charmed
resonances found in the model of Ref. [12], the lower mode
of the D-meson spectral function in Ref. [7] is dominated by
�̃cN

−1 configurations (recall the weight factor 3 for I = 1
contributions with respect to I = 0 ones).

VII. CONCLUSION

We now summarize our present work. First, we critically
reviewed several effective hadronic approaches used to investi-
gate the properties of the D meson in nuclear matter. This then
lead us to adopt a recent model by Hofmann and Lutz [12] but
with a few important modifications: (i) some simplifications
in the form of the interactions which have turned out to be
more consistent on reduction from t-channel vector-meson
exchanges to a zero-range Tomozawa-Weinberg (T-W) form;
(ii) introduction of a supplementary scalar-isoscalar interaction
in the diagonal DN channel, which we call the �DN term,
apparently prevalent both in the QCD sum rule (QCDSR)
and mean-field (NMFA) approaches to the problem; and
(iii) switching to a conventional momentum cut-off regulariza-
tion that was found to be more consistent than the dimensional
method in view of its application to meson-baryon scattering
in nuclear medium.

In free space, the coupled-channels equations resulting
from the meson-baryon interactions thus obtained were regu-
larized to reproduce the position and width of the �c(2593)
resonance in the I = 0 DN channel. In the I = 1 channel, the
same interactions were found to generate a wide resonance,
which we term �c(2770).

In nuclear matter, the DN diagonal element of the inter-
action was tested in the lowest-order approximation to the
D-meson self-energy based on the simplest mean-field picture,
thus with an equation of the type Eq. (3) for D. A D mass
reduction of ∼60 MeV was found. This is consistent with the
consequence in QCDSR [1,2] and some NMFA results [3–5].
If this consistency can be regarded as important, that would
support, at least in part, the introduction of the �DN in our
scheme, which we have taken to be quite conservative. It
would be interesting to develop models that could provide
a more precise value for this term.

Our in-medium study finds that, once the fully self-
consistent coupled-channels equations are solved, including
Pauli blocking and meson dressing effects, the situation
changes quite drastically. Namely, at normal nuclear matter
density the quasi D-meson peak in the D-meson spectral
function is found about 20 MeV higher than the corresponding
free-space pole position. This appears roughly independent of
whether the �DN term is present. The primary cause is found in
the fact that the �̃c(2770) resonance gets extremely broadened
due to the medium effects. As the nuclear matter density
increases, the upward shifting of the D-meson quasiparticle
peak slows down and can even reverse if �DN �= 0. So it may
be worth exploring how this trend continues at even higher
densities. The �̃c(2593) resonance remains narrow and lowers
its position by almost 50 MeV at normal nuclear matter density
when the �DN term is retained in the diagonal DN channel.
This tendency persists when the matter density is doubled. It
may be appropriate to stress that, unlike in the case of the in-
medium K̄ , the role of the intermediate pion dressing has been
found to be of minor importance here. This makes a marked dif-
ference from the result reported in Ref. [6], where the �̃c(2593)
appears to be washed out by the effect of the pion dressing.

In the Introduction, we stated that one of the primary
motivations for studying the behavior of the D meson in
nuclear matter is an attempt to understand (even partially)
the reduction of the J/� charmonium production observed
in the ultra-relativistic heavy-ion reactions, and so on. We
are fully aware that the present work is just a first step
toward that goal based on the effective hadronic picture.
To be more realistic, one of the principal aspects that we
will need to investigate is the implementation of the finite
temperature effect. As mentioned above, the finite nuclear
density makes the �̃c(2593) resonance to move to sensibly
lower energies mantaining its narrow width. So it should be
important to study if it may survive the thermal agitation of
the order of ∼100 MeV. In such a case, the excited charmonia
such as χc�(1P ) (� = 1, 2), could decay strongly through
this in-medium resonance, thereby reducing the usual supply
of J/� mesons coming from their radiative decay [54]. In
addition to a realistic implementation of the temperature effect,
one should also consider the nuclear mean-field binding of
ground-state charmed baryons, a more extensive study of the
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scalar attraction characterized by the �DN term, inclusion
of reaction channels with charmed vector mesons, etc., even
within the context of the effective hadronic picture.
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