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Nonideal particle distributions from kinetic freeze-out models
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In fluid dynamical models the freeze-out of particles across a three-dimensional space-time hypersurface is
discussed. The calculation of final momentum distribution of emitted particles is described for freeze-out
surfaces, with both spacelike and timelike normals, taking into account conservation laws across the freeze-out
discontinuity.@S0556-2813~99!01201-7#

PACS number~s!: 25.75.2q, 25.75.Ld, 05.70.Ln
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I. INTRODUCTION

The freeze-out of particle distributions is an essential p
of continuum or fluid dynamical reaction models. From t
point of view of observable consequences this is one of
most essential parts of the model. On the other hand this
is not based on fluid dynamical principles and governed b
large variaty ofad hocassumptions. The freeze-out can
considered as a discontinuity across a hypersurface in sp
time.

The general theory of discontinuities in relativistic flo
has not been worked out for a long time, and the 1948 w
of Taub@1# discussed discontinuities across propagating
persurfaces only~which have a spacelike normal vect
dsmdsm521). Events happening on a propagating~two-
dimensional! surface belong to this category.

Another type of change in a continuum is an overall su
den change in finite volume. This is represented by a hyp
surface with a timelike normaldsmdsm511 which is
called, confusingly, both spacelike and timelike surfaces
the literature. In 1987 Taub’s approach was generalized
both types of surfaces@2# making it possible to take into
account conservation laws exactly across any surface of
continuity in relativistic flow. This approach also eliminat
the imaginary particle currents arising from the equation
the Rayleigh line. When the equation of state~EOS! is dif-
ferent on the two sides of the freeze-out front these con
vation laws yield changing temperature, density and fl
velocity across the front.

In fact the freeze-out surface is an idealization of a la
of finite thickness where the frozen-out particles are form
and the interactions in the matter become gradually ne
gible. The dynamics of this layer can be described in diff
ent kinetic models or four-volume emission models@3#. The
zero thickness limit of such a layer is the idealized freeze-
~FO! surface.

The invariant number of conserved particles~world lines!
crossing a surface elementdsm is dN5Nmdsm and the total
number of all the particles crossing the FO hypersurfaceS is
N5*SNmdsm . This total numberN and the total energy an
momentum are of course the same at both sides of the fre
out surface. If we insert the kinetic definition ofNm

Nm5E d3p

p0
pm f FO~x,p;T,n,un!,
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into the integral over the freeze-out hypersurfaceSwe obtain
the Cooper-Frye formula@4#

E
dN

d3p
5E f FO~x,p;T,n,un!pmdsm , ~1!

where f FO(x,p;T,n,un) is the post FO phase space distrib
tion of frozen-out particles which is not known from the flu
dynamical model. Problems usually arise from the b
choice of this distribution. First of all, to evaluate measu
ables we have to use the correct parameters of the m
after the FO discontinuity.

If we know the pre-freeze-out baryon current and ener
momentum tensorN0

m and T0
mn we can calculate locally,

across a surface element of normal vectordsm the post-
freeze-out quantitiesNm and Tmn, from the relations@1,2#
@Nmdsm#50 and@Tmndsm#50, where@A#[A2A0 . In nu-
merical calculations the local freeze-out surface can be
termined most accurately via self-consistent iteration@7,9#.
This fixes the parameters of our post FO momentum dis
bution f FO(x,p;T,n,un).

For example we can illustrate the effect of conservat
laws for a situation where the frozen-out matter is mass
baryon-free Bose gas. Then, the conservation laws acros
freeze-out surface withtimelike normal vector dsm are
@Tmndsn#50. In the most general~three-dimensional! case
there are four parameters to be determined from the con
vation laws: The final, post-FO temperatureT, and three
components of the velocityu. The energy-momentum tenso
on the pre-freeze-out side, and the normal to the surface
given. The post-freeze-out energy-momentum tensor is
the form Tmn5(e1p)umun2pgmn, where the energy den
sity, pressure, and temperature are connected by the E
e5sSBT

453p, where sSB is the Stefan-Boltzmann con
stant. ThenTmn5(e1p)umun2pgmn, can be written as a
vector equation:

~4umundsn2dsm!5xam, ~2!

where

x5S 1

3
sSBT

4D 21

, am5T0
mndsn .
388 ©1999 The American Physical Society
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PRC 59 389NONIDEAL PARTICLE DISTRIBUTIONS FROM . . .
Taking the normal projection of Eq.~2! and the norm of the
four-velocity um, the solution for the four quantities we ar
looking for will be given by

x5
amdsm1A~amdsm!213amam

amam

, um5
xam1dsm

2Axamdsm11
.

~3!

Idealized freeze-out across propagating discontinuiti
One can go a step further in the study of the freeze-out p
cess. We usually assume that the pre-freeze-out momen
distribution as well as the post-freeze-out distribution
both local thermal equilibrium distributions boosted by t
local collective flow velocity on the actual side of the freez
out hypersurface, although, the post-freeze-out distribu
need not be a thermal distribution

The case of freeze-out across a hypersurface with a sp
like normal shows this clearly becausepm is timelike and
dsm is spacelike, thuspmdsm can be both positive and nega
tive, i.e., pm may point now both in the post- and pre-F
directions. Thus the integrand in the above integral~1! may
change sign in the integration domain, and this indicates
part of the distribution contributes to a current going ba
into the front while another part is coming out of the fron
On the pre-freeze-out sidepm is unrestricted andpmdsm may
really have both signs, because we may assume that
freeze-out front has a certain thickness@8#, and due to inter-
nal rescatterings inside this front a current is fed back to
pre-freeze-out side to maintain the thermal equilibrium the

On the post-freeze-out side, however, the distribut
f FO* (x,p;dsm) must vanish for momentum four-vectorspm,
which point back in the pre-FO direction, i.e., do not satis
the conditionpmdsm.0 @6,7#. Thus, this distribution canno
be a Ju¨ttner or other ideal gas distribution.1

Nevertheless, the above conservation laws have to be
isfied even if the post-freeze-out distribution is not a lo
thermal distribution. Since the kinetic definitions of th
energy-momentum tensor and conserved current~s! are reli-
ably applicable, the conservation laws across a small elem
of the freeze-out front take the form

E
S
S E d3p

p0
f FO* ~x,p;T,n,un,dsg!pmD dsm5E

S
N0

m~x!dsm ,

~4!

E
S
S E d3p

p0
f FO* ~x,p;T,n,us,dsg!pmpnD dsm

5E
S
T0

mn~x!dsm . ~5!

1Note that the contravariant normal when it becomes space
dsm should point in the pre-FO direction to satisfy the conditi
pmdsm.0, while the covariant normaldsm always points in the
post-FO direction. Thus, the direction of the contravariant norm
dsm in the Cooper-Frye formula goes continuously over fro
pointing in the pre-FO direction to pointing in the post-FO directi
while the covariant normal of the FO surface stays directed alw
in the post-FO direction when it goes continuously over from tim
like to spacelike.
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Here, the matter is characterized byT0
mn andN0

m on the pre-
freeze-out side of the front.

The construction of the post-freeze-out distributionf FO* is
a problem in the case of freeze out fronts with a space
normal. For the cut Ju¨ttner distribution the conserved cu
rents were evaluated in Ref.@3#. Thus, if we know the five
parameters of the pre-FO flow and the local freeze-out s
face from kinetic considerations, then assuming that
post-FO distributionf FO* (p,x) is a cut Ju¨ttner distribution,
we can completely determine the parameters of the post
matter from the conservation laws~4!,~5!. Although, this
way we would formally satisfy the conservation laws and
would eliminate the particle current pointing back to t
pre-FO matter, the strange shape of the cut Ju¨ttner distribu-
tion makes it difficult to accept it as a physical post-F
momentum distribution.

II. FREEZE-OUT DISTRIBUTION FROM KINETIC
THEORY

Following the ideas introduced in Ref.@3# we can calcu-
late the kinetic freeze-out distribution based on four-volu
emission models. The proposed model, on the other ha
requires extended numerical calculation, so here we inten
study some overly simplified models, which might give
some hints about the expected shape of post-freeze-out
tributions.

The freeze-out will turn out to be an exponential proce
and after about three mean free paths the amount of inte
ing matter reduces to 5%. Thus, the sharp freeze-out la
turns out to be an overidealization of kinetic freeze-out
heavy ion reactions, while it is applicable on more mac
scopic scales such as in astrophysics.2

Let us first demonstrate the kinetic model for a drastica
oversimplified situation of a plane FO surface. Let us assu
an infinitely long tube with its left half (x,0) filled with
nuclear mater and in the right vacuum is maintained. We
remove the dividing wall att50, and then the matter wil
expand into the vacuum. By continuously removing partic
at the right end of the tube and supplying particles on the
end, we can establish a stationary flow in the tube, where
particles will gradually freeze-out in an exponential rarefa
tion wave propagating to the left. We can move with th
front, so that we describe it from the reference frame of
front ~RFF!.

In this frame, we have a stationary supply of equilibrat
matter from the left, and a stationary rarefaction front on
right, x.0. We can describe the freeze-out kinetics on
right-hand side of the tube assuming that we have two co
ponents of our momentum distributionf free(x,pW ) and
f int(x,pW ). However, we assume only that atx50 f free van-
ishes exactly andf int is an ideal Ju¨ttner distribution~supplied
e

l

s
-

2On the other hand, if kinetic freeze-out coincides with a rap
phase transition, as in the case of rapid deconfinement transitio
supercooled quark-gluon plasma, the short freeze-out hypersu
idealization may still be applicable even for heavy ion reactions
is, however, beyond the scope of this work to study the freeze
dynamics and kinetics in this latter case.
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390 PRC 59Cs. ANDERLIK et al.
by the inflow of equilibrated matter!, while f int gradually
disappears andf free gradually builds up asx tends to infinity.
We do not assumea priori that f int(x,pW ) is an ideal Ju¨ttner
distribution for all x, so we will have different FO result
depending on the assumed FO mechanism.

Let us take first the most simple kinetic model describ
the evolution of such a system. Starting from a fully equ
brated Ju¨ttner distribution the two components of the m
mentum distribution develop according to the coupled diff
ential equations

]xf int~x,pW !dx52Q~pmdsm!
cosupW

l
f int~x,pW !dx,

]xf free~x,pW !dx51Q~pmdsm!
cosupW

l
f int~x,pW !dx. ~6!

Here the interacting componentf int will deviate from the
Jüttner shape and the solution will take the form

f int~x,pW !5 f Juttner~x50,pW !expF2Q~pmdsm!
cosupW

l
xG .

~7!

This solution is depleted in the forwardpW direction, particu-
larly along thex axis. Inserting it into the second differentia
equation above, leads to the freeze-out solution

f free~x,pW !5 f Juttner~x50,pW !

3H 12expF2Q~pmdsm!
cosupW

l
xG J . ~8!

At x→` this distribution will tend to the cut Ju¨ttner distri-
bution introduced in the previous section.~See Figs. 1–4.!
The remainder of the original Ju¨ttner distribution survives as
f int , even if x→`. In this model the particle density doe
not change withx, barely particles moving faster than th
freeze-out front~i.e., pmdsm.0) are transferred graduall
from componentf int to componentf free. This is a highly
unrealistic model, indicating that rescattering and retherm
ization should be taken into account inf int . This would al-
low particle transfer from the ‘‘negative momentum par
~i.e., pmdsm,0) of f int to f free, which is not possible other
wise.

III. FREEZE-OUT DISTRIBUTION WITH RESCATTERING

The assumption that the interacting part of the distribut
remains the distorted~after some drain! Jüttner distribution,
is of course highly unrealistic. Rescattering within this co
ponent will lead to rethermalization and reequilibration
this component. Thus the reequilibration and the drain te
are in competition and they mutually determine the evolut
of the componentf int .

To include the collision terms explicitly into the transpo
equations~6! leads to a combined set of integrodifferent
equations. We can, however, take advantage of the relaxa
time approximation to simplify the description of the dynam
ics.

Then the two components of the momentum distribut
-

l-

n

-
f
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n

on

n

develop according to the coupled differential equations

]xf int~x,pW !dx52Q~pmdsm!
cosupW

l
f int~x,pW !dx

1@ f eq~x,pW !2 f int~x,pW !#
1

l8
dx,

]xf free~x,pW !dx51Q~pmdsm!
cosupW

l
f int~x,pW !dx. ~9!

FIG. 1. The freeze-out distribution,f free(x,pW ), in the rest frame
of the freeze-out front~RFF! calculated from the model presented
Sec. II. The momentum is plotted in units of@T#, and T5m is
assumed. Contour lines are given at values of 0.9, 0.8, 0.7, .
times the maximum off free. Here the center of the rest frame of th
gas~RFG! is at rest in RFF,uRFG

m 5(1,0,0,0), however, the Eckar
and Landau flow velocities of the frozen out matter do not vani
~A!, ~B!, ~C! correspond tox50.02l,3l,`, respectively. At large
distances from the initial point of the freeze-out process,x
→`(C), the distribution becomes a cut Ju¨ttner distribution. The
earlier stages of the freeze-out are, however, characterized by a
metric distributions, elongated in the freeze-out directionx. This
may lead to a large-pt enhancement, compared to the usual Ju¨ttner
assumption as freeze-out distribution used in most previous ca
lations.

FIG. 2. The same as Fig. 1, except here the center of the
frame of the gas is not at rest in RFF,uRFG

m 5(g,0.5,0,0). At large
distances from the initial point of the freeze-out process,x
→`(C), the distribution becomes a cut Ju¨ttner distribution, but less
than half of the distribution is cut off. Note that the boosted Ju¨ttner
distribution became Lorentz elongated and asymmetric~see Fig.
2.10 of Ref.@5#.! The earlier stages of the freeze-out, are charac
ized by asymmetric distributions, elongated in the freeze-out dir
tion x.
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PRC 59 391NONIDEAL PARTICLE DISTRIBUTIONS FROM . . .
Here, the interacting component of the momentum distri
tion shows the tendency to approach an equilibrated Ju¨ttner
type, distribution with a relaxation length coefficientl8
'l. Of course due to the energy, momentum, and conse
particle drain, the distributionf eq(x,pW ) is not the same as th
initial Jüttner distribution, but its parametersneq(x),Teq(x),
andueq

m (x), change as required by the conservation laws
Conservation laws.In this case the change of the co

served quantities caused by the particle transfer from c
ponent int to component free can be obtained in terms of
distribution functions as

dNi
m52

dx

l E d3p

p0
pmQ~pmdsm!cosupW f int~x,pW !

and

dTi
mn52

dx

l E d3p

p0
pmpnQ~pmdsm!cosupW f int~x,pW !.

If we do not have collision or relaxation terms in our tran
port equation then the conservation laws are trivially sa
fied. If, however, collision or relaxation terms are prese
these contribute, to the change ofTmn and Nm, and this
should be considered in the modified distribution functi
f int(x,pW ).

FIG. 3. The same as Fig. 1, except here the center of the
frame of the gas is not at rest in RFF,uRFG

m 5(g,20.5,0,0). At large
distances from the initial point of the freeze-out process,x
→`(C), the distribution becomes a cut Ju¨ttner distribution, but
more than half of the distribution is cut off. The earlier stages of
freeze-out, here also are characterized by asymmetric distribut
but these are not elongated in the freeze-out directionx.
-

ed

-
e

-
-
t

Immediate rethermalization limit.As a first approxima-
tion to the solution of Eqs.~9! let us assume thatl8→0, i.e.,
we have immediate rethermalization after every stepdx.
Thus the drain is always happening from a component
shapef eq(x,pW ), with parametersn̂(x), T(x), anduRFG

m (x),
and we can assume thatf int5 f eq is of spherical Ju¨ttner form
at any x including both positive and negative momentu
parts. Above and henceforth the notation is similar to the o
in Ref. @3#: ñ58pT3em/T(2p\)23, a5m/T, so that
n̂(m,T)5ña2K2(a)/2 is the invariant scalar density of th
symmetric massless Ju¨ttner gas, b5a/A12v2, v
5ds0 /dsx, A5(212b1b2)e2b, and

Kn~z,w![
2n~n!!

~2n!!
z2nE

w

`

dx~x22z2!n21/2e2x,

i.e.,Kn(z,z)5Kn(z).
In this case the change of conserved quantities due

particle drain or transfer can be evaluated for an infinitesim
dx. We assume that the three-flow is normal to the free
out surface, and for simplicity we assumev.0. In this case
the change of the conserved particle currents in the RF
given by

st

e
s,

FIG. 4. The same as Fig. 1, except here the center of the
frame of the gas is not at rest in RFF,uRFG

m 5(g,0.5,0.5,0). At large
distances from the initial point of the freeze-out process,x
→`(C), the distribution becomes a cut Ju¨ttner distribution, which
is not centralized inpy and less than half of the distribution is cu
off. The earlier stages of the freeze-out are characterized by di
butions asymmetric both in the directionspx andpy , and these are
also elongated in the direction of the freeze-out flow velocityuRFG

m .
dNi
052

dx

l

ñ

4v2g2
$bK1~b!1b~3v221!g2@2K1~a!2K1~a,b!#1gv2b2@2K0~a!2K0~a,b!#12v3g3~b11!e2b%,

dNi
x52

dx

l

ñ

4v3g3
$v2~3v221!g3b@2K1~a!2K1~a,b!#1~21v4g2b2!@2K0~a!2K0~a,b!#22K0~b!

12vg2e2b@v2g2~b11!1v2b21#%,

and for the change of the energy-momentum tensor in the RFF we obtain that
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dTi
0052

dx

l

ñT

4v2g2H v2g2b2~31v2!@2K2~a!2K2~a,b!#1~v2b22v221!gb@2K1~a!2K1~a,b!#2b2@2K0~a!2K0~a,b!#

1
a

g
K1~b!1a2K0~b!1vg2e2bF ~113v2!g2A~b!2~21v2b2!~b11!1v4S 11

v2

3 Dg2b3G J ,

dTi
0x52

dx

l

ñT

4 H 113v2

v
b2@2K2~a!2K2~a,b!#1vab2@2K1~a!2K1~a,b!#1Fv2g2bS 2a21

113v2

3v
b2D2b2

1~v213!g2A~b!Ge2bJ 2
2T

vg
dNi

0 ,

dTi
xx52

dx

l

g2ñT

4v H v~31v2!a2@2K2~a!2K2~a,b!#1v3a3@2K1~a!2K1~a,b!#1Fv4

3
~31v2!b31a2~v4b21!

1~3v211!A~b!Ge2bJ 2
3T

vg
dNi

x ,

dTi
yy52

dx

l

ñT

8v2g2F2~v211!a@2K1~a!2K1~a,b!#2v2a2@2K0~a!2K0~a,b!#1
a

g
K1~b!22v~b11!e2bG1

3T

2vg
dNi

x ,
ic

tfo
he

e

th

v
s

rt’
th

e-
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t’s
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and dTi
zz5dTi

yy . Note that in RFF the flow velocity
of the rethermalized component is ui ,RFG

m (x)
5gs(x)„1,v(x),0,0…uRFF, wheregs51/A12v2.

The new parameters of distributionf int , after moving to
the right bydx can be obtained fromdNi

m and dTi
mn . The

conserved particle density of the rethermalized spher
Jüttner distribution after a stepdx is

n̂i~x1dx!5n̂i~x!1dn̂i~x!5ANi
m~x1dx!Ni ,m~x1dx!,

where the expressions are invariant scalars. After straigh
ward calculation the differential equation describing t
change of the proper particle density is

dn̂i~x!5ui ,RFG
m ~x!dNi ,m~x!. ~10!

Although this covariant equation is valid in any frame, w
can calculate it in the RFF, where the values ofdNi

ms were
given above. Note again that the particle drain fromf int(x),
described bydNi

m is constrained to the ‘‘positive part’’ in the
momentum space, but after rethermalization we attribute
to the change in the complete spherical Ju¨ttner distribution
f int(x1dx). Thus, in order to conserve momentum, we ha
to obtain a decreased Eckart flow velocity after the infinite
mal particle drain.

For the rethermalized interacting component Ecka
flow velocity is the velocity of the RFG, which changes wi
x, so we can actually denote this frame as RFG(x). For the
spherical Ju¨ttner distribution the Landau and Eckart flow v
al

r-

is

e
i-

s

locities are the same,ui ,E,RFG
m (x)5ui ,L,RFG

m (x)5ui ,RFG
m (x).

Thus we can evaluate the flow velocityui ,RFG
m (x1dx)

ui ,RFG
m ~x1dx!5Ni

m~x1dx!/ANi
mNi ,m,

which leads to the following covariant expression:

dui ,E,RFG
m ~x!5D i

mn~x!
dNi ,n~x!

n̂i~x!
, ~11!

where D i
mn(x)5gmn2ui ,RFG

m (x)ui ,RFG
n (x), is a projector to

the plane orthogonal toui ,RFG
m (x). This equation is valid in

any reference frame, nevertheless we know the four-vec
on the right-hand side in the RFF explicitly. Then the ne
flow velocity of the matter evaluated according to Eckar
definition isui ,E,RFG

m (x1dx)5ui ,RFG
m (x)1dui ,E,RFG

m (x).
To get the temperature and the change of Landau’s fl

velocity, we have to analyze the change of the energy m
mentum tensor. Before the particle drain the ener
momentum tensor atx in the RFG is diagonal,Ti

mn(x)
5diag(ei ,Pi ,Pi ,Pi)uRFG(x) , while in the RFF Ti

mn(x)
5@(ei1Pi)ui ,RFG

m ui ,RFG
n (x)2Pig

m,n#uRFF(x) . Adding the
drain termsdTi

mn(x) to this arising from the freeze-out whil
we move to the right bydx, yields Ti

mn(x1dx) which will
not be diagonal in the RFG~x! and the pressure part will no
be isotropic. We can Lorentz transform this to another fra
which diagonalizesTi

mn(x1dx). This means to find the Lan
dau flow velocity of the new system,ui ,L,RFG

m (x1dx) in the
original RFG(x). After a straightforward diagonalization
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PRC 59 393NONIDEAL PARTICLE DISTRIBUTIONS FROM . . .
somewhat tricky algebra, and neglecting second and hig
order terms we arrive at the covariant expression3

dui ,L,RFG
m ~x!5

D i
mn~x!dTi ,nsui ,RFG

s ~x!

ei1Pi
. ~12!

Although, for the spherical Ju¨ttner distribution the Landau
and Eckart flow velocities are the same, the change of
flow velocity when calculated from the baryon current a
from the energy current are different:

dui ,E,RFG
m ~x!Þdui ,L,RFG

m ~x!.

This is a clear consequence of the asymmetry caused by
freeze-out process as we pointed out already at the dis
sion of the properties of the cut Ju¨ttner distribution. Unfor-
tunately, this also illustrates the weakness of our assump
on the complete rethermalization to a spherical Ju¨ttner dis-
tribution, because we cannot choose the correct velo
change: If we chooseduE

m as the new velocity of the~spheri-
cal Jüttner distribution! f int(x1dx), then we violate the mo-
mentum conservation in our model, on the other hand if
chooseduL

m , then we violate the baryon current conserv
tion. Thus a spherical~or even elliptic! distribution cannot be
fitted to the freeze-out drain, and we would have to use
ansatz which has~in addition! an asymmetry in thex direc-
tion ~i.e., an egg shape!, for the distributionf int .

Being aware of this weakness of the model, we nevert
less, maintain the assumption of spherical Ju¨ttner shape for
f int for the sake of simplicity. We can choose the flow velo
ity change then according to the physical problem. For
ample for the freeze-out of baryon free plasma this prob
does not occur, and we have to chooseduL

m .
The last item is to determine the change of the tempe

ture parameter off int . From the relatione[umTmnun we
readily obtain the expression for the change of energy d
sity

dei~x!5um,i ,RFG~x!dTi
mn~x!un,i ,RFG~x!, ~13!

and from the relation between the energy density and
temperature~see Chap. 3 in Ref.@5#!, we can obtain the new
temperature atx1dx. Fixing these parameters we fully de
termined the spherical Ju¨ttner approximation forf int . With

3Let the energy-momentum tensor of a system beTmn. The energy
and momentum flow is characterized by the Landau flow velocit
unit four vectorum . We are looking for a relationship between th
infinitesimal change of the flow velocitydum and the corresponding
shift in the energy-momentum tensordTmn. We introduce the pro-
jector Dmn5gmn2umun with the properties@5# Dmnun50 and
dum5Dm

n dun sinceumdum50. The Landau flow velocity is paralle
to the flow of the momentum. Thusum5const3Tm

n un , therefore
DrmTmnun50. We differentiate the above equation and take in
consideration the identitiese[umTmnun and Dr

mTrsDs
n 52PDmn,

wheree and P are the energy density and pressure of the diss
tionless, fully equilibrated fluid. Then using the properties ofDmn

we getdur(e1P)1urdumTmnun5DrmdTmnun . Since the flow ve-
locity and the momentum flow are parallel the second term on
left-hand side vanishes. Thus the equation describing the chan
Landau’s flow velocity becomesdur5DrmdTmnun /(e1P).
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this ansatz the pressure asymmetry and pressure balance
not be realized, thus our model will be only a rather appro
mate description of the freeze-out process. Nevertheless
can draw some preliminary conclusions about the deve
ment of the kinetic distribution during freeze-out.

IV. CONCLUSIONS

We turned to the problem of estimating the freeze-o
distribution. Obviously the real freeze-out distributio
depends strongly on the details of the freeze-out~and had-
ronization! dynamics. In heavy ion reactions, the curvatu
of the freeze-out surface and the conditions varying in ti
do affect the freeze-out distribution, nevertheless, as a
step, we assumed that the process is stationary and the
vature of the front is negligible. These approximations a
extreme, but still enable us to draw some preliminary co
clusions.

Following the lines and ideas presented in Ref.@3#, the
first simple kinetic freeze-out model reproduces the cut J¨tt-
ner distribution as the limiting distributionf free after com-
plete freeze-out at large distances. However, the model a
same time leads to unrealistic consequences, namely, tha
interacting part of the distributionf int also survives fully, as
the other part of the Ju¨ttner distribution. Thus having both
components at the end in this model, the physical freeze
is actually not realized. This turns out to be a consequenc
the fact that the effect of rescattering and thermalization
the interacting part of the distribution was ignored.

In an improved but still rather approximate kinetic freez
out model which takes rescatterings into account, the in
acting component is assumed to be instantly rethermal
taking a spherical Ju¨ttner shape at each time step with chan
ing parameters. The model leads to a set of coupled dif
ential equations~10!–~13!. Equations~11! and ~12! can be
used in some combined form, or one of them can be sele
which fits the physical situation the best. Then the three
rameters of the interacting componentf int can be obtained in
each time step analytically@consideringKn(x,y) an analytic
function#.

Now the density of the interacting component will grad
ally decrease and disappear according to Eq.~10!, the flow
velocity will also decrease in both cases, Eqs.~11! or ~12!,
because only forward going particles freeze-out, and the
ergy density will decrease also according to Eq.~13!. Thus,
the initial contribution tof free at smallx will resemble the
distribution shown in Fig. 2~A!, then asx increases and the
velocity decreases it will become to similar to Fig. 1~B!,
while at the final stages it will approach Fig. 3~C!. As a
consequence the integrated distribution will not resembl
cut Jüttner distribution.

Thus the arising post-freeze-out distributionf free will be a
superposition of cut Ju¨ttner type of components, from
series of gradually slowing down Ju¨ttner distributions. This
will lead to a comet shaped final momentum distributio
with a more dominant leading head and a tail. In these ro
models a large fraction (;95%) of the matter is frozen
out by x53l, thus the distributionf free at this distance can
be considered as a first estimate of the post-freeze-out d
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bution. One should also keep in mind that the models p
sented here do not have realistic behavior in the limix
→`, due to their one-dimensional character. Neverthele
this improved model with rescattering enables compl
freeze out~unlike the simpler model in Sec. II where on
the originally forward moving particles freeze-out even
large distances!.

In case of rapid hadronization of QGP and simultane
freeze out, the idealization of a freeze-out hypersurface m
be justified, however, an accurate determination of the p
freeze-out hadron momentum distribution would require
nontrivial dynamical calculation.
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