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We explore the deformation properties of the newly postulated Barcelona-Catania-Paris (BCP) energy density
functional (EDF). The results obtained for three isotope chains of Mg, Dy, and Ra are compared to the available
experimental data as well as to the results of the Gogny-D1S force. Results for the fission barrier of 240Pu are
also discussed.
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In a recent work [1] we have shown that a fully microscopic
input from nuclear and neutron equation of state (EOS)
calculations [2] complemented by additional terms accounting
for finite size effects, to nuclear density functional theory
(DFT) can be very successful. The density functional for the
ground state energy E of a nucleus, we considered in [1], is of
the form

E = T0 + Es.o. + E∞
int + EFR

int + EC, (1)

where T0, E
s.o., EC are the standard expressions for kinetic

energy, spin-orbit term, and Coulomb energy. The dependence
on proton and neutron densities in E∞

int is the one obtained from
the microscopic calculation [2] and treated in the local density
approximation. We added a finite range (FR) term to account
for a more physical, i.e., wider density profile and, therefore,
a more correct value of the surface energy

EFR
int [ρn, ρp] = 1

2

∑
t,t ′

∫ ∫
d3rd3r ′ρt (r)vt,t ′ (r − r′)ρt ′(r′)

− 1

2

∑
t,t ′

γt,t ′

∫
d3rρt (r)ρt ′ (r) (2)

with t = proton/neutron and γt,t ′ the volume integral of
vt,t ′ (r). The second term in the right-hand side (r.h.s.) of
Eq. (2) is introduced to preserve the nuclear matter properties
of the microscopic calculation in the bulk. For the finite
range form factor vt,t ′ (r) we made a simple Gaussian ansatz,
that is vt,t ′ = Vt,t ′e

−r2/r2
0 . We chose a minimum of three

open parameters: Vp,p = Vn,n = VL, Vn,p = Vp,n = VU , and
r0. The values of these parameters together with the spin-orbit
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strength can be found in [1]. For the pairing part of the
interaction we simply take the density dependent delta force
studied in [3] for an effective mass equal to the bare one. The
parameters VL, VU , and r0 as well as the spin-orbit strength W0

were adjusted in the usual way to reproduce the ground state
energy of only some selected spherical nuclei (BCP1) and,
additionally, some experimental charge radii (BCP2). With this
so-called Barcelona-Catania-Paris (BCP) functional excellent
results for 161 even-even spherical nuclei with rms values
for ground state energies and charge radii, comparable with
the most performing functionals on the market [4–7], were
obtained.

In this Rapid Communication we continue investigating the
properties of the BCP functional and explore how deformation
properties of nuclei are described. We will find that the
performance is again excellent, as well in comparison with
experiment as in comparison with the results of the very
successful Gogny D1S force [4]. We have computed the
potential energy surfaces (PES) as a function of the axially
symmetric quadrupole deformation of several isotopes of the
magnesium, dysprosium, and radium species with the idea
in mind of covering different regions and different nuclear
scenarios of the nuclide chart. To finish these exploratory
calculations we have considered also the fission barrier of
the heavy nucleus 240Pu which is very sensitive to quadrupole
deformation properties.

As it is customary in this kind of calculations the HFB
equation has been recast as a minimization process of the
energy density functional where the HFB wave function of
the Bogoliubov transformation [8] is chosen to minimize
the energy. The variational set of HFB wave functions is
given by means of the standard Thouless parametrization [8].
The minimization process is performed by using the gradient
method as it allows an easy and efficient implementation of
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constraints by using the technique of Lagrange multipliers.
For the present exploratory calculations we have restricted the
calculation to configurations preserving axial symmetry (but
reflection symmetry breaking is allowed) in order to reduce the
computational effort. The quasiparticle operators are expanded
in a harmonic oscillator basis written as the tensor product of
one oscillator in the z direction with oscillator frequency ωz

and another in the perpendicular one and characterized by ω⊥.
Large enough basis (up to 26 shells in the z direction in the
case of fission) and optimization of the harmonic oscillator
lengths have been used to guarantee good convergence for the
values of all physical quantities.

In the calculations with the Gogny force the standard
approximations have been considered, namely the Coulomb
exchange contribution to the energy has been replaced by
the Slater approximation and the Coulomb pairing field has
been neglected. The two body kinetic energy correction has
been fully taken into account. For details pertaining the
implementation of the HFB procedure and center of mass
correction with the BCP functional, see Ref. [1].

We have performed calculations of the potential energy
surface (PES), as a function of the mass quadrupole moment
Q20, of several isotopes of the nuclei of magnesium, dyspro-
sium, and radium. The idea is to explore some representative
nuclei distributed all over the nuclide chart. We have compared
the results of the calculations with the BCP energy density
functional (parametrizations BCP1 and BCP2) with those
obtained by using the D1S Gogny force which is considered
here as a benchmark. For the Mg isotopes we have computed
the even mass ones between A = 20 and A = 40 (covering the
N = 8 and N = 20 neutron shell closures). For the dysprosium
isotopes we have computed the ones from A = 140 (N = 74)
up to A = 170 (N = 104). Finally, for the radium isotopes
we have considered isotopes between A = 216 (N = 128) up
to A = 236 (N = 148). In Fig. 1 we have plotted the PES
(as a function of the β2 deformation parameter, defined as

β2 =
√

4π
5

Q20
〈r2〉 ) of some representative nuclei. As the results

obtained with BCP1 and BCP2 parametrizations are almost
identical, only the first ones are shown. The first noticeable
fact is that in all the nuclei studied the two curves look
rather similar showing minima, maxima, and saddle points
almost at the same β2 values. However, the relative energy
of those configurations obtained with BCP1 is different from
the one with the Gogny force. According to the number of
neutrons we can distinguish two different regions: the first
one corresponds to neutron numbers greater than the midshell
value, where there are differences in the prolate side between
Gogny and BCP which extend up to rather high β2 values of
around 0.5. Examples of this behavior are the nuclei 26Mg
(N = 14), 32Mg (N = 20), and 144Dy (N = 78). The second
region corresponds to neutron numbers lower than the midshell
value where the spherical configuration lies, in the Gogny case,
at an energy higher than in the BCP results and the difference
increases as N increases. This means that the deformation
energy Edef , defined as the energy difference between the
spherical configuration and the deformed ground state, is
larger for the Gogny force than for the BCP functional. As
a consequence of this behavior the excitation energy of the
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FIG. 1. The potential energy surfaces (PES) of some representa-
tive nuclei as a function of the β2 deformation parameter (full line,
BCP1 functional; dashed one Gogny-D1S force). In all cases the zero
of the curves refers to their absolute minimum.

oblate minimum is higher with the Gogny interaction than
with the BCP functional, reaching the difference roughly a
factor of two, as in the example shown of 228Ra. Examples
of this behavior shown in Fig. 1 are 154Dy, 164Dy, 228Ra,
and 236Ra. Finally, for some nuclei close or at shell closure
like 218Ra shown in Fig. 1 the two PES are rather similar.
These systematic differences observed between Gogny and
BCP1 could be a consequence of the different surface energy
coefficient aS . Its value is pretty similar for BCP1 and BCP2,
aS = 17.74 MeV and 17.84 MeV, respectively, and differ by
2% from the Gogny D1S value of aS = 18.2 MeV [9]. This
minute difference could be enough to explain the observed
differences (see [5] for a study of its effect on fission barriers).
It has to be mentioned that the values given here for aS were
computed including the spin-orbit interaction and therefore
the Gogny D1S value is 0.8 MeV lower than the value given
in [5]. Another possible explanation for the differences in the
excitation energy of prolate and oblate minima could be the
lower level density obtained with the Gogny force (effective
mass ratio of 0.7) as compared with the one of the BCP
functional (effective mass equal to the physical one) that makes
shell gaps stronger (see below). The deformation energy Edef

also depends on the amount of pairing correlations (see, for
example, Ref. [10]) in such a way that the stronger the pairing
correlations are the smaller the value of Edef . It turns out that
the particle-particle correlation energy Epp = Tr(�κ), which
is a measure of pairing correlations, is typically 30 to 40%
stronger in the Gogny-D1S case. However, its effect on Edef is
not strong enough as to overcome the other effects mentioned
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above that lead to an increase of the deformation energy of
Gogny D1S with respect to BCP.

Concerning the physics, we observe in Fig. 1 how shape
coexistence in 26Mg with its oblate ground state appears
in both the BCP and D1S calculations. We also observe
the shoulder precursor of the deformed ground state after
angular momentum projection in 32Mg as well as the prolate
ground state that develops in heavier than 32Mg isotopes as a
consequence of neutrons populating the fp shell (see 38Mg).
In the case of Dy we have two examples of shape coexistence
with an oblate ground state (144Dy) and a prolate one (154Dy) as
well as a well deformed system like 164Dy. Shape coexistence
also appears in 142Dy (not shown) but in this case BCP predicts
a prolate g.s. whereas Gogny predicts an oblate one. Finally in
the lower row of Fig. 1 we have several Ra isotopes ranging
from the spherical 218Ra showing an excited superdeformed
minimum, to the reasonably well deformed 228Ra and 236Ra
where the excitation energies of the oblate minima are quite a
bit higher in the case of the Gogny force than with the BCP
functional.

In Fig. 2 we have displayed the magnitude of several
physical quantities corresponding to the ground state of the
computed Dy isotopes, using the two BCP functionals and the
D1S force. In the lower panel of this figure the two neutron
separation energies are plotted. The typical discontinuity at
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FIG. 2. Mean field results for the self-consistent minimum of
all the Dy isotopes considered. In the lower panel the two neutron
separation energy S2N is shown against the mass number of the
isotopes along with the experimental data. In the next panel
the quantity δr = 〈r2〉1/2 − √

3/5 × 1.2 × A1/3 is depicted. In the
following panel the axis ratio η (see text for details) is represented.
Finally, in the upper panel the deformation energy Edef is plotted.

the semimagic nucleus 148Dy (N = 82, Z = 66) is clearly
observed. As is usual with effective mean field approaches,
our predictions do not compare well with experiment when
close to a semimagic configuration. However, the agreement
is much better for well-deformed systems. The absolute values
of the binding energies agree well in all the cases and, as an
example, we can mention that in a calculation with a basis of
15 shells the binding energies of 160Dy are −1305.894 MeV
for BCP1, −1305.607 MeV for BCP2, −1304.288 MeV for
D1S whereas the experimental value is −1309.457 MeV. The
theoretical results do not include any kind of correlation energy
beyond mean-field like the rotational energy correction that can
be estimated to be 2.18 MeV for BCP and 3.16 MeV for D1S.
In the next panel of Fig. 2 a quantity related to the mean square
radius, namely δr = 〈r2〉1/2 − √

3/5 × 1.2 × A1/3, is plotted.
We observe that the three theoretical predictions compare
rather well with experimental data and surprisingly the radii
are closer to experiment in well deformed nuclei which were
not considered in the original fit [1]. The different result
obtained in 142Dy for BCP1 and BCP2 (and D1S) is due to the
almost degenerate oblate and prolate minima in this nucleus:
with BCP1 the ground state is prolate whereas it is oblate
with BCP2 and Gogny-D1S. In the next panel the axis ratio
η = (〈z2〉/〈x2〉)1/2 which is a measure of deformation (β2 =√

4π
5

η2−1
η2+2 ) (η > 1 for prolate deformation, η < 1 for oblate

deformations and η = 1 for spherical states) is plotted. As in
previous cases, the agreement between the three theoretical
results is very good confirming what was said in discussing
Fig. 1 about the coincidence of the position of maxima
and minima of the PES. Finally in the upper panel the
deformation energy Edef is shown. The Gogny-D1S values
for this magnitude are systematically larger by a few MeV
than the BCP ones as discussed previously.

The results for the self-consistent ground state in the Mg
isotopes is depicted in Fig. 3 where we have only plotted the
curves for S2N and δr . The two additional quantities shown in
the case of the Dy isotopes have a similar behavior for the Mg
nuclei and are not presented here. Again, we observe for the
S2N a reasonably good agreement with experiment which is of
the same quality for the three schemes. The theoretical radii

20 24 28 32 36 40
A

0

5

10

15

20

25

30

35

S
2N

 (
M

eV
)

Exp
BCP1
GOG-D1S

0.2
0.4
0.6

δ 
r

FIG. 3. Same as Fig. 2 but for the Mg isotopes and only the two
lower panels.
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FIG. 4. Same as Fig. 3 but for the Ra isotopes.

also look rather similar in all the theoretical approaches and
compare well with the scarce experimental values.

In Fig. 4 we show the self-consistent results for the S2N

of the Ra isotopes. The results for the isotopes 220−226Ra
include octupole deformation in their ground state with β3

values of the order of 0.15 for all the cases considered. It
is not the scope of the present work to discuss octupole
deformation in detail but it is worth pointing out that also this
deformation multipole comes out quite the same independent
of the force or functional considered. The theoretical S2N

results look rather similar except for the nucleus 218Ra which
is close to the semimagic 214Ra. As it was discussed before,
the two neutron separation energies have a somewhat erratic
behavior around semimagic configurations. Most surprising
is the region around A = 226–228 where the theoretical
predictions move away from experimental values. Concerning
the radii a good agreement between the results obtained with
BCP, Gogny, and the experiment is observed.

In Fig. 5 we display the potential energy surface (PES) as
a function of the quadrupole moment corresponding to the
fission process of the nucleus 240Pu computed using the two
BCP functionals and the Gogny force. As it is customary in
this kind of calculations [11] the rotational energy correction
computed with the Yoccoz moment of inertia has been included
in the PES. It can be concluded from this figure (lower panel)
that the PES obtained with the BCP1 and BCP2 functionals
are very similar and both closely follow the shape of the
Gogny D1S PES up to the second minimum. The heights
of the fission barriers provided by both the BCP1 and BCP2
functionals are lower than the one calculated with D1S, as it is
expected from the lower surface energy values of BCP reported
above. The smaller values of the fission barriers for the BCP
functional results go in the right direction as compared to the
experimental estimations [12,13] but the effect of triaxiality
in the first barrier in the case of the BCP functional remains
to be studied. The impact in the spontaneous fission half-life
tSF of 240Pu is also uncertain as this quantity not only depends
on the topology of the PES but also on the collective inertia
that has not been considered here. Preliminary calculations not
including triaxiallity (therefore producing too high values for
the half-life) yield tSF = 1.2 × 1028s for BCP1, 1.1 × 1027s

240Pu
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FIG. 5. Fission properties for the nucleus 240Pu computed with
the two parametrizations of the BCP functional as well as with the
Gogny-D1S force. In the lower panel the potential energy surfaces
are depicted as a function of the quadrupole moment and with respect
to a reference energy of −1810 MeV. In the upper panel the octupole
and hexadecapole moments are presented.

for BCP2, and 1.5 × 1026s for D1S. Therefore it seems that
the larger values of the collective inertia obtained for the BCP
functionals (consistent with their lower pairing correlations)
somehow counteract their lower fission barriers providing
a longer half-life Although the shapes involved in fission
are mainly characterized by its quadrupole moment, higher
multipole deformations can be important for describing some
fine details of the nuclear dynamics. In the top panel of Fig. 5
the expectation values of the octupole and hexadecapole
moments are displayed as a function of Q20 and striking
similarity between the three results is observed.

The similarity between the results obtained with the BCP
functionals and the Gogny force calls for a comparison of the
underlying single particle structure that, as is well known,
is essential in determining the response of the system to
deformation. The most thorough comparison would involve
the analysis of the single particle energy plots as a function
of quadrupole deformation (Nilsson diagrams) but this is a
demanding task that is deferred to a longer publication. We
just want to mention here that the most relevant feature of
the Nilsson diagrams, namely the shell gaps determining
the location of minima are rather similar for both the BCP
functionals and the Gogny force. This is so in spite of the
different effective mass ratios m∗/m in the two cases, one
for the BCP functionals and 0.7 for Gogny-D1S, that imply
a higher level density in the former case. To illustrate the
different level densities we have plotted in Fig. 6 for the
nucleus 160Dy the single particle levels at sphericity (Q20 = 0)
for BCP1 and Gogny-D1S both for protons and neutrons. The
higher level density of BCP’s single particle levels is clearly
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FIG. 6. Spherical single particle energies for protons (left panel)
and neutrons (right panel) for the nucleus 160Dy. The results for the
BCP1 functional and the Gogny force (GOG) are given. To help
identify the levels their labels alternate their position with respect to
the line assigned to them.

observed. Results for BCP2 are not included, since they are
very similar to the ones of BCP1.

We have analyzed by means of a few selected examples
the performance of the new BCP functional in what concerns
quadrupole deformation. The tests performed are quite de-
manding as they include fission barriers for Pu or quadrupole
properties over a wide range of isotopes in various regions of
the nuclide chart. We have compared the results of our mean
field calculations with experimental data whenever possible
and found good agreement comparable to the one obtained
for spherical magic or semimagic nuclei. Other quantities not
directly related to experiment like the topology of the potential
energy surfaces have been compared to the results of a well
performing force and with long tradition in the field, namely
the Gogny-D1S force and the results are comparable and of
the same quality. Minor differences could be attributed to a
slightly lower surface tension for BCP compared to D1S and to
the different pairing interactions used. From these exploratory
calculations we can conclude that the BCP functional with the
BCP1 and BCP2 parametrization can be used with confidence
in the study of nuclear properties related to deformation.
Obviously a more thorough study of the BCP functional with
respect to deformation has to be carried out as, e.g., the
study of octupole deformation, triaxiallity, collective inertia,
including the moment of inertia, etc. Work in this direction is
underway.
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