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Abstract

In this paper, how to obtain stochastic differential equations by using Itô Stochastic
integrals is treated. We will refer to stochastic differential equations as SDE. Then,
the theory inderlying the Itô calculus is carefully studied and a thorough analysis of
the relationship of the class of processes M2 and the space of integrable functions
L2 is considered. Moreover, under which assumptions a solution of a SDE exists
and is unique is provided. Some particular cases of Itô stochastic integrals and
SDE are guaranteed throughout a sequence of examples that are linked up with the
abstract theory. Finally, the basic ideas and techniques underpinning the simulation
of stochastic differential equations are shown. In particular, the Euler-Maruyama
method is presented and suitable simulation scenarios are derived from the SDE
models developed.

Resum

En aquest treball s’estudia la manera d’obtenir equacions diferencials estocàstiques
usant integrals estocàstiques d’Itô. Es tracta doncs la teoria que compren el càlcul
estocàstic d’Itô i es fa un profund i rigurós anàlisi de la relació entre la classe de
processos estocàstics M2 i l’espai de funcions integrables L2. A més, es proveeixen
condicions per l’existència i unicitat de solucions d’una equació diferencial estocàstica.
Es garanteixen també alguns casos particulars d’integrals estocàstiques d’Itô i d’equa-
cions diferencials estocàstiques, els quals són donats a través de seqüències d’exemples
vinculats amb la teoria més abstracta. Finalment, es donen les idees i tècniques
bàsiques subjacents a la simulació d’equacions diferencials estocàstiques. En par-
ticular, es presenta el mètode d’Euler-Maruyama i es deriven els escenaris necesaris
per a realitzar simulacions per cada un dels models d’equacions diferencials es-
tocàstiques desenvolupats.





Acknowledgments/Agräıments
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Chapter 1

Introduction

The history of stochastic differential equations and most of the formal development
of this theory began in 1942 when Kiyosi Itô published the paper On stochastic pro-
cesses (Infinitely divisible laws of probability) in the Japanese Journal of Mathemat-
ics. The tools provided for this work are considered fundamentals today, and it im-
plies that the name of the japanese mathematician K. Itô must be a reference when
one is referred to the theory and applications of stochastic differential equations.
The importance of K. Itô on the development of stochastic differential equations may
be sumarized with the following citation, given in [5], and complemented with a pic-
ture in his honour:

Figure 1.1: Kiyosi Itô

In 1942, Dr. Itô began to reconstruct from
scratch the concept of stochastic integrals, and
its associated theory of analysis. He cre-
ated the theory of stochastic differential equa-
tions, which describe motion due to random
events.

Even so, the mathematical notion of stochastic differential equations is meaningless
without the notion of stochastic integration. Therefore, digging a little bit deeper
into the notion of stochastic integration one must dates back as far as the 19th
century. Namely, as far as 1827, when the botanic Robert Brown noticed, under
his microscope, the highly irregular random movement of particles within pollen
in a water drop. However, such randomness was not formalized until 1905, when
Albert Einstein provided a satisfactory explanation of the Brownian motion via
kinetic theory. The rigorous mathematical construction of a stochastic process as
a model for such motion is due to the mathematician Norbert Weiner; in recog-
nition of his construction, Brownian motion is sometimes referred to as Wiener

5
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process. Nevertheless it was not until 1931 when Kolmogorov, with the theory of
Markov processes, motivate the beginning of what is known nowadays as the theory
of stochastic integration [7, p. 1-2].

The theory developed in this paper concerns stochastic processes, understood in
the sense of random evolutions governed by time (continuous or discrete time). A
brief outline of the main objectives of this paper could be:

• Firstly, to define the Itô stochastic integral for the yet to be defined class of
random step processes M2

step and for a larger class of processes, denoted by
M2.

• Secondly, to derive the notion of stochastic differential equations from the
notion of stochastic integral equations and give a result on the existence and
uniqueness of a solution for a SDE in the class of the yet to be defined Itô
processes.

• Finally, to exemplify the applicability of stochastic differential equations to
engineering, in particular, to textile industry.

To start writing the very first part of this paper, I followed the advice of my thesis
advisor Dr. Carles Rovira along with the book I started to work with, called Basic
Stochastic Processes. The outcome of all the above together is a review on Brownian
motion, which covers the second chapter of this work. In this part, the stochastic
nature of Brownian motion is studied because it is needed to develop the following
chapters. Also, two key properties relating to stochastic integration properties are
included which are (1) the paths of Brownian motion have non zero finite quadratic
variation, such that on an interval (s, t) the quadratic variation is (t − s) and (2)
the variation of the paths of a Brownian motion is infinite almost surely.

In the third chapter I get deeper into the study of the Itô calculus, giving firstly an
example illustrating that a different integral aside of the Riemann integral needs to
be constructed and secondly, a definition of the Itô stochastic integral for impor-
tant and thorough classes of stochastic processes such as M2

step and M2. Also, it is
shown that an Itô stochastic integrals is a martingale with respect to the filtration
Ft = σ{W (s) : 0 ≤ s ≤ t} and straightforward results for a stochastic process
to belong to M2

step and M2 are given and proved. Moreover, as an application to
illustrate the theory, I have had to adapt some of the examples given in the book
Introduction to Stochastic Integration of H. Kuo to give some basic examples of Itô
Stochastic integrals and finally, I summarize the basic properties of the Itô integral.

In the second part of Chapter 3, a potential tool to solve stochastic differential
equations known as Itô formula is studied and the notion of stochastic differential
equation is given. Furthermore, as said previously, a result on the existence and
uniqueness of solutions for a SDE in the class of the yet to be defined Itô processes.
Finally, several examples showing that Itô formula works beautifully to find the
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solution of a SDE are work out. In this part, I also attempt to shed some light
into possible future work, which could be related for instance to explosion time of
solutions of SDE or to venture myself into a profound analysis of the Itô formula
and its applications.

For the presentation of the fourth chapter, I worked quite hard to find out a suit-
able SDE model to cover the application part of this project. I finally found in [1]
a model for cotton fiber breakage. Then, I searched out for more information and I
got amazed of three works: [2], [3] and [16], which are a basic reference for this part.
A population model for cotton fiber having different length is then constructed from
two different procedures. The first procedure is a natural extension of the proce-
dure used for many years in modeling deterministic dynamical processes, whereas
the second procedure is potentially based on determining all the different random
changes that may occur in the system. In this part, a complete study of each pro-
cedure is done and an attempt to explain their equivalence is made. Furthermore,
an approximation model to test SDE models is introduce and simulations are work
out.



Chapter 2

Brownian motion

The aim of this chapter is to introduce the one-dimensional Brownian motion. In
the first section we focus on defining Brownian motion and consider its basic prop-
erties. In particular we look at properties of the increments of a Brownian motion.
In the second section, the sample paths properties (i.e those properties which hold
with probability one) of such processes are studied. Finally, we give a result that
enable us to motivate the definition of the stochastic integrals presented in the next
chapter.

Throughout this chapter we have fixed a probability space (Ω,F , P ) where Ω is a
sample space, F is a set with structure of σ-field and P is a probability measure.
The terminology comes from [4], which is a basic reference for this chapter and the
next. For finding out more information about probability theory we refer to a basic
notes on Stochastic Processes [11].

2.1 Definition and Basic Properties

Definition 2.1. A stochastic process is a family of random variables ξ(t)
parametrized by t ∈ T , where T ⊂ R is called the parameter set. The index t
represents time, and one shall think of ξ(t) as the state of the process at time t.
When T = {1, 2, . . .} we shall say that ξ(t) is a stochastic process in discrete time.
When T is not countable, we shall say that ξ(t) is a stochastic process in continuous
time. In the latter case the usual example is T = [0,∞) or T = [a, b] ⊂ R.
For every ω ∈ Ω the mapping

t 7→ ξ(t, ω)

is called a path (or sample paths) of ξ(t).

The definition of Brownian motion is given in terms of its increments. Then, let us
recall the notion of independent increments of a stochastic process.

Definition 2.2. We say that a stochastic process ξ(t), where t ∈ T , has independent
increments if

ξ(t1)− ξ(t0), . . . , ξ(tn)− ξ(tn−1)

8



9

are independent for any t0 < t1 < · · · < tn such that t0, t1, . . . , tn ∈ T .

Definition 2.3. The Brownian motion is a continuous time stochastic process
{W (t), t ≥ 0} that satisfies the following conditions:

(i) W (0) = 0 a.s.;

(ii) the paths t 7−→ W (t) are continuous a.s.;

(iii) for 0 ≤ s < t <∞, the increment W (t)−W (s) is independent of W (s);

(iv) for 0 ≤ s < t < ∞, the increment W (t) −W (s) has the normal distribution
with mean 0 and variance t− s.

We now give some definitions and results concerning the increments of Brownian
motion.

Definition 2.4. A stochastic process ξ(t), where t ∈ T , is said to have stationary
increments if for any s, t ∈ T with s ≤ t, the increment ξ(t) − ξ(s) has the same
probability distribution as ξ(t− s)− ξ(0).

Proposition 2.1. Since for any 0 ≤ s < t < ∞, W (t) − W (s) has the normal
distribution with mean 0 and variance t−s the Brownian motion W (t) has stationary
increments.

Proposition 2.2. For any 0 = t0 ≤ t1 ≤ . . . ≤ tn the increments

W (t1)−W (t0), . . . ,W (tn)−W (tn−1)

are independent random variables.

Remark 2.1. Let s, t ∈ [0,∞). Then, from condition (iv) in Definition (2.3) it
follows that

E
(
|W (t)−W (s)|2

)
= |t− s|.

Definition 2.5. The σ-field Fs is known as the filtration generated by {W (r) : 0 ≤
r ≤ s}. In other words, Fs represents our knowledge at time s and it contains all
events {W (r), 0 ≤ r ≤ s} such that at time s it is possible to decide whether W (r)
has occurred or not.

Corollary 2.1. For any 0 ≤ s ≤ t the increment W (t) −W (s) is independent of
the σ-field

Fs = σ{W (r) : 0 ≤ r ≤ s}

Definition 2.6. A continuous time stochastic process {ξ(t), t ≥ 0} is adapted to
a filtration {Ft, t ≥ 0} if for all t ≥ 0 the random variable ξ(t) is measurable with
respect the σ-field Ft.

The following result, given without proof, shows that the Brownian motion can also
be characterized by its martingale properties. Let us recall the notion of martingale.
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Definition 2.7. A stochastic process ξ(t) parametrized by t ∈ T is called a mar-
tingale with respect to a filtration Ft if it holds

(i) ξ(t) is integrable for each t ∈ T ;

(ii) ξ(t) is Ft-measurable for each t ∈ T ;

(iii) E(ξ(t)|Fs) = ξ(s) for every s, t ∈ T such that s ≤ t.

Theorem 2.1 (Lévy’s martingale characterization).
Let {W (t), t ≥ 0} be a stochastic process and let Ft = σ{W (s), s ≤ t} be the
filtration generated by it. Then W (t) is a Brownian motion if and only if the
following conditions hold:

(i) W (0) = 0 a.s. ;

(ii) the paths t 7−→ W (t) are continuous a.s;

(iii) W (t) is a martingale with respect to the filtration Ft;

(iv) |W (t)|2 − t is a martingale with respect to Ft.

We conclude this chapter by providing a result regarding the highly oscillatory
nature of the sample paths of the Brownian motion.

2.2 Sample paths

Let us consider tnj = jT
n

, and define the partition ∆n = {0 = tn0 < tn1 < · · · < tnn = T}
of the interval [0, T ] into n equal parts. We denote by

∆n
jW = W (tnj+1)−W (tni )

the corresponding increments of the Brownian motion W (t).

Definition 2.8. The variation of a function f [0, T ]→ R is defined to be

lim
∆t→0

sup
n−1∑
j=0

|f(tj+1)− f(tj))|

where t = (t0, t1, . . . , tn) is a partition of [0, T ], and where

∆t = max
0≤i≤n−1

|tj+1 − tj|.

Proposition 2.3. The sum of the increments of the Brownian motion converges to
T in L2. That is,

lim
n→∞

n−1∑
j=0

(∆n
jW )2 = T in L2.
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The limit above is said to be the quadratic variation of the Brownian motion. The
fact that Brownian motion has finite quadratic variation is used to proof the result
presented below. A proof of this result can be found in [10, Chapter 7, p. 36-37].

Theorem 2.2. The variation of the paths of a Brownian motion W (t) is infinite
a.s.

This result ensures that the paths of a Brownian motion have not bounded variation
with probability one. Therefore, integrals of the form∫ t

0

f(s) dW (s)

cannot be defined pathwise (that is, separately for each ω ∈ Ω) as in Lebesgue-
Stieltjes1 integral. For this reason, we will need to take advantage of the fact that
Brownian motions are random functions and one can make use of weaker forms of
limits. This is the approaching idea of defining such integrals described in the next
chapter.

1See [17, Chapter 1, p. 1] for the related definition of the Lebesgue-Stieltjes integral.



Chapter 3

Itô Stochastic Calculus

Our aim in this chapter is to provide a construction of the Itô stochastic integral
and to study stochastic differential equations. The construction of the Itô stochastic
integral will be made by steps and will resemble the construction of the Riemann
integral, where some restrictions will be needed. Once introduced the Itô stochastic
integral, several examples will be given and some properties will be presented.
Finally, we are going to look at stochastic differential equations (or SDE for short).
Namely, it will be described the class of Itô processes and it will be considered a
particular notation of writing such processes, the stochastic differential notation.
Then, we will introduce the so-called stochastic differential equations, that is, the
equation

dξ(t) = f(ξ(t)) dt+ g(ξ(t)) dW (t).

We will conclude this chapter proving the theorem of existence and unicity of solu-
tions of a SDE and giving some examples to illustrate the theory.
As in the previous chapter, W (t) will denote a Brownian motion adapted to a filtra-
tion Ft. The main concepts of this chapter hold relationship with Brownian motion,
so it is essential to be confident with its properties.

3.1 Itô Stochastic Integral: Definition

The construction of the Itô integral will be similar to the construction of the Rie-
mann integral. Firstly, we will define the integral for a class of piecewise constant
process called random step processes. Then, it will be extended to a larger class by
approximation.
The main differences between the Riemann and the Itô integral are the following:

• The type of convergence: The approximations of the Riemann integral con-
verges in R whereas the sequences of random variables approximating the Itô
integral will converge in L2.

• The definition of the sum approximating the integral: On the one hand, the
Riemann sums approximating the integral of the function f : [0, T ] → R are

12
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of the form
n−1∑
j=0

f(sj)(tj+1 − tj),

where 0 = t0 < t1 < . . . < tn = T and sj is an arbitrary point in the
subinterval [tj, tj+1] for each j. On the other hand, in the stochastic case the
approximating sums have the form

n−1∑
j=0

f(sj)
(
W (tj+1)−W (tj)

)
.

A problem that arises in the first approximating sums is that the value of the
Riemann integral does not depend on the choice of the points sj ∈ [tj, tj+1].
Nevertheless, the limit of the latter approximation does depend on the choice
of sj ∈ [tj, tj+1].

The next example shows the ambiguity resulting from different choices of the inter-
mediate points sj in each subinterval of the partition.

Example 3.1. Let f(t) = W (t) and 0 = tn0 < tn1 < . . . < tnn = T , where tnj = jT
n
,

be a partition of the interval [0, T ] into n equals parts. Then:

Ln =
n−1∑
j=0

W (tnj )
(
W (tnj+1)−W (tnj )

) L2

−−−→
n→∞

1

2
W (T )2 − 1

2
T (3.1)

and

Rn =
n−1∑
j=0

W (tnj+1)
(
W (tnj+1)−W (tnj )

) L2

−−−→
n→∞

1

2
W (T )2 +

1

2
T. (3.2)

To show (3.1) and (3.2) we will use the following identities

a(b− a) =
1

2
(b2 − a2)− 1

2
(a− b)2,

b(b− a) =
1

2
(b2 − a2) +

1

2
(a− b)2.

From the first identity we obtain

n−1∑
j=0

W (tnj )
(
W (tnj+1)−W (tnj )

)
=

1

2

n−1∑
j=0

(
W (tnj+1)2 −W (tnj )2

)
− 1

2

n−1∑
j=0

(
W (tnj+1)−W (tnj )

)2

=
1

2
W (T )2 − 1

2

n−1∑
j=0

(
W (tnj+1)−W (tnj )

)2
.
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Thus, by Preposition 2.3 the limit in L2 is

lim
n→∞

n−1∑
j=0

W (tnj )
(
W (tnj+1)−W (tnj )

)
=

1

2
W (T )2 − 1

2
T.

Straight forward application of the second identity enable us to write

n−1∑
j=0

W (tnj+1)
(
W (tnj+1)−W (tnj )

)
=

1

2

n−1∑
j=0

(
W (tnj+1)2 −W (tnj )2

)
+

1

2

n−1∑
j=0

(
W (tnj+1)−W (tnj )

)2

=
1

2
W (T )2 +

1

2

n−1∑
j=0

(
W (tnj+1)−W (tnj )

)2

which implies that

lim
n→∞

n−1∑
j=0

W (tnj+1)
(
W (tnj+1)−W (tnj )

)
=

1

2
W (T )2 +

1

2
T

in L2. In conclusion, by considering two different choices of intermediate points we
get different results.

To overcome this issue, we use the following reasoning: the value of the approxima-
tion should consist only of random variables adapted to Fj. This amounts to say
that the given approximation should depend only by what has happened up to time
t. Then, we shall use the left endpoint for the evaluation of the integrand, that is,
sj = tj for each j.

Let us now define the concept of random step process and its stochastic integral.

Definition 3.1. A random step process f(t) is a stochastic process

f(t) =
n−1∑
j=0

ηj1[tj ,tj+1)(t), (3.3)

where 0 = t0 < t1 < . . . < tn = 1 is a partition of [0, 1] and ηj are square integrable
random variables Ftj -measurable for j = 0, 1, . . . , n− 1. We note for M2

step the set
of random step processes.

Definition 3.2. The stochastic integral of a random step process f ∈M2
step of the

form (3.3) is defined by

I(f) =
n−1∑
j=0

ηj(W (tj+1)−W (tj)). (3.4)
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Remark 3.1. The map I : M2
step → L2 is linear. In other words; for any f, g ∈M2

step

and any α, β ∈ R
I(αf + βg) = αI(f) + βI(g).

Proposition 3.1. The stochastic integral I(f) of a random step process f ∈M2
step

is a square integrable random variable, i.e I(f) ∈ L2, such that

E
(
|I(f)|2

)
= E

(∫ ∞
0

|f(t)|2 dt
)
.

Proof. Similarly as in Section 1.3, let us denote the increment W (tj+1)−W (tj) by
∆jW and tj+1 − tj by ∆jt for brevity. Then

E
(
∆jW

)
= 0 and E

(
∆2
jW
)

= ∆jt.

Firstly, we compute the expectation of

|I(f)|2 =
n−1∑
j=0

n−1∑
k=0

ηjηk∆jW∆kW =
n−1∑
j=0

η2
j∆

2
jW + 2

∑
k<j

ηjηk∆jW∆kW.

Since ηj and ∆jW are independent, it holds

E(η2
j∆

2
jW ) = E(η2

j )E(∆2
jW ) = E(η2

j )∆jt.

Also, if k < j, then ηjηk∆k and W∆j are independent, so

E(ηjηk∆kW∆jW ) = E(ηjηk∆kW )E(∆jW ) = 0.

Putting all together we have

E

(
|I(f)|2

)
=

n−1∑
j=0

E(η2
j )∆jt.

Consequently, as η0, η1, . . . , ηn−1 belong to L2, it follows that I(f) belongs to L2.

On the other hand,

|f(t)|2 =
n−1∑
j=0

n−1∑
k=0

ηjηk1(tj ,tj+1](t)1(tk,tk+1](t) =
n−1∑
j=0

η2
j1(tj ,tj+1](t),

which implies

E

(∫ ∞
0

|f(t)|2dt
)

=
n−1∑
j=0

E(η2
j )∆jt.

This means that

E
(
|I(f)|2

)
= E

(∫ ∞
0

|f(t)|2 dt
)

as desired. �
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The stochastic integral I(f) has been defined for any random step process f ∈M2
step

and has been proven that I(f) ∈ L2 . Now, we want to look at a larger class of
processes, which is described below, and define the stochastic integral I(f) for such
class by approximation.

Definition 3.3. We denote by M2 the class of stochastic processes f(t), t ≥ 0 such
that

E

(∫ ∞
0

|f(t)|2dt
)
<∞

and there is a sequence f1, f2, . . . ∈M2
step of random step processes satisfying

lim
n→∞

E

(∫ ∞
0

|f(t)− fn(t)|2dt
)

= 0. (3.5)

In this case we shall say that f is approximated by the sequence of random step
processes f1, f2, . . . in M2.

Definition 3.4. We call I(f) ∈ L2 the Itô stochastic integral (from 0 to ∞) of
f ∈M2 if

lim
n→∞

E
(
|I(f)− I(fn)|2

)
= 0 (3.6)

for any sequence f1, f2, . . . ∈ M2
step of random step processes that approximates

f ∈ L2, i.e which holds (3.5). Indistinctly we shall also write∫ ∞
0

f(t) dW (t)

instead of I(f).

Remark 3.2. By definition of the norm in L2, we have

E
(
|I(f)− I(fn)|2

)
= ||I(f)− I(fn)||L2 .

Thus, equality (3.6) can be stated as follows

lim
n→∞

||I(f)− I(fn)||L2 = 0

for any sequence f1, f2, . . . ∈ M2
step of random step processes that approximates

f ∈ L2. In other words, the processes for which the stochastic integral exists have
been defined as those that can be approximated by random step processes.

The following preposition ensures the existence of the Itô stochastic integral for any
f ∈ M2. Furthermore, it gives rise to the strong relationship between the class of
stochastic processes M2 and the space of integrable functions L2 in terms of their
expectations.
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Proposition 3.2. For any f ∈ M2 the stochastic integral I(f) ∈ L2 exists, is
unique1 and satisfies

E
(
|I(f)|2

)
= E

(∫ ∞
0

|f(t)|2dt
)
. (3.7)

Proof. Let us first write the norms of f and η, for any f ∈ M2 and η ∈ L2. These
norms2 are in M2 and L2, respectively, and have the form:

||I(f)||M2 =

√
E

(∫ ∞
0

|f(t)|2dt
)

and ||η||L2 =
√
E(η2).

On the one hand, we set a sequence of random step processes f1, f2, . . . ∈ M2
step

approximating f ∈ M2, i.e satisfying equality (3.5), which can also be formulated
as

lim
n→∞

||f − fn||M2 = 0. (3.8)

On the other hand, we claim that I(f1), I(f2), . . . is Cauchy sequence in L2. Indeed,
due to (3.8), for any ε > 0 there is an N such that for all n ≥ N, ||f − fn||2M < ε
and for any m,n > N

||I(fm)− I(fn)||L2 = ||I(fm − fn)||L2

= ||fm − fn||M2

≤ ||f − fm||M2 + ||f − fn||M2

< ε
2

+ ε
2

= ε.

where in the first step we have used the linearity of the stochastic integral (see
Remark 3) and in the second, Preposition 3.1. Therefore, I(f1), I(f2), . . . is Cauchy
sequence in L2.

Now, since L2 with the norm || · ||L2 is a complete space, every Cauchy sequence has
its limit. It follows that I(f1), I(f2), . . . has a limit in L2 for any sequence f1, f2, . . .
of random step processes approximating f .

It remains to prove the uniqueness of the limit for all sequences. Suppose that
f is approximated by two sequences of random variables, namely f1, f2, . . . and
g1, g2, . . . Then, the interlaced sequence f1, g1, f2, g2 . . . approximates f too and
reasoning as above the sequence I(f1), I(g1), I(f2), I(g2), . . . has its limit in L2.

1note that I(f) is unique as an element of L2, meaning uniqueness within equality a.s.
2We adapt the wide used notation of identifying these norms with any element of a class of

functions as a representative, from M2 and L2 respectively, determined by the relation of equality
a.s.
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As a consequence, all subsequence of the latter sequence has the same limit. In
particular, the sequences f1, f2, . . . and g1, g2, . . . have the same limit in L2, which
we denote by I(f).
Then, by Remark 3.2,

lim
n→∞

||I(f)− I(fn)||L2 = 0 (3.9)

for any sequence f1, f2, . . . ∈ M2
step of random step processes that approximates

f ∈ L2. Moreover, since fn are random processes for each n, Preposition 3.1 holds
and we have

||I(fn)||L2 = ||fn||M2 .

From equalities (3.8) and (3.9), taking the limit as n → ∞ in the last equality we
can conclude that

||I(f)||L2 = ||f ||M2

and the proof is complete. �

Example 3.2. For any random step processes f, g ∈M2 it can be seen that

E
(
I(f)I(g)

)
= E

(∫ ∞
0

f(t)g(t) dt

)
.

It is enough to consider suitable scalar products inM2 and L2 and to use Proposition
3.2. Let us present the following scalar products in M2 and L2:

〈f, g〉M2 = E

(∫ ∞
0

|f(t)g(t)|2 dt
)

and 〈η, ζ〉L2 = E(ηζ)

for any f, g ∈M2 and η, ζ ∈ L2. They can be expressed in terms of the correspond-
ing norms defined in the proof of Proposition 3.2,

〈f, g〉M2 =
1

4
||f + g||2M2 −

1

4
||f − g||2M2 ,

〈η, ζ〉L2 =
1

4
||η + ζ||2L2 −

1

4
||η − ζ||2L2 .

Finally, applying Proposition 3.2 we have

〈f, g〉M2 = 〈η, ζ〉L2

which amounts to the equality to be proved.

A question we may wonder is whether we can consider stochastic integrals over any
finite time interval [0, T ] or not. The answer is yes, and it stems from the fact that
we can restrict the class of stochastic processes M2 to any finite time interval [0, T ]
via indicator functions of such time interval.
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Definition 3.5. For any T > 0 we shall denote by M2
T the space of all stochastic

processes f(t), t ≥ 0 such that
1[0,T )f ∈M2.

The Itô stochastic integral (from 0 to T ) of f ∈M2
T is defined by

IT (f) = I(1[0,T )f).

Indistinctly we shall also write ∫ T

0

f(t) dW (t)

instead of IT (f).

Before we proceed to discuss a straightforward result for a stochastic process to
belong to M2 and M2

T , let us present a useful proposition.

Proposition 3.3. Each random step process f ∈M2
step belongs to M2

t for any t > 0
and

It(f) =

∫ t

0

f(s) dW (s) (3.10)

is a martingale with respect to the filtration Ft = σ{W (s) : 0 ≤ s ≤ t}.

Proof. It is easy to see that if f ∈ M2
step then 1[0,t]f ∈ M2

step ⊂ M2 for any t > 0.
This implies that f ∈M2

t for any t > 0.
We now need to verify that It(f) is a martingale with respect to the filtration Ft.
Let 0 ≤ s < t, by definition of random step process (see Definition 3.3) f ∈ M2

step

can be written as

f =
m−1∑
j=0

ηj1(tj ,tj+1](t)

where
0 = t0 < . . . < tk = s < tk+1 < . . . < tm = t < tm+1 < . . . < tn

is a partition of [0, tn]. We shall denote the increments of the Brownian motion
W (tj+1)−W (tj) by ∆jW as in the proof of Proposition 3.1 for brevity. Then

1[0,t]f =
m−1∑
j=0

ηj1(tj ,tj+1]

and

It(f) = I(1[0,t]f) =
m−1∑
j=0

ηj∆jW,

where ηj are square integrable random variables Ftj -measurable for j = 0, . . . ,m−1.
Thus, It(f) is adapted to Ft and square integrable, and so integrable.
Proving that It(f) is a martingale with respect to the filtration Ft amounts to
proving that

E(It(f)| Fs) = Is(f) (3.11)
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Let us show (3.11): We have

E(It(f)|Fs) = E(I(1[0,t]f)|Fs) =
m−1∑
j=0

(ηj∆jW |Fs).

If j < k, then ηj and ∆jW are Fs-measurable and

E(ηj∆jW ) = ηj∆jW.

If j ≥ k, then Fs ⊂ Ftj and

E(ηj∆jW |Fs) = E(E(ηj∆jW |Ftj)| Fs)
= E(ηjE(∆jW |Ftj)|Fs)
= E(ηj|Fs)E(∆jW ) = 0,

since ηj is Ftj -measurable and ∆jW is independent of Ftj . The above give rise to

E(It(f)|Fs) =
k−1∑
j=0

ηj∆jW = I(1[0,s]f) = Is(f)

which is indeed Equation (3.11) as desired. �

For practical purposes, to find a straightforward condition for existence of the Itô
stochastic integral is of special importance. That is because is not always easy to
find a sequence of random step processes that converges to a stochastic process of
the class either M2 or M2

T . Hereupon, we present a theorem that provides this
straightforward condition.

Theorem 3.1. Let f(t), t ≥ 0 be a stochastic process with a.s continuous paths
adapted to a filtration Ft. Then

1) f ∈M2, i.e the Itô integral I(f) exists if

E

(∫ ∞
0

|f(t)|2 dt
)
<∞; (3.12)

2) f ∈M2
T , i.e the Itô integral IT (f) exists if

E

(∫ T

0

|f(t)|2 dt
)
<∞. (3.13)

The notion of Jensen’s inequality for integrals and a result that ensures the inter-
change of the limit and the integral under certain restrictions, i.e the dominated
convergence theorem, will be needed to prove the previous Theorem.
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Proposition 3.4 (Jensen’s Inequality for integrals). Let (Ω, µ, P ) be a probability
space such that µ(Ω) = 1 and a, b ∈ R. If f : [a, b]→ R is a non-negative Lebesgue
integrable function and ϕ : R→ R is a convex3 function, then

ϕ

(
1

b− a

∫ b

a

f dµ

)
≤ 1

b− a

∫ b

a

ϕ ◦ f dµ.

Theorem 3.2 (Dominated convergence theorem). Let (ξn)n be random variables
such that ξn → ξ and |ξn| ≤ ζ for all n a.s., for some integrable random variable ζ.
Then

E(ξn)→ E(ξ).

Proof of Theorem 3.1.
1) Suppose that f(t) is an adapted process with a.s continuous paths. If (3.12)
holds, then

fn(t) =


n
∫ k

n
k−1
n

f(s) ds k
n
< t ≤ k+1

n
for k = 1, 2, . . . , n2 − 1,

0 otherwise,

(3.14)

is a sequence of random step processes in M2
step. Using the sequence above, we

observe that for k = 0, 1, 2, . . .

∫ k+1
n

k
n

|fn(t)|2 dt = n

∣∣∣∣ ∫ k
n

k−1
n

f(t) dt

∣∣∣∣2 ≤ ∫ k
n

k−1
n

|f(t)|2 dt a.s. (3.15)

where in the second step, we have used Jensen’s Inequality applied to the function
ϕ(t) = |t|2.

We need to verify that the sequence approximates f in the sense of Definition 3.3,
that is, it holds

lim
n→∞

E

(∫ ∞
0

|f(t)− fn(t)|2dt
)

= 0. (3.16)

We are going to proof it by using the dominated convergence theorem and the
following result

lim
n→∞

∫ ∞
0

|f(t)− fn(t)|2 dt = 0 a.s. (3.17)

3We call a function ϕ : R → R convex if satisfies ϕ(λx + (1 − λ)y) ≤ λϕ(x) + (1 − λ)ϕ(y) for
any x, y ∈ R and λ ∈ [0, 1].
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First let us see (3.17):∫ ∞
0

|f(t)− fn(t)|2 dt =

∫ N

0

|f(t)− fn(t)|2 dt+

∫ ∞
N

|f(t)− fn(t)|2 dt

≤
∫ N

0

|f(t)− fn(t)|2 dt+ 2

∫ ∞
N

(
|f(t)|2 + |fn(t)|2

)
≤
∫ N

0

|f(t)− fn(t)|2 dt+ 4

∫ ∞
N−1

|f(t)|2 dt a.s.

The last inequality holds since by taking the sum from k = nN to ∞ in (3.15), it
follows that ∫ ∞

N

|fn(t)|2 dt ≤
∫ ∞
N− 1

n

|f(t)|2 dt ≤
∫ ∞
N−1

|f(t)|2 dt a.s.

for any n and N . But we have

lim
N→∞

∫ ∞
N−1

|f(t)|2 dt = 0 a.s.

by (3.12) and

lim
n→∞

∫ N

0

|f(t)− fn(t)|2 dt = 0 a.s.

for any fixed N by the continuity of paths of f , completing the proof of (3.17).
Now we go back to the proof of (3.16). Note that∫ ∞

0

|f(t)− fn(t)|2 dt ≤ 2

∫ ∞
0

(
|f(t)|2 + |fn(t)|2

)
dt

≤ 4

∫ ∞
0

|f(t)|2 dt.

The last inequality yields since∫ ∞
0

|fn(t)|2 dt ≤
∫ ∞

0

|f(t)|2 dt a.s.

for any n, by taking the sum form k = 0 to ∞ in (3.15). Now, by applying the
dominated convergence theorem and condition (3.12) it follows that

lim
n→∞

E

(∫ ∞
0

|f(t)− fn(t)|2dt
)

= 0.

Therefore, the sequence f1, f2, . . . ∈M2
step approximates f in the sense of Definition

3.3, so f ∈M2.
2) Proving that f satisfies (3.13) is analogous to prove that 1[0,T )f satisfies (3.12).
The fact that f is adapted and has continuous a.s. paths implies that 1[0,T )f is also
adapted and its paths are continuous, except perhaps at T . Nevertheless, condition
1) is not affected by the lack of continuity at the single point T . Thus, 1[0,T )f ∈M2

and we conclude that f ∈M2
T . �
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Remark 3.3. The Brownian motion W (t) belongs to M2
T for each T > 0.

Next theorem provides a characterization ofM2 andM2
T . This gives rise to necessary

and sufficient conditions for a stochastic process, say f , to belong to M2 and M2
T .

It involves the notion of progressively measurable stochastic process.

Definition 3.6. A stochastic process f(t), t ≥ 0 is called progressively measurable
if for any t ≥ 0 the function

f : [0, t]× Ω→ R
(s, w) 7→ f(s, w)

is measurable with respect to the σ-field B[0, t]×F . Here B[0, t]×F is the product
σ-field on [0, t] × Ω. That is, the smallest σ-field containing all sets of the form
A×B, where A ⊂ [0, t] is a Borel set and B ∈ F .

Theorem 3.3.

1) The space M2 consists of all progressively measurable stochastic processes f(t),
t ≥ 0 such that

E

(∫ ∞
0

|f(t)|2 dt
)
<∞;

2) The space M2
T consists of all progressively measurable stochastic processes f(t),

t ≥ 0 such that

E

(∫ T

0

|f(t)|2 dt
)
<∞.

3.2 Simple Examples of Itô Stochastic Integrals

Example 3.3. In this example we want to proof that the following Itô stochastic
integral exists and satisfies∫ T

0

W (t) dW (t) =
1

2
W (T )2 − 1

2
T. (3.18)

Furthermore, we want to see the similarities between the different definitions con-
cerning the Itô stochastic integral appearing throughout Section 2.1. First of all, we
have seen in Remark 3.3 that the Brownian motion belongs to MT

2 for any T > 0.

Therefore the Itô stochastic integral
∫ T

0
W (t) dW (t) exists.

In Example 3.1 we tried to find the limit of the stochastic approximating sums for
the Brownian motion W (t). When we used the left endpoint of each subinterval in
a partition of [0, T ] to evaluate the integrand, we get the sum Ln in Equation (3.1).
Now if we take as the integral the limit of Ln as n → ∞ according to Equation
(3.1) we have ∫ T

0

W (t) dW (t) =
1

2
W (T )2 − 1

2
T
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Is this value equal to the integral
∫ T

0
W (t) dW (t) described in Definition 2.5 for

f(t) = W (t)? Let us consider the partition ∆n = {0 = tn0 < tn1 < · · · < tnn = T} of
[0, T ] and define the sequence f1, f2, . . . of random step processes given by

fn(t) = W (tnj ), tnj < t ≤ tnj+1.

Then by Definition 2.4 we see that the Itô stochastic integral
∫ T

0
W (t) dW (t) is

described as follows ∫ T

0

W (t) dW (t) = lim
n→∞

I(fn), in L2.

On the other hand, by Definition 2.2 the Itô stochastic integral I(fn) is given by

I(fn) =
n∑
j=0

W (tnj )
(
W (tnj+1)−W (tnj )

)
which is indeed Ln in Equation (2.1). Hence the Itô stochastic integral

∫ T
0
W (t) dW (t)

as defined in Section 2.1 has the same value as the one in Equation (3.18).

Example 3.4. We use the same idea as in Example 3.3 to show that∫ T

0

W (t)2 dW (t) =
1

3
W (T )3 −

∫ T

0

W (t) dt (3.19)

where the integral in the left-hand side is the Itô stochastic integral for the Brownian
motion W (t)2 whereas the integral in the right-hand side is the Riemann integral
for the Brownian motion W (t). Let us consider the partition ∆n = {0 = tn0 < tn1 <
· · · < tnn = T} of [0, T ] where tnj = jT

n
and define the sequence f1, f2, . . . of random

step processes given by

fn(t) = W (tnj ), tnj < t ≤ tnj+1.

Then the Itô stochastic integral
∫ T

0
W (t) dW (t) is given by∫ T

0

W (t)2 dW (t) = lim
n→∞

n−1∑
j=0

W (tnj )2
(
W (tnj+1)−W (tnj )

)
, (3.20)

where if the series of the right-hand side converges, it does in L2. Working out the
Newton’s binomial for n = 3 of the series in the right-hand side and rewriting it in
a suitable way we get that

3
n−1∑
j=0

W (tnj )2(W (tnj+1)−W (tnj ))

= W (T )3 −W (0)3 −
n−1∑
j=0

(W (tnj+1)−W (tnj ))3

− 3
n−1∑
j=0

W (tnj )(W (tnj+1)−W (tnj ))2 (3.21)



25

where by definition, W (0)3 = 0. In order to determine the limit (in L2) of the
series in Equation (3.20) it needs to be checked the corresponding limits of the
summations appearing in (3.21).
For the first summation, we use the fact that E|W (t)−W (s)|6 = 15|t− s|3. Then,

E

∣∣∣∣ n−1∑
j=0

(
W (tnj+1)−W (tnj )

)3

∣∣∣∣2 = 15
n−1∑
j=0

(tnj+1 − tnj )3

≤ 15||∆n
j t||2T

L2

−−−→
n→∞

0 (3.22)

since ||∆n
j t|| = max

0≤j≤n−1
|tnj+1−tnj | tends to 0. For the second summation in Equation

(3.21), let us denote W (tnj+1) −W (tnj ) by ∆n
jW and tnj+1 − tnj by ∆n

j t as earlier in
this section. We consider

Φn =
n−1∑
j=0

[
W (tnj )(∆n

jW )2 −W (tnj )(∆n
j t)
]

=
n−1∑
j=0

Xj (3.23)

where Xj = W (tnj )(∆n
jW )2 −W (tnj )(∆n

j t). Then,

Φ2
n =

n−1∑
j,k=0

= XjXk.

For i 6= j we have E(XjXk) = 0 since W (t) has independent increments and
E(W (t)−W (s))2 = |t− s|. On the other hand, E[W (t)−W (s)]4 = 3(t− s)2 and
so for i = j we have

E(X2
j ) = E

[
W (tnj )2(∆n

jW )4 − 2W (tnj )2(∆n
jW )2(∆n

j t)

+W (tnj )2(∆n
j t)

2
]

= E
[
W (tnj )2] E[(∆n

jW )4 − 2(∆n
jW )2(∆n

j t) + (∆n
j t)

2
]

= tnj
[
3(∆n

j t)
2 − 2(∆n

j t)
2 + (∆n

j t)
2
]

= tnj
[
2(∆n

j t)
2
]
.

It follows that

E|Φn|2 = E

∣∣∣∣ n−1∑
j=0

Xj

∣∣∣∣2 =
n−1∑
j=0

2tnj
[
(∆n

j t)
2
]
≤ 2T 2

n
−−−→
n→∞

0. (3.24)

Hence, the convergence in L2 for the first and the second summations in the right-
hand side of Equation (3.21) are 0 and

∫ T
0
W (t) dt, respectively. In conclusion, from

Equations (3.20) and (3.21) the equality in Equation (3.19) is obtained.

3.3 Properties of the Itô Stochastic Integral

Below we state a theorem that summarizes the basic properties of the Itô integral.
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Theorem 3.4. The following properties hold for any f, g ∈M2
t , any α, β ∈ R, and

any 0 ≤ s < t:

1) linearity∫ t

0

(αf(r) + βg(r)) dW (r) = α

∫ t

0

f(r) dW (r) + β

∫ t

0

g(r) dW (r);

2) isometry

E

(∣∣∣∣ ∫ t

0

f(r) dW (r)

∣∣∣∣2
)

=

(∫ t

0

|f(r)|2 dr
)

;

3) martingale property

E

(∫ t

0

f(r) dW (r)

∣∣∣∣Fs) =

∫ s

0

f(r) dW (r).

Proof. 1) If f and g belong to M2
t then the functions 1[0,t)f and 1[0,t)g belong to

M2, so that there are sequences f1, f2, . . . and g1, g2, . . . in M2
step approximating

both 1[0,t)f and 1[0,t)g. It follows that 1[0,t)(αf + βg) can be approximated by
αf1 + βg1, αf2 + βg2, . . .. By linearity od the stochastic integral (see Remark 3.1)

I(αfn + βgn) = αI(fn) + βI(gn)

for each n. Hence, taking the L2 limit on both sides of the equality above as n→∞,
we obtain

I
(
1[0,t)(αfn + βgn)

)
= αI(1[0,t)fn) + βI(1[0,t)gn)

which is the required assertion.

2) The function 1[0,t)f can be approximated by random step processes in M2
step. It

enables us to write

E

(∣∣∣∣ ∫ t

0

f(r) dW (r)

∣∣∣∣2) = E
(
|It(f)|2

)
= E

(∫ t

0

|f(r)|2 dr
)

where the second equality follows from Preposition 3.1. This proves 2).

3) If f belongs to M2
t then 1[0,t)f belongs to M2. Let f1, f2, . . . be a sequence of

random step processes approximating 1[0,t)f . By Remark 3.3

E(I(1[0,t)fn)|Fs) = I(1[0,s)fn)

for each n. Now we observe that the sequences 1[0,s)f1, 1[0,s)f2, . . . and 1[0,t)f1, 1[0,t)f2, . . .
belongs to M2

step and approximates 1[0,s)f and 1[0,t)f respectively. Hereby, we have
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I(1[0,s)fn)
L2

−−−→
n→∞

I(1[0,t)f)

and

I(1[0,t)fn)
L2

−−−→
n→∞

I(1[0,t)f).

The lemma below implies that

E(I(1[0,t)fn)|Fs)
L2

−−−→
n→∞

E(I(1[0,t)f)|Fs)

completing the proof.

�

Lemma 3.1. If ξ and ξ1, ξ2, . . . are square integrable random variables such that
ξn → ξ in L2 as n→∞, then

E(ξn|G)
L2

−−−→
n→∞

E(ξ|G)

for any σ-field G on Ω contained in F .

Proof. By Jensen’s Inequality applied to the function ϕ(x) = |x|2 we have

|E(ξn|G)− E(ξ|G)|2 = |E(ξn − ξ|G)|2 ≤ E
(
|ξn − ξ|2

∣∣∣G),
which implies that

E
(∣∣E(ξn|G)− E(ξ|G)

∣∣2) ≤ E
(
E
(
|ξn − ξ|2

∣∣G))
= E

(
|ξn − ξ|2

)
→ 0

as n→∞. �

Next we study the continuity property of the stochastic integral
∫ t

0
f(s) dW (s) as

a function of the upper limit t. Note that the stochastic integral is not defined for
each fixed w ∈ Ω as a Riemann, Riemann-Stieltjes, or even Lebesgue integral. Even
for the Brownian integral case, it is not defined this way. Therefore, the continuity
of the stochastic process f ∈M2

t is not a trivial fact as in elementary real analysis
[17].
Let us first recall the notion of modification of a stochastic process.

Definition 3.7. Let ξ(t) and ζ(t) be stochastic processes defined for t ∈ T , where
T ⊂ R. We say that ξ(t) is a modification of ζ(t) if

P{ξ(t) = ζ(t)} = 1 for all t ∈ T. (3.25)
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Remark 3.4. If T ⊂ R is a countable set, then (3.25) is equivalent to the condition

P{ξ(t) = ζ(t) for all t ∈ T} = 1.

However, this does not necessarily hold if T is uncountable. In the following example
we see that two processes which are modifications of one another may have quite
different sample paths.

Example 3.5. Let τ be a nonnegative random variable with continuous distribution
function. Set T = [0,∞). The processes

ξ(t) = 0 for all t ∈ T,

ζ(t) =

{
0 if τ 6= t

1 if τ = t

are equivalent but their sample paths are different.

In the next theorem, stated without proof, we consider the stochastic integral∫ t
0
f(s) dW (s) as a function of the upper limit t. It yields information about the

continuous behavior of this function in terms of t.

Theorem 3.5. Let f(t) be a process belonging to M2
t and let

ξ(t) =

∫ t

0

f(s)dW (s)

for every t ≥ 0. Then there exists an adapted modification ζ(t) of ξ(t) with a.s
continuous paths. This modification is unique up to equality a.s.

From now we shall identify
∫ t

0
f(s) dW (s) with the adapted modification having a.s

continuous paths, which works extremely well alongside with Theorem 3.1. Then,
it will be helpful to use this convention whenever there is a need to show that a
stochastic integral can be used as the integrand of another stochastic integral, i.e
belongs to M2

T for T ≥ 0. This is illustrated by the next example.

Example 3.6. The stochastic integral

ξ(t) =

∫ t

0

W (s) dW (s)

belongs to M2
T for any T ≥ 0. Indeed, by Theorem 3.5 ξ(t) can be identified with

an adapted modification having a.s continuous paths. Therefore, it suffices to verify
that ξ(t) satisfies condition (3.13) of Theorem 3.1. That is, we shall see that

E

(∫ T

0

|ξ(t)|2 dt
)
<∞.

Since the stochastic integral is an isometry,
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E

∣∣∣∣ ∫ t

0

W (s) dW (s)

∣∣∣∣2 = E

∫ t

0

|W (s)|2 ds =

∫ t

0

s ds =
t2

2
.

Consequently,

E

∫ T

0

|ξ(t)|2 dt = E

∫ T

0

∣∣∣∣ ∫ t

0

W (s) dW (s)

∣∣∣∣2 dt =

∫ T

0

t2

2
dt =

T 3

6
<∞

i.e ξ(t) satisfies condition (3.13). This means that ξ(t) belongs to M2
T .

3.4 Stochastic Differential Equations

In this section we first introduce the notion of stochastic differential and Itô for-
mula. Then, we focus on analysing stochastic differential equations and present a
theorem regarding the existence and unicity of solutions for a SDE. Several elabo-
rated examples are given throughout the section to illustrate the theory.

3.4.1 Stochastic differential and Itô Fôrmula

Itô’s theory of stochastic integration was originally motivated as a direct method
to construct diffusion processes (a subclass of Markov processes) as solutions of the
yet to be defined stochastic differential equations [4]. Now we are going to briefly
introduce a crucial tool for transforming and computing the also yet to be defined
stochastic differential established by Itô, which we denote by Itô formula.
Let x(t) be a continuously differentiable function such that x(0) = 0 satisfying

x(T )2 = 2

∫ T

0

x(t) dx(t) (3.26)

x(T )3 = 3

∫ T

0

x(t)2 dx(t), (3.27)

where dx(t) shall simple be understood as a shorthand notation for x′(t) dt and the
integrals on the right-hand side being Riemann integrals. It turns out that from
Examples 3.3 and 3.4 we got similar formulae for Brownian motions:

W (T )2 =

∫ T

0

dt+ 2

∫ T

0

W (t) dWt (3.28)

W (T )3 =

∫ T

0

W (t) dt+ 3

∫ T

0

W (t)2 dW (t) (3.29)

where this time the integrals of the right-hand side being a Riemann integral and
an Itô integral. This leads to a very special class of stochastic processes that are
defined as follows.
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Definition 3.8. A stochastic process ξ(t), t ≥ 0 is called an Itô Process if it has
a.s. continuous paths and can be represented as

ξ(T ) = ξ(0) +

∫ T

0

a(t) dt+

∫ T

0

b(t) dW (t) a.s., (3.30)

where b(t) is a process belonging to M2
T for all T > 0 and a(t) is a process adapted

to the filtration Ft such that

∫ T

0

|a(t)| dt <∞ a.s. (3.31)

for all T ≥ 0. The class of all adapted processes a(t) satisfying (3.31) for some
T > 0 will be denoted by L1

T .

For an Itô process ξ it is costumary to write (3.30) as

dξ(t) = a(t) dt+ b(t) dW (t) (3.32)

and to call dξ(t) the stochastic differential of ξ(t). The latter equation is also known
as the Itô differential notation. Let us emphasize that the stochastic differential
dξ(t) has no well-defined mathematical meaning on its own and should always be
rigorously understood in the context of (3.30). Hence, the Itô differential notation is
not an attempt to give a precise mathematical meaning to the stochastic differential
but merely an efficient way of writing this equation.

The Equations (3.28)and (3.29) resemble the ones for an smooth function x(t), that

is, Equations (3.26) and (3.27). However, there exist intriguing terms
∫ T

0
dt and

3
∫ T

0
W (t) dt; Such terms are a feature inherent in the Itô formula and referred to

as the Itô correction. The formulae for W (T )2 and W (T )3 are examples of the Itô
formula. Below we state a simplified version of the formula, followed by the general
theorem. The proofs of these results are rather complicated and can be found in
[4, Chapter 7, p. 196-200] and [17, Chapter 7, proof of Theorem 7.1.2], respectively.
We consider that a deeper analysis of the Itô formula and its applications is beyond
the scope of this paper so that for a detailed treatment on this topic we refer to [17,
Chapter 7-8].

Theorem 3.6 (Itô formula, simplified version). Suppose that F (t, x) is a real-valued
function with continuous partial derivatives F ′t(t, x), F ′x(t, x) and F ′′xx(t, x) for all
t ≥ 0 and x ∈ R. We also assume that the process F ′t(t, x) belongs to M2

T for all
T > 0. Then F (t,W (t)) is an Itô process such that

F (T,W (T ))− F (0,W (0)) =

∫ T

0

(
F ′t(t,W (t)) +

1

2
F ′′xx(t,W (t))

)
dt

+

∫ T

0

F ′x(t,W (t)) dW (t) a.s. (3.33)

In differential notation this formula can be rewritten as

dF (t,W (t)) =

(
F ′t(t,W (t)) +

1

2
F ′′xx(t,W (t))

)
dt+ F ′x(t,W (t)) dW (t). (3.34)
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Remark 3.5. The latter equation yields similarity with the chain rule

dF (t, x(t)) = F ′t(t, x(t)) dt+ F ′x(t, x(t)) dx(t) (3.35)

for a smooth function x(t), where dx(t) = x′(t) dt. We also note that the additional
term 1

2
F ′′xx(t,W (t)) dt in (3.34) is denoted by the Itô correction.

The following result will give rise to a general formula of the simplified version just
stated. The Brownian motion W (t) will be replaced by an arbitrary Itô process
ξ(t) such that

dξ(t) = a(t) dt+ b(t) dW (t), (3.36)

where a and b belongs L1
t and M2

t for all t ≥ 0, respectively.

Theorem 3.7 (Itô formula, general case). Let ξ(t) be an Itô process satisfying
(3.36). Suppose that F (t, x) is a real-valued function with continuous partial deriva-
tives F ′t(t, x), F ′x(t, x) and F ′′xx(t, x) for all t ≥ 0 and x ∈ R. We also assume that
the process b(t)F ′x(t, ξ(t)) belongs to M2

T for all T ≥ 0. Then F (t, ξ(t)) is an Itô
process such that

F (T, ξ(T ))− F (0, ξ(0)) =

∫ T

0

(
F ′t(t, ξ(t)) + F ′x(t, ξ(t)) a(t)

+
1

2
F ′′xx(t, ξ(t)) b(t)

2

)
dt +

∫ T

0

F ′x(t, ξ(t)) b(t) dW (t) a.s. (3.37)

In differential notation this formula can be rewritten as

dF (t, ξ(t)) =

(
F ′t(t, ξ(t)) + F ′x(t, ξ(t)) a(t) +

1

2
F ′′xx(t, ξ(t)) b(t)

2

)
dt

+ F ′x(t, ξ(t)) b(t) dW (t). (3.38)

Example 3.7. Suppose that α ∈ R and σ > 0 . Consider the Itô process X(t) and
the Langevin equation

dX(t) = −αX(t) dt+ σ dW (t), X(0) = x0, (3.39)

This equation can be interpreted as in Definition 2.8, that is, by the following
stochastic integral equation:

X(t) = x0 − α
∫ t

0

X(s) ds+ σ

∫ t

0

dW (s).

We are going to use the Itô’s formula to find the solution of the Langavin equa-
tion. Let us consider F (t, x) = eαtx, some elementary calculus shows that F (t, x)
has continuous partial derivatives such that F ′t(t, x) = αeαtx, F ′x(t, x) = eαt and
F ′xx(t, x) = 0. Since σeαt is bounded on each set of the form [0, T ] × R we can
assume that σeαt belongs to M2

T for any T ≥ 0. Then F (t,X(t)) = eαtX(t) is also
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an Itô process and the hypothesis of Theorem 3.7 are attained. Thus by the Itô
formula we have

eαtX(t) = x0 +

∫ t

0

(
αeαsX(s)− αeαsX(s)

)
dt+

∫ t

0

σeαs dW (s)

= x0 +

∫ t

0

σeαs dW (s).

Hence, we have the following stochastic integral equation

eαtX(t) = x0 +

∫ t

0

σeαs dW (s).

Finally, since the term eαt 6= 0 for all t ≥ 0, the expression above can be divided
by eαt and the solution of the Langavin equation X(t) is obtained:

X(t) = e−αtx0 + σe−αt
∫ t

0

e−αs dW (s).

3.4.2 Stochastic Differential Equations

Now we are fully prepared to look at the main goal of this section, which is to
analyze stochastic differential equations of the form

dξ(t) = f(ξ(t)) dt+ g(ξ(t)) dW (t). (3.40)

The term f(ξ(t)) is referred to as the drift coefficient, while g(ξ(t)) is called the
diffusion coefficient. The solutions will be sought out in the class of Itô processes
ξ(t) with a.s. continuous paths and will be called diffusion processes. As in the
theory of ordinary differential equations, an initial condition

ξ(0) = ξ0 (3.41)

needs to be specified. Here ξ0 can be either a fixed real number or a random
variable. Although in general it tends to be a random variable. From the fact that
ξ(t) is an Itô process, it must be adapted to the filtration Ft of W (t), so ξ0 must
be F0-measurable.

Definition 3.9. An Itô process ξ(t), t ≥ 0 is called a solution of the initial value
problem

dξ(t) = f(ξ(t)) dt+ g(ξ(t)) dW (t),

ξ(0) = ξ0

if ξ0 is an F0-measurable random variable, the processes f(ξ(t)) and g(ξ(t)) belong,
respectively, to L1

T and M2
T and

ξ(T ) = ξ0 +

∫ T

0

f(ξ(t)) dt+

∫ T

0

g(ξ(t)) dW (t) a.s. (3.42)

for all T ≥ 0.
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Remark 3.6. Observe that once we have the stochastic differential equation (3.40)
with initial condition (3.41), we can immediately convert it into the integral form
of Equation (3.42).

Remark 3.7. Stochastic differential equation relies on stochastic differential nota-
tion, hence it has no well-defined mathematical meaning. Only stochastic integrals
equations of the form (3.42) have a rigorous mathematical meaning. Then, why
we try to write stochastic integral equations in such way? The answer is because
by using stochastic differential equations we are able to draw on the analogy with
ordinary differential equations.
This analogy will be employed to solve some stochastic differential equations later
on this section. Moreover, it will play a key role in modeling, as it will be seen in
the next chapter.

Example 3.8. From Example 3.7, we have that the Langevin equation

dX(t) = −αX(t) dt+ σ dW (t), X(0) = x0,

is an example of an inhomogeneous linear stochastic differential equation. The
solution with an initial condition x0 = 0 is the Ornstein-Uhlenbeck process

X(t) = σe−αt
∫ t

0

e−αs dW (s).

Example 3.9. Consider the stochastic differential equation

dXt = X3
t dt+X2

t dW (t), X0 = 1. (3.43)

We write Xt instead of X(t) for short. Now, by applying the Itô formula to the
function F (t, x) = 1

x
we get

1

Xt

= 1 +

∫ t

0

(
− 1

X2
s

X3
s +

1

2

2

X3
s

X4
s

)
ds+

∫ t

0

− 1

X2
s

X2
s dW (s).

= 1−
∫ t

0

dW (s) = 1−W (t).

Thus the solution of Equation (3.43) is given by

Xt =
1

1−W (t)

and may explode4 at the first exit time of the Brownian motion W (t) from the
interval (−∞, 1).

The example above is a simple modification of a well-known example in ordinary
differential equations for the Leibniz-Newton calculus. Then, we would expect to
encounter similar phenomena in stochastic calculus for the Itô calculus. This means
that in order to ensure the existence and unicity of a globally defined solution, we
need to impose the Lipschitz condition [17].

4Suitable extensions of the Itô formula and the definition of a solution are required to study
stochastic differential equations with non-Lipschitz coefficients and explosion time. Therefore, to
prevent an explosion of this paper, we refer the interested reader to [18].
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Theorem 3.8. Suppose that f, g : R → R are Lipschitz continuous functions, i.e
there is a constant C > 0 such that for any x, y ∈ R

|f(x)− f(y)| ≤ C|x− y|,
|g(x)− g(y)| ≤ C|x− y|.

Moreover, let ξ0 be an F0-measurable square integrable random variable. Then the
initial value problem

dξ(t) = f(ξ(t)) dt+ g(ξ(t)) dW (t), (3.44)

ξ(0) = ξ0 (3.45)

has a solution ξ(t), t ≥ 0 in the class of Itô processes. The solution is unique in the
sense that η(t), t ≥ 0 is another Itô process satisfying (3.32) and (3.45), then the
two processes are identical a.s., that is,

P{ξ(t) = η(t) for all t ≥ 0} = 1.

Proof. To obtain the solution to the initial value problem given by Equations (3.44)
and (3.45) it suffices to take a modification with a.s. continuous paths of the process
ξ ∈M2

T such that

ξ(s) = ξ0 +

∫ s

0

f(ξ(t)) dt+

∫ s

0

g(ξ(t)) dW (t) a.s. (3.46)

for all s ∈ [0, T ]. By Theorem 3.5 the existence of such modification is guaranteed.
In order to find out the solution to the stochastic integral Equation (3.46) we are
going to use the Banach fixed point theorem in M2

T alongside with the norm defined
by

||ξ||2λ = E

∫ T

0

e−λt|ξ(t)|2 dt, (3.47)

which turns M2
T into a complete normed vector space. As we will see below, the

number λ > 0 shall be taken large enough. To apply the fixed point theorem let us
consider Φ : M2

T →M2
T defined by

Φ(ξ(s)) = ξ0 +

∫ s

0

f(ξ(t)) dt+

∫ s

0

g(ξ(t)) dW (t) (3.48)

for any ξ ∈M2
T and s ∈ [0, T ]. Now, if we see that Φ is a strict contraction, i.e

||Φ(ξ)− Φ(ζ)||λ ≤ α||ξ − ζ||λ (3.49)

for some α < 1 and all ξ, ζ ∈ M2
T , we can apply the fixed point theorem. Thus, by

the Banach theorem, Φ will have a unique fixed point ξ = Φ(ξ). It turns out that
this is the desired solution to (3.46) and the proof is complete.
It remains to check that Φ is indeed a strict contraction. By the definition of Φ, it
amounts to prove that the maps Φ1 and Φ2 described by

Φ1 =

∫ s

0

f(ξ(t)) dt, Φ2 =

∫ s

0

g(ξ(t)) dW (t),
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are strict contractions. In both cases this yields due to the Lipschitz continuity of
f , although for Φ2 the isometry of the Itô integral (see Theorem 3.4) is also needed.
Let us prove in detail the latter case. For any ξ, ζ ∈M2

T

||Φ2(ξ)− Φ2(ζ)||λ = E

∫ T

0

e−λs
∣∣∣∣ ∫ s

0

[g(ξ(t))− g(ζ(t))] dW (t)

∣∣∣∣2 ds
= E

∫ T

0

e−λs
∫ s

0

|g(ξ(t))− g(ζ(t))|2 dt ds

≤ C2E

∫ T

0

e−λs
∫ s

0

|ξ(t))− ζ(t)|2 dt ds

= C2E

∫ T

0

(∫ T

t

e−λseλt ds

)
e−λt|ξ(t)− ζ(t)|2 dt

≤ C2

λ
E

∫ T

0

e−λt|ξ(t)− ζ(t)|2 dt =
C2

λ
||ξ − ζ||λ,

where the second step is due to the isometry of the Itô integral and the fifth step
holds since

∫ T
t
e−λseλt ds = 1

λ
(1− e−λ(T−t)) ≤ 1

λ
. Throughout the above C denotes

the Lipschitz constant of g. If we choose λ > 0 such that C2

λ
< 1, that is C2 < λ ,

then Φ2 is a strict condition.
The main idea of the proof is presented above. A slightly more general result on
this vein and its proof may be found in [17, Chapter 10, Theorem 10.3.5]. �

Let us conclude this section by discussing an example of a linear stochastic dif-
ferential equation. This example emphasizes that the solution to the initial value
problem for any linear stochastic equation can be found by exploiting the analogy
with ordinary differential equations.

Example 3.10. Let a and b be real numbers. The aim of this example is to verify
that X(t) = X0e

at+bW (t) is a solution of the linear stochastic differential equation

dX(t) =

(
a+

b2

2

)
X(t) dt+ bX(t) dW (t) (3.50)

with the initial condition X(0) = X0. To do so we are going to use the Itô formula
applied to the function F (t, x) = eat+bx and the Itô process W (t). First of all we
need to check the assumptions of Theorem 3.7. We have that F (t, x) has continuous
partial derivatives F ′t(t, x) = aeat+bx, F ′x(t, x) = beat+bx and F ′′xx(t, x) = b2eat+bx.
Also, the term F ′′xx(t,W (t)) = b2eat+bW (t) is bounded on each set of the form [0, T ]×R
implying that b2eat+bW (t) belongs to M2

T for all T ≥ 0. Thus by the Itô formula we
have

X0e
at+bW (t) = X0 +

∫ t

0

X0

(
aeas+bW (s) +

1

2
b2eas+bW (s)

)
ds

+

∫ t

0

X0be
as+bW (s) dW (s)

= X0 +

(
a+

b2

2

)∫ t

0

X(s) ds+ b

∫ t

0

X(s) dW (s).
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Then we can convert this integral stochastic equation into a differential stochastic
equation,

dX(t) =

(
a+

b2

2

)
X(t) dt+ bX(t) dW (t).

Thus, X(t) satisfies the stochastic differential equation (3.50) and it only remains
to be checked that X(0) = X0. In fact,

X(0) = X0e
a·0+b·W (0) = X0.



Chapter 4

Applications

In thread manufacture, the cotton fiber length distribution determines many of the
characteristics of the thread. In particular, fiber length gives information about
the spinning efficiency, the yarn strength and the yarn uniformity of the cotton,
which are good indicators of the resulting weave quality. It is logical to wonder how
fiber length distribution is affected, and it is due to breakage during processing.
It appears that the development of a SDE model for fiber length distribution has
provided more understanding of the fiber breakage phenomenon and the origination
of different fiber length distributions. See [16] for more information about the work
dealing with fiber breakage reported in textile industry.

In the first section of this chapter we develop two equivalent stochastic differential
equation (SDE) models for cotton fiber length distribution. The two SDE models
are equivalent in the sense that they are structurally different yet they have identical
probability distribution [3]. In the second section simulations are work out for
different number of fibers having different length to indicate the behavior of the
SDE model.

4.1 SDE Model Construction

The construction of a discrete stochastic model studying changes in the system
components over a small time interval ∆t is a natural extension of the procedure
used for many years in modeling deterministic dynamical processes in physics and
engineering. This procedure results in a differential equation as the time interval
approaches zero. However, in the case considered here when the process is stochastic
rather than deterministic, a finite ∆t produces a discrete stochastic model. The
discrete stochastic model then leads to a stochastic differential equation as ∆t→ 0
(see e.g [1, Chapter 5, p. 135-144] for a detailed treatment of the modeling procedure
used for solving SDE models, where several examples are given).

37
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In the development of the stochastic model, fibers are grouped by length. In this
manner, the cotton fiber distribution can be considered as a population distribution
[1, 2]. There appears to be three procedures for developing SDE models for appli-
cations in population biology, physics, chemistry and mathematical finance. In this
investigation only two of them are discussed. The first procedure is indicated as fol-
lows. Firstly, a discrete stochastic model is derived where the breakage phenomenon
is carefully studied for a short time interval. Secondly, the expected change and
covariance matrix for the change are calculated for the discrete stochastic process.
Finally, a system of stochastic differential equations is identified whose probability
distribution approximates that of the discrete stochastic model [2]. The idea for the
second procedure is to explicitly determine all the different random changes that
occur in the system and to include additional Brownian motions as an alternative
to the matrix square root of the covariance matrix that arises in the first procedure.
Note that it is assumed that probabilities are given to the order of ∆t2.

The development of the SDE model involves d populations, {Nk(t)}dk=1, of fibers
having different lengths considered as a functions of time t. Let us state some
terminology associated with the SDE model:

Let L = fiber length, where it is assumed that 0 ≤ L ≤ Lmax.

Let Lk = kh for k = 0, 1, . . . , d where h = Lmax/d.

Let Nk(t) = number of fibers of length Lk for k = 1, . . . , d.

Let qk∆t = fraction of fibers of length Lk broken in time ∆t. (Note that q1∆t = 0.)

Let Sk,l = fraction of fragments of length Ll formed from breakage of fibers of length
Lk.

Let pk,l(t) ∆t = Nk(t)Sk,lqk∆t = probability of a fragment of length Ll being formed
from breakage of fiber length Lk in time t to t+ ∆t.

From the above definitions, it follows that
∑k−1

l=1 Sk,l = 1, Sk,k−l = Sk,l. Let (∆N)k,l

be the change to the vector N(t) for a small time interval ∆t, with probability
pk,l(t) due to breakage of a fiber in group k to produce one fiber each in group l
and k − l. Then, the expression of the the ith element of the change (∆N)k,l is

(
∆N)k,li =


−1, if i = k

1, if i = l or i = k − l
0, otherwise.

(4.1)

To develop a SDE model using the first procedure, the expected change E(∆N(t))
and the covariance in the change

E
((

∆N − E∆N
)(

∆N − E∆N
)T )

= E
(
∆N(∆N

)T )− E(∆N)E(∆N)T

= E
(
∆N(∆N

)T )
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are calculated for the intervals ∆t. Notice that the value of the expected change
E(∆N) for any small time ∆t is computed by summing the products of the changes
with the respective probabilities. Thus, the term E(∆N)E(∆N)T arising in the co-
variance in the change is of order ∆t2 and can be removed.

For example, let us consider the case of d = 7 types of fibers where a fiber in the 6th
group is breaking into two fibers, one in the 2nd group and one in the 4th group.
For this special case the change (∆N)6,4 is given by:

(∆N)6,4 = [0, 1, 0, 1, 0,−1, 0]T with probability p6,4(t)∆t = N6(t)S6,4q6∆t.

Now it is useful to calculate the expected change and the covariance matrix for
the change ∆N . As said previously, the value of the expected change E(∆N)
for any small time ∆t is computed by summing the products of the changes with
the respective probabilities. In general, for any d, it can be shown that the lth
component of the vector E(∆N) has the form:

E(∆N)l = 2
d∑

k=l+1

pk,l(t)∆t−
l−1∑
k=1

pl,k(t)∆t

= 2
d∑

k=l+1

pk,l(t)∆t−Nl(t)ql∆t. (4.2)

where the second step above follows from the fact that pl,k(t) ∆t = Nl(t)Sl,kql∆t

and
∑l−1

k=1 Sl,k = 1. In addition, the covariance matrix has the form

E
(
∆N(∆N)T

)
=

d∑
k=1

k−1∑
l=1

Ck,lpk,l(t)∆t (4.3)

where Ck,l is a d × d matrix that accounts for a fiber of group k breaking into a
fiber of group l and group k − l. From the special case where d = 7 and a fiber
in the 6th group breaks into two fibers, one in group 4 and one in group 2 , the
corresponding term produced in the covariance matrix is:

C6,4 = (∆N)6,4((∆N)6,4)T =



0 0 0 0 0 0 0
0 1 0 1 0 −1 0
0 0 0 0 0 0 0
0 1 0 1 0 −1 0
0 0 0 0 0 0 0
0 −1 0 −1 0 1 0
0 0 0 0 0 0 0


.

Neglecting terms of order ∆t2, it follows that the expected change and the covariance
matrix can be defined in terms of the expectation vector µ and the symmetric
definite positive V . That is,



40

(∆N) = µ(t, N(t))∆t and E(∆N(∆N)T ) = V (t, N(t))∆t. (4.4)

Let us verify that, in fact, the covariance matrix V is positive definite. We must
check that xTE(∆N(∆N)T )x for any x ∈ Rd, x 6= 0. To do so, we observe that

xTE(∆N(∆N)T )x = E(xT∆N(∆N)Tx) = E(xT∆N(xT∆N)T )

where the term E(xT∆N(xT∆N)T ) is basically
∑d

i=1 a
2
i where ai = xTi (∆N)i for

i = 1, 2, . . . , d, which is positive. Thus, V is positive definite and has a positive
definite square root. Denote B = V 1/2. Now, following the same argument as in
reference [12], the vector change ∆N can be expressed by the sum of the expected
change µ(t, N(t))∆t plus a term that only depends on the increments of Brownian
motions: B(t, N(t))∆W (t). This heuristic interpretation of the vector change ∆N
then leads to a SDE system of the form

dN(t) = µ(t, N(t)) dt+B(t, N(t)) dW (t), (4.5)

where N(t) = [N1(t), . . . , Nd(t)]
T are the fiber populations of each length group and

W (t) = [W1(t), . . . ,Wd(t)]
T is a d-dimensional Brownian motion. In other words,

the stochastic differential equation system (4.5) is obtained by letting the expected
change divided by ∆t be the drift coefficient and the square root of the covariance
matrix divided by ∆t be the diffusion coefficient.

The formulation of the SDE system (4.5) entails the computation of the square root
of the covariance matrix to obtain the diffusion process. However, for a d× d sym-
metric positive definite matrix V with d ≥ 3, there is no explicit formula for V 1/2

and it must be calculated numerically. Fortunately, there exist suitable numerical
procedures for computing V 1/2 directly (see e.g [6, 9]) although, for a large matrix,
it is computationally intensive1 to accurately compute square roots of matrices.
Therefore, it is interesting to give an equivalent SDE model to system (4.5).

In the second procedure the calculation of the square root of the covariance matrix
V can be avoided by including additional Brownian motions in the stochastic system
(4.5). It is shown in [1, Chapter 5, p. 186-193] and [3] that if

V (t, N(t)) = G(t, N(t))G(t, N(t))T

where G is a d×m matrix, then system (4.5) is equivalent to

dN(t) = µ(t, N(t)) dt+G(t, N(t)) dW ∗(t), (4.6)

1To compute V 1/2,, the matrix V is put in canonical form V = PTDP , where PTP = I and
dii ≥ 0 for i = 1, 2, . . . , d, then V 1/2 = PTD1/2P . A issue that arises from this method is that all
eigenvalues and eigenvectors of V must be explicitly calculated to determine P and D.
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where W (t) = [W1(t), . . . ,Wd(t)]
T , W ∗ = [W ∗

1 (t), . . . ,W ∗
m(t)]T , and Wi(t) for i =

1, 2, . . . , d, and W ∗
i (t) for i = 1, 2, . . . ,m are independent Brownian motions and

m = d(d − 1)/2. We shall recall that the two SDE models are equivalent if they
have identical probability distribution. Essentially, this means that system (4.5) and
system (4.6) must have identical covariance matrix V (t, N(t)) = E(∆N(∆N)T )/∆t.
Then, the entry i, j in the matrix G can be determined2 in terms of the ith element
of change (∆N)k,l to the vector N(t) given by (4.1) and the probability pk,l∆t.
Applying the assumptions given above, the SDE system (4.6) can be rewritten in
the form

dN(t) = µ(t, N(t)) dt+
d∑

k=1

k−1∑
l=1

(∆N)k,lpk,l(t)
1/2 dW ∗

k,l(t), (4.7)

where W ∗
k,l(t) for l = 1, 2, . . . , k−1 and k = 1, 2, . . . ,m are m independent Brownian

motions.

Before proceeding with the next section, it is interesting to remark that in the first
SDE model (4.5) only d Brownian motions are required, whereas for the second
m = d(d − 1)/2 Brownian motions are needed. This brings up to the question of
whether the system (4.5) is more complicated than system (4.6). It turns out that
system (4.6) is generally easier to solve computationally than (4.5) , as the d × d
matrix B is the square root of V even though G is d×m.

4.2 Computations

Firstly, a short introduction to the approximation model used to test SDE models
is made. Then, a possible simulation approach for the first SDE model (4.5) is
indicated and simulations for different numbers of fibers having different length are
work out for the second SDE model (4.7).

4.2.1 The Euler-Maruyama Method

For the simulation of solutions of SDE models, a numerical method needs to be
used. The Euler method is one of the simplest methods used to generate solutions
of ordinary differential equations. Here, we use the Euler-Maruyama method, or
EM for short. This method is the analogue of the Euler’s method for ordinary
differential equations but applied to stochastic differential equations.

For computational purposes, to apply the method over the interval [0, T ] it is useful
to consider the step size ∆t = T/N for some integer N and the discrete points
tj = j∆t for j = 0, 1, . . . , N of the interval [0, T ].

2See [3] for a detailed discussion about the equivalence between the two procedures and, in
particular, for more information about this procedure for a general discrete stochastic model.
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Then, the Euler-Maruyama method is described as follows: Given a stochastic
differential equation of the form

dX(t) = f(X(t)) dt+ g(X(t)) dW (t) (4.8)

and a step size ∆t, we approximate and simulate with

Xj = Xj−1 + f(Xj−1)∆t+ g(Xj−1)∆Wj (4.9)

where Xj = X(tj), ∆Wj = (W (tj) −W (tj−1)) for j = 1, 2, . . . , N . To understand
where (4.9) comes from, let us rewrite Equation (4.8) into stochastic form

X(T ) = X0 +

∫ T

0

f(X(t)) dt+

∫ T

0

g(X(t)) dW (t). (4.10)

Now, setting t = tj and t = tj−1 in (4.10) we get

X(tj) = X0 +

∫ tj

0

f(X(t)) dt+

∫ tj

0

g(X(t)) dW (t) (4.11)

and

X(tj−1) = X0 +

∫ tj−1

0

f(X(t)) dt+

∫ tj−1

0

g(X(t)) dW (t). (4.12)

We see immediately that subtracting the equations above ((4.11) and (4.12)) the
following stochastic equation is obtained

X(tj) = X(tj−1) +

∫ tj

tj−1

f(X(t)) dt+

∫ tj

tj−1

g(X(t)) dW (t). (4.13)

Then, notice that each of the three terms on the right-hand side of (4.9) approxi-
mates 3 the corresponding term on the right hand-side of (4.13). That is,∫ tj

tj−1

f(X(t)) dt ≈ f(Xj−1)(tj − tj−1) = f(Xj−1)∆t (4.14)

and ∫ tj

tj−1

g(X(t)) dW (t) ≈ g(Xj−1)∆Wj−1. (4.15)

Hence, the approximations (4.14) and (4.15) alongside with (4.13) gives us Euler-
Maruyama formula (4.9). The reader who is interested in the type of convergence of

3The first integral (i.e the deterministic) is approximated by using conventional quadrature
approximation. For the second integral, we use Itô formula [14].
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the EM method and the relationship with others approximation methods is referred
to [13].

Finally, it is of importance to point out that the crucial question when simulating
stochastic differential equations is how to model the Brownian motion ∆Wj. The
answer is given in for example [15]: We define N(0, 1) to be the standard random
variable that is normally distributed with mean 0 and variance 1. Then, each
random number ∆Wj is an independent random variable that can be computed as

∆Wj = zj
√

∆tj

where zj is chosen from N(0, 1).

4.2.2 Simulations

After this brief introduction, we focus on the particular case of the stochastic dif-
ferential equation model for fiber length distribution. Therefore, we aim to solve
the systems of SDE given in the previous section. Notice that in these cases the
drift coefficient f(X(t)) and the diffusion coefficient g(X(t)) arising on Equation
(4.8) are a vector valued function and a matrix valued function, respectively. Fur-
thermore, W is a multidimensional Brownian motion and the solution X is a vector
valued stochastic process.

In the simulation of the SDE systems (4.5) and (4.7), each fiber length is checked for
breakage for each small time step. Assumptions for breakage are adapted from [2]
and are taken in the way that for each previous breakage, the probability of another
breakage is randomly divided. This gives a constant λ that accounts for the rate of
fiber breakage fraction of fibers of length k broken in time ∆t. Furthermore, it is
assumed that the probability for breakage is proportional to the length of the fiber.

Considering this new situation, the fraction qk∆t of fibers of length Lk broken in
time ∆t can be set up as

qk∆t = λ

(
Lk
Lmax

)
∆t, (4.16)

where λ will be considered to be the unity. In addition,

Sk,j =
h

Lk
=

1

k
(4.17)

being Sk,j the fraction of fragments of length Lj formed from breakage of fibers of
length Lk. Note that the second step in Equality (4.17) follows directly from the
fact that Lk = kh for k = 0, 1, . . . , d.

Now, putting (4.16) and (4.17) and together, we have

Sk,jqk∆t =
λh

Lmax
∆t. (4.18)
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As an aside, let us observe that this assumptions may be taken in a different way.
For instance, for a slightly different scenario of simulation where it is consider that
the probability of another breakage may be either not changed or reduced by a
factor of 2 and fiber may break more frequently at certain points than others, see
[16].

It turns out that getting back to our specific breakage assumptions, the SDE system
(4.5) can be simplified to a SDE system of the form

dN(t) = ΘN(t) dt+B(t, N(t)) dW (t) (4.19)

where Θ is a constant d× d matrix. To understand how the new drift coefficient is
determined, let us recall that in system (4.5) the drift coefficient µ(t, N(t)) satisfy
the first equality of (4.4), in other words, µ(t, N(t)) = E(∆N)/∆t. In addition, the
lth component of the expected change E(∆N) is given by (4.2). In consequence,
we can work out a new expression for the lth component of the expectation vector

µ(t, N(t))l = E(∆N)l/∆t

= 2
d∑

k=l+1

pk,l(t)−Nl(t)ql

= 2
d∑

k=l+1

Nk(t)Sk,lqk −Nl(t)ql

= 2
d∑

k=l+1

λh

Lmax
Nk(t)−

λlh

Lmax
Nl(t)

= 2
d∑

k=l+1

θk,lNk(t)− θl,lNl(t)

where θk,l for k = l, l + 1, . . . , d are the entries k, l of the matrix Θ given by

θk,l =


2K, if k > l

−lK, if k = l, k 6= 1

0, otherwise

and K = λh/Lmax is a constant. For example, in the particular case of d = 7 fiber
groups presented earlier in this chapter, the matrix V is
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Θ = K



0 2 2 2 2 2 2
0 −2 2 2 2 2 2
0 0 −3 2 2 2 2
0 0 0 −4 2 2 2
0 0 0 0 −5 2 2
0 0 0 0 0 −6 2
0 0 0 0 0 0 −7


.

A similar approach has been adopted to obtain the diffusion coefficient under this
breakage assumptions. In this case, we let one more time B = V 1/2. Then, the
expression V (t) =

∑d
k=1

∑k−1
l=1 C

k,lNk(t)λh/Lmax for the covariance matrix is de-
rived from the second equality of (4.4) and the definition of covariance matrix, i.e
Equation (4.3). Note that for example, if there exist d = 7 fiber groups, the term
C6,4 has the form

C6,4 = (∆N)6,4((∆N)6,4)T =



0 0 0 0 0 0 0
0 1 0 1 0 −1 0
0 0 0 0 0 0 0
0 1 0 1 0 −1 0
0 0 0 0 0 0 0
0 −1 0 −1 0 1 0
0 0 0 0 0 0 0


.

A simulation of the previous system (4.19) would be potentially based on the com-
putation of the matrix B, which is the square root of the covariance matrix and
it has been seen that its calculation may be computationally intensive. Hence, it
is important to look out for an alternative (and easier) way of simulation. This
alternative scheme of simulation exists and arises from the second procedure shown
in section 4.1. Then, let us model the new scenario:
Under the same breakage assumptions, we may substitute the diffusion coefficient
B(t, N(t)) for the diffusion coefficient arising in the SDE system (4.7). Then an
equivalent SDE model is obtained and has the form

dN(t) = ΘN(t) dt+
d∑

k=1

k−1∑
l=1

(∆N)k,lpk,l(t)
1/2 dW ∗

k,l(t). (4.20)

Now, applying the assumptions taken upon pk,l(t) to the latter system, the second
term on the right hand side can be rewritten as

d∑
k=1

k−1∑
l=1

(∆N)k,lpk,l(t)
1/2 dW ∗

k,l(t) = K

d∑
k=1

k−1∑
l=1

(∆N)k,lNk(t)
1/2 dW ∗

k,l(t),

where K is a constant that accounts for λh/Lmax. Henceforth, we are fully pre-
pared to simulate system (4.20) via the Euler-Maruyama method. In the simulation
scheme, two situations have been assumed for different groups of fibers having differ-
ent length. We refer to Appendix A for the implementation of the EM method in C.
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For the following graphics appearing on the left hand side, it has been assumed
that the number of steps are N = 20 and the fibers are initially distributed as
Nk(0) = 30 + 10j for j = 0, . . . , d − 1 and k = 1, . . . , d. Whereas, for the graphics
appearing on the right and side, it has been assumed that the number of steps are
also N = 20 and the fibers are initially distributed as Nk(0) = 0 for k = 1, . . . , d−1
and Nd(0) = 100.

As it can be seen, the first couple of graphics consist in three groups of fibers having
different length and the right end of the interval [0, T ] is taken as T = 0.9. In this
manner, we are able to observe that the groups of larger length loses components in
favour of the groups of fibers of smaller length. Hence, when the groups consisting
of fibers of larger length lose all of their components, the group of smallest fibers
does not neither win nor lose any more fibers, but become constant. This implies
that there is no need to study to extend the interval chosen. This phenomena is
due to the assumption that breakage of fibers of the group of smallest fibers cannot
occur, that is, the fraction of fibers of length L1 broken in time ∆t is zero.

Let us now present two graphics consisting of five groups of fibers having different
length:

For these graphics, the right end of the interval [0, T ] has been chosen as T = 1.3. It
is noticeable to point out that in the two graphics above there exist a larger number
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of fibers than in the graphics previous graphics. As a consequence, the group N1(t)
ends up reaching a greater number of fibers (376 and 201, respectively) than in the
previous graphics, which were 141. Also, it is seen that in the graphic of the left
hand side the numbers of fibers reached for the group N1(t) is greater than the one
on the right hand side. This means that, even having 100 fibers of the group N5(t),
which is the groups of fibers of largest length, the number of fibers in group N1(t)
formed by breakage are less than the number of fibers formed by breakage of fibers
of different groups with less components, and components of smaller length.

It will remain to be checked the equivalence of the two SDE models through com-
putations, which shall be left for future work. Even so, we refer to [2, Chapter 4]
for more information about computational results showing the agreement between
the two procedures.



Chapter 5

Conclusions

The construction of the Itô stochastic integral is build up firstly for the class of
random step processes M2

step and thereafter, for a larger class of stochastic processes
denoted by M2. The strong relationship between the class of stochastic processes
M2 and the space of integrable functions L2 is treated in terms of their expectations
and the concept of Itô stochastic integral is extended over a finite time interval
[0, T ] via indicator functions of the elements of M2 to any finite time interval [0, T ],
generating the class of stochastic process denoted by M2

T . It turns out that trying
to find a sequence of random process approximating a stochastic process of the class
M2 or M2

T could not be an easy task. Therefore, straightforward conditions for a
stochastic process to belong to M2 or M2

T are given.

Thereupon, the notion of stochastic differential and a crucial tool for transforming
and computing the stochastic integral, known as Itô formula, are explained and lead
us to the definition of stochastic differential equations. Furthermore, the class of
processes for which the solutions of a SDE will be sought is defined and is referred
to as Itô processes. Several elaborated examples of stochastic differential equations
such as Langevin equation and its solution, the Ornstein-Uhlenbeck process, are
also given. Finally, a theorem of existence and uniqueness of a solution for a SDE
that resemble the one arising in the theory of ordinary differential equations but
for Itô stochastic integral is provided.

In the last part, an application of the theory of stochastic differential equations to
textile industry is developed. To generate a stochastic differential equation system, a
discrete-time stochastic model is presented which is then approximated by a system
of stochastic differential equations. In particular, the two stochastic differential
equation systems studied are produced by the first and second procedures briefly
explained in the introduction and fully explained in Chapter 4. This last part ends
with the presentation of a basic situation of simulation for each of the systems
previously formulated and the corresponding simulation for the latter, where the
Euler-Maruyama method is used.
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Appendix A

C programme for the simulation
of the SDE system (4.20)

#include<stdio.h>

#include<stdlib.h>

#include<math.h>

/*

*This programme simulate the system dN(t) = Theta N(t) dt + G dW(t)

*using the E-M method where

*Theta = constant matrix

*G = Covariance matrix

*dW = d x d Lower Triangular matrix of Brownian motions with m >= d

*and zeros at the diagonal.

*

*T = right end of the interval [0,T]

*N = number of steps

*dt = T/N

*

*Recipe to get dW:

*Step 1: d random numbers from Normal Distribution are generated

*Step 2: Each component is set equal to sqrt(dt)*N(0,1)

*/

double **Theta(int d);

double *squareRoot(int d, double *);

double **crea_mat(int n, int m);

double *crea_vect(int n);

double randn (double mu, double sigma);

void prod_mat_vect(double **a, int na, int ma, double *x, double *y);

double *Change(int d,int k,int l);
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int main (void) {

int i,k,l, cont;

double d,dt,N,*Neulermethod_temp,*drift,*Neulermethod, **theta,

**diffusion, **dW, *diffusionVect, *coeff1, *coeff2;

FILE *f;

f=fopen("solution.dad", "w");

/*

*Number of fibers of different length. This value determines the

*number of population used in the simulation.

*/

d = 3;

theta=crea_mat(d,d);

Neulermethod_temp=crea_vect(d);

Neulermethod=crea_vect(d);

dW=crea_mat(d,d);

drift=crea_vect(d);

diffusion = crea_mat(d,d);

diffusionVect=crea_vect(d);

coeff1=crea_vect(d);

coeff2=crea_vect(d);

theta = Theta(d);

N=20;

dt = (double)(1/N);

k = 0;

for (i=0; i<d; i++) {

Neulermethod_temp[i] = 30+k;

k = k + 10;

}

printf("%13.6le, %le, %13.6le, %le, %13.6le, %le \n",

Neulermethod_temp[0],0.0, Neulermethod_temp[1],0.0,

Neulermethod_temp[2],0.0);

fprintf(f,"%13.6le, %le, %13.6le, %le, %13.6le, %le \n",

Neulermethod_temp[0],0.0, Neulermethod_temp[1],0.0,

Neulermethod_temp[2],0.0);
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cont = 0;

while (dt <= 1) {

cont++;

prod_mat_vect(theta,d,d,Neulermethod_temp,drift);

/*computation of diffusionVect*/

coeff1=squareRoot(d,Neulermethod_temp);

/*coeff1 returns the vector of the square rooth of the solution

*vector evalued at dt

*/

for (k = 0; k < d; k++) {

coeff1[k] = coeff1[k]/(double)(d);

}

/*A matrix of independent Brownian motions are computed for any

*time interval dt

*/

for (k = 0; k < d; k++) {

for (l = 0; l < k; l++) {

dW[k][l] = sqrt(dt)*randn(0,1);

}

}

for (k = 0; k < d; k++) {

for (i = 0; i < d; i++) {

/*the values of are initialized to zero*/

diffusionVect[i] = 0.;

}

for (l = 0; l < k; l++) {

coeff2 =Change(d,k,l);

/*For any k and l, coeff2

*returns the values of the change vector

*/

for (i = 0; i < d; i++) {

/*the components of the kth row of G are the

*components of the change vector

*/

diffusionVect[i] = coeff2[i] + diffusionVect[i];

}

/*the vector diffusionVect is multiplied
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*by a Brownian motion

*/

for (i = 0; i < d; i++) {

diffusionVect[i]=diffusionVect[i]*dW[k][l];

}

}

/*the vector diffusionVect is multiplied by the vector

*of the square rooth of the solution vector evalued at

*dt divided by d

*/

for (i = 0; i < d; i++) {

diffusionVect[i]=diffusionVect[i]*coeff1[k];

}

}

/*scheme for one step of E-M method*/

for (i = 0; i < d; i++) {

Neulermethod[i] = Neulermethod_temp[i] + drift[i]*dt

+ diffusionVect[i];

}

for (i = 0; i < d; i++) {

if (Neulermethod[i] < 0) {

Neulermethod[i]=0.;

}

}

printf("%13.6le, %le, %13.6le, %le, %13.6le, %le \n",

Neulermethod[0],dt,Neulermethod[1],dt,Neulermethod[2],dt);

fprintf(f,"%13.6le, %le, %13.6le, %le, %13.6le, %le \n",

Neulermethod[0],dt,Neulermethod[1],dt,Neulermethod[2],dt);

/*the values of the solution at the step dt (Neulermethod) are

*transferred to Neulermethod_temp

*/

for (i = 0; i < d; i++) {

Neulermethod_temp[i] = Neulermethod[i];

}

dt = dt + (double)(1/N);
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}

fclose(f);

return 0;

}

/*

* Function that returns the constant matrix Theta

*/

double **Theta(int d)

{

int i,j,k,l;

double **theta; /*It is assumed that lambda = 1, h = L_{max}/d*/

theta = crea_mat(d,d);

/*coeff of matrix Theta equals to 0*/

for (i= 0; i<d; i++) {

for (j=0; j<d; j++) {

theta[i][j]=0;

}

}

/*matrix Theta*/

for(k=0; k<d; k++) {

for(l=k; l<d; l++) {

if (k == l && k != 0) {

theta[l][l] = -(l+1)/(double)(d);

}

if (k<l) {

theta[k][l] = 2/(double)(d);

}

}

}

return theta;

}

/*
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* Function that returns the vector change

*/

double *Change(int d,int k,int l)

{

int i;

double *vector;

vector=crea_vect(d);

for (i = 0; i<d; i++) {

if (i == k-l-1) {

vector[i]=1;

}

if (i == l) {

vector[i]=1;

}

if (i == k) {

vector[i]=-1;

}

}

return vector;

}

/*

* Function that returns the square root of the elements of a vector

*/

double *squareRoot(int d, double *v)

{

int i;

double *vector1, *vector2;

vector1=crea_vect(d);

vector2=crea_vect(d);

for (i = 0; i<d; i++) {

vector1[i] = 0.;

}

for (i = 0; i<d; i++) {

vector2[i] = fabs(v[i]);

}

for (i = 0; i<d; i++) {

vector1[i] = sqrt(vector2[i]);
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}

return vector1;

}

/*

* Function that creates a vector

*/

double *crea_vect(int n)

{

double *vect;

vect=(double*)malloc(n*sizeof(double));

if (vect==NULL) {

return NULL;

}

return vect;

}

/*

* Function that creates a matrix

*/

double **crea_mat(int n, int m)

{

double **mat;

int i;

mat=(double**)malloc(n*sizeof(double*));

if (mat==NULL) {

return NULL;

}

for(i=0;i<n;i++) {

mat[i]=(double*)malloc(m*sizeof(double));

if (mat[i]==NULL) {

return NULL;
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}

}

return mat;

}

/*

* The following function uses the function rand() to generate a

*random number from a Normal distribution of mean mu and standard

*desviation sigma

*/

double randn (double mu, double sigma)

{

double U1, U2, W, mult;

double X1,X2;

/*static int call = 0;*/

/*if (call == 1)

{

call = !call;

return (mu + sigma * (double) X2);

}*/

do

{

U1 = ((double) rand() / RAND_MAX);

U2 = ((double) rand() / RAND_MAX);

W = pow (U1, 2) + pow (U2, 2);

}

while (W >= 1 || W == 0); /*to avoid division by zero*/

mult = sqrt ((-2 * log (W)) / W);

X1 = U1 * mult;

/*normally distributed with mean 0 and

*standard deviation 1

*/

X2 = U2 * mult;

/*call = !call;*/

return (mu + sigma * (double) X1);

}

/*
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* Function that derives a vector "y" from the multiplication of the

*matrix "a" and the vector "x".

*/

void prod_mat_vect(double **a, int na, int ma, double *x, double *y)

{

int i,j;

for (i=0; i<na;i++) {

y[i]=0.0;

for (j=0;j<ma;j++) {

y[i] += a[i][j]*x[j];

}

}

return;

}
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