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Density dependence of the symmetry free energy of hot nuclei
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The density and excitation energy dependence of symmetry energy and symmetry free energy for finite nuclei
are calculated microscopically in a microcanonical framework, taking into account thermal and expansion effects.
A finite-range momentum and density-dependent two-body effective interaction is employed for this purpose.
The role of mass, isospin, and equation of state (EOS) on these quantities is also investigated; our calculated
results are in consonance with the available experimental data.
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I. INTRODUCTION

The symmetry energy is a measure of the energy involved
in converting the excess neutrons to protons in asymmetric
nuclear matter. A kinetic contribution to it comes from the
associated shift of the neutron (n) and proton (p) Fermi
energies; another contribution comes from the difference
between the (n-p) interaction and that between like pairs (n-n
or p-p). Traditionally, the symmetry energy per nucleon or the
symmetry energy coefficient CE of infinite nuclear matter has
been determined from fits of experimental binding energies
with various versions of the liquid drop formula [1]. But it
refers only to the saturation density and at a temperature T = 0.
Its value is usually taken to be between 30 and 35 MeV.

Understanding the details of the structure, mass, and the
cooling of neutron stars [2] or simulating the dynamics of
supernovae collapse [3] entails a knowledge of the den-
sity and temperature dependence of the symmetry energy.
The abundance of relatively heavier elements in explosive
nucleosynthesis or even the existence of exotic neutron or
proton-rich nuclei produced in collisions of radioactive nuclei
have a direct lineage to this knowledge. The neutron skin
thickness of heavier nuclei has also been found to be intimately
correlated to the density derivative of the symmetry energy
[4–6] as it reflects the pressure difference on the neutrons and
protons.

Collisions between nuclei at relativistic energies offer the
best hope of studying properties related to isospin asymmetry
(symmetry energy, symmetry free energy, etc.) of nuclear
matter at supranormal densities. Inference can be made there
from comparison of theoretical prediction with experimental
data on symmetry energy-sensitive observables like differ-
ential flow of neutrons and protons or from the multiplicity
ratio of π−/π+,K0/K+, etc. [7,8], but no firm conclusions
can yet be made because the experimental isospin-sensitive
signals cannot be considered very definitive [9]. At subnormal
densities, studies on nuclear multifragmentation offer a unique
tool to determine the characteristics of the nuclear symmetry
energy or symmetry free energy as a function of density and
excitation energy. In intermediate energy heavy-ion collisions,
a hot dilute nuclear system is formed that expands to reach the
equilibrium state and ultimately fragments into many pieces.

The produced fragments bear signatures of the properties of the
hot expanded system prior to fragmentation. These include the
excitation energy dependence of temperature (caloric curve)
and density as well as the symmetry energy and symmetry
free energy at subnormal densities produced at different
excitations. Data related to isotopic distributions [10], isospin
diffusion [11–13], and isoscaling [14,15] have recently been
analyzed and estimates of symmetry coefficients at different
densities and excitations have been obtained. These estimates
give somewhat different predictions and are also not fully
conclusive.

There have been numerous studies on the symmetry energy
of nuclear matter based on the different many-body theories
using various nucleon-nucleon interactions or interaction
Lagrangians [7]. These studies provide very useful tools for
understanding the properties of hot and dense nuclear matter.
It has been noticed that the calculated density dependence of
the symmetry energy coefficient differs appreciably depending
on the choice of the theoretical models and interactions. For
the symmetry free energy of infinite nuclear matter, there
are recent investigations done in the mean-field framework
[16]. In Refs. [17,18], the symmetry energy and symmetry
entropy of very dilute nuclear matter have been calculated
exploiting virial expansion techniques where clusterization of
light fragments is taken into account.

For finite systems, however, there are fewer available
calculations for the symmetry energy or the symmetry free
energy and for their dependence on density and energy. In
Ref. [19], symmetry free energy coefficients of fragments
produced in nuclear multifragmentation have been calculated
from the variance of the isotopic distributions obtained in
a statistical multifragmentation model. The present authors
have performed a calculation [20] of the symmetry energy
coefficient of finite nuclei based on the finite-temperature
Thomas-Fermi (FTTF) formulation. This calculation was
done microscopically in a microcanonical framework using
a finite range, momentum, and density-dependent effective
interaction [21]. The calculated symmetry energy coefficients
at different excitations and densities were compared with
the available scant experimental data. There is an ongoing
discussion regarding whether the experimental data for the
symmetry coefficients should be connected to the symmetry
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energy or to the symmetry free energy [22]. We take the
viewpoint that they refer to the symmetry free energy, in accord
with recent studies [18,19]. In the present work we calculate
the symmetry free energy coefficient for a number of nuclei
in the FTTF formulation. The calculation of the symmetry
energy coefficient in Ref. [20] was done in the local density
approximation (LDA). Calculations with some improvement
over the LDA are reported in the present article. In addition,
the dependence of the symmetry coefficients on the mass and
isospin content of the nucleus as well as on the underlying
equation of state (EOS) are considered.

The organization of the article is as follows. In Sec. II,
outlines of the model used in the calculation are presented.
Section III contains the results and discussions. Concluding
remarks are given in Sec. IV.

II. THEORETICAL FRAMEWORK

The methodology employed to calculate the symmetry
energy and symmetry free energy coefficients as a function
of excitation energy or density is outlined in the following.

A. Modeling the hot nucleus

When two nuclei collide at intermediate energy a hot
nuclear system of neutrons and protons is formed, which
is assumed to be in thermodynamic equilibrium and can be
described by a temperature T . The density profile of this hot
system is generated in the FTTF approximation with a chosen
two-body effective interaction. The details of the employed
FTTF procedure are already documented in Ref. [23] and we
do not present them here.

For an expanding system pursuing the equilibrium con-
figuration (as described later), the surface diffuseness is
likely to play an important role [24]; thus, a zero-range
force like the Skyrme interaction widely used to explore
nuclear ground-state properties may not be very suitable for
generating such a density profile. It is further noted that a
constrained expanded system in the FTTF approach may lead
to numerical instabilities [25,26] and the gradient (surface)
terms in the energy-density functional were replaced with
a suitable Yukawa interaction. We have therefore chosen a
modified Seyler-Blanchard (SBM) effective interaction for the
FTTF calculations. This interaction is of finite range with
momentum and density dependence and is given by [21]

veff(r1, r2, p, ρ) = −Cl,u

[
1 − p2

b2
− d2 {ρ(r1) + ρ(r2)}n

]

× exp(−r/a)

(r/a)
. (1)

An effective isospin dependence in the interaction is brought
through the different strength parameters Cl for like-pair
(n-n, p-p) and Cu for unlike pair (n-p). The relative sepa-
rations of the nucleons in configuration and momentum space
are given by r = |r1 − r2| and p = |p1 − p2|. The densities
at the sites of the two interacting nucleons are given by ρ(r1)
and ρ(r2). The parameter a corresponds to the range of the

interaction, b and d determine its momentum and density
dependence; the density exponent n controls the stiffness of
the nuclear EOS. This interaction reproduces quite well the
ground-state binding energies, root-mean-square charge radii,
and isoscalar giant monopole resonance energies for a host
of even-even nuclei. With a density exponent n = 1/6, the
incompressibility of symmetric nuclear matter K∞ is 238 MeV.
A stiff EOS with K∞ = 380 MeV can be simulated with
n = 4/3.

In the FTTF approach, the nucleon density profile at
temperature T has the form

ρτ (r) = A∗
T (r)J1/2 [ητ (r)] , (2)

where

A∗
T (r) = 4π

h3
[2mτ,k(r)T ]3/2, (3)

and JK (ητ ) is the Fermi integral

JK (ητ ) =
∫ ∞

0

xK

1 + exp(x − ητ )
dx, (4)

with the fugacity ητ given as

ητ (r) = [µτ − Vτ (r)]/T . (5)

In Eqs. (2)–(5), τ is the isospin index, mτ,k the effective k mass
of the nucleon coming from the momentum dependence of the
interaction, µτ the chemical potentials, and Vτ (r) the effective
single-particle (SP) potential (Coulomb included).

When η � 0, the system is very dilute with V ∼ 0 and then
ρ ∼ eµ/T , a constant. At large distances, the particle density
therefore does not vanish. The pressure at the surface is then
nonzero, making the system thermodynamically unstable; the
density then depends on the size of the box in which the FTTF
calculations are performed. This problem is overcome in the
subtraction procedure [27,28], where the hot nucleus, assumed
to be a thermalized system in equilibrium with a surrounding
gas representing evaporated nucleons, is separated from the
embedding environment. The method is based on the existence
of two solutions to the FTTF equations, one corresponding
to the liquid phase with the surrounding gas (lg) and other
corresponding to the gas (g) phase. The density profile of
the hot nucleus in thermodynamic equilibrium is given by
ρτ = ρτ,lg − ρτ,g . It is independent of the box size in which
calculations are done. It also goes to zero at large distances,
implying a vanishing surface pressure. We call this the base
density (it is also sometimes called the liquid profile). The
conservation of the nucleon number of each species Nτ of the
hot nucleus gives∫

[ρτ,lg(r) − ρτ,g(r)]dr = Nτ . (6)

The energy E of the required nucleus is given by

E = Elg − Eg, (7)

where Elg and Eg are the total energies of the liquid-gas system
and of the gas alone.
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The total entropy in the Landau quasiparticle approximation
is

S = −
∑

τ

∫
gτ (ετ , T )[fτ ln fτ + (1 − fτ ) ln(1 − fτ )]dετ ,

(8)

where fτ is the single-particle occupancy function

fτ (ετ , µτ , T ) = {1 + exp[(ετ − µτ )/T ]}−1, (9)

and gτ is the subtracted single-particle level density. Once the
energy and entropy are known, the free energy is calculated
from F = E − T S.

In the above, the description of the hot nucleus is grand
canonical obtained from the minimization of the grand poten-
tial (the temperature is a constant). In experimental conditions,
however, when two nuclei collide, the hot system is formed in
isolation, its total excitation energy remains a constant. The
system might be compressed initially, resulting in a collective
flow in the decompression stage but we ignore it in the present
work. The system is microcanonical; to attain equilibrium, it
expands in quest of maximum entropy. It is, however, still
possible to describe the system statistically by an effective
temperature T . It has the operational advantage that it helps
in defining an occupation function that can be employed in
evaluating various observables like energy, entropy, and so on.

The expansion of the hot nucleus is simulated through a
self-similar scaling approximation for the density,

ρλ(r) = λ3ρ(λr), (10)

where the scaling parameter λ is unity for the unbloated
nucleus and decreases with expansion, lying in the range
0 < λ � 1; ρλ(r) is the scaled density and ρ(r) is the base
density profile generated in the subtracted FTTF framework.
In addition to its simplicity, there is no a priori justification for
this choice; however, it has been shown that with a harmonic
oscillator potential, at relatively small temperatures, the scaled
density profiles and those generated self-consistently in a
constrained Thomas-Fermi [25] procedure are equivalent [29].

One further needs to account properly for the effect of
collectivity, as the coupling of the single-particle motion with
the collective degrees of freedom [30] is not included in the
FTTF procedure. This coupling introduces an extra energy
dependence in the nucleon effective mass (mω, the ω mass) in
addition to the k mass. The total effective mass m∗ can then
be written as

m∗ = m
mk

m

mω

m
. (11)

The ω mass is surface-peaked and has values generally larger
[31] than the nucleon mass m. This increase brings down
the excited states from higher energy to lower energy near
the Fermi surface, thus increasing the many-body density of
states at low excitations. The system can then accommodate
comparatively more entropy at a given excitation energy.
The coupling of collectivity with the nucleonic single-particle
motion may thus have a significant role in getting the
equilibrium maximal entropy configuration. A self-consistent
evaluation of mω is very involved; for simplicity, we take
the same phenomenological form of Refs. [32–34] for it. An

in-depth presentation of our computational method of the
expanded hot nucleus with inclusion of collectivity can be
found in Ref. [29] and thus we do not dwell further on it here.

B. Symmetry energy

The symmetry energy esym of nuclear matter characterizes
how the energy rises as one moves away from equal numbers
of neutrons and protons. For asymmetric nuclear matter at
density ρ = ρn + ρp with asymmetry parameter X = (ρn −
ρp)/ρ, the symmetry energy is defined as

esym(ρ, T ,X) = e(ρ, T ,X) − e(ρ, T ,X = 0), (12)

where e is the total energy per nucleon of nuclear matter, given
as

e(ρ) =
[

h̄2

2m∗ τ (ρ) + EI (ρ)

]
1

ρ
. (13)

In the above equation, the first and second terms within the
square brackets are the kinetic and potential energy densities
for infinite nuclear matter at a density ρ.

The symmetry energy can be written as

esym(ρ, T ,X) = CE(ρ, T )X2 + O(X4). (14)

The terms beyond X2 are negligible for values of X one
encounters in nuclei. The nuclear matter symmetry energy
coefficient CE is obtained from [17]

CE(ρ, T ) = 1

2

∂2

∂X2
esym(ρ, T ,X)|X=0. (15)

The symmetry free energy coefficient CF can similarly be
defined as

CF (ρ, T ) = 1

2

∂2

∂X2
fsym(ρ, T ,X)|X=0, (16)

where fsym(ρ, T ,X) is the symmetry free energy per nucleon
defined in the same manner as in Eq. (12) with e replaced
by f .

To compute the coefficients CE and CF in finite nuclei we
adopt the following prescription. Once the neutron and proton
equilibrium density profiles of a nucleus with N0 neutrons and
Z0 protons (A0 = N0 + Z0) at an excitation energy E∗ and
temperature T are known, the symmetry energy coefficient
can be calculated in the LDA as [20]

CE(E∗)

(
N0 − Z0

A0

)2

= 1

A0

∫
ρ(r)CE(ρ(r), T )X2(r)dr.

(17)

Here, CE(ρ(r), T ) is the symmetry energy coefficient at
temperature T of infinite nuclear matter at a density equal
to the local density ρ(r) of the nucleus and X(r) = [ρn(r) −
ρp(r)]/ρ(r) is the local isospin asymmetry. One can obtain
analogously the symmetry free energy coefficient CF (E∗) of
a finite nucleus.

In the LDA, the particles at each point in space feel the
potential as if it were locally a constant. The neutron and
proton potentials in the configuration space are calculated at
a temperature T for infinite matter at a value of the local
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density ρ(r) to evaluate CE[ρ(r), T ] or CF [ρ(r), T ]. In a
finite nucleus, these potentials at any point should also contain
information on the densities at nearby points, which in the
extended Thomas-Fermi (ETF) [35] method is taken into
account by recasting the kinetic energy density as a functional
of not only the local density but also its derivatives. The
correction to the energy density at a temperature T , up to
second order in h̄ is [35,36]

E2(ρ) = F2(ρ) + T σ2(ρ), (18)

where F2(ρ) and σ2(ρ) are the corrections to the free energy
density and entropy density, respectively. They are given as

F2(ρ) = h̄2

2m

{
ζ (η)f

(∇ρ)2

ρ
+

[
9

4
ζ (η) − 7

48

]
ρ

(∇f )2

f

+ 1

6
(ρ�f − f �ρ) +

[
3ζ (η) − 5

12

]
∇ρ ·∇f

}
,

(19)

and

σ2(ρ) = − h̄2

2m

ν(η)

T

{
f

(∇ρ)2

ρ
+ 9

4
ρ

(∇f )2

f
+ 3∇ρ ·∇f

}
.

(20)

In the above two equations, ρ refers to the local density ρ(r)
and f = m/m∗(r) is a functional of ρ. The quantity ζ (η), to a
good approximation, is

ζ (η) � 1
36 [1 + 2/

√
1 + eη], (21)

and

ν(η) = −3
J1/2(η)

J−1/2(η)

dζ

dη
. (22)

The corrections E2(ρ) and F2(ρ) are added to the local
energy and free energy densities perturbatively, in the spirit
of variational Wigner-Kirkwood theory [37], to calculate
the improved symmetry energy and symmetry free energy
coefficients.

C. Isotopic scaling and symmetry free energy

It has been observed by various experimental groups [38–
42] that the logarithm of the ratio R defined as

R = Y2(N,Z)/Y1(N,Z), (23)

where Y1 and Y2 are the yields of a particular fragment with N

neutrons and Z protons from two different fragmenting sources
differing in the neutron-proton ratio at the same temperature
follow a relation of the type

ln R = K + (αN + βZ). (24)

This observation is known as isoscaling; the coefficients α and
β are the parameters characterizing the isoscaling behavior
and K is the normalization factor.

The parameter α has been related to the symmetry coeffi-
cient C through the relation

α = 4

T
C

[(
Z0

A0

)2

2

−
(

Z0

A0

)2

1

]
, (25)

where the suffixes 1 and 2 correspond to the two fragmenting
systems. The quantities (Z0, A0)i denote the values in the
fragmenting system from whose disassembly the fragment
(Z,A) is produced. Various authors have derived Eq. (25)
under different approximations [10,12,42] and the coefficient
C has commonly been related to the symmetry energy
coefficient CE . In this interpretation, the isospin dependence of
entropy has been neglected, which may be a fair approximation
at around normal density but may not be so for low densities as
encountered in the tail region of the density profile of a nucleus
at a relatively high temperature. In some recent literature
[18,19], the need to include the asymmetry dependence
of entropy has been stressed and the symmetry coefficient
in Eq. (25) has been interpreted as that pertaining to the
symmetry free energy. Furthermore, whether the symmetry
coefficient refers to the fragmenting source or to the primary
fragments at freeze-out is not fully settled. In Ref. [42], it
is interpreted as the symmetry coefficient of the primary
fragments. In Ref. [10], the basic interpretation is the same,
but the properties of the fragments are conjectured to be
modified due to “in-medium” effects because of presence of
other neighboring fragments in the freeze-out volume. In the
sequential Weisskopf model in the grand canonical limit [12]
as applied for an expanding emitting nucleus, the symmetry
coefficient is linked to that of the fragmenting source. In our
present communication, we take the symmetry coefficient to
be the symmetry free energy of the expanded mononuclear
system in its most probable configuration at a fixed excitation
energy E∗.

III. RESULTS AND DISCUSSIONS

A. Infinite nuclear matter

The SBM interaction, as mentioned earlier, reproduces well
the bulk properties of nuclei. For symmetric nuclear matter as
well as for neutron matter, the EOS obtained [43,44] with this
interaction also compares very favorably with those calculated
microscopically with realistic interactions in a variational
approach [45,46]. In Fig. 1, we display the symmetry energy

0 0.25 0.5 0.75ρ/ρ0

0

10

20

30

C
E
 (

M
eV

)

SBM
Gogny
SLy4
v18

NM (T=0)

FIG. 1. The symmetry energy coefficient CE for nuclear matter
at T = 0 as a function of density with different interactions. The full
line refers to calculations with SBM interaction; the other results are
taken from Ref. [47].
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coefficient of nuclear matter (at T = 0) as a function of density.
Because our focus of interest is in the subnuclear density
region, the results are presented up to ρ � 0.75ρ0 where ρ0

is the saturation density taken as 0.154 fm−3, its value for
the SBM interaction. The calculated results are seen to be well
within the range obtained in microscopic calculations [47] with
different bare (Argonne v18) and effective (SLy4 and Gogny)
interactions.

Up to the saturation density the symmetry energy coeffi-
cient calculated with the SBM interaction can be very well
represented by

CE(ρ) � CE(ρ0)

(
ρ

ρ0

)γ

, (26)

with CE(ρ0) = 34.0 MeV and γ = 0.65. Though the exper-
imentally extracted value of the exponent γ is still fraught
with some uncertainties, significant constraints on it have
been determined from different observables in recent years.
Comparison of results from the transport model with recent
experimental data on isospin diffusion constrain the value
of γ to around 0.69–1.05 at subnuclear densities [7]. The
neutron and proton transverse emission ratio measurements
[48] present some new constraints on γ somewhat larger than
0.5, whereas measurements from isotopic distributions [15]
provide a value of γ close to 0.69. Consideration of the
giant dipole resonance properties of 208Pb puts a constraint
23.3 < CE(ρ ∼ 0.1 fm−3) < 24.9 MeV [49], which implies a
value of γ ∼ 0.55.

In Fig. 2, the symmetry coefficients CE and CF as a function
of density of nuclear matter are shown at T = 10 MeV in the
upper panel. The difference between CE [Eq. (27)] and CF

[Eq. (16)] is amplified with decrease in density, in consonance
with that obtained in Ref. [16]. This is understandable from
entropy considerations. Our calculations have been done in
the mean-field model, inclusion of cluster formation at low
densities would increase the values of these coefficients
somewhat [17]. We find that the equilibrium density (i.e.,
the state at zero pressure) of nuclear matter falls off linearly

0 2 4 6 8 10
E

*
/A (MeV)

24

26
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,F
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M
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CF

0 0.2 0.4 0.6 0.8
ρ/ρ0
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C
E

,F
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(a)

NM
T=10

NM
(b)

FIG. 2. The symmetry coefficients CE and CF for nuclear matter
calculated with the SBM interaction (a) shown as a function of density
at T = 10 MeV and (b) as a function of excitation energy.

with excitation energy and may be very well represented
by ρ = ρ0(1 − 0.04E∗/A), with E∗ expressed in MeV. The
symmetry coefficients CE and CF for different excitations at
equilibrium densities calculated using Eqs. (15) and (16) are
shown in the lower panel of the figure. The dependence of these
coefficients with excitation is found to be nearly linear and may
be well represented as CE(E∗/A) � CE(0)(1 − 0.024E∗/A)
and CF (E∗/A) � CF (0)(1 − 0.028E∗/A). We have studied
the role on CE and CF of using a soft EOS (n = 1/6,K∞ =
238 MeV) and a hard EOS (n = 4/3,K∞ = 380 MeV). The
effect of the EOS on both the coefficients in infinite nuclear
matter is found to be small except at very low densities.

B. Finite nuclei

We have calculated the symmetry coefficients for a number
of nuclei to study their mass and asymmetry [X0 = (N0 −
Z0)/A0] dependence as a function of density and excitation
energy. For the mass dependence, we have chosen 197Au and
40S, both having practically the same X0. For the isospin de-
pendence, we have considered the isobar pair 150Sm and 150Cs.
The relevant experimental data on the symmetry coefficients
are very few; they are available mostly in the mass region A0 ∼
100–120 [15,50]. We have therefore studied the nucleus 110Sn
to have a comparison of the calculated results with the experi-
mental data. The model is tested further in a wider perspective;
we calculate the evolution with excitation of temperature
(caloric curve) and density of this nucleus as experimental
data [51,52] are available around this mass number.

1. Grand canonical approach

In Fig. 3, the caloric curve, the central density ρc in units
of the ground-state central density ρc,0 and the symmetry

0 2 4 6 8 10

E
*
/A (MeV)

10

15

20

25

C
E

,F
 (

M
eV

)

0.4

0.8

ρ c/ρ
c,

0

4

8

T
 (

M
eV

)

110Sn

(a)

(b)

(c)

FIG. 3. (Color online) The equilibrium temperature (a), the
equilibrium central density (b), and the symmetry coefficients
(c) as a function of excitation energy for 110Sn. The calculations
are performed with the base density (without self-similar expansion).
In the bottom panel, the dotted black line and the dash-dot blue line
are the symmetry coefficients CE and CF , respectively, calculated in
LDA. The dashed magenta line and the solid red line refer to CE and
CF with inclusion of second-order corrections. For the experimental
data points, see the text.
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coefficients CE and CF for the nucleus 110Sn are displayed
as a function of excitation energy E∗/A in panels (a), (b),
and (c), respectively. These calculations have been performed
with the base density profile generated in the grand canonical
framework where all the excitation energy has been locked
in the thermal mode, i.e., there is no expansion energy.
The experimental data for the caloric curve and densities
correspond to medium-heavy nuclei (100 < A0 < 140). They
have been taken from Ref. [51] for the caloric curve and
from Ref. [52] for the densities. We have also included in
the figure the available experimental data for the symmetry
coefficients; the open triangles and the filled circles are from
Ref. [15] and the open and filled squares are from Ref. [50].
As discussed earlier, we interpret these data as pertaining to
the symmetry free energy coefficient. The data from Ref. [15]
correspond to collisions between mass-symmetric nuclei with
total mass A0 = 116. The source size was taken there to be
somewhat less, A0 � 100, because of the reduction due to
pre-equilibrium emission. The data in Ref. [50] were extracted
for collisions of 12C on 112,124Sn. The symmetry coefficients
there are given as a function of temperature. We have expressed
them as a function of excitation energy using the Fermi-gas
expression E∗ = aT 2 with an effective level density parameter
a = A/10.

The present calculations are done for the fragmenting
source 110Sn to give an orientation on the excitation energy
dependence of the symmetry coefficients. As reported later,
the symmetry coefficients are found to be weakly dependent
on the mass of the fragmenting system but somewhat sensitive
to its N0/Z0 ratio. The dotted black line and dot-dash blue
line of Fig. 3 correspond to calculations in the LDA for CE

and CF , respectively. The corresponding calculations with
second-order corrections incorporated are represented by the
magenta dash line and the full red line. The calculated caloric
curve matches very well with the experimental data except
at high excitations. The calculated densities are, however,
overestimated. Correlation of the symmetry coefficients with
the density is displayed in Fig. 4. The notations used for the
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ρc/ρc,0
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FIG. 4. (Color online) Correlation of the symmetry coefficients
with density for the system 110Sn. The calculations refer to those with
the base density. The experimental points are taken from Ref. [15].
The notations for the calculated results are the same as described in
the caption to Fig. 3(c).

1 3 5 7 9

E
*
/A (MeV)

10

15

20

C
E

,F
 (

M
eV

)

0.4

0.8

ρ c/ρ
c,

0

4

8

T
 (

M
eV

)

110Sn (a)

(b)

(c)

FIG. 5. (Color online) Same as described in the caption to
Fig. 3, but the calculations are done with the microcanonical
equilibrium density.

different lines are the same as in the bottom panel of Fig. 3.
In Fig. 3(c), it is seen that the calculated symmetry free energy
coefficients follow the experimental trend rather well, but
in Fig. 4 the mismatch between theory and experiment [15]
becomes very apparent, indicating the limitations of the grand
canonical approach.

2. Microcanonical approach

The fact is that the hot nuclear system formed in energetic
nuclear collisions is an isolated system and the limitations
of the grand canonical approach exposed in Fig. 4 motivate
one to describe the evolution of the system in microcanonical
thermodynamics. In this framework, the system expands in
search of the maximal entropy configuration. In panels (a)
and (b) of Fig. 5, the caloric curve and the evolution of the
density with excitation energy calculated in the microcanonical
approach are displayed for the system 110Sn. The comparison
of the observables with the experimental data is now improved,
showing the importance of the proper treatment of the
expansion phase for the equilibrium configuration. The bottom
panel displays the symmetry coefficients CE and CF in the
LDA and also with the inclusion of second-order corrections.
The different lines have the same meaning as in the bottom
panel of Fig. 3. With increase in excitation, the importance
of the second-order corrections is found to decrease; this is
attributed to the slower fall of the density for nuclei bloated
with excitation. At higher excitations, the system becomes
more expanded and dilute and a possible enhancement of the
symmetry coefficients with respect to the present calculation
may come from clustering at the surface [17,18].

The correlation of the symmetry coefficients with density
is displayed in Fig. 6 for the same system 110Sn. The notations
used for the calculated results are the same as described in
the caption to Fig. 4. Allowing for the uncertainties in the
experimental extraction of the density and of the symmetry
coefficients, it is found that the calculated correlation follows
the experimental trend well. A noticeable improvement of the
results over those depicted in Fig. 4 is observed.

034607-6



DENSITY DEPENDENCE OF THE SYMMETRY FREE . . . PHYSICAL REVIEW C 78, 034607 (2008)

0.3 0.4 0.5 0.6 0.7 0.8 0.9

ρc/ρc,0

5

10

15

20

25

30
C

E
,F
 (

M
eV

)
110Sn

FIG. 6. (Color online) Same as described in the caption to Fig. 4
but with the microcanonical equilibrium density.

The dependence of the symmetry coefficients CE and
CF for finite nuclei on the EOS of the underlying nuclear
interaction is displayed in Fig. 7 at different excitations.
We have chosen 110Sn as the representative system. All the
calculations presented in this figure and in Fig. 8 are done
with the inclusion of the second-order corrections. At the same
excitation, both CE and CF are larger for the stiffer EOS.
This is understood from the fact that at the same excitation,
the equilibrium configuration is more compact for the stiffer
EOS [29]. As a whole, the symmetry coefficients are found to
be not too sensitive to the choice of the EOS we have made.

The excitation energy dependence of the symmetry free
energy coefficient CF for all the five nuclei studied is
displayed in panel (a) of Fig. 8. The lines from top to bottom
correspond to the systems 110Sn,197 Au, 150Sm,150 Cs, and
40S, respectively. The mass and asymmetry dependence of
the symmetry coefficient can be easily inferred from the
figure. The comparison of the results for the systems 197Au
and 40S (having practically the same asymmetry) indicates
the lowering of the symmetry coefficients with decreasing
mass. The lighter nucleus has a lesser value of CF because of
the predominance of the surface effects. Similarly, the isospin
or asymmetry dependence can be inferred from the comparison
of results of the isobar pair 150Sm and 150Cs. The lower values
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FIG. 7. The dependence of the symmetry coefficients on the
underlying EOS is shown for the finite system 110Sn.
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FIG. 8. (Color online) The symmetry coefficient CF for the five
nuclei studied is shown as a function of excitation energy (upper
panel) and as a function of density (lower panel). From top to
bottom, the lines correspond to 110Sn,197 Au,150 Sm,150 Cs, and 40S,
respectively.

of the symmetry coefficient CF for the more asymmetric
nucleus 150Cs can be traced to the fact that isobars with higher
asymmetry have effectively softer EOS [29]. It is seen that
the results for the symmetry coefficients for the pair 197Au
and 150Sm are practically indistinguishable. This reflects an
interplay of the effects due to mass and asymmetry. This is
further amplified in the larger values of CF for 110Sn, which
has an appreciably smaller mass than 197Au but has also a
very small asymmetry X0 = 0.09. In panel (b) of Fig. 8,
the symmetry free energy coefficients of all the nuclei
studied are displayed as function of their equilibrium densities
corresponding to different excitations. The variations of the
density correlation of the symmetry coefficients with mass
and isospin for the nuclei studied are very similar to those
seen for the excitation energy in the upper panel of the figure.
The results for the symmetry energy coefficient CE exhibit
nearly the same trends with excitation and density as CF in
the present figure, and therefore we do not display them.

As seen in Fig. 8, the excitation energy dependence of
CF for all the five nuclei discussed is almost linear and the
results corresponding to each nucleus run nearly parallel. As
in the case of nuclear matter, this dependence can be well
approximated by a linear relation CF (E∗/A) = CF (0)(1 −
αF E∗/A) with αF � 0.054 MeV−1. The same holds for the
symmetry energy coefficient CE (not shown in the figure), for
which we find CE(E∗/A) = CE(0)(1 − αEE∗/A) with αE �
0.064 MeV−1. The faster falloff of the symmetry coeffi-
cients of finite nuclei with increasing excitation compared
to those of nuclear matter is attributed to the comparatively
lower equilibrium density of the isolated nuclei at the same
excitation.

The density dependence of the symmetry free energy
coefficient of the finite nuclei can be fitted with a general
expression of the form

CF (ρ) = κv(ρ/ρ0)γ1

1 + κs (ρ/ρ0)γ2A−1/3

(
1 − κsymX2

0

)
, (27)
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where κv and κs are the volume and surface constants
contributing to the symmetry coefficient. The exponents γ1

and γ2 depict the density dependence of the volume and
surface contributions, respectively. We have included a term
κsym X2

0, with X0 being the asymmetry parameter of the finite
nucleus. This is done to test the size of an eventual departure
of the symmetry energy in finite systems from the quadratic
dependence on the asymmetry parameter that is assumed in
the definition of the symmetry coefficients.

A least-squares fit of Eq. (27) to the calculated values for
the symmetry free energy coefficient fixing the values of κv

(34 MeV) and γ1(0.65) to those of infinite nuclear matter,
and considering all the five systems studied in the excitation
energy range 1 � E∗/A � 10 MeV, gives κs = 1.46, γ2 = 0.17
and κsym = 1.55 with a root-mean-square deviation �6%.
The significantly lower value of γ2 compared to the volume
exponent γ1 points to a weaker surface density dependence. A
free variation of all the five parameters improves the least-
squares fit very little compared to the variation of three
parameters mentioned above. In infinite nuclear matter, the
symmetry energy and symmetry free energy are known to
be well represented with a quadratic term in the asymmetry
parameter X, the quartic term being negligible. In finite nuclei,
the existence of surface and Coulomb effects may modify this
scenario. The result κsym = 1.55 found indicates, however,
that the effect is relatively small for the typical values of X0 in
nuclei.

IV. CONCLUDING REMARKS

We have investigated the energy and density dependence of
the symmetry energy and symmetry free energy coefficients
of finite and infinite nuclear systems. The dependence of these
coefficients on the EOS, mass, and isospin content of nuclei
have further been explored. The calculations are done in a
microscopic microcanonical framework using a momentum
and density-dependent finite-range effective interaction. The
density dependence of the symmetry energy coefficient of
infinite nuclear matter calculated with this interaction com-
pares very well with those obtained from other microscopic
calculations.

Our main focus in the present work is to explore the
density and energy dependence of the symmetry coefficients
of finite nuclei. First, we have investigated the predictions
of our considered model for these coefficients for infinite
nuclear matter in the subnuclear density range. In the density
range 0.1 < ρ/ρ0 < 1, the symmetry energy coefficient for
nuclear matter at T = 0 is found to be well reproduced
by CE(ρ) � CE(ρ0)(ρ/ρ0)γ with CE(ρ0) = 34.0 MeV at the
saturation density and γ � 0.65, well within the experimental

range of values. For finite nuclei, the calculations have been
performed in the local density approximation and improved
by incorporating second-order corrections in gradients of the
neutron and proton densities perturbatively. The calculated
symmetry free energy coefficients are found to be larger than
the symmetry energy coefficients by ∼10% at medium excita-
tions because of the contribution from the symmetry entropy.
At low excitations, as expected, there is little difference in
the values of the two coefficients. At the highest excitation
(10 MeV/nucleon) that we explore, the difference is ∼15%.
The calculated coefficients CF compare favorably with the
available experimental data.

Both for infinite nuclear matter and for finite nuclei, the
symmetry coefficients vary linearly with excitation energy;
however, for finite systems, the dependence is much stronger.
The dependence on the EOS of the symmetry coefficients for
nuclear matter is found to be rather weak. For finite systems the
dependence is more noticeable and the symmetry coefficients
decrease with the softness of the EOS. They are, however,
not too sensitive to the EOS chosen. The coefficients CE

and CF of finite nuclei are system dependent, an interplay
of the role of mass and isospin is quite evident there. For
the same asymmetry, the coefficients get smaller with smaller
mass, this dependence is weak. However, for the same mass,
the coefficients show a relatively stronger dependence on the
isospin content of the nucleus.

The characterization of the density and excitation de-
pendence of the symmetry term of the nuclear interaction
is instrumental for the understanding of a plethora of phe-
nomena in both nuclear physics and astrophysics. This topic
currently attracts much theoretical and experimental activity.
Our present calculations have been done in the mean-field
framework, effects beyond mean field, like clusterization at
low densities, may have perceptible effects and therefore are
worth a study. The relevant experimental data are still very
scarce, the continuing experimental effort in reactions with
neutron-rich stable nuclei and future data from reactions with
exotic isotopes in the radioactive ion beam facilities would
contribute to a better understanding of these phenomena.
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