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Theoretical study of elastic electron scattering off stable and exotic nuclei
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Results for elastic electron scattering by nuclei, calculated with charge densities of Skyrme forces and covariant
effective Lagrangians that accurately describe nuclear ground states, are compared against experiment in stable
isotopes. Dirac partial-wave calculations are performed with an adapted version of the ELSEPA package. Motivated
by the fact that studies of electron scattering off exotic nuclei are intended in future facilities in the commissioned
GSI and RIKEN upgrades, we survey the theoretical predictions from neutron-deficient to neutron-rich isotopes
in the tin and calcium isotopic chains. The charge densities of a covariant interaction that describes the low-energy
electromagnetic structure of the nucleon within the Lagrangian of the theory are used to this end. The study is
restricted to medium- and heavy-mass nuclei because the charge densities are computed in mean-field approach.
Because the experimental analysis of scattering data commonly involves parameterized charge densities, as a
surrogate exercise for the yet unexplored exotic nuclei, we fit our calculated mean-field densities with Helm
model distributions. This procedure turns out to be helpful to study the neutron-number variation of the scattering
observables and allows us to identify correlations of potential interest among some of these observables within
the isotopic chains.
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I. INTRODUCTION

Elastic electron-nucleus scattering has been for many years
a very useful tool to investigate the size and shape of stable
nuclei [1–5]. Electrons interact with nuclei basically through
the electromagnetic force. If the energy of the electrons
is high enough, they become a relatively clean probe to
explore precisely the internal structure of nuclei, insensitive
to strong interaction effects. In particular, the analysis of
electron-scattering data provides most valuable information
about the charge distribution in atomic nuclei [6–8].

Developments in accelerator technology and detection tech-
niques nowadays allow experimentation with nuclei beyond
the limits of β stability. The number of nuclei whose masses
have been measured keeps growing [9] and this tendency
is expected to continue with the use of radioactive isotope
beams (RIB) [10–12]. A new generation of electron-RIB
colliders using storage rings is now under construction in
RIKEN (Japan) [13,14] and GSI (Germany) [15,16]. These
facilities will offer unprecedented opportunities to study the
structure of exotic unstable nuclei through electron scattering
in the ELISe experiment at the Facility for Antiproton and
Ion Research in Germany [17] and the SCRIT project in
Japan [18,19]. Therefore, the theoretical investigation of exotic
nuclei with models of purported reliability in stable isotopes
is a timely and challenging problem. Such effort will test the
ability of the established nuclear theory in the domain of exotic
nuclei and may as well provide valuable references for future
experiments.

In recent literature, several theoretical studies of elastic
electron-nucleus scattering in exotic nuclei have been reported
[20–26]. Some of these works are concerned with analyzing
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electron scattering in light nuclei, where exciting exotic phe-
nomena such as the appearence of halos may take place. That
is the case of, e.g., 6,8He [20,22], 11Li [20,23], 8B [22,23], 12O,
and 28S [24] nuclei, where possible effects on scattering from
the occurrence of halos have been investigated. Light nuclei
require a microscopic treatment of the scattering interaction to
properly deal with the underlying shell-model structure [22].
Other works study the variation of the charge form factors
along isotopic [20,21,25] and isotonic [26] chains of medium
and heavy mass nuclei. It has been found that when the
number of neutrons (protons) in these isotopic (isotonic) chains
increases, the squared modulus of the charge form factor and
the position of its minima show, respectively, an upward trend
and a significant inward shifting in the momentum transfer.
In addition to electron scattering, it is worth mentioning that
proton scattering may be another valuable tool to investigate
the changes in the charge density of the nucleus, especially
at its interior, as one proceeds to the drip lines along isotopic
chains [27].

To investigate the internal structure of nuclear charge den-
sities, the de Broglie wavelength of the probe has to be of the
order of 1 fm. This means that the energy of the electron beam
has to be of the order of several hundred MeV. Therefore, for
accurate theoretical calculations of differential cross sections
(DCS) and electric charge form factors, one needs to solve
the elastic scattering of Dirac particles in the scalar potential
pertaining to the nuclear charge distribution. The simplest
approach is the plane-wave Born approximation (PWBA),
where one assumes that the initial and final states of the
electron can be described by plane waves. Although the PWBA
is able to account for important features of scattering, it is not
enough accurate for quantitative calculations of the electric
charge form factor. A more elaborate method is supplied by
the Glauber theory using a relativistic eikonal approximation
of the Dirac equation [28]. It has been successfully applied
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to a systematic study in elastic electron-nucleus scattering
[24–26]. The most sophisticated calculations of electron-
nucleus scattering employ the exact phase-shift analysis of
the Dirac equation. This method corresponds to the so-called
distorted wave Born approximation (DWBA) [29] and was
employed, e.g., in Refs. [20,21]. In the present work we apply
a modified version of the recently published code ELSEPA [30]
to the elastic electron-nucleus scattering problem. This code
was originally devised to perform accurate Dirac partial-wave
calculations of elastic scattering of electrons and positrons by
atoms, positive ions, and molecules in the low-energy domain.

The main input needed for solving the elastic electron-
nucleus scattering problem is the charge density of the target
nucleus. In the present article we use charge densities obtained
with mean-field models for calculating electron scattering
off medium- and heavy-mass nuclei. For this purpose, we
employ effective nuclear interactions of current use in nuclear
structure physics. It is known that the overall trends of the
elastic electron-nucleus scattering in medium and heavy nuclei
are, in general, reasonably reproduced by the theoretical
charge densities obtained in the mean-field approximation.
However, different effective interactions predict electric charge
form factors and DCS that differ in fine details and describe
with different quality the experimental data. In our study we
consider the nonrelativistic Skyrme forces SkM∗ [31] and
SLy4 [32] and the covariant models NL3 [33], FSUGold
[34], G2 [35], and DD-ME2 [36]. They are representative
examples of effective interactions that accurately describe
the ground-state properties of finite nuclei and some of their
collective excitations.

The parameters of the alluded microscopic interactions
have been determined from careful calibration to observables
such as binding energies, single-particle levels, and charge
and diffraction radii of a variety of selected nuclei. The
nucleon density distributions of the Skyrme Hartree-Fock
and relativistic mean-field theories are obtained by numerical
solution of the quantal mean-field variational equations. The
effects of the neutrons on the proton density are taken into
account, in a self-consistent manner, through the interaction
terms of the effective force or Lagrangian. Therefore, no
parametrized shapes of the density profiles are implemented.
Nevertheless, most of the mean-field calculations of finite
nuclei assume point-nucleon densities. The charge density is
obtained from the proton pointlike distribution folded with the
proton charge form factor [37]

ρp(r) = α3

8π
e−αr . (1)

A value α2 = 18.29 fm−2 corresponds to a proton root-
mean-square (rms) radius of 0.81 fm. This is the standard
prescription in the fitting procedure of the parameters of most
Skyrme forces and relativistic mean-field interactions to the
experimental data of finite nuclei, including charge radii. The
covariant models of Ref. [35] are an exception to this fact and,
in particular, the interaction G2 [35,38] that we will employ
in several of our calculations. The effective Lagrangian of
G2 incorporates the low-energy electromagnetic structure of
the nucleon within the theory [35,38]. It is to be emphasized
that in G2 the charge density is obtained directly from the

solution of the mean-field equations and that there is no
folding to be performed with external single-nucleon form
factors, hereby maximizing the predictive power. In the other
mean-field forces considered in our work we will neglect the
contribution of the neutron charge form factor [39] to the
charge density. This is known to be a reasonable approximation
up to moderate-momentum transfers [40], which is the region
analyzed in the present study of scattering. Moreover, it
ensures consistency with the method applied originally to fit
the parameters of these interactions; additional modifications
into the charge densities could spoil, e.g., their accurate
predictions for charge radii.

It is to be mentioned that the mean-field treatment would
reach its limits in the study of exotic light nuclei, where
the shell-model structure and halos can become prevailing
features [22]. Therefore we do not attempt to treat these light
systems in the present work. The development of suitable tools
and a unified framework to deal with charge densities and
electron scattering in nuclei across the mass table remains an
outstanding problem in the field, maybe appropriate for new
initiatives like the UNEDF collaboration to build a universal
nuclear energy density functional [41].

The present article is organized as follows. Section II
is devoted to the theoretical formalism. The mean-field
description of finite nuclei in the nonrelativistic and relativistic
frames is briefly discussed. The Dirac partial-wave calculation
of elastic scattering of electrons by nuclei implemented in
the code ELSEPA is summarized. In Sec. III, the elastic
electron scattering results obtained from the charge densities
of the above-mentioned effective interactions are studied by
comparing with available experimental data for several stable
nuclei. In Sec. IV we investigate the theoretical predictions
for elastic electron-nucleus scattering in the tin and calcium
isotopic chains from the proton drip line to the neutron drip
line. These calculations are performed with the relativistic
mean-field interaction G2 [35]. Our conclusions are laid in the
final section.

II. THEORY

In the current section we review the basic features of the
Skyrme and relativistic mean-field models that we will employ
to compute the theoretical nuclear charge densities. We also
summarize the calculation of Dirac distorted waves for elastic
electron-nucleus scattering in the code ELSEPA. The reader
conversant with effective nuclear mean-field models and with
knowledge of the basics of Dirac partial-wave calculations
may prefer to proceed directly to the discussion of results that
starts in Sec. III.

A. Mean-field description of nuclei

The mean-field approach assumes that nucleons move
independently in a mean-field generated by the other nucleons
of the atomic nucleus. Useful tools for mean-field calculations
of nuclei are the nonrelativistic Hartree-Fock method with
phenomenological interactions and the relativistic mean-field
(RMF) Hartree model with effective Lagrangians [42]. These
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phenomenological forces and effective Lagrangians usually
depend on about 10 adjustable parameters that are fitted to
reproduce relevant ground-state properties, such as binding
energies and charge radii of a few nuclei.

A common trend of phenomenological interactions used
in the mean-field approach is their simple mathematical
structure. In the nonrelativistic mean-field models, the Skyrme
interactions [43,44] are among those most widely used.
Skyrme forces are zero-range interactions that do not require
calculations of exchange contributions. These forces have
been employed for describing ground-state properties of the
atomic nucleus, low-energy excited states, fission and fusion
barriers, nucleon-nucleus and heavy-ion potentials, etc. (see,
e.g., Ref. [44]). The parameter set SkM∗ [31] is the classical
paradigm of such a model. It is known to yield charge densities
in overall agreement with densities inferred from experiment
[45]. SLy4 [32] is a more modern version of the Skyrme force
that was calibrated with special care for the isospin sector
and for predictions of neutron-rich matter that occurs, e.g., in
neutron stars.

The RMF theory of hadrons has become another useful
tool for the study of bulk and single-particle properties of
nuclear matter and finite nuclei [38,46–48]. In the relativistic
model, nucleons are treated as Dirac particles that interact by
exchanging virtual mesons. The covariant theory automatically
takes into account the spin-orbit force, the finite range, and
the density dependence of the nuclear interaction. The no-sea
approximation, which disregards effects from the Dirac sea of
negative energy states, is adopted. The open parameters of the
model are the meson coupling constants and some of the meson
masses. After fitting them to binding energies, charge radii, and
other well-known empirical data of a few selected nuclei, the
covariant theory predicts average properties of spherical and
deformed nuclei over the whole periodic table in very good
agreement with experiment [35,49,50].

The original Walecka Lagrangian [46] contained σ, ω, and
ρ mesons without any meson self-interactions. It was able to
predict the correct saturation point of nuclear matter, albeit
with a very large incompressibility modulus. The model was
refined with the introduction of σ -meson self-interactions [51].
A parametrization of this type is, e.g., the celebrated NL3
model [33]. These parameter sets properly describe the data
about finite nuclei, but often display differences, at densities
above the saturation point, with microscopic Dirac-Brueckner-
Hartree-Fock calculations of the nuclear matter equation of
state [52,53]. A better agreement with the latter calculations
at densities up to two to three times the saturation density
is achieved by incorporating a quartic vector meson self-
interaction in the effective Lagrangian. Another interesting
addition is a mixed isoscalar-isovector coupling [54], which
allows one to modulate the density dependence of the nuclear
symmetry energy. The variation of this coupling leaves the
binding energy and proton rms of a finite nucleus almost
unaltered, but it considerably modifies the rms radius of
the neutron distribution. A representative instance of this
type of model is the FSUGold parameter set [34]. This
set yields an equation of state that is considerably softer
than in NL3 for both symmetric matter and neutron matter.
Apart from the binding energies and charge radii of nuclei,

FSUGold delivers a satisfactory description of several modes
of collective excitations having different neutron-to-proton
ratios.

The Lagrangian density associated with the G2 parameter
set is inspired by effective field theory methods. It contains all
couplings consistent with the underlying QCD symmetries up
to the order considered in the expansion scheme [35,38]. In
contrast to the majority of mean-field models, G2 describes
the low-energy electromagnetic structure of the nucleon within
the theory by means of vector-meson dominance and derivative
couplings to the photon, cf. Ref. [35] for details. As indicated
above, this means that no additional calculations with external
nucleon form factors are needed to obtain the charge density
and that the electromagnetic effects of the protons and neutrons
are included within the low-energy regime in a unified
framework [35]. The G2 set explains finite nuclei and nuclear
matter with a commendable level of accuracy. It predicts
a soft equation of state both around saturation and at high
densities that is consistent with recent measurements of kaon
production and flow of matter in energetic heavy-ion collisions
as well as with observations of masses and radii of neutron
stars [55].

Recent formulations of the RMF theory do not introduce
mesonic self-interactions but make the coupling constants of
the mesons density dependent, like in the DD-ME2 parameter
set [36]. These models accurately describe the properties
of finite nuclei and, in addition, the associated equation of
state of nuclear and neutron matter at suprasaturation agrees
with the trends of microscopic Dirac-Brueckner-Hartree-
Fock calculations that start from the bare nucleon-nucleon
interaction.

Pairing correlations need to be taken into account for the
calculation of open-shell nuclei. We will describe them in
both nonrelativistic and relativistic frames, through a modified
BCS approach that takes into account the continuum by
means of quasibound levels due to their centrifugal (neutrons)
or centrifugal-plus-Coulomb barriers (protons) [56]. For the
Skyrme models used in this work, the pairing correlations
are introduced by using a zero-range density-dependent force
whose parameters can be found in Ref. [32]. In the case of
the covariant NL3, G2, and FSUGold models, we describe the
pairing correlations by means of a constant matrix element
fitted to reproduce the experimental binding energies of some
selected isotopic and isotonic chains [56]. In the DD-ME2
parameter set a fixed gap is considered, determined from
experimental odd-even mass differences [36].

B. Description of electron scattering

The ELSEPA code [30] was originally designed for the
calculation of elastic scattering of electrons and positrons
by atoms, positive ions, and molecules. We have adapted it
to handle high-energy electron scattering by nuclei. ELSEPA

computes the DCS using the conventional relativistic partial-
wave method, which was first formulated by Yennie et al. [29].
The projectile electron is assumed to feel the electrostatic field
of the nuclear charge distribution. The potential energy of an
electron at a distance r from the center of the nucleus is given
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by

V (r) = −4πe

[
1

r

∫ r

0
ρch(r ′)r ′2dr ′ +

∫ ∞

r

ρch(r ′)r ′dr ′
]

,

(2)

where ρch(r) denotes the charge density of the nucleus, consid-
ered to be spherically symmetrical. At the energies of interest
for the electron-nucleus problem, the effect of screening by
the orbiting atomic electrons is limited to scattering angles
smaller than 1◦ (see, e.g. Ref. [30]), which are well below
the angular range covered by the electron-nucleus scattering
measurements. Consequently, electron screening is ignored in
the present calculation. Because the nuclear charge density is
assumed to vanish beyond a certain radius rB (i.e., the radius of
the box where the nuclear charge distribution is calculated), the
potential (2) is purely Coulombian, V (r) = −Ze2/r , beyond
that radius. Globally it can be regarded as a Coulomb potential
with the short-range distortion arising from the finite size of
the nucleus, i.e., as a modified Coulomb potential.

The DCS for elastic scattering of spin unpolarized electrons
is given by

dσ

d�
= |f (θ )|2 + |g(θ )|2, (3)

where

f (θ ) = 1

2ik

∞∑
	= 0

{(	 + 1)[exp(2iδκ=−	−1) − 1]

+ 	[exp(2iδκ = 	) − 1]}P	(cos θ ) (4)

and

g(θ ) = 1

2ik

∞∑
	 = 0

[exp(2iδκ = 	)

− exp(2iδκ = −	−1)]P 1
	 (cos θ ) (5)

are the direct and spin-flip scattering amplitudes, respectively.
Here k denotes the wave number of the projectile electron,

ch̄k =
√

E(E + 2mec2), (6)

and the functions P	(cos θ ) and P 1
	 (cos θ ) are Legendre

polynomials and associated Legendre functions, respectively.
The phase shifts δκ represent the behavior of the Dirac
spherical waves at large r distances (see, e.g., Ref. [57]).

For modified Coulomb potentials, the spherical solutions
of the Dirac equation are suitably expressed in the form

ψEκm(r) = 1

r

[
PEκ (r)�κ,m(r̂)

iQEκ (r)�−κ,m(r̂)

]
. (7)

The functions �κ,m(r̂) are the spherical spinors, and the radial
functions PEκ (r) and QEκ (r) satisfy the following system of
coupled differential equations [57]:

dPEκ

dr
= −κ

r
PEκ + E − V + 2mec

2

ch̄
QEκ,

(8)
dQEκ

dr
= −E − V

ch̄
PEκ + κ

r
QEκ.

The relativistic quantum number κ is defined as κ = (	 − j )
(2j + 1), where j and 	 are the total and orbital angular

momentum quantum numbers. Note that j and 	 are both deter-
mined by the value of κ; j = |κ| − 1/2, 	 = j + κ/(2|κ|). In
the numerical calculations, the spherical waves are normalized
so that the upper-component radial function PEκ (r) oscillates
asymptotically with unit amplitude.

For modified Coulomb potentials and r → ∞, we have
(see, e.g., Ref. [58])

PEκ (r) � sin
(
kr − 	

π

2
− η ln 2kr + δκ

)
, (9)

where

η = Ze2me/(h̄2k) (10)

is the Sommerfeld parameter. It is convenient to express
the phase shifts δκ as �κ + δ̂κ , where �κ is the phase shift
of the point-nucleus Coulomb potential and δ̂κ is the “inner”
phase shift of the short-range potential induced by the nuclear
charge distribution.

As indicated above, the calculations reported here
have been performed using the computer code ELSEPA

[30]. It solves the radial Dirac equations using a ro-
bust integration algorithm, described in Refs. [58,59],
which effectively minimizes the effect of truncation errors. The
algorithm starts from a table of values of the function rV (r) at
the points ri of a radial grid, which is provided by the user. This
function is replaced by the natural cubic spline that interpolates
the tabulated values; thus, in the interval between consecutive
grid points, the potential function rV (r) is represented as a
cubic polynomial. The radial wave equations (8) are then
solved by using the exact power-series expansions of the radial
functions [59]. The integration is started at r = 0 and extended
outwards up to a point rm that is beyond the starting radius rB of
the Coulomb tail. For r > rm, the field is purely Coulombian,
and the normalized upper-component radial Dirac function can
be expressed as

PEκ (r) = cos δ̂κf
(u)
Eκ (r) + sin δ̂κg

(u)
Eκ (r), (11)

where f
(u)
Eκ (r) and g

(u)
Eκ (r) are the upper components of the

regular and irregular Dirac-Coulomb radial functions [58],
respectively. As usual, the phase shift δ̂κ is determined by
matching this outer analytical form to the inner numerical
solution at rm, requiring continuity of the radial function
PEκ (r) and its derivative. The Dirac-Coulomb functions
are calculated by using the Fortran subroutine described in
Ref. [58], which delivers values of the regular and irregular
Dirac-Coulomb functions and their derivatives that are accu-
rate to more than 10 decimal figures.

The convergence rate of the series (4) and (5) for the
calculation of dσ/d� is known to be slow. The summations are
optimized by performing them in two steps [30]. First, they are
evaluated for the pure Coulomb field, for which the phase shifts
�κ are known analytically and the calculation is fast. Second,
the point-nucleus results are subtracted from the expansions
(4) and (5); the remaining series represent the effect of only
the short-range component of the potential and converge more
rapidly than the original series. As a consequence, the number
of inner phase shifts δ̂κ one needs to compute is normally much
smaller than the number of required Coulomb phase shifts.
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In general, ELSEPA gives reliable results for electron ener-
gies up to 1 GeV but numerical difficulties can appear at very
small scattering angles because the DCS for the bare nucleus
is very close to the point nucleus DCS (which is known as
the Mott DCS) and consequently diverges. The code evaluates
the finite-nucleus DCS only for scattering angles larger than
10 degrees, which is a lower bound of the usually measured
electron-nucleus DCS. Depending on the particulars of each
calculation, difficulties can also be found in the high-energy
regime and for large scattering angles where the DCS takes
much smaller values than the Mott DCS. In this case, the
nuclear amplitudes almost cancel the Coulomb scattering
amplitudes, thus magnifying the numerical errors. In practice,
round-off errors become apparent when the nuclear scattering
amplitudes are less then 10−5 times the Coulomb amplitudes
(which are themselves small). When there are indications
that these errors could be important, ELSEPA discontinues the
calculation and the DCS is set to zero.

III. ELASTIC ELECTRON-NUCLEUS SCATTERING IN
STABLE NUCLEI

As stated in the Introduction, we compute the charge-
density distributions with selected effective nuclear interac-
tions, namely the Skyrme forces SkM∗ [31] and SLy4 [32] and
the covariant parametrizations NL3 [33], FSUGold [34], G2
[35], and DD-ME2 [36]. We obtain the DCS from these mean-
field charge densities using the ELSEPA code. Specifically, in
the present section we compare the theoretical DCS derived
from the mean-field models with available experimental data
for elastic electron scattering in 16O at 374.5 MeV [60],
40,42,44,48Ca and 48Ti at 250 MeV, 40,48Ca at 500 MeV [61],
90Zr at 209.6 and 302 MeV [62], 116,118,124Sn at 225 MeV [63],
and 208Pb at 248.2 and 502 MeV [64].

In the conventional analyses of the scattering data measured
in experiment, the charge density is usually modeled by
means of an analytical function. For instance, two- or three-
parameter Fermi distributions are used to this end. The charge
density may also be constructed from the eigenfunctions
of an adjustable single-particle potential of Woods-Saxon
or harmonic oscillator type. Also, nearly model-independent
charge densities are obtained from a Fourier-Bessel expansion
[65] with unknown coefficients. In all these cases the free
parameters in the charge distributions are determined from
the measured electron scattering data through a least-squares
minimization procedure. In some comparisons with our
theoretical predictions we will employ experimental charge
densities borrowed from the literature. These densities have
been extracted from fits with Fourier-Bessel expansions [6,7].
In the case of the nucleus 118Sn, for which this type of
density is not available, we employ the two-parameter Fermi
distribution given in Ref. [63]. The results computed with these
“experimental” (fitted) charge densities will be referred to as
Exp(fit) in the tables and figures henceforth.

First, we report in Table I the rms radii of the theoretical
charge distributions of the nuclei 16O, 40Ca, 48Ca, 90Zr, 118Sn,
and 208Pb predicted by the Skyrme and RMF forces used in this
work. They are compared with the rms radii of the experimental
charge distributions extracted from the analysis of the electron

TABLE I. Root-mean-square radii (in fm) for the studied charge
distributions. Exp(fit) values are calculated from the experimental
Fourier-Bessel charge densities [6,7], except for the case of 118Sn
where a Fermi density is used [63].

Nucleus Exp(fit) DD-ME2 G2 NL3 FSUGold SLy4 SkM∗

16O 2.74 2.73 2.73 2.73 2.69 2.80 2.81
40Ca 3.45 3.46 3.46 3.47 3.44 3.51 3.52
48Ca 3.45 3.48 3.45 3.47 3.47 3.54 3.54
90Zr 4.26 4.28 4.25 4.28 4.26 4.30 4.29
118Sn 4.67 4.63 4.62 4.63 4.63 4.65 4.63
208Pb 5.50 5.52 5.50 5.52 5.52 5.52 5.51

scattering data [6,7,63]. The agreement is seen to be very good.
This fact is not surprising because some of the experimental
values of the charge radius have been used in the fit of the free
parameters of the Skyrme forces and RMF models considered.

Figure 1 displays the theoretical charge density profiles
obtained with the investigated mean-field models as well
as the experimental charge distributions for 16O, 90Zr, and
208Pb [6,7]. In general, theoretical and experimental charge
densities agree nicely in the fall-off region and differ more in
the nuclear interior as a consequence of the shell oscillations
of the mean-field densities. Differences in the inner region are
more marked in light nuclei where a mean-field approximation

0
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FIG. 1. (Color online) Radial dependence of the charge densities
of the stable nuclei 16O, 90Zr, and 208Pb. The predictions of the
different mean-field models indicated in the legend are compared
with the charge densities fitted experimentally by the Fourier-Bessel
analysis [6,7].
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may be less justified. In the present case, if we analyze the
region of the experimental density of 16O between the center
and about 2 fm, we see that the covariant sets G2 and NL3 give
a better description, whereas the SkM∗ and SLy4 forces tend
to underestimate it and the DD-ME2 and FSUGold sets tend to
overestimate it. A detailed inspection of the mean-field charge
densities shows that they differ not only among themselves
in the nuclear interior but also in the surface region. As
discussed in Ref. [45], the inner density is normally larger
for nuclei with larger surface diffuseness. From Fig. 1 we see
that for medium and heavy nuclei the Skyrme charge density,
in particular the one predicted by SLy4, is larger in the interior
and consequently more diffuse at the surface than the RMF
distributions. Differences regarding the surface diffuseness
between non-relativistic and relativistic charge densities are
related to the different density dependence of the effective
interactions [45].

The comparison between theoretical and experimental
charge densities shall be connected with the discussion of
the DCS and the electric charge form factors, which are the
quantities measured in real experiments. Figure 2 shows the
DCS for elastic electron scattering in 16O at 374.5 MeV,
90Zr at 302 MeV, and 208Pb at 502 MeV, which we choose
as representative examples to illustrate the predictions of
the different mean-field models. To improve readability, the
curves calculated with NL3 and SkM∗ are not displayed in
the figure. In the three scattering processes, one observes
that the experimental data are similarly reproduced by all of
the considered mean-field charge densities at small scattering
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FIG. 2. (Color online) Elastic DCS for electron-nucleus scatter-
ing in 16O, 90Zr, and 208Pb as a function of the scattering angle θ , at the
energies shown. The results from the mean-field models indicated in
the legend are compared with the measured DCS (Exp) [60–62] and
with the DCS calculated in the ELSEPA code from the charge densities
fitted experimentally by the Fourier-Bessel analysis [Exp(fit)] [6,7].

angles, up to the first diffraction minimum. The statement
is more valid for lead, where models and data keep close
up to the second, or even third, diffraction minimum. The
case which is seen to pose more difficulties to the mean-field
models at all scattering angles is, not surprisingly, the lightest
investigated nucleus, 16O. From the considered interactions,
only the parameter set G2 is able to reproduce the experimental
data of 16O at 374.5 MeV closely at all scattering angles. As
one might expect from the discussion of Fig. 1, the deviations
among the DCS predicted by the various mean-field models,
and the discrepancies with respect to experiment, become more
prominent at the largest scattering angles in the three processes
studied in Fig. 2. One detects a significant difference between
the nonrelativistic Skyrme interactions and the RMF models
used here. It is seen that the SLy4 interaction yields DCS
values that, in general, are smaller than those calculated using
the charge densities of the covariant sets (the same happens
with the Skyrme force SkM∗). This trend is especially clear in
16O and 90Zr, if one just excludes the region immediately after
the first diffraction minimum where a crossing of the DCS
values predicted by some of the models takes place.

One of the most effective quantities to characterize elastic
electron-nucleus scattering is the electric charge form factor
F (q). The momentum transfer q is related to the scattering
angle θ in the laboratory frame by

ch̄q = 2E sin(θ/2). (12)

In PWBA the electric-charge form factor is computed as the
Fourier transform of the charge density. In the present work
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FIG. 3. (Color online) Squared charge form factor for 16O, 90Zr,
and 208Pb as a function of the momentum transfer q at the electron
beam energies shown. It has been obtained by applying Eq. (13) as
described in the text, both for the mean-field models indicated in the
legend and for the experimentally fitted charge densities [Exp(fit)]
[6,7].
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FIG. 4. (Color online) Relative differences of DCS in pairs of neighbor nuclei at 250 MeV for Ca and Ti and at 225 MeV for Sn. The
results from mean-field models are compared with the measured RDDCS (Exp) and with the RDDCS calculated in the ELSEPA code from the
charge densities fitted experimentally [Exp(fit)] in Refs. [61,63]. Note that in the present figure the vertical scales are linear and that all of them
have been magnified by a factor 100.

we obtain |F (q)|2 at a given beam energy as

|F (q)|2 =
( dσ

d�

)(dσM

d�

)−1
, (13)

where dσ/d� is the DCS calculated from the DWBA analysis
and dσM/d� is the Mott DCS. Equation (13) goes beyond the
first Born approximation to the charge form factor because,
instead of the PWBA for the DCS of the point nucleus, the
exact Mott DCS is used. It will be referred to as FDWBA(q)
in what follows. We will extract the squared charge form
factor from experiment using the same expression (13), by
inserting the DCS obtained from the experimentally fitted
charge densities on its right-hand side.

Figure 3 displays the q dependence of |FDWBA(q)|2 for the
nuclei 16O, 90Zr, and 208Pb at the electron beam energies 374.5,
302, and 502 MeV, respectively. Results are calculated from
the considered mean-field models and from the experimental
charge density (as in Fig. 2, the curves obtained with NL3 and
SkM∗ are not shown). As it may be expected from our previous
analysis of the DCS, the experimental values of |F (q)|2 are
well reproduced in the low-momentum transfer region by all

of the discussed mean fields. However, some discrepancies ap-
pear between the theoretical predictions and the experimental
data at large-momentum transfers (or, equivalently, at large
scattering angles). They are an indication that the theoretical
mean-field models describe differently the central region of the
experimental charge density [60], which we have addressed in
the discussions of Fig. 1.

A more exigent test of the mean-field charge densities than
the DCS themselves is provided by the analysis of the relative
differences of DCS values between pairs of neighbor nuclei
(RDDCS). The RDDCS are defined as

D(A − B) = (dσ/d�)A − (dσ/d�)B
(dσ/d�)A + (dσ/d�)B

. (14)

We explore the following cases where experimental values
are available: 40Ca-42Ca, 40Ca-44Ca, 40Ca-48Ca, and 48Ca-
48Ti [61], as well as 116Sn-118Sn and 118Sn-124Sn [63]. The
theoretical predictions for the RDDCS (14) from the mean-
field charge densities are displayed against experiment in
Fig. 4, where a factor of 100 has been introduced for the
sake of clarity. Notice that the vertical scale of this figure is

044332-7
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TABLE II. Normalized square weighted difference (d2
w) between the calculated and measured DCS

values. Exp(fit) values are calculated from the experimental Fourier-Bessel charge densities [6,7], except
for the case of 118Sn where a Fermi density is used [63]. The energy E of the incident electrons is in
MeV.

Nucleus E Exp(fit) DD-ME2 G2 NL3 FSUGold SLy4 SkM∗

16O 374.5 11.1 88.7 13.1 38.6 206 191 194
40Ca 250 7.18 3.15 16.2 13.9 0.84 24.4 24.3

500 3.48 1.49 42.9 19.7 5.79 40 39
48Ca 250 6.66 4.85 9.74 7.14 4.08 14.9 13.6

500 3.19 1.11 17 3.53 2.57 21.84 18.5
90Zr 209.6 0.78 0.87 2.21 1.36 0.65 6.53 5.36

302 0.86 0.91 9.92 3.27 0.67 9.35 7.19
118Sn 225 5.43 18.4 34.8 25.5 31.8 2.75 4.2
208Pb 248.2 30.6 44.4 154 74.8 89.5 89.2 61

502 21.2 14.1 186 50.5 61.1 95.9 76.5

linear instead of logarithmic. In general, all the considered
models describe fairly well the experimental RDDCS values
for small scattering angles. The agreement with experiment
deteriorates when the scattering angle increases, pointing out
again some possible deficiencies in the inner region of the
theoretical charge density distributions.

To make a more quantitative analysis of the electron
scattering DCS derived from the mean-field charge densities,
we introduce a normalized square weighted difference (d2

w),
or comparison magnitude, with respect to the DCS measured
in experiment. For each nucleus and electron beam energy, it
is defined as

d2
w = 1

N

N∑
i=1

[
(dσ/d�)exp

i − (dσ/d�)calc
i

δ(dσ/d�)exp
i

]2

. (15)

In this expression, the quantities (dσ/d�)calc
i , (dσ/d�)exp

i ,
and δ(dσ/d�)exp

i are, respectively, the calculated DCS, the
measured DCS, and the uncertainty of the latter. The sum
in Eq. (15) runs over all the N available data for the given
scattering process.

In Table II we report, for several elastic electron-nucleus
reactions, the d2

w values (15) from theory in comparison with
the d2

w obtained from the charge densities fitted experimentally.
One realizes that the d2

w of the DCS computed with the theoret-
ical charge densities take sizably varying values, depending on
the scattering process and nuclear model. Nevertheless, for all
the considered electron-scattering processes, there are Skyrme

forces or RMF parametrizations that yield a d2
w of similar

quality to the experimental charge density. In particular, the
RMF sets DD-ME2 and FSUGold give, on the average, the best
overall agreement with the considered experimental data. The
Skyrme forces SkM∗ and SLy4 provide a similar description,
but globally this description is slightly worse than in the case
of the RMF parametrizations, except for the nucleus 118Sn.

We have also analyzed the d2
w values of the relative

differences between differential cross sections (14) in pairs
of neighbor nuclei. The corresponding results are collected in
Table III. For all the mean fields considered in the present study,
the predicted d2

w values are larger than the d2
w values computed

with the charge densities that are fitted to experiment. Looking
globally at the results presented in Table III, the agreement
obtained between theoretical and experimental RDDCS is not
significantly worse than the agreement found in the case of the
DCS analyzed previously in Table II. But, in the DCS analysis,
it has been seen in Table II that for each scattering process there
is always one or various specific interactions that are able to
come very close to experiment, whereas in Table III this does
not happen in any of the studied RDDCS in pairs of neighbor
nuclei.

IV. ELECTRON SCATTERING ALONG ISOTOPIC CHAINS

Different tendencies of the square of the charge form
factor as a function of the momentum transfer have been

TABLE III. Normalized square weighted difference (d2
w) between calculated and measured

relative differences of DCS in pairs of neighbor nuclei. The beam energy per electron is 250 MeV
for the Ca isotopes and 48Ti, and 225 MeV for the Sn isotopes.

D(A − B) Exp(fit) DD-ME2 G2 NL3 FSUGold SLy4 SkM∗

D(40Ca−42Ca) 0.56 9.1 28.3 16 11.1 9.11 12.9
D(40Ca−44Ca) 1.14 4.5 29.6 12.2 3.88 7.08 9.13
D(40Ca−48Ca) 1.06 16.4 4.89 7.74 38.5 94.1 49.3
D(48Ca−48Ti) 2.49 18 19.6 31 37.8 71.8 64.9
D(116Sn−118Sn) 2.05 8.05 7.8 9 10.1 13.2 18.5
D(118Sn−124Sn) 4.03 5.35 6.98 7.5 9.22 7.05 7.18
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studied in earlier literature for isotopic [20,21,25] and isotonic
[26] chains of medium and heavy nuclei. Our aim here
is to perform an analysis, quantitative whenever possible,
that could eventually be useful for future electron-scattering
measurements in RIB facilities.

We will be concerned with the study of electron scattering in
isotopic chains of medium and relatively heavy systems, which
will be exemplified by the cases of the Ca and Sn isotopes.
Many of these nuclei lie in the region of the nuclear chart that
is likely to be explored employing RIB facilities. Some of them
may be investigated in future electron-scattering experiments,
such as ELISe [17] and SCRIT [18,19]. For the purpose of our
study, we are interested in predicting the trends of the variation
along the isotopic chains of the electric charge form factor in
the low-momentum transfer regime. Our calculated mean-field
charge densities will be parameterized by means of the Helm
model [66], often used in the analysis of experimental data,
with a view to gain deeper physical insights and to elucidate
possible correlations among scattering observables within the
isotopic chains.

We have seen in the previous section that in the region of
small q values the experimental results are almost equally well
reproduced by the calculations with the different theoretical
mean-field models considered. In our subsequent study of elec-
tron scattering in the tin and calcium chains, as a representative
reference, we will work with the charge densities predicted by
the covariant interaction G2 [35,38]. This model was con-
structed as an effective hadronic Lagrangian consistent with
the symmetries of quantum chromodynamics. As mentioned,
the model describes the low-energy electromagnetic structure
of the nucleon using vector-meson dominance and provides
directly the charge density of the nucleus so no external
single-nucleon form factors are required to compute the latter
[35]. G2 is also a reliable parameter set for calculations of
ground states of nuclei and, at the same time, for predictions
of the nuclear equation of state up to supranormal densities and
of some properties of neutron stars [35,38,55]. Calculations of
the squared charge form factor done in PWBA with the set G2
for stable isotopes have been reported elsewhere [35].

For each nucleus in an isotopic chain we compute the
associated DCS via the DWBA calculation using the G2 charge
density. The electron beam energy in all the investigated scat-
tering processes is fixed at 500 MeV. In practice, the energy de-
pendence of the electric charge form factor defined in Eq. (13)
is seen to be considerably weak for low-momentum trans-
fers, the regime addressed in our analysis. We have veri-
fied numerically that |FDWBA(q)|2 of high-energy electron
scattering depends little on the electron beam energy for
momentum transfers up to 1–1.5 fm−1 (the precise value
depends on the nucleus). This happens even for a heavy
system like 208Pb, where the departure from the point-nucleus
assumption of the Mott DCS used on the right-hand side of
Eq. (13) is more significant. We illustrate the situation in
Fig. 5, where we display |FDWBA(q)|2 at several beam energies
for electron scattering off 118Sn and 208Pb.

Before proceeding to the presentation of the results in the
tin and calcium isotopic chains, we briefly summarize in the
next subsection how we determine the parameters of the Helm
model charge-density distributions.
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FIG. 5. (Color online) Squared charge form factor of 118Sn and
208Pb, derived from the covariant mean-field model G2, for the
indicated electron beam energies. The figure points out that the
sensitivity of the charge form factor extracted through Eq. (13) to
the beam energy in high-energy elastic electron-nucleus scattering is
rather small, even when the atomic number of the target is large as in
208Pb.

A. Equivalent Helm charge densities

Valuable insights into the study of electron scattering often
stem from consideration of modeled charge densities and
electric charge form factors. Moreover, these parameterized
forms are instrumental in experimental data analyses. A
notable case is the so-called Helm model, whose original
version [66] has later been extended in various ways for more
accurate descriptions of the experimental charge densities
[67–69]. In the simpler version of the model, two chief features
of the nuclear charge density, namely the position and the
thickness of the surface, can be related explicitly to the electric
charge form factor obtained in PWBA. The Helm charge
density is obtained from the convolution of a constant density
ρ0 in a hard sphere of radius R0 (the diffraction radius) with a
Gaussian distribution of variance σ 2 (whose square root relates
to the nuclear surface thickness):

ρ(H )(�r) =
∫

d�r ′fG(�r − �r ′)ρ0�(R0 − r), (16)

where

fG(r) = (2πσ 2)−3/2e−r2/2σ 2
. (17)

The rms radius of the Helm density is readily obtained from
Eqs. (16) and (17). It can be expressed in terms of R0 and σ as

〈r2〉1/2
H =

√
3

5

(
R2

0 + 5σ 2
)
. (18)
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The corresponding electric charge form factor in PWBA is
given by

F (H )(q) =
∫

ei �q·�rρ(H )(�r)d�r = 3

qR0
j1(qR0)e−σ 2q2/2,

(19)

where j1(x) is a spherical Bessel function.
The diffraction radius R0 of the Helm density is usu-

ally fixed as follows. One requires that the first zero of
Eq. (19) occurs at qminR0, where qmin corresponds to the first
minimum of the modulus of the PWBA form factor [FPWBA(q)
hereinafter] associated to the original charge distribution that
the Helm density attempts to describe:

R0 = 4.49341

qmin
. (20)

The variance σ 2 of the Gaussian is chosen to reproduce the
height of the second maximum of |FPWBA(q)|, located at qmax:

σ 2 = 2

q2
max

ln

[
3j1(qmaxR0)

qmaxR0FPWBA(qmax)

]
. (21)

For moderate values of qR0, the Helm charge form factor
F (H )(q) reproduces well the actual charge form factor, with the
exception of the regions closest to its zeros [66]. The relative
difference between F (H )(q) and the actual charge form factor
becomes progressively manifest as the momentum transfer
grows. The applicability of the Helm model near the drip lines
is to be explored. The extent to which it may be appropriate
away from stability, for the purposes of our study, will be
validated later from the numerical point of view in connection
with the discussion of the calculations in the Sn and Ca chains.

B. Tin and calcium isotopic chains

We are interested in the study of elastic electron scattering
in the Ca and Sn chains. The calculated DCS and squared
charge form factors |FDWBA(q)|2 show, for the lightest nuclei
considered here (calcium isotopes), a relatively well-marked
first minimum. This first minimum, however, practically
disappears for the heavier nuclei analyzed (tin isotopes). (This
fact can also be told from the previous Figs. 2 and 3 for
16O, 90Zr, and 208Pb.) In the latter case, the form factor
|FDWBA(q)|2 of Eq. (13) still shows an inflection point (IP)
in the low-momentum transfer region, a point where the
curvature changes sign. In the absence of an explicit minimum
at low-momentum transfer, these IP are the best candidates to
characterize along the isotopic chain relevant properties of the
electric charge form factor in the small-q region.

We determine for each isotope an equivalent Helm dis-
tribution from the calculated mean-field charge density. In
the PWBA the distortion of the electron wave functions due
to the Coulomb potential of the nucleus is neglected. The
effect of the Coulomb attraction felt by the electrons can
be simulated by replacing the momentum transfer q by an
effective value [66]

qeff = q

(
1 + c

Zα

qRch

)
, (22)
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FIG. 6. (Color online) Mass-number dependence of the Helm
parameters σ 2 (upper panel) and R0 (lower panel) predicted by the
covariant mean-field model G2 in the Sn isotopic chain. The average
value of σ 2 is depicted by a horizontal dashed line.

where Rch = √
3/5R is the rms of the charge density assuming

a hard sphere distribution of radius R = r0A
1/3. In Ref. [66]

the value of the constant c is taken to be 3/2. Here we leave
c as a free parameter. It is optimized so that the rms radii
of the equivalent Helm charge densities (18), with R0 and σ

determined by Eqs. (20) and (21), and with q replaced by
qeff , best reproduce along the isotopic chain the mean field
rms charge radii obtained with the RMF parametrization G2.
Proceeding in this way, we find c ≈ 0.15 for the tin isotopes
and c ≈ 0.12 for the calcium isotopes.

We first investigate the tin isotopic chain. The calculated
Helm parameters R0 and σ 2 are displayed in the lower and
upper panels of Fig. 6, respectively. It is seen that R0 steadily
increases with the mass number A and that it roughly follows
the typical A1/3 law. On the contrary, the change of the variance
σ 2 with mass number shows a nonuniform character along
the isotopic chain, related to the underlying shell structure. It
oscillates around a mean value σ 2 � 0.72 (σ � 0.85). It is to
be noted that σ 2 displays local minima at the doubly magic
isotopes 132Sn and 176Sn (neutron drip line nucleus). This fact
points out a stiffer nuclear surface for neutron-rich nuclei with
double-closed major shells, in agreement with earlier literature
[67].

The upper panel of Fig. 7 depicts the radial dependence of
the mean-field charge-density profiles computed with the G2
covariant interaction for the isotopes 100Sn, 132Sn, and 176Sn.
We have selected these examples to illustrate the evolution
of the results along the isotopic chain from one drip line to
another. Though the three isotopes share the same atomic
number, one notices outstanding variations in the calculated
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FIG. 7. (Color online) Charge densities (upper panel) and charge
radii (lower panel) in the Sn isotopic chain, according to the covariant
model G2 and to the determined Helm distributions.

mean-field charge densities of these isotopes, both in the
surface region and, especially, in the interior region. This
fact reflects the important influence of the changing neutron
number on driving the structure of the charge density along
the isotopic chain. This influence is encoded in the interaction
terms of the covariant Lagrangian of G2 through the exchanged
mesons and the couplings to the photon, and it is accounted
for self-consistently by the mean-field calculations. In the
same figure we compare the fitted Helm charge densities
and the original G2 charge densities for the three discussed
tin isotopes. At the interior of these nuclei, we see that the
uniform density of the Helm model averages the oscillations
of the self-consistent quantal densities obtained with the G2
interaction. In spite of the fact that the surface falloff of
the Helm densities is of Gaussian type, the agreement at
the surface region between the mean-field charge densities
and their Helm equivalents is fairly good as one proceeds
along the isotopic chain from stability to the neutron and
proton drip lines. This provides some confidence on using
the Helm model as determined in the present work when
the drip lines are approached in the Sn chain. The lower
panel of Fig. 7 illustrates the mass number dependence of
the mean field and the equivalent Helm rms charge radii.
Our approach leads to an excellent agreement between the
Helm values and the mean-field values in the Sn chain. One
appreciates some slight discrepancies only for isotopes very
close to the drip lines. The rms charge radii of both calculations
follow the expected linear trend with A1/3. One observes some
departure from the A1/3 behavior to slightly lower values in
the isotopes close to A = 132. This is finally the reason why
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FIG. 8. (Color online) Results predicted by the G2 effective
interaction for 500-MeV electron scattering in the Sn isotopic chain.
(Upper panel) Mass-number dependence of the momentum transfer
at the first inflection point (qIP) of the squared charge form factor
in DWBA. (Middle panel) Correlation of the effective momentum
transfer at the first minimum of the squared charge form factor in
PWBA (qeff,min) with the value of qIP. A linear fit of the results is
shown and the correlation coefficient r is indicated. (Lower panel)
The change of the charge radii calculated with G2 and with the
corresponding Helm densities is depicted against the value of qIP.

the variance σ 2 decreases around A = 132 in Fig. 6 [also see
Eq. (18)].

We now analyze the evolution along the isotopic chain of
the momentum transfer qIP corresponding to the first inflection
point of |FDWBA(q)|2 and the variation of |FDWBA(qIP)|2,
calculated for an electron beam energy of 500 MeV. We
discuss possible correlations with the parameters R0 and σ

of the equivalent Helm density. Two noticeable findings of
this study are displayed in Fig. 8. In the upper panel of the
figure it is seen that the change of the momentum transfer
qIP with mass number in the Sn isotopic chain approximately
follows an A−1/3 law. Thus, the position of the first minimum
of the square of the modulus of the electric charge form
factor is shifted toward smaller q values as the number of
neutrons in the isotopic chain increases, a feature also noted
in Ref. [25]. Another interesting result is that the momentum
transfer qIP turns out to be almost proportional to the effective
momentum transfer qeff corresponding to the corrected first
minimum of |FPWBA(q)| computed with the mean-field charge
density. The situation is illustrated in the middle panel of
Fig. 8. Recalling Eq. (20), this correlation allows one to
establish a straightforward relationship between qIP and the
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ROCA-MAZA, CENTELLES, SALVAT, AND VIÑAS PHYSICAL REVIEW C 78, 044332 (2008)

0.4 0.45 0.5 0.55 0.6

σ2
q

2

IP

6

6.2

6.4

6.6

6.8

7

7.2

7.4

10
3    

|F
D

W
B

A
(

q IP
 )

|2

r = 0.992

Tin Isotopes
500 MeV
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results are computed with the G2 effective interaction for scattering
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Helm parameter R0 in the tin isotopic chain:

R0 ≈ 4.934

qIP
. (23)

We also find that the rms charge radii of the tin isotopes exhibit
a considerable linear correlation with the momentum transfer
qIP, as depicted in the lower panel of Fig. 8. These correlations
could, in principle, provide an alternative way to obtain the
parameter σ of the equivalent Helm charge densities directly
through Eq. (18), taking into account the relationship (23)
between R0 and qIP.

Figure 9 displays the evolution in the Sn chain of
|FDWBA(qIP)|2 (the value of the DWBA squared charge form
factor calculated at qIP) as a function of σ 2q2

IP. The addition
of neutrons along the isotopic chain in general brings about
an increase of the value of |FDWBA(qIP)|2, also documented
in the literature [20,21,23–25]. Furthermore, we notice that
an interesting linear correlation arises between the quantities
|FDWBA(qIP)|2 and σ 2q2

IP as one moves from the proton-rich
side of the isotopic chain to the neutron-rich side. This
correlation may be qualitatively understood in the following
terms. If for guidance we consider the expression (19) of the
electric charge form factor in the adopted Helm model, we
see that the natural variables to investigate the variation of the
charge form factor are qR0 and σ 2q2. But, as stated in Eq. (23),
the value of qR0 at the first inflection point of |FDWBA(q)|2
is practically independent of the mass number in the whole
isotopic chain. Therefore, the mass-number variation of σ 2q2

IP
is left as the principal source for the A dependence of the
value of the squared charge form factor at q = qIP. It is then
reasonable that the change with A of |FDWBA(qIP)|2 and σ 2q2

IP
is correlated along the isotopic chain, a feature confirmed by
Fig. 9. As a physical insight, helped by Eq. (23), the product
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FIG. 10. (Color online) Same as described in the caption to
Fig. 6 for the Ca isotopic chain.

σ 2q2
IP can be recast as proportional to σ 2/R2

0 , which is the
ratio between the surface width and the mean location of the
surface of the underlying nuclear charge density.

Similar results to those discussed above for tin have been
obtained in the study of the calcium isotopic chain. They
are presented in Figs. 10–13. We first have modeled the
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calculated mean-field densities of the calcium chain by the
simpler form of Helm densities. The mass-number evolution
of the parameters of the Helm charge densities is illustrated in
Fig. 10. The shrinkage of the Helm parameter σ at magic
neutron numbers, noticed in the tin chain, is a feature also
present in the calcium isotopes for the magic neutron numbers
N = 28 and 50. However, the effect at N = 20 is completely
washed out, in agreement with the result of Ref. [67]. The
mean-field charge densities of 36Ca, 56Ca, and 70Ca calculated
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FIG. 13. (Color online) Same as described in the caption to Fig. 9
for the Ca isotopic chain.

with G2, along with the equivalent Helm profiles, are displayed
in the upper panel of Fig. 11. As in the case of the tin chain,
the effects of the addition of neutrons are very manifest in
the mean-field charge density, as one can appreciate from the
changes in the interior and surface regions of the density
distributions of the shown Ca isotopes. One also sees that the
Helm densities manage to follow on average these changes.
The Helm profiles are found to reproduce closely the surface
region of the mean-field densities, including the isotopes
at the proton- and neutron-rich sides of the calcium chain.
Discrepancies are observed in the interior region of the density
distributions. In the lower panel of Fig. 11 we display, as
a function of A1/3, the variation in the calcium chain of
the rms radii of the mean-field and Helm charge densities.
Compared to the case of Sn, this lighter chain presents
more significant departures from the A1/3 behavior. Also,
the agreement of the rms radii of the Helm model with the
self-consistent G2 values is less good. This is more visible
in approaching the drip lines, especially at the proton drip
line.

Analogous correlations to those previously discussed in the
case of tin, between the value of q at the first minimum (or
IP) of |FDWBA(q)|2 with (i) the mass number, (ii) the first
minimum of |FPWBA(q)|, and (iii) the rms radius of the charge
distributions, are similarly found in the analysis of the calcium
isotopes. They are displayed in Fig. 12. In the present case,
however, a significant departure of the radii R0 and Rch from
the A1/3 law is observed as one moves toward the proton drip
line. These deviations may be largely due to the fact that, in
approaching the proton drip line, the protons are more loosely
bound and therefore the charge density extends to larger
distances compared with the stable nuclei above 40Ca. The
effect is much more prominent in calcium than in tin because
of the lower Coulomb barrier due to its smaller atomic number.
In turn, the same effect may originate that the Helm parameter
σ of 40Ca, measuring the surface thickness of the nucleus, does
not decrease as compared with the heavier neighbor nuclei (see
upper panel of Fig. 10). We plot in Fig. 13 the square of the
DWBA charge form factor computed for 500-MeV electrons
at its first minimum against the value of the product σ 2q2

min.
In calcium, as in the case of the tin isotopes, an outstandingly
linear correlation exists between both quantities.

Finally, to validate the consistency of our analysis with
Helm density equivalents, we compute in test cases the squared
DWBA electric charge form factor both with the Helm profiles
and with their original mean-field charge densities. The results,
as a function of the momentum transfer q, in a few isotopes
of calcium and tin are compared in Fig. 14. The cases shown
in the figure are chosen to illustrate the situation from the
proton to the neutron drip lines, but similar conclusions are
found for the other isotopes of these chains. In the range of
q values up to ≈1.5 fm−1 in the calcium isotopes and up to
around ≈1 fm−1 in the tin isotopes, one observes an excellent
agreement between the results for |FDWBA(q)|2 obtained using
the mean-field charge densities and using the equivalent Helm
charge densities. A similar situation is found in the nuclei that
lie near the drip lines: the agreement between the Helm and
the mean field results is slightly worse but without sizable
differences compared to the more stable nuclei. This scenario
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between the squared charge form factor in DWBA calculated with
the charge densities of the G2 mean-field interaction (solid lines) and
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points out that the electron-nucleus scattering results in the
low-momentum transfer region computed with mean-field
charge densities, are very well simulated by equivalent Helm
densities with the R0 and σ parameters obtained according to
the method described above. As the value of the momentum
transfer increases, expectably, the discrepancies between the
actual calculations with G2 and the adjusted Helm model
become evident.

Let us now concentrate on the results pertaining to the
self-consistent calculations with G2 that are shown in Fig. 14.
One can observe that, as mentioned earlier, the first minimum
that is visible in the squared charge form factor of calcium sinks
away in tin. Its fingerprint in tin is recognized as an inflection
point. The second and further minima of |FDWBA(q)|2 remain,
however, clearly identifiable in the tin isotopes. With the
progressive addition of neutrons in either of the two isotopic
chains, it may be seen from Fig. 14 that the first minimum of
|FDWBA(q)|2, or its signature, becomes slightly more marked.

This effect is, however, much less noticeable than the discussed
effect on the first minimum induced by changing Z. One also
observes that the location of the minima or inflection points
of the squared charge form factor is gradually pushed toward
lower-momentum transfers as the nucleus becomes more and
more neutron rich. This effect has been noted in previous
literature [20,21,23–25], and for the first minimum we have
described it in more detail in the upper panels of Figs. 8 and 12.
The same trend (inwards shift of the minima or IP) occurs with
increasing atomic number (compare the scales of the q axis
for Ca and Sn in Fig. 14). In general, the inwards displacement
of the momentum transfer of the minima is accompanied by
a simultaneous increase of the height of the maxima of the
squared charge form factor.

V. SUMMARY AND CONCLUSIONS

We adapted the ELSEPA code [30] for calculations of elastic
electron-nucleus scattering. The predictions obtained from
the charge densities computed with various selected Skyrme
forces and modern relativistic mean-field parameter sets have
been compared with existing experimental data about elastic
electron scattering in several stable nuclei.

A suitable quantitative comparison among the theoretical
predictions is established by introducing, for each nucleus
and beam energy, a normalized square weighted difference.
Although all the considered effective interactions describe
qualitatively well the experimental DCS data, the quantitative
analysis in terms of the d2

w with respect to experiment
shows some differences among the various theoretical DCS,
especially for large scattering angles. These differences are
related mainly with the different behavior of the mean-field
densities in the inner region of the nuclei. For the investigated
nuclei and energies, one always finds a theoretical charge
distribution whose d2

w is at least similar, and in some cases
better, than the one obtained with the experimental charge
density that has been fitted to reproduce the measured DCS
data. Among the nuclear interactions analyzed, the DCS
values calculated with the charge densities obtained from the
covariant DD-ME2 and FSUGold parameter sets are the ones
that tend to give overall better agreement with the experimental
values considered.

A more challenging test on theory is provided by the
analysis of the experimental data about relative differences
of DCS between pairs of neighbor nuclei. The calculations
based on the mean-field charge densities reasonably follow the
global trends shown up by the experimental measurements.
The quantitative analysis, however, as in the case of the
previously investigated DCS, highlights some deficiencies of
the mean-field densities in their inner region.

We have used the mean-field charge densities obtained with
the relativistic G2 parametrization, by the reasons discussed
previously, as the input baseline to study the elastic electron-
nucleus scattering along the tin and calcium isotopic chains.
Calculations have been performed from the proton to the
neutron drip lines. Our aim has been to extract general
trends, according to current mean-field theories of nuclear
structure, about the behavior that may be expected from real
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electron-nucleus scattering experiments in exotic nuclei, in
the low-momentum transfer region. Such experiments are
envisaged at FAIR [17] and the SCRIT [18,19] project in
the nearby future, using exotic nuclei provided by radioactive
isotope beams. We have confined our study to medium and
heavy mass isotopes where the mean-field approach can be
applied. Surely, the experimental program will investigate not
only heavy exotic nuclei but it will address also scattering
from light exotic nuclei. The theoretical investigation of these
light nuclei, however, demands a sophisticated microscopic
treatment of scattering to deal with the underlying shell-model
structure and the possible occurrence of halos, which is beyond
the methodology of the mean-field study of the present work.

First, we have computed for each isotope of the investigated
chains the squared electric charge form factor. It has been
obtained as the ratio between the DWBA DCS calculated with
ELSEPA and the Mott DCS. We have checked that |FDWBA(q)|2
defined in this way is relatively independent of the energy
of the electron beam up to momentum transfers q ≈ 1–
1.5 fm−1, even for nuclei as large as 208Pb. Second, we
have fitted the mean-field charge densities by two-parameter
Helm distributions. In doing so, we have adjusted the effective
momentum transfer correction to reproduce the mean-field
rms charge radii, on average, along the isotopic chain. We
have made an a posteriori check that a DWBA calculation
of the elastic electron scattering using as input the equivalent
Helm charge density, is in excellent agreement with the results
computed with the original mean-field charge density up to
momentum transfers q ≈ 1–1.5 fm−1.

We have paid special attention to the value of the square
of the DWBA electric charge form factor at the momentum
transfer where its first minimum, in medium-mass nuclei,
or its first inflection point, in heavier nuclei, appears. We
have studied how it evolves along the isotopic chains of
tin and calcium. Interesting linear correlations between the
value of the momentum transfer at the first minimum (or
IP) of |FDWBA(q)|2 with the mass number of the isotopes of
the chain, with the effective momentum transfer at the first
minimum of |FPWBA(q)|2, and with the rms radius of the charge
distribution, have been discussed. Also, a linear correlation

between |FDWBA(q)|2 and σ 2q2 computed at the first minimum
or IP, where σ is the Helm parameter that accounts for the
surface thickness of the nuclear density, has been found in the
studied chains.

The analysis described in the present article could poten-
tially be useful for future electron-nucleus elastic-scattering
experiments. If the experimental data are available for two
or more isotopes of a given chain, the aforementioned linear
correlations would provide, for an unknown nucleus of the
chain, a hint on the value expected for the square of the
experimental electric charge form factor at its first minimum
and for the momentum transfer where the latter occurs. The
parameters of the Helm charge density distribution of the
unknown isotope could be estimated by means of correlations
such as those displayed in Figs. 8 and 12, with the help of
Eqs. (20) and (18). Also, if the value of the squared modulus
of the form factor is determined experimentally at its first
minimum, the charge density in the Helm model can be
sketched from similar correlations to Figs. 8 and 12, together
with the correlation of the type depicted in Figs. 9 and 13. The
use of more elaborated versions of the Helm model [67–69]
that take into account the central depression of the charge
density should allow one to extend the domain of validity of
our method up to larger values of the momentum transfer.
Work in this direction will be undertaken.
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