PHYSICAL REVIEW C

VOLUME 22, NUMBER 4

OCTOBER 1980

Thermodynamic properties of hot nucleonic matter

Manuel Barranco
Department of Physics, University of Florida, Gainesville, Florida 32611
and Institut de Physique Nucléaire, Division de Physique Théorique, 91406 Orsay, France

J. Robert Buchler
Departments of Physics and of Astronomy, University of Florida, Gainesville, Florida 32611
(Received 3 March 1980)

Phase diagrams for bulk nuclear matter at finite temperatures and variable proton concentrations are presented
and discussed. This binary system exhibits a line of critical points, a line of equal concentrations, and a line of
maximum temperatures. the phenomenon of retrograde condensation is also possible.
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I. INTRODUCTION

The study of hot, dense matter has important
astrophysical applications. Supernova models in-
volve the gravitational collapse of the inner core
of a massive star followed by the explosive ejec-
tion of the overlying material. This collapse brings
matter beyond nuclear matter density (poy,~2.7
x10* g/cm®) and to temperatures in excess of 10
MeV. At several times nuclear matter density
both the dominance of the yet nonrelativistic nu-
cleons over the extreme-relativistic electrons
and short-range nuclear repulsion cause an abrupt
stiffening of the equation of state (EOS). This
gives rise to a bounce of the collapsing core and to
the formation of an outward moving shockwave. Dur-
ing the collapse electron captures create copious
amounts of neutrinos and neutronize matter. Since
the original suggestion by Colgate and W hite! the
hope has beenthat these neutrinos will exert enough
stress onthe infalling material to reinforce the
shockwave and produce a strong explosion. Recent
spherically symmetric hydrodynamic model cal-
culations of the collapse?'® have thwartedthat hope;
the neutrinos are not released sufficiently fast and,
if anything, tendtoweaken the shock, so that explo-
sions aremarginalatbest. These calculations
have shown that the outcome of the collapse is very
sensitive to the equation of state from subnuclear
to supernuclear densities. Recenttwo-dimensional
numerical hydrodynamic calculations* indicate that
an expected Rayleigh-Taylor® ¢ instability gives rise
to a large-scale, violent overturn of the core and
results in a strong explosion.” The formation of
such a crucial Rayleigh-Taylor unstable region
during the bounce of the core, however, depends
sensitively on the equation of state at subnuclear
density.

At subnuclear densities matter is composed of

nuclei, free nucleons, leptons, and photons.®™

It is known’® that the gross features of the equation
of state are determined by the bulk properties of
matter: Surface and Coulomb effects basically
determine details such as the sizes of nuclei.

This then lends more than just academic interest
to the study of bulk matter. When using the equa- °
tion of state of bulk matter as a first approxima-
tion to the actual equation of state, it is crucial to
consider the possibility of phase coexistence as
will be shown (especially Figs. 2 and 3).

Bulk properties of hompgeneous matter at finite
temperatures have received a fair amount of
recent interest.*”'* However, only two works®"*3
also discuss the stability of hot nucleonic matter
and the possibility of coexistence of several phases.
One of these,' however, has overlooked some
interesting and unexpected properties of such
matter which will be discussed in the present
paper.

II. HOMOGENEOUS MATTER

Our free-energy density fuhctional f has the form

Flo, Y, T)=fus(0, Y, T) +v(p, ¥), (1)

where the noninteracting part, fy;, is giVen as the
sum of separate proton and neutron contributions,
Jolpy, T) and fy(p,, T), with respective number den-
sities p, =Yp and p,=(1 - Y)p, where Y is thus the
proton concentration. The functions fy(p, T) are
obtained numerically from the functional fits to
the grand potential Q (or pressure, p) and density
p (see appendix of the second Ref. 15). The func-
tional form of the interaction energy density v(p, Y)
is the same as in Buchler and Epstein®® and is
exhibited in Fig. 1. It corresponds to an inter-
polation between the variable Y functional fit of
Lombard?! (the coefficients in that reference con-
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FIG. 1. Nuclear interaction energy per nucleon as a

function of nucleon density for various values of proton
concentration, Y,

tain misprints and should read b, =-818.25, b,
=1371.06, b,=-556.55, @,=-0.316, a,=0.2, a;
=1.646) and the pure neutron gas calculation of
Buchler and Ingber.??

The interaction energy v(p, Y) is assumed to be
temperature independent, mostly for lack of better
knowledge. Ab initio finite temperature many-
body calculations using the Bloch-DeDominicis
formalism exist only for a pure neutron gas at
subnuclear densities.!® The existing finite tem-
perature Hartree-Fock calculations,*4+%+1° on the
other hand, use a temperature independent model
effective interaction; such an approach has been -
shown!” to be valid only at low temperature since
it is based on a high degeneracy approximation.
We thus believe our energy functional to be ade-
quate given the present state of the art. In any
case the results described in this paper have been
found to be qualitatively insensitive to the exact
form of v. ,

Nucleonic matter is not thermodynamically
stable at all densities, temperatures, and proton
concentrations, Y. Necessary and sufficient con-
ditions for stability, AG =0, for a binary system
(e.g., Ref. 23) can be expressed by the following
set of inequalities:

ou
=({—= 0
Cv <8T)pY> ’ (3)
KE<?£) =0, 4
op/ry
o, I
(8Y>,,T$O or(ay)nzo. (5)

In addition, of course, the pressure, p, must be
positive. A positive specific heat, C,, guarantees
thermodynamic stability, a positive compressibil-
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FIG. 2. Pressure-density isotherms for a single phase
with Y= 0.5. The region where the stability criteria
(3—5) are violated is bounded by the dotted line. The
dashed line denotes the phase-separation boundary, The
horizontal line shows the actual behavior of the equation
state.

ity, x, guarantees mechanical stability, and the
condition on the variation of the chemical poten-
tials guarantees diffusive stability. The specific
heat is always positive for our energy functional,
but the compressibility ¥ can be negative at large
Y and low temperature as one sees upon inspect-
ing isotherms, e.g., for symmetric (¥ =0.5)
nucleonic matter shown in Fig. 2. The downward
sloping parts of the curves, bounded by the dotted
line, are obviously unstable. The isotherm with
a horizontal inflexion point corresponds to the
critical temperature. Another unstable region
occurs where the pressure is negative; under
such conditions the system collapses until a state
with p =0 (stable self-bound) is attained. Equilib-
rium densities as a function of temperature can
thus be read off Fig. 2.

For sufficiently small proton concentrations,
e.g., for Y=0.1, as shown in Fig. 3, there no
longer exists a region of negative pressures, nor
even of negative compressibility, at any tempera-
ture; this is a consequence of the reduced nuclear
symmetry energy. Now, however, the diffusive
stability criterion is violated in some regions
(dotted lines). In general, for a given Y, criterion
(4) or (5) may be violated.

The diffusively unstable regions can be seen
more clearly in chemical potential isobars (Fig.
4); according to inequality (5), the region of
negative (positive) slope for p, (u,) is unstable.
In order to facilitate a comparison with previous
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Fig. 3. Pressure-density isotherms for ¥=0.1, The
solid curve represents the actual equation of state. The
dashed line denotes the metastable part of the single
phase and the dotted line the unstable single phase. The
isotherms go from 3, 5, 7, 9, to 12 MeV (pressures in
MeV/fma, densities in fm=-%), All logarithms in this and
subsequent figures are base ten.

work?® we have chosen the same physical param-
eters and notation. The overall structure of these
isobars is very similar to theirs, although the
temperature dependence is noticeably different,
especially towards the high temperatures (10-20
MeV).
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FIG. 4. Neutron and proton chemical potential isobars.

The labels refer to the pressures ¢=0.88, ¢=0.458,
e=0.,198, f=0.115, and g=0.058 MeV/fm?. The rec-
tangle illustrates the graphical solution of the coexis-
tence equation.

III. TWO PHASE COEXISTENCE

Violation of the stability criteria is indicative
of phase separation; the system has no alternative
but to split into separate phases in equilibrium.
Instability, however, is only a sufficient condition
and phase separation may occur even when the one
phase system is stable, in general metastable.

In this section we analyze the properties of bulk
nuclear matter under those conditions where two
distinct phases can coexist. In contrast to the
more common single component phase equilibria,
such as liquid vapor, in which the phases are
distinguished by only one parameter, e.g., the
density, in this binary mixture we have, in addi-
tion, the proton concentration, ¥, which is dif-
ferent from one phase to the other.

We label with subscripts a and b the two coex-
isting phases and denote the specified average
density and proton concentration by p and Y,
respectively. For two phases to coexist at a
given temperature, the following well-known?? 24
conditions must be satisfied (AG =0):

p(pa) Ya’~T)=p(pb’ Yb, T), (6)
YnlPas Yoo T) = n(05 Y5, T) (7
I-Lp(oa, Ya, T) = lJ«p(pb, Yb’ T) . (8)

It is convenient and customary®+** to discuss the
phase coexistence in (p,T,Y) space. Because of
the assumed isobaric charge symmetry of nuclear
forces, the behavior of the system is invariant
under a change of Y into 1 -Y and the phase dia-
grams are symmetric with respect to ¥ =0.5. We
can therefore limit ourselves to the physically
more useful neutron-rich region, Y €(0, 0.5) and
in order to avoid crowding of the figures, we
occasionally use log,,Y instead of Y. '

The phase separation boundary, which encloses
all the points for which the two-phase configura-
tion has a lower free energy than the single phase,
has the shape of a filet mignon (FM). We have
represented it schematically in Fig. 5 as an aid
to visualize the upcoming discussion associated
with Figs. 6 to 8, which are accurate. This FM
is itself composed of two subregions, a metastable
region and a labile region, separated by the in-
stability boundary, which limits the region inside
which at least one of the conditions (3) to (5) is
violated. Cwitical points on the FM are defined
as having both the same densities and the same
proton concentrations. According to Gibbs’s phase
rule the critical points, if they exist, must lie on
a line on the FM, the line of cvitical points (LCP).

The solution to the phase-equilibrium relations
(3) to (5) can be obtained graphically, as indicated
in Ref. 19, with chemical potential isobars. The
solutions must lie at the corners of a rectangle
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FIG. 5. Schematic representation of the phase-coexis-
tence boundary surface in (p,T,Y) space. Special lines
are the line of equal concentration, LEC, the line of
critical points, LCP, and the line of maximum tempera-
ture, Tpax.

constructed on the same isobar, as indicated in
Fig. 4, which represents isobars at 10 MeV. The
instability surface has the well-known property??
of being tangent to the FM along the LCP (and only
there). This can readily be seen from an inspec-
tion of the behavior of intersection of a u, or u,
=constant line with various isobars. Isobar (c),
e.g., gives rise to only one point of intersection,
whereas isobar (e) is cut three times, the cen-
tral point being inside the unstable region. There
exists an intermediate isobar of pressure point,
p=~0.33 MeV/fm?, for which the three intersection
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FIG. 6. Cuts of the phase-separation boundary surface
orthogonal to T'. The dotted line is the projection of the
cvitical line, the dashed line the projection of the maxi-
mum tempevatuve line, The line of equal concentvation
lies on the Y=0.5 line.
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FIG. 7. Cuts of the phase-separation boundary surface
orthogonal to p. We show a critical isobar with logy¢p
= —0.4. All the other corresponds to equal-concentra-
tion isobars. The dashed line is the projection of the
critical line, the dotted line the projection of the maxi-
mum temperature line,

points meet (horizontal inflexion point) and which
is therefore both a critical pointandan unstable point.
Figure 6 represents FM cuts, orthogonal to the
T axis, for various values of 7. One can see that
for each temperature T<T*=15.5 MeV, there
exists a critical point which coincides with the
largest possible value of p. The projection of the
critical line on the (p, Y) plane is shown by a -
dotted line. We note that for a specified Y, there
exists a maximum temperature beyond which no
coexistence is possible. The projection of this
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FIG. 8. Cuts of the phase separation boundary surface

orthogonal to Y. The dashed line is the projection of the

critical line, the dotted line the projection of the maxi-
mum temperature line.



line of maximum tempevratures is shown as a
dashed line. In general T,.# T et -

Interestingly our system also has a line of equal
concentrations (LEC), namely a line for which Y,
=Y,, but p,#p,. It is obvious that the LEC lies in
the Y =0.5 plane (see Fig. 5). The nature and ex-
istence of such a line can be seen from Fig. 9,
which is the projection perpendicular to T of the
coexistence surface in (p, T, p) space. Referring
to the behavior of isobar (g) on Fig. 4, which
loops back and cuts the Y =0.5 line twice, we
can imagine that there must be another isobar at
somewhat lower pressure (p=0.044 MeV/fm?),
for which the two intersection points on ¥ =0.5
coincide, giving rise to a point of equal concen-
tration. The FM thus has a cusplike behavior
along the LEC, where the two sides of the FM are
tangent to each other and to a plane parallel to the
Y axis. It is easy to show (Ref. 23, Sec. 46) that
@dp/dY)p=dT/dY),=0 along the LEC (this does
not show up in Figs. 5 and 6, because we have
plotted log;,Y). Two-phase coexistence is there-
fore possible when the isobars exhibit enough
structure, i.e., from a pressure, p.;, , between
curves ¢ and e, where the isobar becomes multi-
valued down to a pressure pqc.on , SOmewhat beyond
curve g, where the loop of g has shrunk to a point
and the isobar is again single valued.

This (p, T, p) coexistence surface, in contrast
to the FM, is open toward low pressures. From
Fig. 6 we infer that the lowest pressure points
correspond to the LEC, which has the property
of giving the largest density ratio between the co-
existing phases.

According to the Gibbs phase rule the system
can in principle have a line of three-phase co-
existence, as well as a point of four-phase co-
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FIG. 9. Cuts of the phase separation boundary surface
orthogonal to T, but for the density instead of ¥
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existence. The chemical potential isobars (Fig. 4)
show that three-phase coexistence requires that

a horizontal line (u =constant) intersect a given
isobar three times, with the additional constraint
that all three intersection points be on a stable
branch of the isobar. It appears unlikely that this
can happen with the observed structure of the iso-
bars, and, indeed, numerically we have not en-
countered a triple coexistence.

Figure 6 shows that the critical pressure de-
creases with increasing temperature. This occurs
because the critical point moves to lower density
and the system is still very degenerate even at the
critical temperature (see Fig. 9) and thence in-
sensitive to temperature. The critical pressure
also decreases with increasing Y (Fig. 6), achiev-
ing a minimum at p*=py (¥ =0.5)=0.2 MeV/fm?
at a maximum critical tempei‘ature T*=15.5 MeV.

In Fig. 7 we exhibit cuts of the FM orthogonal
to the p axis, for various values of p. It is worth-
while noting that for pressures lower than the
critical pressure for symmetric matter, p<p*,
the isobars peak at Y =0.5 on the LEC, whereas
for p>p* they peak at their critical point, T 4(¥).
This behavior is obvious from Fig. 5.

It is important to distinguish the critical tem-
perature (the point on the FM, where the two
coexisting phases are equal both in proton concen-
tration and in density) from the maximum tem-
perature (the highest temperature on the inter-
section of the FM with a Y =constant plane). This
maximum temperature line has improperly been
called critical (Ref. 19, e.g., Fig. 6, Ref. 13, and
by Lamb et al.''); maximum and critical tempera-
ture with their textbook definitions coincide only
for symmetric nuclear matter.

From Fig. 6 we can infer that the system under-
goes a retrogrvade condensation. The part of the
coexistence line running to the left of the critical
point out to the point of equal concentration cor-
responds to the dense phase and the remainder to
the light phase. Consider the behavior of a system
undergoing an isothermal compression, say, at
T =3 MeV, with Y to the right of the critical point,
say Y=0.01. At a pressure of 2.6 x10™* MeV/fm?,
a dense phase of ¥ =0.46 appears, increases in
mass fraction until some maximum value, and
then gradually fades away and disappears again
at a pressure of 0.35 MeV/fm®. To the left of
the critical point, on the other hand, the behavior
is normal with the dense phase gradually occupy-
ing the whole volume.

Finally Fig. 8 shows cuts perpendicular to the
Y axis of the FM for several values of Y. For
Y =0.5 the two-phase coexistence region shrinks
into a line, the LEC. Also shown is the projec-
tion of the LCP and the projection of the line of
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maximum temperature. All three lines terminate
at the same point, which is thus the critical point
for symmetric matter, and also the highest tem-
perature at which any phase coexistence is pos-
sible. With decreasing proton concentration Y
the phase-coexistence domain shrinks at lower
temperature, until it becomes a point at zero
temperature, at some value of Y>0. The pure
neutron gas at zero temperature is stable against
breakup into two phases; indeed, the zero tem-
perature isotherm, p(p), is a monotonically in-
creasing function. The FM therefore does not
touch the Y =0 plane and a pure-phase coexistence
line does not exist.

For a given average Y =0.5, we infer from Fig.
2 that for a specified temperature and pressure,
Say, P <P vaporzation; the system can exist in a stable
mono-phase state, represented by the point on the
left-hand side of the p(p, T,Y) curve, as well as
in the metastable mono-phase state, correspond-
ing to the point on the right-hand side. In addi-
tion there exists a metastable two-phase state
with equal densities, p,=p,, and mass fractions
(¢ =0.5), but with unequal, symmetric proton con-
centrations, Y,=1-7Y,. The existence of this
curious state can be inferred®® from the symmetric
extension of the chemical potential isobars (Fig.
4) from Y =0.5 to 1.0. It is clearly a result of the
assumption of the isobaric charge symmetry of
nuclear forces.

At this stage it may be worthwhile to point out
that the solution to the phase equilibrium equa-
tions is not unique, which creates a numerical
nightmare. For example it is easy to see from
Fig. 4 that in addition to the exhibited rectangle
on isobar (f) there must exist two other rectangles
on the same isobar. Both of these, however, have
one phase which lies on an unstable branch of the
isobar and hence must be discarded. Especially,
slightly below the critical pressure, it is essen-
tially impossible to find a solution numerically and
we have accordingly interpolated the curves in this
narrow region.

It is interesting to study the behavior of the sys-
tem as a function of the average extensive vari-
ables, p and Y. This is a more useful way of
looking at such matter undergoing compression
or heating, since we normally specify T, p, ¥ and
are interested in the resulting pressure and phase
configuration. Denoting by £ the mass fraction of
phase (a) we then have the relations

Y=tY,+(1-¢)Y,, 9)
1.8 4.t
p Pa+(1 g)pb. , (10)

The curve labeled p, in Fig. 10 represents, for
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FIG. 10. Phase diagram for an average Y=0.1. The
thick line labeled p; is the boundary of phase separation.
The line p, denotes the density of the incipient phase.
The instability line (dotted) for the single phase touches
the phase separation line p; at the critical point v,

a given average Y =0.1, the stable solution of the
coexistence Egs. (6)—(8) and of Eqs. (9) and (10)
with £=1. It thus delineates from above the two-
phase coexistence region. The peak temperature
(Tmax=10.4 MeV for Y =0.1, see Fig. 6) falls on
the line of maximum temperature as defined
above. Also shown on the same graph is the den-
sity (curve p,) of the incipient phase [i.e., phase
(d) with £ =0]. That the peak of curve p, is not

a critical point is thus obvious since p,#p, and
Y,#Y,=0.1. The crossing point y of curves p,
and p,, on the other hand, clearly corresponds
to the critical point (T . =5.7 MeV for Y =0.1,
see Fig. 6). It is worth mentioning that the well-
known lever rule?* which was applicable to Figs.
5 to 8 is no longer valid in this figure [we now
specify the average extensive variable p in addi-
tion to T, but no longer specify the (intensive)
pressure]. The instability boundary (dashed line)
for Y=0.1 is seen to fall inside the coexistence
boundary and touches the latter at the critical
point as it must. The region between these two
boundaries corresponds to mefastable single phase
states.

The existence of a critical point gives rise to an
already mentioned interesting behavior in an iso-
thermal compression, behavior which differs de-
pending on whether the temperature is greater or
smaller than T, =5.7 MeV (point ). During an
isothermal compression below T (line xz in
Fig. 10), at point A the system undergoes a phase
separation (although it could stay metastable up to
point C, the instability boundary). The incipient
phase is denoted by o and has a higher density.
At point B the system goes back into a single phase.
(In a decompression this single phase could
metastably last from B to D.) At point B the dis-
appearing phase has a density g which is lower
than that of the principal phase. The behavior of
the system throughout the two-phase region is
reported in Fig. 11 as a function of the average
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FIG, 11. Variation of the properties of the two coex-
isting phases a and b and the mass fraction of phase a
throughout an isothermal compression as a function of
the average density for Y=0.1. (1) for T=3 MeV< Ty,
(2) for T=7 MeV>T,; . The left~-hand scale refers to the
(decimal) logarithm of the densities and the right-hand
scale to the proton fractions and mass fractions. The
dotted line corresponds to the average density p.

density p. In particular from Fig. 11(a) which cor-
responds to a temperature 7< T .., we note that
the mass fraction ¢ varies from 1 to 0 indicating
that the second (denser) phase (b) gradually takes
over completely from the first phase (a). Phases
(@) and (b) vary smoothly with the average density
as Fig. 11 shows (Gibb’s level rule no longer
works as pointed out above).

Above the critical temperature (crossing point,
labeled vy in Fig. 10) a qualitatively different be-
havior sets in. At A’ a new denser phase a’ ap-
pears as before, but at the other side of the two-
phase region, point B, the disappearing phase
now also is denser than the principal phase. The
curve for £ in Fig. 11(b) indicates that the mass
fraction of the denser phase, which appears at A’,
never exceeds some maximum value, after which
it fades away again. The critical temperature,
at which the disappearing and the principal phases
are the same, separates the normal and retro-
grade behavior. This retrograde behavior was
overlooked in the description of Ref. 19.

Figure 12 shows the behavior of £ as a function
of the average density p for several temperatures.
At the critical temperature, & is undefined since
the coexisting phases are identical. Above T
the appearance of the retrograde behavior clearly
stands out.

Finally in Fig. 13 we show the coexistence boun-
daries (similar to Fig. 10) for several values of
Y. Below a certain value of Y (approximately ¥
=0.05, see Figs. 5 and 6) there no longer exists
a critical point, so that the p, and p, curves,
analogous to Fig. 13, no longer intersect (no y
point). A point of maximum temperature never -
theless continues to exist.

Iog,OP

-20

-30

10 075 ¢ 050 025 00

FIG. 12. Behavior of the mass fraction £ of phase a
as a function of average density. Temperature ranges
from 3 to 8 MeV.

For the purpose of comparison we also show

‘the coexistence boundary®® of Ref. 19 for Y =0.5;

their maximum and critical (because Y =0.5) tem-
perature (Tpa=20.5 MeV) is considerably higher
than ours (Tpax=15.5 MeV), but the qualitative
behavior is very similar. In particular the energy
functional used in Refs. 11 and 19 also gives rise
to a crossing point*® and hence indicates the
presence of a critical point. We have also com-
puted the maximum critical temperature for an-
other energy functional®” and found it to be T .

~ 16.2 MeV. A comparison of these three maximal
temperatures gives us a measure of the sensitivity
of the results to the nuclear interaction energy.

* togop

FIG. 13. Phase diagram (same as Fig. 10) in terms of
average p for Y=0.1, 0.25, and 0.50. In addition is
shown ¥,. Note that the right-hand branch of p, and the
right-hand branch of ¥, correspond to the left-hand
branch of p;. Also shown for comparison is the ¥Y=0.5
curve for the nuclear interaction energy of Refs. 11 and
19 (LR).
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Also shown in the same graph is the proton con-
centration, Y,, of the incipient phase. Again the
left (right) branches of the Y, and p, curves cor-
respond to the right (left) branch of the p, curve.

Finally, we can discuss the actual equation of
state for our system. In Fig. 2 which refers to
symmetric matter (Y =0.5), the dashed line indi-
cates the phase separation line. Upon compres-
sion along a given isotherm the system follows
the solid line from the origin until the point of
intersection with the phase separation line, then
runs across horizontally until it meets again the
single phase (solid) line which it then follows.
Metastability is possible at positive pressures
between the phase separation line and the instabil-
ity line. The fact that the traversal of the co-
existence region occurs at constant pressure
Drvaporization €20 be inferred from Fig. 8 and is due
to the existence of the line of equal concentrations.
For a general ¥, e.g., Y=0.1 (Fig. 3) the equa-
tion of state is therefore more complicated. At
both points of phase separation the pressure de-
viates abruptly from the single phase pressure of
same density. A metastable region also exists in
the vicinity of these points (dashed line) separated
by an unstable excluded region (dotted line). The
retrograde behavior discussed above does not show
up at all in the equation of state p(p, T'), nor does
the existence of a critical point. Their presence
is only reflected at the more detailed level of
description of the consistuency of matter.

We have not bothered to include the effects of
leptons in the equation of state of bulk matter at
this stage, although one could this way get a rea-
sonable approximation to the actual equation of
state. We stress that if the phase coexistence
were neglected, however, such an equation of
state would be grossly inadequate as can be seen
from Figs. 2 and 3.

IV. CONCLUSIONS

The thermodynamic properties of dense, hot
nuclear matter are those expected of a binary
liquid-vapor mixture. It has special features,
which not all such binary systems need to have,
namely that there exists a line of critical points
as well as a line of equal concentrations. There
are therefore conditions under which the phenom-

enon of retrograde condensation exists.

The existence of a line of critical points implies
the existence of a line of maximum temperatures.
It is clear from Fig. 6 that along the phase-
separation boundary (p, curve in Fig. 10) at fixed
Y the maximum temperature must be larger than
the critical temperature. Coexistence of more
than two phases, although possible in principle,
does not exist for nuclear matter.

Whether the retrograde features survive when
Coulomb and surface effects are included is not
clear; if they do one would expect the large fluc-
tuations in nuclear size distributions to occur
near the critical point and not near the maximum
temperature. In the approximation of representing
the distribution of nuclei by a single typical nu-
cleus, the lines of constant atomic number (see,
e.g., Ref. 11) would thus tend to converge on the
critical point and not the point of maximum tem-
perature.

The extension of this work to include surface
and Coulomb effects is in progress. QOur approach
is based on a warm nuclear Thomas-Fermi
model.'®*® It has been shown?® that our formalism
is capable of adequately reproducing the average
excitation spectrum and hence the specific heat of
nuclei. An accurate knowledge of the sizes of
nuclei in hot matter has a bearing on the fate of
the collapsing cores, since neutrino opacities are
sensitive to the atomic number.
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