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Abstract

The purpose of this study is to give an insight to Siegel’s linearization theorem, a re-
sult in discrete dynamics of one-dimensional holomorphic maps that claims the existence
of a change of coordinates in a neighbourhood of a map’s fixed point to its linear part,
whenever the multiplier for such point satisfies the Diophantine condition. This overall
approach aims to provide an understanding of the theorem and all it encompasses. It
firstly puts forward necessary knowledge in Diophantine approximations as well as com-
plex and functional analysis and introduces some background to Schröder’s equation, the
conjugacy problem in which the theorem originates. Once set, the theorem is proved in
great detail and the dissertation concludes with a numerical exploration performed to
visualize and ponder about the most relevant results aforementioned.
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How one encounters reality is a choice.
Martin Heidegger
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1 Introduction

In 1942, Carl Ludwig Siegel (1896 - 1981) gave an important result within the field of
discrete dynamics of holomorphic functions, known as his linearization theorem. Such
result shed some light on the discussion started years ago by Ernst Schröder (1841 - 1902)
that seemed to have reached an end point when trying to describe the behaviour of an
orbit near a fixed elliptic point.

While it did not give closure to the whole discussion, it outlined the path with which
to properly tackle the issue, showing that the right approach on the matter was a refined
argument containing a bit of number theory. This allowed, later on, other mathematicians
to explore in greater depth the nature of elliptic fixed points, which turns out to be much
more difficult to understand, yet mesmerizing.

In his proof, he also encountered and used traits quite common in one of the modern
tools of the analysis of many dynamical systems: the KAM theory. A fully-fledged theory
named after Andrey Nikolaevich Kolmogorov (1903 - 1987), Jürgen Kurt Moser (1928 -
1999) and Vladimir Igorevich Arnold (1937 - 2010) that roots, among others, in the studies
and results of Siegel. Hence, his theorem entails much more than just a linearization result,
thus being in fact the reason why it becomes the main theme of this graduate thesis.

In order to fully comprehend the depth of it, we first review in section 2 some crucial
elements that will eventually play an important role: the Diophantine approximations and
some elements of complex and functional analysis. Although the proof of theorem mainly
relies on a KAM version of the Newton Method that requires very precise estimates, many
fundamental results in complex and functional analysis lie underneath. And when dealing
with the so-called small divisors equation, the notion of Diophantine number will prove
to be essential so as to overcome one of the main mathematical challenges in the proof.

In section 3, we proceed to give some basic background in discrete dynamics so as
to introduce the notion of conjugacy and the origin of Schröder’s equation by which a
general studying method for a holomorphic map’s dynamic in a neighbourhood of its fixed
points is intended. Once set and sorted, in section 4 we tackle right away the proof of the
theorem for which we use all the previously acquired knowledge.

Finally, in section 5 we move on to some numerical explorations in order to visualize
all the aforementioned by spotting the linearizations that Siegel’s theorem guarantees
for different multipliers. In fact, a further study is put forward so as to see how the
approximated conjugacy computed and the perturbation to a linear map may affect its
linearization, thus concluding the whole study revolving around the Siegel’s linearization
theorem and all it encompasses.
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2 Preliminaries

Prior to embarking upon the history where Siegel’s linearization theorem roots in, it is
precise to set forth some elements from different mathematical fields: the Diophantine
approximations and some results in complex and functional analysis. Despite the tech-
nicality of these preliminaries, the tools provided from the three areas will help framing
the upcoming sections. Hence, this summary covers most of the relevant results, but just
gives proof to some of them and references for the others.

2.1 Diophantine Analysis

Throughout this section we shall consider ω ∈ R-Q, as irrationals that are not too well
approximated by rationals play a central role when finding whether or not there exists an
interesting change of coordinates near a fixed point of a one-dimensional holomorphic map.
The main idea is to compare the distance between ω to any rational. As long as it can be
somehow lower-bounded, good approximations by rationals are not to be expected and,
as we shall see, this discussion translates straight into the field of Diophantine Analysis.

To this purpose, let us start off by giving the definition of a Diophantine number.

Definition 2.1.1. An irrational number ω is called Diophantine if and only if there exists
ε > 0 and ν > 1 such that

|qω − p| > ε

qν

∀p, q ∈ Z, q 6= 0. We then say that ω is a Diophantine number of type (ε,ν).

The inequality given by the Diophantine condition is often rewritten as |ω−p
q | > εq−ν−1

where k ..= ν + 1 > 2 is defined as the order of ω. According to this notation, we define

Dk = {ω ∈ R-Q ; ω is a Diophantine number of order k}

as the set of Diophantine numbers of order k and

D = ∪k>2Dk

as the set of Diophantine numbers.

The natural question to be posed now is to what an extent are these numbers common
or, in other words, how many there are. It is apparent that a positive answer to this
question would prove the aforementioned definition to be key in this matter.

A first result by Joseph Liouville (1809 - 1882) in number theory proves that the set
of algebraic irrationals happen to be Diophantine numbers. So it turns out that despite
the apparently restrictive definition, D is not that rare after all.

Theorem 2.1.2. (Liouville, 1844) Let ω be a real algebraic number of degree n > 1.
Then there exists a positive constant C=C(ω) such that

|ω − p

q
| > C

qn

∀p, q ∈ Z, q 6= 0.

2



Proof. Given any p, q ∈ Z, q 6= 0, if we denote by P (x) the minimum polynomial of ω,
the mean value theorem yields

P (ω)− P (
p

q
) = P

′
(ξ)(ω − p

q
)

for some ξ lying in between ω and p
q .

Since P is irreducible of degree n > 1 and has integer coefficients, then |P (pq )| ≥ 1
qn .

Let us now assume that |ω− p
q | ≤ 1 =⇒ |ξ| ≤ 1 + |ω|. Then |P ′

(ξ)| < 1
C for some C > 0

since P
′
(x) is continuous on the compact {x ∈ R; |x| ≤ 1 + |ω|}. Hence

1 ≥ |ω − p

q
| > C|P (

p

q
)| ≥ C

qn

Notice that if |ω − p
q | > 1, the result is apparent.

2

It is interesting to highlight that given an irrational ω outside the class D, as a con-
sequence of Liouville’s theorem, ω ought to be a transcendent number. These type of
irrational numbers are often called Liouville numbers and are broadly studied. In fact,
due to many of the applications of Liouville’s theorem, the bound to the distance it pro-
vides was significantly enhanced by others afterwards. It is worth mentioning a theorem
by Klaus Roth (1925 - 2015), previously conjectured by Siegel, since it is the best refined
version of nowadays.

Theorem 2.1.3. (Roth, 1955) Let ω be an irrational algebraic number and ε > 0, then
there are finitely many coprime integers p, q 6= 0 such that

|ω − p

q
| < 1

q2+ε

Going back to the set of Diophantine numbers, we now know that D is larger than
first expected. However the following result tackles the issue directly.

Proposition 2.1.4. Let | · | denote Lebesgue measure. The set D satisfies:

1. D can be expressed as the union of countably many nowhere dense subsets of R, that
is, sets whose closure has empty interior. In other words, it is a meager set.

2. |Dc| = 0.

So D happens to have full Lebesgue measure, hence almost every real number is a
Diophantine number. This feature clearly give us some idea as to how big the set of
Diophantine numbers is, but on the other hand, it also turns out that D is a meagre
set. This topological property conveys the idea of how small the set is, so as we can see
there is this duality confronting two ideas related to the size of D, a rather vague term
in mathematics. Let us prove now both properties.

Proof.
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1. To prove meagerness we will show that D is in fact a subset of a meagre set. Let
us define, given a n ∈ N, the set An ..= {x ∈ R ; ∀pq ∈ Q, |x− p

q | ≥
1
nq3
}.

Notice that ∀n ∈ N, the set An is closed since it is a countable intersection of
preimages of closed sets by continuous functions. It also has an empty interior
because it does not contain any rational number and, therefore, A ..= ∪n∈NAn is a
meagre set. Since D ⊂ A, this yields the result.

2. As for its measure, we will prove the result on the unit interval [0, 1] since the same
assertion can be shown considering any interval in {[n, n+ 1]}n∈Z. Let us fix q ∈ N
and k = 2 + α > 2 where α > 0, we now define the set

A(α, q) ..= {x ∈ [0, 1] ; |x− p

q
| ≤ 1

q2+α
for some p ∈ N}

which consists of about q interval of size 2
q2+α

=⇒ |A(α, q)| ≤ 2
qα+1 . Then the

measure of all sets
∑

q∈N |A(α, q)| <∞ since it is upper-bounded by the convergent

harmonic series 2
∑∞

q=1
1

qα+1 and by the Borel-Cantelli lemma,

|A(α)| ..= | lim sup
q→∞

A(α, q)| = 0 =⇒ |A| ..= | ∪n∈N A(
1

n
)| = 0

Now, since (Dc ∩ [0, 1]) ⊂ A, this yields the result.

2

2.2 Continued fractions

In section 2.1, we tackled the issue of lower-bounding the distance between an irrational
ω and any irrational, thus providing a set of irrationals that are not too well approximated
by rationals. However, there was no emphasis on how to actually approximate numbers
by a rational expression. The answer to this are continued fractions: rational expressions
that not only will allow us to redefine the set D, but they will also prove to come in
handy when weakening the condition of Diophantine number. For this reason we shall
briefly introduce them. In section 3.3.2 we will shed some light on the need of weakening
at some point the Diophantine condition in relation to the study of a holomorphic map’s
fixed points.

Let us start off by giving some elemental definitions.

Definition 2.2.1. A finite or infinite expression of the form:

a0 +
1

a2 +
1

a3 +
1

a4 + · · ·

(2.1)

where an ∈ R is called a continued fraction. We say it is finite if it terminates and infinite
otherwise. The numbers an are called partial quotients. We often denote this expression
as [a0; a1, a2, . . . ].
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Since we are interested in approximations by rationals, we will consider expressions
such that their partial quotients are integers, also called simple continued fraction. So as
to avoid expressions not well defined in this case, we shall allow a0 to be 0 or negative
and we will require the rest to be positive.

Definition 2.2.2. Given a continued fraction [a0; a1, a2, . . . ], we define the sequence
(cn)n∈N as

∀n ∈ N, cn ..= [a0; a1, . . . , an]

The terms cn are called convergents.

Notice that if the continued fraction is simple, then each cn is a rational number and
we denote cn = pn

qn
. Thus, (cn)n∈N is a sequence of rational numbers that outlines the

path to the sought approximation.

Definition 2.2.3. An infinite continued fraction [a0; a1, a2, . . . ] is said to be convergent
if and only if the sequence of its convergents (cn)n∈N converges. That is, the limit

α ..= lim
n→∞

cn

exists and α ∈ R. In this case, we say that [a0; a1, a2, . . . ] is a continued fraction expansion
of α.

Let us see now that provided a real number α, we are able to give an algorithm with
which we can build a simple continued fraction that converges to that number.

Proposition 2.2.4. (Algorithm) Let α be a real number and (αn)n∈N the sequence defined
as

α0
..= α

and for n ≥ 1, if αn−1 ∈ Z we stop the sequence, otherwise

αn ..=
1

αn−1 − bαn−1c

where b·c denotes the floor function.

If we define (an)n∈N as the sequence an ..= [αn], then [a0; a1, a2, · · · ] is a simple con-
tinued fraction expansion of α.

Therefore the result claims that any real number can be approximated by a sequence
of rationals numbers. Notice that this sequence might be finite if for some n ∈ N, αn ∈ Z.
This leads to a more refined result that we now shall state. If a proof to any of the herein
propositions and theorems is desired, refer to [9].

Theorem 2.2.5. (Rational numbers) Any finite simple continued fraction represents a
rational number. Conversely, any rational number con be expressed as a finite simple
continued fraction. Furthermore, if we require an > 1 for all n ≥ 1, then the representation
is unique.

Theorem 2.2.6. (Irrational numbers) Any infinite simple continued fraction represents
an irrational number. Conversely, any irrational number can be expressed as a infinite
simple continued fraction. Furthermore, this representations is unique.
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So it turns out that for every irrational α there exists a unique infinite simple continued
fraction that its convergents, which are rational numbers, converge to α. This is quite
remarkable since the study of the convergents gives an interesting insight into the matter.
But let us begin with some basic properties.

Proposition 2.2.7. Let [a0; a1, a2, . . . ] be a infinite simple continued fraction with con-
vergents cn = [a0; a1, . . . , an] = pn

qn
and α the irrational number represented, then

1. If we set p−1 = 1, q−1 = 0, p0 = a0 and q0 = 1, the numbers pn and qn for n ≥ 1
satisfy

pn = anpn−1 + pn−2

qn = anqn−1 + qn−2

which can also be rewritten as a0 1

1 0

 a1 1

1 0

 . . .

 an 1

1 0

 =

 pn pn−1

qn qn−1


2. The denominators are strictly increasing. That is: q1 < q2 < q3 < . . . .

3. The even-indexed convergents form an increasing sequence whereas the odd-indexed
a decreasing one such that

c0 < c2 < · · · < α < · · · < c3 < c1

4. For n ≥ 0, |α− pn
qn
| < 1

qnqn+1
.

5. The convergent cn is the best possible approximation to α among all rationals num-
bers with the same or smaller denominator, that is, for any rational a

b , with a ∈ Z,
b ∈ N such that 1 ≤ b ≤ qn, then

|α− pn
qn
| ≤ |α− a

b
|

So as we can see, this very summary shows that convergents are a very powerful tool
with which to tackle the approximation of an irrational number using rationals.

Now, in order to bridge simple continued fractions with Diophantine numbers, we set
from now on λ = e2πiω on the unit circle S1 ⊂ C, being ω an irrational with simple
continued fraction [a0; a1, , a2, . . . ] and convergents cn = pn

qn
and let us intend to study the

orbit of λ under the rotation z 7→ λz, that is {λ, λ2, . . . }, and its closeness to 1.

Definition 2.2.8. Given m ∈ N, m > 0, the point λm is said to be a closest return to 1
if and only if

|λm − 1| < |λn − 1|

for every n such that 0 < n < m.

The following result shows that closest returns are related to the simple continued
fraction of ω from which we shall lead the way to D.
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Proposition 2.2.9. The point λm is a closest return to 1 ⇐⇒ m is one of the denom-
inators of any convergent cn. Moreover if m = qn with n ≥ 2, then

2

qn+1
< |λm − 1| < 2π

qn+1
(2.2)

It can be shown that if we require ω to be Diophantine of order k is equivalent to the
requirement that for every n ∈ N, |λn − 1| > εnk−1 for some ε > 0 depending on λ -
in section 4.2 we shall see some hints to this. This combined with 2.2 are the essential
ingredients in the next proposition.

Proposition 2.2.10. Let ω be an irrational with simple continued fraction [a0; a1, , a2, . . . ]
and convergents cn = pn

qn
, then

ω ∈ D ⇐⇒ sup
n∈N

log(qn+1)

log(qn)
<∞

Now if we get a little bit ahead of the course, when we look for conjugacies near elliptic
fixed points, it will be precise to weaken the Diophantine condition and to do so in terms
of the convergents’ denominators qn turns out to be much more refined. The following
conditions are the ones we will eventually need.

Definition 2.2.11. Let ω be an irrational with simple continued fraction [a0; a1, a2, . . . ]
and convergents cn = pn

qn
, then

1. we say ω is a Brjuno number ⇐⇒
∑∞

n=0
log(qn+1)

qn
< ∞ and we denote the set of

Brjuno numbers as BR.

2. we say ω is a Pérez-Marco number ⇐⇒
∑∞

n=0
log(log(qn+1))

qn
<∞ and we denote the

set of Pérez-Marco numbers as PM .

And of course it can be checked that D ⊂ BR ⊂ PM .

2.3 Complex Analysis

It is now time to put forward some fundamental results in complex analysis for the
upcoming sections. Due to the fact that we will be mainly studying one-dimensional
holomorphic maps in a neighbourhood of a fixed point, local properties of holomorphic
maps will come in handy in different situations we will encounter.

We will denote by

- B(r, p) the open disc and B(r, p) the closed disc of radius r > 0 centered in p. If p
is the origin, we will simply omit it.

- C(Ω) the set of continuous maps and H(Ω) the set of holomorphic maps on the open
subset Ω ⊂ C.

If need be, we might consider sets of continuous or holomorphic functions on compact
sets ∆ ⊂ C, meaning that for each function f in the set there exists an open set Ω =
Ω(f) ⊂ C such that ∆ ⊂ Ω and f ∈ C(Ω) or f ∈ H(Ω) respectively. Being that set, let us
define the most natural set of functions within the framework of this study. Take r > 0,
we define

Λr ..= C(B(r)) ∩H(B(r))

7



Remark 2.3.1. The idea behind the definition of such a set is that the center of the
disc where the functions are defined corresponds to the fixed point of our dynamical
system. In section 3.3, we will show that, without loss of generality, we can assume that
the fixed point is none other than the origin, therefore the disc where the functions of
the set Λr are defined has as center the origin, but it could be also considered Λr,p =
C(B(r, p))∩H(B(r, p)) with p ∈ C. In fact, the following properties also hold for Λr,p for
all p ∈ C.

Notice that the functions in Λr are defined on a compact subset of C. This will allow
us to obtain many properties, for instance, recall that if K ⊂ C is a compact set and
f ∈ C(K), we can define the norm | · | as follows

|f | ..= sup
z∈K
|f(z)|

It is known as the uniform norm. Then, as we shall prove, the pair (Λr, | · |) is a Banach
space. Let us recall first the maximum modulus principle.

Theorem 2.3.2. (Maximum Modulus Principle) Let Ω ⊂ C be a connected open subset
and f ∈ H(Ω), then

1. if f is not constant =⇒ |f | has no local maxima.

2. if Ω is bounded and f ∈ C(∂Ω) =⇒ the maximum of |f | lies in ∂Ω.

Hence, when we consider f ∈ Λr and the uniform norm | · |, we can rewrite the norm
as |f | = sup|z|=r |f(z)|. Let us now prove the completeness of Λr as a vector space with
norm | · |.

Proposition 2.3.3. Let K ⊂ C be a compact subset, then the pair (C(K), |·|) is a Banach
Space.

Proof. It is apparent that (C(K), | · |) is a normed vector space over the field C. Thus
we shall only prove the completeness. Let (fn)n∈N be a Cauchy sequence in C(K). Then
∀ε > 0, ∃n0 ∈ N such that ∀n,m ≥ n0 and ∀z ∈ K, |fn(z)− fm(z)| < ε.

Observe that for all z ∈ K, (fn(z))n∈N ⊂ C is a Cauchy sequence and due to the
completeness of C, ∃f(z) = limn→∞ fn(z). Therefore, we choose some z ∈ K and n ∈ N
such that n ≥ n0, then limm→∞ |fn(z)− fm(z)| = |fn(z)− f(z)| < ε. Therefore ∀n ≥ n0,
|fn − f | < ε =⇒ fn ⇒ f on K. Since fn ∈ C(K) for all n, then f ∈ C(K).

2

Observe that this proposition is not enough so as to ensure the completeness of Λr.
We know that a Cauchy sequence (fn)n∈N has limit f ∈ C(B(r)), but we still do not
know whether or not f ∈ H(B(r)). The following theorem by Karl Theodor Wilhelm
Weierstrass (1815 - 1897) will prove that the holomorphy of f on the disc B(r) will be
automatically inherited from the sequence (fn)n∈N. Before proving that, we shall state a
couple of results in order to prove the theorem.

Lemma 2.3.4. Let ∅ 6= Ω ⊂ C be an open subset, then there exists a sequence of compact
subsets (Kn)n∈N ⊂ C such that

8



1. ∀n ≥ 1, Kn ⊂ Ω and Kn ⊂ int(Kn+1).

2. ∪∞n=1Kn = ∪∞n=1int(Kn) = Ω

This proposition allow us to translate the completeness of (C(K), | · |) for any compact
K ⊂ C into the completeness of C(Ω) for any Ω ⊂ C open subset with a specific metric d
we will now define.

Theorem 2.3.5. Let f, g ∈ C(Ω) where Ω ⊂ C is an open subset. If we define

d(f, g) ..=

∞∑
n=1

ρKn(f, g)

2n

where (Kn)n∈N is a sequence of compacts as in the previous proposition and ρKn = |f−g|
1+|f−g| .

Then

1. d is a distance

2. let (fn)n∈N ⊂ C(Ω) and f ∈ C(Ω),

- fn → f with metric d ⇐⇒ fn ⇒ f in Kn for all n ⇐⇒ ∀K ⊂ Ω compact
subset, fn ⇒ f in K.

- (fn)n∈N is a Cauchy sequence in (C(Ω), d) ⇐⇒ (fn)n∈N is a uniformly Cauchy
sequence in Kn for all n ⇐⇒ ∀K ⊂ Ω compact subset, (fn)n∈N is uniformly
Cauchy in K.

3. (C(Ω), d) is a complete metric space.

If both proofs are desired, refer to [3]. We are now able to state and prove the theorem
that will prove that Λr is a Banach space. In fact, this theorem will prove much more
than that.

Theorem 2.3.6. (Weierstrass Theorem) Let Ω ⊂ C be an open subset, then

1. H(Ω) is a closed subspace of C(Ω).

2. for every k ≥ 1, the map

∆ : H(Ω) −→ H(Ω)

f 7→ f (k)

is continuous.

Proof.

1. Let (fn)n∈N ⊂ H(Ω) and f ∈ C(Ω) such that fn → f in C(Ω). We aim to prove
that f ∈ H(Ω) and we already know f ∈ C(Ω), hence we will use the theorem of
Giacinto Morera (1856 - 1909). Consider ∆ ⊂ Ω a closed triangle =⇒ ∂∆ is a
compact set and due to the fact that fn → f in C(Ω), we know that fn ⇒ f in
∂∆ =⇒

∫
∂∆ fndz →

∫
∂∆ fdz.

By the homotopy version of the theorem of Augustin Louis Cauchy (1789 - 1857),
since ∂∆ v 0, then

∫
∂∆ fndz = 0 =⇒

∫
∂∆ fdz = 0 =⇒ f ∈ H(Ω).

9



2. Let (fn)n∈N ⊂ H(Ω) such that fn → f in H(Ω) and take k ≥ 1. Observe that

f
(k)
n → f (k) in H(Ω) ⇐⇒ ∀K ⊂ Ω compact subset, f

(k)
n ⇒ f in K ⇐⇒ ∀a ∈ Ω,

∃B(R, a) ⊂ Ω where f
(k)
n ⇒ f in B(R, a).

Therefore, let us consider a ∈ Ω =⇒ ∃R > 0 such that B(a,R) ⊂ Ω. We now
define r ..= R

2 . Notice that ∀z ∈ B(r, a), B(r, z) ⊂ B(R, a). If we apply Cauchy’s
inequality at z and B(r, z) ⊂ Ω, we obtain

|f (k)
n (z)− f (k)(z)| ≤ k!

rk
sup

w∈∂B(r,z)
|fn(w)− f(w)|

As n→∞, |fn(w)− f(w)| → 0.

2

Corollary 2.3.7. For all r > 0, (Λr, | · |) is a Banach space.

Recall that due to Cauchy’s theorem, every f ∈ Λr can be expressed as

f(z) =
∞∑
n=1

fnz
n

where fn = f (n)(0)
n! ∈ C and that ∀n ∈ N,

f (n)(0) =
n!

2πi

∫
|w|=r

f(w)

wn+1
dw

In fact, since power series are going to play an important role, let us shortly state some
of its most important properties.

Theorem 2.3.8. Consider
∑∞

n=0 cn(z − a)n where cn, a ∈ C. We define the radius of
convergence as

R ..=
1

lim sup
n→∞

n
√
|cn|

Then,

1. the series converges absolutely if |z − a| < R and diverges if |z − a| > R.

2. the series converges in C(B(R, a)).

3. the function f(z) =
∑∞

n=0 cn(z − a)n defined on B(R, a) is holomorphic.

4. the series
∑∞

n=1 ncn(z − a)n−1 has the same radius of convergence.

When it comes to the norm, we have the following result for power series.

Lemma 2.3.9. Let (fn)n∈N ⊂ C be a sequence such that |fn| < εr−n for every n where
r > 0 is fixed. Then the map f(z) =

∑∞
n=0 fnz

n is holomorphic on B(r) and |f | ≤ εr
ρ on

B(r − ρ) for all r > ρ > 0.

10



Proof. Let us first compute the radius of convergence. Since

lim sup
n→∞

n
√
|fn| ≤ lim sup

n→∞
ε

1
n r−1 = r−1

then we have that R ≥ r. As for the norm

|f | ≤ ε
∞∑
n=0

r−n(r − ρ)n = ε
∞∑
n=0

(1− ρ

r
)n =

εr

ρ

2

These lasts results lead as well to the following lemma that will also allow us to obtain
useful estimates for the maps we deal with.

Lemma 2.3.10. Let f(z) =
∑∞

n=1 fnz
n ∈ Λr such that |f | < ε· Then ∀n ∈ N, |fn| <

εr−n.

Proof. Recall that fn = f (n)(0)
n! , then

|fn| = |
1

2πi

∫
|w|=r

f(w)

wn+1
dw| ≤ 1

2πrn+1

∫
|w|=r

|f(w)|dw <
ε

rn

2

Thus far, the aforementioned results, which happened to be rather easy consequences
of elementary complex analysis, have provided us with pretty much all the properties
needed with regard to Λr. However, there are still two basic results that we ought to
state before moving forward. It will be sometimes useful to consider the inverse of our
map f , hence let us recall the complex version of the inverse function theorem.

Theorem 2.3.11. (Inverse Function Theorem) Let f ∈ H(Ω) where Ω ⊂ C is a domain.
Suppose there exists z0 ∈ Ω such that f ′(z0) 6= 0. Then ∃ r > 0 such that B(r, z0) ⊂ Ω
where f is one-to-one on, the image U = f(B(r, z0)) is open and the inverse function

f−1 : U → B(r, z0)

is analytic and satisfies
1 = f

′
(z)(f−1)

′
(f(z))

for all z ∈ U .

A complex version of the mean value theorem will also be needed when obtaining
different types of estimates. Let us state it.

Theorem 2.3.12. (Mean Value Theorem) Let f ∈ H(Ω) where Ω ⊂ C is an open convex
set, then for every pair a, b ∈ Ω, there exists c ∈ L(a, b) ⊂ Ω - where L(a, b) denotes the
segment between a and b - such that |f(a)− f(b)| = |f ′(c)||a− b|.

In particular, when it comes to f ∈ Λr we can bound the distance between the image
of two points by the radius r and the norm of f

′
. Proofs to both theorems can be found

at [2].
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2.4 Functional Analysis

In the last section we prove that the space Λr alongside the uniform norm | · | is a Banach
space that turns out to be an important space in the study of one-dimensional holomorphic
map’s fixed points. And as it could be expected, this Banach structure is to be related
with some concepts in functional analysis.

As an outline, the first steps of Siegel’s theorem proof will require to define and even
compute some derivatives of an operator, thus revising some concepts with regard to
Maurice René Fréchet (1878 - 1973) differential calculus - the generalization of derivative
he provided in 1925 - is quite convenient.

Throughout this section, we shall consider the Banach spaces (E, | · |E) and (F, | · |F ),
both linear spaces over the field C, a non-empty open subset A ⊂ E and the map f : A ⊂
E −→ F , which we refer to it as an operator. Let us start off by recalling some basic
definitions.

Definition 2.4.1. A map L : E −→ F is a linear transformation ⇐⇒ L(αx + βy) =
αL(x) + βL(y) for all x, y ∈ E and all α, β ∈ C.

Even if E or F were just normed and not Banach spaces, there exists a characterization
for a linear transformation’s continuity that is quite simple.

Proposition 2.4.2. Let L : E −→ F be a linear transformation, the following are equiv-
alent:

1. L is continuous at the origin.

2. L is bounded on {x ∈ E ; |x|E < 1}.

3. ∃M > 0 such that |L(x)|F ≤ |x|E for all x ∈ E.

4. L is continuous in every point of E.

As a consequence of this, if L : E −→ F is a continuous linear transformation, one can
define a norm for the transformation as

|L| ..= inf{M > 0 ; |T (x)|F ≤M |x|E , ∀x ∈ E} = sup{|T (x)|F ; |x|E ≤ 1, ∀x ∈ E}

In fact, if we let L(E,F ) be the set of linear transformations from E to F that are
continuous, we have the following theorem when E and F are Banach spaces.

Theorem 2.4.3. If (E, | · |E) and (F, | · |F ) are Banach spaces, then (L(E,F ), | · |) is also
a Banach space.

The reason behind introducing linear transformations is that the most natural way,
as Fréchet did, of generalizing the concept of derivative in a Banach space is by simply
translating the usual definition in differential calculus into Banach spaces, thus the need
of a linear transformation within this context. It therefore follows the next definition.

Definition 2.4.4. The operator f is differentiable at a point a ∈ A ⇐⇒ there exists a
linear transformation L : E −→ F satisfying that ∀ε > 0, ∃δ > 0 such that for all x ∈ A
with |x − a|E < δ, |f(x) − f(a) − L(x − a)|F ≤ ε|x − a|E . The operator f is said to be
differentiable on A if and only if it is differentiable at each point of A.

12



So we have defined the concept of being differentiable in a Banach space, but we still
have to figure out precisely what is the derivative of f at a point a ∈ A as well as what
the derivative of f on A. The sensible step now is to check whether or not the well-known
results of differential calculus hold in this case.

Proposition 2.4.5. If f is differentiable at a point a ∈ A, then the linear transformation
is unique.

Proof. Let ε > 0 and suppose there exists two linear transformations L1 and L2 such
that

|f(x)− f(a)− L1(x− a)|F ≤ ε|x− a|E
for all x ∈ E with |x− a| < δ1 and

|f(x)− f(a)− L2(x− a)|F ≤ ε|x− a|E

for all x ∈ E with |x− a| < δ2.

Let now δ = min{δ1, δ2}, then for all x ∈ A with |x− a|E < δ

|(L1 − L2)(x− a)|F = |L1(x− a)− L2(x− a)|F
≤ |L1(x− a)− f(x) + f(a)|F + |f(x)− f(a)− L2(x− a)|F
≤ 2ε|x− a|E

Consider y ∈ E, y 6= 0 and observe that δ > δ
2 = | δy

2|y|E |E = |( δy
2|y|E +a)−a|E , therefore

|(L1 − L2)(
δy

2|y|E
)|F ≤ 2ε| δy

2|y|E
|E = δε

which yields |(L1 − L2)(y)|F ≤ 2ε|y|E for all y ∈ E since the inequality is also true for
y = 0. Due to 2.4.2, L1 − L2 ∈ L(E,F ) and |L1 − Ls| ≤ 2ε.

Since ε > 0 is arbitrary, we conclude |L1 − L2| = 0 =⇒ L1 = L2.

2

It is now apparent that the uniqueness of the linear transformation is what allow us
to define the derivative of f at the point a ∈ A, pretty much as in the usual differential
calculus.

Definition 2.4.6. Let f be differentiable at a point a ∈ A, then the unique linear
transformation L is called the Fréchet derivative and it is usually denoted as f

′
(a).

In order to attain the idea of an operator’s derivative on an open subset, the following
theorem provides a characterization of the derivative at a point in terms of the continuity
of the operator at the same point that will lead to the desired definition.

Theorem 2.4.7. Let f be differentiable at a point a ∈ A, then f
′
(a) ∈ L(E,F ) ⇐⇒ f

is continuous at a.

We are now set to give the definition of derivative.

13



Definition 2.4.8. Let f be differentiable and continuous on A. It is said to be continu-
ously differentiable on A ⇐⇒ the mapping

A −→ L(E,F )

a 7→ f
′
(a)

is continuous. Such mapping is denoted by f
′

and is called the derivative of f on A.

It is to be expected that this definition matches well with the usual definition when
taking E and F as the usual Rn or Cn spaces. Indeed it does, however some proofs are
required since the results are not that apparent at first and hence we recommend [4] for
a detailed explanation. Let us now set out the elementary rules of differentiation.

Let α ∈ C and h : E −→ F . We define for all x ∈ E

(f + h)(x) ..= f(x) + h(x)

and
(αf)(x) ..= αf(x)

The following proposition claims the result we are expecting.

Proposition 2.4.9. If f and h are differentiable at a point a ∈ A, then so is f + h and
αf . What is more, it is satisfied that

(f + h)
′
(a) = f

′
(a) + h

′
(a)

and
(αf)

′
(a) = αf

′
(a)

If we instead take h : F −→ G where (G, |·|G) is a Banach space so that the composition
h ◦ f makes sense, the next result gives us the version of the chain rule of the classical
differential calculus.

Proposition 2.4.10. Let B ⊂ F be an open subset. If f is continuous and differentiable
at a ∈ A and h is continuous and differentiable at b ∈ B where b = f(a), then h ◦ f is
continuous and differentiable at a and

(h ◦ f)
′
(a) = h

′
(b)f

′
(a)

Thus far, this sums up the most elementary results of differential operators, never-
theless there is still one concept that we ought to bring up in regard to the operator we
deal with later on: partial derivatives. The aforementioned definition of derivative can be
broadened for operators with more than one variable. Here we shall focus on operators
with two variables since it is the case that concerns us. To this purpose, let us assume
from now one that (E1, | · |E1) and (E2, | · |E2) are Banach spaces.

Proposition 2.4.11. The pair (E1 × E2, | · |E1×E2) where

E1 × E2
..= {(a, b) ; a ∈ E1, b ∈ E2}

| · |E1×E2 : E1 × E2 −→ R+

(a, b) 7→ max{|a|E1 , |b|E2}
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is a Banach space with respect to the operations

(a, b) + (c, d) ..= (a+ c, b+ d)

α(a, b) ..= (αa, αb)

for all α ∈ C and all (a, b), (c, d) ∈ E1 × E2.

Remark 2.4.12. There are other norms with which we can give E1 × E2 the structure
of Banach space. For instance

| · |E1×E2 : E1 × E2 −→ R+

(a, b) 7→ |a|E1 + |b|E2

or more generally

| · |E1×E2 : E1 × E2 −→ R+

(a, b) 7→ p

√
|a|pE1

+ |b|pE2

where 1 ≤ p <∞.

So let us now consider A ⊂ E1 × E2 a non-empty open subset and the operator

f : A ⊂ E1 × E2 −→ F

and see how we can adapt the previous definition of differentiability to each of the variables
of f . To this end, for a point (a1, a2) ∈ A, we define the following auxiliary mappings

h1 : A1 −→ F

a 7→ h1(a) ..= f(a, a2)

h2 : A2 −→ F

a 7→ h2(a) ..= f(a1, a)

where
A1

..= {a ∈ E1 ; (a, a2) ∈ A}

A2
..= {a ∈ E2 ; (a1, a) ∈ A}

for which the definition of being differentiable at the points a1 and a2 respectively is
applicable. Hence the next definition.

Definition 2.4.13. The operator f is differentiable with respect to the first variable at a
point (a1, a2) ∈ A if and only if g1 is differentiable at a1 and we write f

′
1(a1, a2) = g

′
(a1),

which is called the partial derivative of f with respect to the first variable at the point
(a1, a2). The operator is said to be differentiable with respect to the first variable on A
if and only if it is differentiable with respect to the first variable at each point of A. It is
analogous for the second variable.

15



Observe that f
′
1(a1, a2) is the unique linear transformation of E1 into F that satisfies

the condition of differentiability for the mapping g1. What is more, the mapping a 7→
(a, a2) is a continuous function, therefore if f is continuous on A, so is g1 on A1 and
f

′
1(a1, a2) ∈ L(E1, F ) ⇐⇒ g1 is continuous at a1 ∈ A1. Once more, it is completely

analogous for the second variable.

It is important to notice that, since (E1×E2, | · |E1×E2) has the structure of a normed
linear space, the differentiability of f at a point a ∈ A is studied as the aforementioned
definition, however the way it is linked with the partial derivatives is yet unknown. The
following theorem shows that partial derivatives and their continuity are necessary con-
ditions for differentiability and continuous differentiability respectively.

Theorem 2.4.14. Let f be differentiable at a point a = (a1, a2) ∈ A, then f is differen-
tiable with respect to both variables at (a1, a2) and ∀(x1, x2) ∈ E1 × E2

f
′
(a1, a2)(x1, x2) = f

′
1(a1, a2)(x1) + f

′
2(a1, a2)(x2)

Moreover, if f is continuously differentiable on A, then the mappings

f
′
1 : A −→ L(E1, F )

(x1, x2) 7→ f
′
1(x1, x2)

f
′
2 : A −→ L(E2, F )

(x1, x2) 7→ f
′
2(x1, x2)

are continuous on A.

As for the converse, the continuity of f is needed.

Theorem 2.4.15. Let f be continuous on A and suppose it is differentiable with respect
to both variables on A. If f

′
1 and f

′
2 are continuous mappings of A into L(E1, F )and

L(E2, F ) respectively, then f is continuously differentiable on A.

All the proofs of the theorems that have been simply stated can be found at [4].
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3 Dynamics of one-dimensional holomorphic maps

The main theme concerning this dissertation is a theorem that embodies many features
purely about the dynamics of one-dimensional holomorphic maps. Due to the nature of its
context, an introduction to its history and to the most basic notions of discrete dynamics
is rather adequate.

We shall consider throughout this section an open subset Ω ⊂ C and f : Ω 7→ Ω a
holomorphic function for which we will intend to study its dynamics. So as to tackle that,
we begin with the study of the orbits, in particular the local behaviour near the map’s
fixed points. Afterwards, we will focus on the existence of a change of coordinates in a
fixed point’s neighbourhood, a problem that still is a subject of nowadays.

Recall that given a point p ∈ Ω, we define O(p) ..= {p, f(p), f2(p), . . . } as the orbit of
this point. We say that

1. a point p ∈ Ω is a fixed point ⇐⇒ f(p) = p, that is, O(p) = {p}.

2. a point p ∈ Ω is a periodic point of period n ⇐⇒ fn(p) = p, that is, O(p) =
{p, f(p), . . . , fn−1(p)}. The least positive n for which this happens is called the
prime period of p.

3. a point p ∈ Ω is eventually periodic of period n if p is not periodic but there exists
m > 0 such that f l+n(p) = f l(p) for all l ≥ m.

The general understanding of the orbits of all points in Ω is essential to comprehend
to some extent the behaviour of f . It is difficult to study them all, but it turns out that
the presence of fixed points in the dynamic are likely to have a strong influence over some
of the surrounding points. That is why the study of fixed points is particularly relevant.

What is more, since we are only requiring f to be holomorphic, all the results we
obtain within the next propositions and theorems for fixed points can also be applied to
periodic - and even eventually periodic - points of period n > 1 taking fn instead of f ,
for which the periodic points are merely fixed points and its holomorphy is inherited.

In the upcoming subsections we will discuss the notions of stability of fixed points and
provide a very easy characterization. We will then study some elementary examples and
dig into the field of conjugacies so as to obtain a rather general method of study.

3.1 Stability of fixed points

We consider again the map f and we assume that ∃ p ∈ Ω such that f(p) = p.

Definition 3.1.1. We say that a point z ∈ Ω is forward asymptotic to p ⇐⇒ limn→∞ f
n(z) =

p. We denote by W s(p) the set consisting of all points in Ω forward asymptotic to p. We
call it the stable set of p.

The previous definition is also applied for periodic points of period m by substituting
fn for fmn in the above limit. Also, if f−1 exists, we may also consider points backward
asymptotic to p by letting n → −∞. In this case, it is defined W u(p) as the unstable
set of p. It can even be considered this definition for points p that are not periodic by
requiring that |fn(z) − fn(p)| → 0 as n → ∞. However, when it comes to fixed points,

17



ensuring that the stable or unstable set is not empty is mostly feasible. That is the reason
behind this definition and also what motivates the following one.

Definition 3.1.2. We say that p is a sink if and only if there exists ε > 0 such that
B(ε, p) ⊂ W s(p). Sometimes the set B(ε, p) is referred to it as the local stable set,
denoted by W s

loc(p). If W s(p) = C, then p is called a global sink. On the other hand, we
say that p is a source if and only if there exists ε > 0 such that for every z ∈ B(ε, p),
z 6= p, there exists n > 0 such that fn(z) /∈ B(ε, p). This neighbourhood is often called
the local unstable set and is denoted by W u

loc(p). This time, if W u(p) = C− {p}, then p
is called a global source.

It is important to notice that, even though the definition is local, if it is a common
thing for a fixed point to be either a sink or a source, then its influence in the dynamics
is undeniable. The following proposition proves so. But first, we need another definition.

Definition 3.1.3. The derivative at the the fixed point f ′(p) is called the multiplier of
p. If its modulus is different to one, we say that p is a hyperbolic fixed point. Otherwise
we write f ′(p) as e2πiω and if ω ∈ Q, we say it is parabolic and if not, we say it is elliptic.

Proposition 3.1.4. If p is a hyperbolic fixed point and

1. |f ′(p)| < 1, then p is a sink.

2. |f ′(p)| > 1, then p is a source.

Proof.

1. Let us rewrite the condition |f ′
(p)| < 1 as |f ′

(p)| < ρ < 1, then by the mean value
theorem on some neighbourhood B(ε, p), |f(z) − f(p)| < ρ|z − p|. From the last
inequality we have |f(z) − p| < |z − p| since ρ < 1, therefore it can be inductively
proved on n that |fn(z)− p| < ρn|z − p|. Consequently the iterates of fn converge
uniformly to p on B(ε, p).

2. It suffices to consider f−1, which exists as a consequence of the inverse function
theorem on some neighbourhood of p, and apply the first case since |(f−1)

′
(p)| =

1
|f ′ (p)| < 1.

2

Remark 3.1.5. Suppose p is a periodic point of period n and let us rewrite O(p) =
{p, f(p), . . . , fn−1(p)} = {p, p1, . . . .pn−1}. If we now consider fn, it is important to ob-
serve that its multiplier at z = p

(fn)′(p) = f
′
(fn−1(p))f

′
(fn−2(p)) . . . f

′
(p) = f

′
(pn−1)f

′
(pn−2) . . . f

′
(p)

is the same as the multiplier at every other point in the orbit. Therefore, this allow us
to translate the idea of sink and source into periodic points, thus obtaining a result for
every type of periodic point of the map f .
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3.2 Linear and power maps

Now let us analyze a couple of one-dimensional holomorphic maps that set out the most
common behaviours within complex dynamical systems. The general understanding of
these maps is going to be key later on to understand other dynamical systems and that
is the reason why we ought to examine them carefully. On a side note, throughout this
section we shall use the polar form for complex number due to its suitability for this case.

- Linear maps

Consider λ, β ∈ C, λ 6= 0, the maps we are dealing with are of the form

z 7→ λz + β

However, unless λ = 1, we can assume without loss of generality that β = 0 and we shall
explain in the next section why. If λ = 1, the map z 7→ z + β is merely a translation on
the real axis direction, so let us suppose from now on that λ 6= 1 and β = 0.

It is apparent that if we use the polar forms z = re2πiθ and λ = λ0e
2πiα, the mapping

re2πiθ 7→ (λ0r)e
2πi(θ+α)

is a combination of a rotation of angle α and a homothetic transformation with ratio λ0.
And by induction, it is easy to see that

O(z) = {re2πiθ, (λ0r)e
2πi(θ+α), . . . , (λn0r)e

2πi(θ+nα), . . . }

being the origin the only fixed point unless λ = 1 and α = 0 for which the map is
Id(z) = z.

Consider now |λ| 6= 1. If λ0 < 1, the origin is a global sink because for every r ≥ 0,
λn0r → 0 when n → ∞. When λ0 > 1, then the origin is a global source since for all
r > 0, λn0r → ∞ when n → ∞. Had we considered the maps on the Riemann sphere -
named after Georg Friedrich Bernhard Riemann (1826 - 1866) -, then we could say that
∞ is also a fixed point that plays the opposite role of the origin in each case. As for α,
the relevant role it plays when |λ| 6= 1 is when it equals to 0, for which the origin is a
star stable or unstable node. When α > 0, there is a rotation within each orbit - a spiral
pattern indeed -, but no other significant change.

If λ0 = 1, the previous proposition says nothing about the origin as a sink or a source,
but it is easy to check that the orbit for z = re2πiθ stays in |z| = r =⇒ W s(0) =
∅ = W u(0) =⇒ the origin is neither a sink nor a source. When it comes to α, there
is a substantial difference when the angle is a rational or an irrational multiple of 2π. If
α = p

q ∈ Q, then all points are periodic of period q since re2πi(θ+qα) = re2πiθ. When α is
irrational, we have the following theorem due to Carl Gustav Jacob Jacobi (1804 - 1851).

Theorem 3.2.1. Consider the rotation Rα(z) = e2πiαz on |z| = 1 where α is an irrational
angle. Then all orbits are dense.

Proof. Set z0 = e2πiθ. Since α /∈ Q =⇒ ∀n 6= m, Rnα(z0) 6= Rmα (z0), otherwise there
would exist a k ∈ Z such that θ + nα = θ +mα+ k =⇒ α = k

n−m ∈ Q!

Since |z| = 1 is a compact, the sequence {Rnα(z0)}n∈N has a limit point, say Rmα (z0),
which implies that ∀ε > 0, there exists n > m such that |Rmα (z0)−Rnα(z0)| < ε. Since Rα
is an isometry, then by fixing ε > 0, there exists k > 0 such that |Rkα(z0)− z0| < ε.
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Take N ≥ 2π
ε . Then the set A = {z0, R

k
α(z0), . . . , RNkα (z0)} yields the result since

Nε ≥ 2π, which is the length of |z| = 1 and the distance between a pair of consecutive
points in A is less than ε.

2

Observe that this theorem can be applied to every circle with center in the origin in
the complex plane. This concludes the study of linear maps that, as we can see, it is quite
simple and easy to understand.

- Power maps

Consider d ∈ N, d > 1, the maps we now focus on are

z 7→ zd

Pretty much like the linear maps, by using the polar forms z = reiθ we can rewrite it as

reiθ 7→ rdeidθ

Therefore by induction, the orbits are

O(z) = {reiθ, rdeidθ, . . . , rdneidnθ, . . . }

and it is apparent that

1. If r > 1, rd
n
eid

nθ →∞ when n→∞.

2. If r = 1, ∀n ∈ N |rdneidnθ| = 1.

3. If r < 1, rd
n
eid

nθ → 0 when n→∞.

Observe that if we were considering the power map on the Riemann sphere, once again
the infinity would play the role of a fixed point being a sink in this case whose stable set
is W s(∞) = {z ∈ C ; |z| > 1}. When it comes to the origin, it is also a sink whose stable
set is W s(0) = B(1).

However, the dynamics on the unit circle remain a bit unexplained. They are ruled by
the angle dnθ, so the object of study can be translated into the study of the mapping

θ 7→ dθ (mod 2π)

which is also known as expanding map. Let us recall a result for such mappings.

Proposition 3.2.2. Let m ∈ N, m ≥ 2 and consider the surjective continuous mapping

Em : R/2πZ −→ R/2πZ
x 7→ mx

Then

1. Perp(Em) ..= {x ∈ R/2πZ ; Epm(x) = x} = { k
mp−1 ; k ∈ {0, . . . ,mp − 2}} and

#Perp(Em) = mp − 1.
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2. Per(Em) = ∪p∈NPerp(Em) = R/2πZ and |Per(Em)| = 0 where | · | is the Lebesgue
measure.

3. For each m there exists a dense orbit.

4. ∀x ∈ R/2πZ and ∀δ > 0 there exist n ∈ N and y ∈ B(δ, x) such that the distance
between x and Enm(y) with the usual distance on the circle R/2πZ is larger or equal
to 1

2 .

Remark 3.2.3. Robert Luke Devaney (1948 - still alive) introduced in 1989 in his text
Introduction to Chaotic Dynamical Systems one of the several definitions of chaotic dy-
namical system. He established three conditions for which a continuous map f : X −→ X,
where X is a metric space, would be chaotic:

1. the set Per(f) = ∪n∈NPerp(f) is dense in X.

2. f is topologically transitive.

3. f exhibits a sensitive dependence on initial conditions.

As for the second condition, we observe that it suffices in the one-dimensional case
to prove the existence of a dense orbit. When it comes to the third, the definition for
this sensitivity is exactly the same as the property 4 of the expanding maps, where the
amount d = 1

2 is previously fixed and can be varied. Therefore, in the Devaney sense, the
expanding maps are in fact chaotic maps.

So now that we know how both system behave, in the next section we shall provide
the tool with which we can apply our knowledge on these maps to a wide variety of other
dynamical systems.

3.3 Conjugacy

The conjugacy is the tool that will help us bridge two dynamical systems and allow us
to transfer the results we know for one system to the other, thus being a rather wise way
with which to address many problems.

Definition 3.3.1. Let X,Y ⊂ C be two open subsets and f : X −→ X, g : Y −→ Y two
holomorphic maps. We say that f and g are topologically conjugated if and only if there
exists a homeomorphism h : X −→ Y such that the diagram

X X

Y Y

h

f

g

h

commutates. In other words, ∀x ∈ X

h(f(x)) = g(h(x))

21



Remark 3.3.2. A conjugacy is at least bijective, therefore the equation

h(f(x)) = g(h(x)) ∀x ∈ X

can also be written in terms of the inverse h−1

f(h−1(y)) = h−1(g(y)) ∀y ∈ Y

Hence the choice between both expressions is irrelevant.

The fact that h is at least a homeomorphism between X and Y guarantees the preser-
vation of the most important topological properties from both spaces, in particular, the
convergence of sequences. This leads to the preservation of the dynamical system’s prop-
erties that the following theorem sums up.

Theorem 3.3.3. Let X,Y ⊂ C be two open subsets and f : X −→ X, g : Y −→ Y
holomorphic maps topologically conjugated by h : X −→ Y . Then,

1. for all n ∈ N, h ◦ fn = gn ◦ h.

2. p is a periodic point of f ⇐⇒ h(p) is a periodic point of g. What is more, their
prime period are the same.

3. if the stable set of a periodic point p of f is W s(p), then the stable set of the periodic
point h(p) of g is h(W s(p)).

4. the periodic points of f are dense in X ⇐⇒ the periodic points of g are dense in
Y .

Proof. Since h is a homeomorphism, then h−1 is also a homeomorphism, therefore it
suffices to prove just one of the implications and not both in every property.

1. Trivial by induction.

2. It is apparent from the previous equation h ◦ fn = gn ◦ h.

3. Suppose p is a periodic point of f of period k and z ∈ W u(p). Then for each
ε > 0, there exists n0 ∈ N such that if n ≥ n0, then |fkn(z) − p| < ε. Due to the
continuity of h, given ε > 0, there exists a δ > 0 such that if |w − p| < δ, then
|h(w) − h(p)| < ε. By taking ε = δ, there exists m0 ∈ N such that for n ≥ m0,
|h(fkn(z))− h(p)| = |gkn(h(z))− h(p)| < ε.

4. The fact that h is a homeomorphism that maps fixed points to fixed points yields
the result.

2

Remark 3.3.4. Observe that if there exists a dense orbit in X and f is topologically
conjugates to g, then there would also exist a dense orbit in g since the homeomorphism
maps orbits to orbits and the density is preserved. Therefore, for the one-dimensional
case the topological transitivity is also preserved by conjugacy. What is more, in 1992,
a proposition appeared in the issue of American Mathematical monthly that claimed for
one-dimensional continuous maps f : X −→ X that as long as X is infinite, then the
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sensitive dependence on initial conditions is a redundant property if the set of periodic
points of f are dense and f is topologically transitive whereas if X is finite, then it consists
only of the orbit of a single periodic point. Therefore, in this case we also have chaos’
preservation by conjugacy. For further details, refer to [5].

So qualitatively speaking, if a conjugation exists between two dynamical systems, then
they behave the same way. In fact, recall that in the previous section we supposed without
loss of generality that β = 0 in the linear map if λ 6= 1. The reason to this is that

h(z) = z +
β

λ− 1

is a homeomorphism that conjugates the linear map to its linear part in the whole plane,
therefore it only sufficed to study linear maps of the form z 7→ λz with λ 6= 0, 1. On a side
note, notice that the conjugacy h is defined on C, which is not a common case since most
of the times the conjugacy is locally defined and thus all the aforementioned results only
hold in the domain of the conjugacy. What is more, h also happens to be more than just
a homeomorphism, it is a holomorphic bijection and that in fact carries along a stronger
bond between maps. Let us recall the following theorem:

Theorem 3.3.5. Let Ω ⊂ C be an open subset and h : Ω −→ h(Ω) a bijective holomorphic
map. Then

1. h
′
(z) has no zeros in Ω.

2. h−1 : h(Ω) −→ Ω is holomorphic on h(Ω) and (h−1)
′
(h(z)) = 1

h′ (z)
for all z ∈ Ω.

In particular, h is a conformal map, that is, it locally preserves angles.

As we can see, conjugacies that happen to be holomorphic are much more interesting
than just the topological ones, that is why we have the following definition.

Definition 3.3.6. Let h : X −→ Y be a topological conjugacy between maps f : X −→
X, g : Y −→ Y where X,Y ⊂ C are two open subsets. If h ∈ H(X), then we say
the conjugacy is holomorphic or conformal or that there exists a change of coordinates
between both maps.

Being that set, it is now time to set forth the central ideas in order to assemble a
powerful tool to study in greater depth the nature of a one-dimensional analytic complex
map’s fixed points. The course with which to tackle our goal will mainly rely on establish
conditions under which we can guarantee the existence of a conjugacy in a fixed point’s
neighbourhood to, preferably, one of the maps studied in section 3.2. Thus we can locally
obtain a great deal of information with regard to the map’s dynamic behaviour. That
is the reason why conjugacies, holomorphic in particular, to linear maps are our main
concern.

Let us start with an important remark to bear in mind.

Remark 3.3.7. Let Ω ⊆ C be an open subset and f : Ω → C a holomorphic map with
a fixed point p ∈ Ω. We can assume without loss of generality that Ω is a neighbourhood
of the origin and p = 0. This assumption is due to the commutativity of the diagram:
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Ω C

h(Ω) C

h

f

f̃

h

where h(z) = z−p and f̃(z) = f(z+p)−p are holomorphic maps. That is, we can always
consider the conjugacy given by h and then study the translated map f̃ .

As a consequence of that and due to the fact that holomorphic maps are analytic,
given a holomorphic map f with a fixed point, we will assume from now on that

f(z) =
∞∑
n=1

fnz
n (3.1)

where fn∈C ∀n∈N in a certain neighbourhood of the origin. Notice that the term f1 is
in fact the multiplier of z = 0, which may provide us with some information in terms of
stability as seen in section 3.1. Because of its relevance, we shall refer to it as λ and later
on we will have to distinguish two cases according to its module.

Back to the conjugacy discussion, it was Ernst Schröder (1841 - 1902) who introduced
in 1871 the idea of conformal conjugation when studying the iteration of rational complex
functions and finding effective methods for computing iterates. It arose consequently the
problem of finding out whether or not there existed a ρ > 0 and a change of coordinates
h for a given holomorphic map f with a fixed point such that for |w| < ρ the equation of
conjugacy

f(h(w)) = h(λw) (3.2)

was satisfied. This equation and some of its variants are often named after him. For this
reason, it is convenient to give the following definition.

Definition 3.3.8. We say that a holomorphic map f with a fixed point is linearizable at
the origin if and only if Schröder’s equation has a solution h.

Finding out whether or not a map is linearizable at the origin will mainly rely on the
nature of its multiplier as we shall see. The first results for Shcröder’s equation came at
the end of the 19th century for the hyperbolic cases, then followed by some results in the
parabolic case at early 20th century and eventually the elliptic case some years later.

3.3.1 Hyperbolic case

When |λ| 6= 1, the origin is either a sink or a source, so its stability as a fixed point
is known. The fact that there are some fixed traits about the origin might not suggest
much at first, but in most cases seems to come across as something compatible with the
existence of a solution to Schröder’s equation. In this subsection, we gather the most
basic results about local conjugacies in a neighbourhood of a hyperbolic fixed point that
roughly speaking ensure us for almost all cases a solution.

In 1884, it was proved by Gabriel Koenigs (1858 - 1931) that if z = 0 is not a critical
point of f , then the map is locally conjugated to its linear part. In other words, he showed
that f is linearizable.
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Theorem 3.3.9. (Koenigs, 1884) Let f(z) = λz+
∑∞

n=2 fnz
n be a holomorphic map in a

neighbourhood Ω of the origin such that |λ| 6= 0, 1. Then there exists ρ > 0 and a change
of coordinates z = h(w), such that h(0) = 0 and

f(h(w)) = h(g(w))

where g is the linear map w 7→ λw and |w| < ρ. Moreover, h is unique up to multiplication
by a nonzero constant.

Therefore, the theorem claims that for a wide range of λ values, the linearization is
indeed possible. What is more, it provides a solution to the equation, which happens to
be unique up to multiplication by a nonzero constant. In the light of this theorem, it may
seem that pretty much all work is covered, but we shall see that the remaining cases are
going to raise some interesting questions in regard to the dynamics.

In section 4, the proof of Siegel’s theorem is also valid to prove the existence of this
very conjugacy, but we are still going to give an easier and shorter proof for Koenigs’
theorem.

Proof. Existence. Let us assume that 0 < |λ| < 1. We choose a 0 < δ < 1 such that
δ2 < |λ| < δ and write f(z) = λz + z2r(z). We can find ε > 0 such that |λ| + Mε < δ

where M = maxz∈B(ε) |r(z)| - observe that M < δ−|λ|
ε , therefore by taking ε > 0 small

enough, this condition is satisfied. It follows then that on B(ε)

1. |f(z)− λz| = |z2r(z)| ≤ |z|2M

2. |f(z)| ≤ |z|(|λ|+ |r(z)|) < |z|δ ≤ εδ =⇒ |fn(z)| < |z|δn for all n ∈ N.

We now define the sequence {hn}n∈N as hn = fn

λk
∈ Λε and we have on B(ε)

|hn+1(z)− hn| =
1

|λ|n+1
|f(fn(z)− λfn(z)| ≤ M

|λ|n+1
|fn(z)|2

≤ M

|λ|
(
δ2

|λ|
)n|z|2 ≤ Mε2

|λ|
(
δ2

|λ|
)n

Since δ2

|λ| < 1, then the series
∑∞

n=0( δ
2

|λ|)
n converges =⇒

∑∞
n=1(hn+1 − hn) converges

absolutely and uniformly to h(z) − h1(z) in Λr. Observe now that ∀n ∈ N, h
′
n(0) = 1,

therefore h
′
(0) = 1. If needed, we can shrink ε so as to obtain that h(z) is a change of

coordinates. And finally,

h(f(z)) = lim
n→∞

fn(f(z))

λn
= λ lim

n→∞

fn+1

λn+1
= λh(z) = g(h(z))

If |λ| > 1, it suffices to apply the same argument to f−1.

Uniqueness. Let h and t be two change of coordinates such that satisfy equation 3.2.
Then for |w| < ρ, we have that t◦g◦t−1 = f = h◦g◦h−1, which implies the commutativity
between maps g and Υ ..= t−1 ◦h. Notice that we may write Υ(w) =

∑∞
n=1 υnw

n because
it is an holomorphic map and, therefore, we can compare coefficients of the resulting
power series from the commutativity. We obtain:

Υ(g(w)) =

∞∑
n=1

υnλ
nwn =

∞∑
n=1

υnλw
n = g(Υ(w))
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So for all n ≥ 1, υnλ
n = υnλ. Since λ is neither a roof of unity nor zero, for all n ≥ 2,

υn = 0. This yields
υ1w = Υ(w) = t−1(h(w))

2

Of course the same result cannot be expected when z = 0 is a critical point. In fact,
not even a conjugacy to a linear map is to be established. In 1904, Lucjan Böttcher (1872
- 1937) stated a result for this case.

Theorem 3.3.10. (Böttcher, 1904) Let f(z) =
∑∞

n=k fnz
n be a holomorphic map in a

neighbourhood Ω of the origin such that k ≥ 2 and fk 6= 0. Then there exists ρ > 0 and a
change of coordinates z = h(w), such that h(0) = 0 and

f(h(w)) = h(g(w))

where g is the k-th power map w 7→ wk and |w| < ρ. Moreover, h is unique up to
multiplication by an (k − 1)− th root of unity.

Hence, the dynamic near a critical point is much richer than the other hyperbolic
cases, but still feasible enough to study in depth despite not being linearizable. If a proof
is desired, refer to [9].

So when it comes to |λ| 6= 1, we may conclude that the dynamics near a fixed point of
a holomorphic map turn out to be quite elementary. But on the obverse side of the coin,
the remaining case will prove to be quite difficult to deal with, thus being the reason why
the first results came some years afterwards.

3.3.2 Parabolic and elliptic case

When it comes to |λ| = 1, it is convenient to think of λ in the unit circle S1 ⊂ C, thus
referring to it as e2πiω with ω ∈ R. As we shall see, the discussion will mainly focus on
the nature of ω rather than λ itself due to the effect it has on the dynamics’s behaviour
as it was apparent, for instance, in the linear maps studied in section 3.2. This tightly
relates to the difference in nomenclature for this case, however, other terms are broadly
used and we shall introduce them as well.

Definition 3.3.11. If ω is a rational number, we say that the fixed parabolic point is
rationally indifferent. We say it is irrationally indifferent otherwise.

It was in the studies of Léopold Leau (1868 - 1943) and Pierre Joseph Louis Fatou
(1878 - 1929) in 1897 - 1919/1920 respectively that some light was shed for the parabolic
case λ = 1. In fact, this led to the conclusion that f is not linearizable if the origin
happens to be a rationally indifferent fixed point, thus providing a dense subset in S1 for
which Schröder’s equation has no solution - needless to say the identity map is not taken
into account. However, the two french mathematicians went up a notch and, in fact, they
were able to describe the dynamic for these cases in a rather visual way.

So as to get there, let us consider first the case λ = 1 and write

f(z) = z + fk+1z
k+1 + . . .
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where fk+1 6= 0 and the integer k + 1 ≥ 2 is called the multiplicity of the fixed point.
Since f ′(0) = 1 and the origin is a fixed point, we can consider a neighbourhood of the
origin N such that it is mapped diffeomorphically onto some other neighbourhood of the
origin M . It turns out that both french mathematicians noticed that in N ∩M there exist
some special subsets for which the dynamic is quite mesmerizing. That is the reason of
the following definition.

Definition 3.3.12. A connected open subset U such that U ⊂ N ∩ M is an attracting
petal for f at the origin if and only if

1. f(U) ⊂ U ∪ {0}

2. ∩n≥0f
n(U) = {0}

If U satisfies the same conditions but with f−1 instead, then U is a repelling petal for f
at the origin.

We are now set to state the theorem that describes in detail the behaviour of the map
f in relation with the attracting an repelling petals.

Theorem 3.3.13. (Leau-Fatou Flower) Let f(z) = z +
∑∞

n=k+1 fnz
n be a holomorphic

map in a neighbourhood Ω of the origin where k + 1 ≥ 2 is the multiplicity of the origin.
Then there exist k disjoint attracting petals {Ui}ki=1 and k disjoint repelling petals {Vi}ki=1

such that

1. If we define U = ∪ki=1Ui and V = ∪ki=1Vi, then F ..= U ∪V ∪{0} is a neighbourhood
of the origin.

2. The petals alternate with each other, that is, Ui only intersects with Vi−1 and Vi,
where we identify V0 as Vk.

So as we can see, the origin is surrounded by overlapped domains - hence the flower
name - that alternate utterly different behaviours for orbits starting out in each of them.
As for the attracting petals, the orbit will never escape the petal and eventually will tend
to zero and when it comes to the repelling ones, the orbit will leave the petal at some
point although it might come back. Therefore, it is apparent that no periodic orbits other
than the fixed point exist in the flower F . What is more, Schröder’s equation definitely
has no solution for such case. The question now is whether or not this applies to other
rationally indifferent origins.

To that purpose, let us consider f(z) = λz +
∑∞

n=k+1 fnz
n holomorphic in a neigh-

bourhood Ω of the origin with λ a primitive n − th root of unity. Then, there exists a
collection of petals for fn. As a consequence, it can be shown that f has also a collection
of petals that in number ought to be a multiple of the number of petals for fn, that is,
the multiplicity m+ 1 of the origin in fn satisfies that m+ 1 ≡ 1 (mod n). Therefore, for
every irrationally indifferent origin, the Schröder’s equation has no solution. For further
results, refer to [9] and [10].

Nevertheless, we can still wonder if, in general, a conjugacy is to be found for this
cases. It was not until 1978, that Leopoldo Camacho (1943 - still alive) proved that for
λ = 1, f is topologically conjugated to the map

g(z) = z − zk+1
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where k + 1 is the multiplicity of the origin. In fact, this result can be refined up to a
holomorphic conjugacy by adding a term of the form βz2k+1 to the map g, where β is a
holomorphic invariant. Once again, refer to [10] for more information.

So it seems there is only one small left case to address: the elliptic fixed points.
The history behind the other cases legitimates the believe this one would have a rather
accessible outcome, but it turned out to be thus far the toughest of them all, yet the most
well-rounded. In 1912, Edward Kasner (1878 - 1955) conjectured that every holomorphic
map near an irrationally indifferent fixed point was linearizable, but in 1917 George Adam
Pfeiffer (1889 - 1943) provided him with a counterexample that proved Kasner wrong.
Two years later, Gaston Maurice Julia (1893 - 1978) claimed that for rational functions of
degree two or more, Schröder’s equation had no solution, but then again it would happen
to be incorrect.

The first one to state a remarkable result on the matter was Hubert Cremer (1897 -
1983) in 1927. He provided a characterization of the multiplier for which any rational
function of degree two or more would not be linearizable. The most relevant aspect of his
result was that the set of multipliers in the unit circle that satisfy such condition is quite
large and although he did not prove that the result held for all multipliers, he indeed
settled a good starting point. Before getting to his result, let us first give some notions
in regard to the condition he imposed.

Definition 3.3.14. Let λ = e2πiω with ω irrational and let d ≥ 2, we say that ω satisfies
the Cremer condition of degree d if and only if

lim sup
n→∞

log(log( 1
|λn−1|))

n
> log(d)

Remark 3.3.15. This condition is often presented in terms of the multiplier, but it also
is equivalent to other expressions. If we use the simple continued fraction [a0; a1, a2, . . . ]
and convergents cn = pn

qn
for ω, then the Cremer condition of degree d is satisfied if and

only if

lim sup
n→∞

log(log(qn+1))

qn
> log(d)

The Cremer condition is in fact much more common than what might seem. It can be
shown that the set of real numbers satisfying the condition for every d is generic, which
means it contains a countable intersection of dense open subsets of R and is necessarily
dense and uncountably infinite.

Theorem 3.3.16. (Cremer, 1927) Let f(z) be a rational function of degree d ≥ 2 whose
origin is fixed and its multiplier satisfies the Cremer condition of degree d, then any
neighbourhood of the origin contains infinitely many periodic orbits.

It is apparent that if Schröder’s equation had a solution, it would not be compatible
with the infinitely many periodic orbits each neighbourhood contains, hence no local
linearization is possible. This property is often referred to is as the small cycle property
and it is advisable to bear it in mind since we will eventually come back to it. If wished,
the reader may find a proof at [9].

So back then it would seem that every elliptic fixed point was not likely to be lin-
earizable. But the question as whether this was true for all irrationals remained open for
quite some years. Eventually Carl Ludwig Siegel (1896 - 1981) set out the main ideas to
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tackle this situation and it turned out that how well the irrational ω was approximated
by rationals played an essential role in the matter. Refer to section 2.2 for more details
with regard to these approximations.

The Diophantine condition on ω, which is a translation of being badly approximated
by rationals, allowed Siegel to carry on with an iterative process that led to the construc-
tion of a change of coordinates for the map f to its linear part, thus solving Schröder’s
equation for the first time in the elliptic case. Not only that but since the set of Dio-
phantine numbers has full Lebesgue measure, his result holds for almost every multiplier
on the unit circle. Quite surprising, taking into account that Cremer provided a set of
counterexamples for a generic multiplier in the unit circle.

Let us recall first the definition of the Diophantine condition and then proceed to his
theorem.

Definition 3.3.17. An irrational number ω is called Diophantine if and ony if there
exists ε > 0 and ν > 1 such that

|qω − p| > ε

qν

∀p, q ∈ Z, q 6= 0. We then say that ω is a Diophantine number of type (ε,ν).

Remark 3.3.18. Just like Cremer’s condition, there are other expressions with which
one can rewrite the Diophantine condition on ω. Let us give, in particular, the one using
the convergent’s denominators qn of the simple continued fraction for ω. We have that ω
is Diophantine if and only if

sup
n∈N

log(qn+1)

log(qn)
<∞

Theorem 3.3.19. (Siegel, 1942) Let f(z) = λz +
∑∞

n=2 fnz
n be a holomorphic map in

a neighbourhood Ω of the origin and λ = e2πiω where ω is a Diophantine number. Then
there exists ρ > 0 and a change of coordinates z = h(w) = w +

∑∞
n=2 hnw

n such that

f(h(w)) = h(g(w))

where g is the linear map w 7→ λw and |w| < ρ.

So compared to the other cases, when the origin is an elliptic fixed point clearly two
possible situations arise for Schröder’s equation and, because of that, it is often used the
following definition.

Definition 3.3.20. Suppose the origin is an elliptic fixed point of a holomorphic map f .
If Schröder’s equation can be solved, we say that the origin is a Siegel point, whereas if f
is not linearizable, we say that the origin is a Cremer point.

Siegel’s theorem came as a major breakthrough in the study of the elliptic case and
in fact for many reasons. The condition he provided holds for every type oh holomorphic
function - even rationals of degree d ≥ 2 - and the set of multipliers for which it is
satisfied has full Lebesgue measure, which despite the contrast with the behaviour of a
generic set, in applied dynamics often comes across as a better case. He also brought a new
perspective to the argument that afterwards proved to be more suitable for addressing
the problem, that is, the approximation by rationals; having control over the orbit of
λ 7→ λ2 7→ · · · 7→ λn 7→ . . . and how close might get to 1 was key in his theorem and, as
we shall see, this line of discussion allowed others to enhance the result.
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Moreover, within his resolution of the problem, he encountered and solved many prob-
lems that would shortly after become central in the KAM theory - one of the modern ap-
proaches of study of the dynamical systems named after Andrey Nikolaevich Kolmogorov
(1903 - 1987), Jürgen Kurt Moser (1928 - 1999) and Vladimir Igorevich Arnold (1937
- 2010). He therefore began to outline the path for much more than just the study of
conformal conjugacies and because of that, in the next section, we shall focus exclusively
on proving such theorem and going through all its details and particularities.

Later on, Alexander Dmitrievich Brjuno (1940 - still alive) and Jean-Christophe Yoccoz
(1957 - 2016) proved a much sharper version of Siegel’s theorem that took the argument
up a notch. In 1965, Brjuno gave a weaker condition than the Diophantine on ω with
which he could still ensure a solution for Schröder’s equation.

Definition 3.3.21. Let [a0; a1, a2, . . . ] be the simple continued fraction of ω and cn = pn
qn

its convergents. We say that ω satisfies the Brjuno condition if and only if

∞∑
n=0

log(qn+1)

qn
<∞

In particular, if ω is a Diophantine number, it satisfies the Brjuno condition.

Theorem 3.3.22. (Brjuno, 1965) Let f(z) = λz +
∑∞

n=2 fnz
n be a holomorphic map in

a neighbourhood Ω of the origin and λ = e2πiω where ω is a Brjuno number. Then there
exists ρ > 0 and a change of coordinates z = h(w) = w +

∑∞
n=2 hnw

n such that

f(h(w)) = h(g(w))

where g is the linear map w 7→ λw and |w| < ρ.

Notice that, even though Brjuno’s case entails more than Siegel’s, it seems as if not
much more has been said on the subject. The remarkable thing about his theorem is that
Brjuno gave in fact the optimal condition on ω for f to be linearizable. This was proved
by Yoccoz in 1988 by giving, pretty much in the same line as Cremer, a set of examples
that are not linearizable. If a proof to both theorems is desired, refer to [10].

Theorem 3.3.23. (Yoccoz, 1988) Let f(z) = e2πiωz + z2 where ω is not a Brjuno num-

ber, that is,
∑∞

n=0
log(qn+1)

qn
= ∞. Then the origin has the property of small cycles and,

therefore, it is a Cremer point.

The property of small cycle appears once again in the context of non-linearizable
functions with an elliptic fixed origin. For this reason, the natural question to be posed
is whether or not this property is necessary to determine if the origin is a Cremer point.
In 1990, the answer to this was provided by Ricardo Pérez-Marco (1967 - still alive)
who introduced a weaker condition on ω and characterized the multipliers for which this
property appears.

Definition 3.3.24. Let [a0; a1, a2, . . . ] be the simple continued fraction of ω and cn = pn
qn

its convergents. We say that ω satisfies the Pérez-Marco condition if and only if

∞∑
n=0

log(log(qn+1))

qn
<∞
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In particular, if ω is a Brjuno number, it satisfies the Pérez-Marco condition.

Theorem 3.3.25. (Pérez-Marco, 1990) Let ω be an irrational number and let cn = pn
qn

be the convergents of its simple continued fraction. Suppose that

∞∑
n=0

log(qn+1)

qn
=∞

Then

1. If ω is not a Pérez-Marco number, there exists a non-linearizable map f whose
origin has a neighbourhood where it has no other periodic orbit other than itself. In
other words, there exists a map f with a Cremer origin but without the small cycles
property.

2. If ω is a Pérez-Marco number, every non-linearizable map f has the property of
small cycles.

Observe that the first result proves that a characterization of Cremer’s points in terms
of the small cycles property is not possible. The second one represents a criterion for
finding out whether or not the Schröder’s equation can be solved when ω is a Pérez-
Marco but not a Brjuno number. More results and a proof to Pérez-Marco’s theorem can
be found at [9].

Further progress has been achieved in the past years on the study of Schröder’s equation
in the elliptic case, specially alongside the line of Pérez-Marco’s discussion, but not as
fundamental as the previous theorems. Recall that even though there are still cases to be
covered, the subject remains open for just a subset of zero Lebesgue measure. Such cases
mainly include questions about rationals functions for which is unknown, for instance,
whether or not they might have a Cremer point without the small cycles property or a
Siegel point but with a multiplier not satisfying the Brjuno condition. In spite of that,
Pérez-Marco theorem gives a well-rounded closure to this section.

It remains one final observation. Throughout this section the holomorphic map f has
been considered on an open subset of the complex plane, but it could have been considered
on the Riemann sphere as well where the infinity point could have played the role of a
fixed point. For such case, there are also results in conformal conjugacy and if further
information is desired, refer to [8].
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4 Siegel’s linearization theorem

We now focus on the theorem that thus far has proved to be crucial in this study of elliptic
fixed points, as shown in section 3.3.2. Bearing in mind the notation used in section 3.3,
let us recall first what the theorem claims.

Theorem 4.0.1. (Siegel, 1942) Let f(z) = λz +
∑∞

n=2 fnz
n be a holomorphic map in a

neighbourhood Ω of the origin and λ = e2πiω where ω is a Diophantine number. Then
there exists r > 0 and a change of coordinates z = h(w) = w +

∑∞
n=2 hnw

n such that

f(h(w)) = h(g(w)) (4.1)

where g is the linear map w 7→ λw and |w| < r.

Roughly speaking, the proof of this theorem revolves around solving for h the equation
4.1, that is, Schröder’s equation. As earlier mentioned in section 3.3.1, for nonzero |λ| 6= 1,
the equation was already solved by Koenings in a rather uncomplicated manner. However
many refinements are required in the Siegel’s case due to the nature of the multiplier and,
specifically, when solving the small divisors equation. The silver lining is that this proof
can also be used for Koenigs’ case and thus providing us with a wider result. In order to
prove step by step the theorem, we shall first introduce some common elements in KAM
theory in the upcoming sections.

4.1 The KAM method

To address Schröder’s equation in a straightforward way, we will intend to reduce it to an
implicit function problem, for we will give a generalization of the Newton Method that
shall lead the way to the desired change of coordinates. This technique is also known as
the KAM method, since it is broadly applied in KAM theory due to its suitability for
many non hyperbolic problems.

The first step is to consider the two functional variable operator Γ(ϕ,ψ) ..= ψ−1 ◦ϕ◦ψ
so we can rewrite the conjugacy equation as

Γ(f, h) = g (4.2)

The second step is to linearize the operator near the solution (g, Id) as in the Newton
Method. Recall that in our case f is a fixed map close to g - we shall discuss this closeness
later on - and our goal is to find the unknown map h. Assuming a linear structure on the
neighbourhood of (g, Id), we will first seek an approximate solution h0 = Id+ σ0, hence
we write

Γ(f, h0) = g +
∂Γ(g, Id)

∂f
(f − g) +

∂Γ(g, Id)

∂h
(h0 − Id)

+O
(

(f − g)(h0 − Id), (f − g)2, (h0 − Id)2
)

and we then drop the high order terms so as to replace the linear part in equation 4.2.
We obtain:

∂Γ(g, Id)

∂h
σ0 = −∂Γ(g, Id)

∂f
µ0 (4.3)

where µ0 = f − g.
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The third step is to solve equation 4.3 for σ0, provided that is possible. Then it is all
just a matter of iterating this process and proving it actually converges. That is, we take
f1

..= Γ(f, Id + σ0), which will be closer to g than f , and we look for an approximate
solution h1 = Id+ σ1, hence we define µ1

..= f1 − g and solve the equation

∂Γ(g, Id)

∂h
σ1 = −∂Γ(g, Id)

∂f
µ1

for σ1. Therefore at step n, if we define

ηn ..= h0 ◦ h1 ◦ · · · ◦ hn−1

we will have

fn+1 = h−1
n ◦ fn ◦ hn = (Id+ σn)−1 ◦ fn ◦ (Id+ σn) = η−1

n+1 ◦ f ◦ ηn+1

and once the sequences {fn}n∈N and {ηn}n∈N are constructed, the only thing that will be
left to prove is their converge to g and h respectively. In section 4.3 we shall discuss this
procedure in more detail.

Thus far, that is the architecture of the KAM method applied to the Siegel theorem.
However, as neat as it is, there are many intrinsic difficulties within this method with
which we shall deal carefully, one of them being the iteration process itself and another
one being solving equation 4.3. But let us first start off with the linear approximation to
the operator in a neighbourhood of (g, Id). It is convenient to notice that a feature of the
operator is the group property, that is

– Γ(ϕ, Id) = Id ◦ ϕ ◦ Id = ϕ

– Γ(ϕ,ψ ◦ φ) = (ψ ◦ φ)−1 ◦ ϕ ◦ (ψ ◦ φ) = φ−1 ◦ (ψ−1 ◦ ϕ ◦ ψ) ◦ φ = Γ(Γ(ϕ,ψ), φ)

Since Γ(·, Id) = Id, the partial derivative with respect to f is simply Id. As for the
one with respect to h, we shall compute it as

∂Γ(g, Id)

∂h
σ0 = lim

t→0

1

t

(
Γ(g, Id+ tσ0)− Γ(g, Id)

)
If |t| is small enough, then by the inverse function theorem there exists (Id + tσ0)−1,

hence the previous limit is well defined. On the same note, we can discard the high order
terms in t and take Id− tσ0 as the inverse. This leads to

∂Γ(g, Id)

∂h
σ0 = lim

t→0

1

t

(
(Id− tσ0) ◦ g ◦ (Id+ tσ0)− g

)
= lim
t→0

1

t

(
g + t(g ◦ σ0)− t(σ0 ◦ g)− t2(σ0 ◦ g ◦ σ0)− g

)
= g ◦ σ0 − σ0 ◦ g

Therefore, the equation 4.3 turns into

σ0 ◦ g − g ◦ σ0 = µ0 (4.4)

which is often referred to it as small divisors equation due to the adversity they represent
when solving it. Since this equation will have to be solved in each step of the iteration, it
is remarkably important to understand the way it behaves. As we will see in the following
section, this is where the Diophantine condition on ω will play an important role.
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4.2 Small divisors equation

It is quite common in KAM theory to encounter equations such as the functional one
previously introduced, whose solutions and estimates for the solving maps are essential
in order to proceed. That is the reason we ought to take some time to carefully study
the small divisors equation 4.4, which happens to be one of the first of its kind, solved by
Siegel in 1942 and that preceded many more within the advent of KAM theory.

The resolution mainly struggles with small denominators for which the Diophantine
condition on ω provides us with some useful bounds that will guarantee the existence of
a holomorphic solving function. However, to obtain an estimate for σ0 in its domain of
holomorphy will not be possible and as a consequence the domain will need to be shrunk
a little bit to achieve so. In this sense, the loss within the search of estimates will place
a burden in the iteration process that, if it is controlled wisely, it can be overcome.

For now, let us focus merely on how to solve equation 4.4 and we shall deal with the
rest later on. If we write σ0(z) =

∑∞
n=2 σnz

n, the equation can be seen in terms of power
series as

∞∑
n=2

fnz
n = µ0 = f − g = σ0 ◦ g − g ◦ σ0 =

∞∑
n=2

(λn − λ)σnz
n (4.5)

so the coefficients for σ0 ought to be

σn =
fn

λn − λ
n ≥ 2 (4.6)

It now becomes apparent the problem raised by the multiplier. If λ = e2πiω with a
rational ω = p

q , then all coefficients with n = q, 2q, 3q, . . . cannot be defined. Whereas
if ω is instead irrational, we may assure that λn 6= 1 for all n, but since it could be
arbitrarily close to 1, it would not make much of a difference. That is why the condition
on ω of not being too well approximated by rationals is crucial to prove that the power
series expression for σ0 converges.

Proposition 4.2.1. There exists κ ∈ N such that ∀n ∈ N, n 6= 0,

|λn − 1| ≥ n−ν

κ
(4.7)

where ν + 1 is ω’s order as a Diophantine number.

Proof. Observe that for all n ∈ N,

|λn − 1| = |1− e2πinω| = 2| sin(πnω)|

Since sin(x) ≥ 2x
π if x ≤ π

2 , let us consider m ∈ N the closest integer to nω and then we
obtain

2| sin(πnω)| = 2| sin(|πnω − πm|)| ≥ 4|nω −m|

because |nω −m| ≤ 1
2 . Since ω is a Diophantine number, there exists ε > 0 and ν > 0

such that

|nω −m| ≥ ε

nν
=⇒ |λn − 1| ≥ n−ν

κ

where κ = 4−1ε−1.

2
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Remark 4.2.2. If we considered Koenigs’ case - recall section 3.3.1 -, it would be easy
to check out that the multiplier satisfies the following

|λn − 1| ≥ n−ν

κ|λ|

for some ν ∈ N and κ ∈ N. The fact that the term |λn − 1| is bounded from below yields
to the result. By fixing ν ∈ N as small as desired, we can always adjust κ to obtain the
inequality.

We are now set to study in greater detail the coefficients for σ0 map given the bound 4.7.
The following argument is going to be applied often throughout the proof of the theorem,
hence we shall state it as a proposition.

Proposition 4.2.3. Let λ be the multiplier in Siegel’s theorem - or even in Koenigs’ case
- and let Ψ(z) =

∑∞
n=0 ψnz

n be a holomorphic map on B(δ) and continuous on B(δ). We
now define

Υ(z) ..=
∞∑
n=2

υnz
n, υn ..=

ψn
λn − λ

If |Ψ| < ρ on B(δ), then

1. Υ is holomorphic on B(δ).

2. There exists ξ = ξ(ν) > 0 such that

|Υ| < ρκξχ−dνe−1

on B(δ(1− χ)), where 0 < χ < 1 and d·e denotes the ceiling function.

Proof. Due to 2.3.10, the hypothesis on Ψ allow us to bound ∀n ∈ N the coefficients
|ψn| < ρδ−n. Therefore, for n ≥ 2 we have

|υn| =
|ψn|

|λ||λn−1 − 1|
< ρδ−n(n− 1)νκ ≤ ρδ−nnνκ

and since

lim sup
n→∞

n
√
|υn| ≤ lim sup

n→∞

n
√
ρκ n
√
nν

δ
=

1

δ

the radius of convergence for the power series of Υ is

R =
1

lim sup
n→∞

n
√
|υn|
≥ δ

and we can conclude that Υ is holomorphic on B(δ).

We now aim to find a bound for Υ map. Observe that, since |Υ(z)| < ρκ
∑∞

n=2 n
νδ−n|z|n,

if we take 0 < χ < 1 and consider the map on B(δ(1− χ)), we can rewrite

|Υ(z)| < ρκ

∞∑
n=2

nν(1− χ)n ≤ ρκ
∞∑
n=1

ndνe(1− χ)n
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Let us now introduce a set of functions that were first considered in correspondence of
Gottfried Wilhelm Leibniz (1646 - 1716) with Johann Bernoulli (1667 - 1748) in 1969: the
polylogarithm functions. One of their main features is that they happen to satisfy quite
some functional equations and are closely related to many zeta functions among others,
however we are just going to use one of their properties in order to specifically find the
value of ξ.

Take s ∈ R, we define the power series

Lis(z) ..=

∞∑
n=1

zn

ns

as the polylogarithm function of order s. Notice that its radius of convergence is R = 1,
hence Lis(z) is defined for |z| < 1. For non-positive integer orders −k, it is possible to
express the series as

1

(1− z)k+1

k−1∑
n=0

A(k, n)zk−n

where A(k, n) denotes the Eulerian number

A(k, n) ..=

n+1∑
i=0

(−1)i

 k + 1

i

 (n+ 1− i)k

which is the number of permutations of the numbers {1, . . . , k} where exactly n elements
are greater than their previous element. Since these numbers satisfy that

k−1∑
n=0

A(k, n) = k!

for k ≥ 1, by taking k = dνe we obtain

|Li−dνe| = |
∞∑
n=1

znn−dνe| ≤ dνe!
|1− z|dνe+1

which yields

|Υ(z)| < ρκ
dνe!
χdνe+1

on B(δ(1− χ)).

2

It follows from this proposition that σ0(z) =
∑∞

n=2 σnz
n is indeed solution to the

small divisors equations whose holomorphy and estimates will depend on µ0 = f − g,
the closeness between the map f and its linearized part g. An estimate on σ′0 is going
to be needed as well in the iteration process, therefore we shall discuss the following for
µ′0(z) =

∑∞
n=2 nfnz

n−1.

Since µ′0 vanishes at zero, we can choose δ > 0 such that |µ′0| < ρ on B(δ) where ρ > 0
shall be specified later on. By applying on B(δ) the mean value theorem, we obtain that
|µ0| < ρδ on B(δ). Hence,
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1. The map σ0(z) is holomorphic on B(δ).

2. Let 0 < χ < 1, then on B(δ(1− χ))

|σ0| < ρδκ
dνe!
χdνe+1

As for σ′0, the holomorphy is inherited from σ0 but when it comes to the estimate, it
is required to work a little bit more. Following the same idea behind the proof, on B(δ)
we have that |zµ′0(z)| = |

∑∞
n=2 nfnz

n| < ρδ, hence |nfn| < ρδ−n+1 and on B(δ(1− χ))

|σ′0(z)| = |
∞∑
n=1

(n+ 1)fn+1

λn+1 − λ
zn| < κρ

∞∑
n=1

(1− χ)n(n+ 1)dνe

≤ ρκ dνe!
χdνe+1(1− χ)

− ρκ < ρκ
dνe!

χdνe+1(1− χ)

where it has been used that

dνe!
χdνe+1

≥ 1− χ+

∞∑
n=1

(1− χ)n+1(n+ 1)dνe

Therefore, we conclude that for 0 < χ < 1, on B(δ(1− χ)) we have

|σ0| < ρδκ
dνe!
χdνe+1

(4.8)

|σ′0| < ρκ
dνe!

χdνe+1(1− χ)
(4.9)

We are now set to begin with the iteration process. It is important to highlight that
the existence of a solution to the small divisors equation relied on the bound for |λn − 1|
and the map µ0 rather than the equation itself. Hence, in the iteration process is going
to be remarkably important to find out the domain of holomorphy of the new map fn as
well as giving some estimates to µn = fn − g. All the above is discussed in the following
section.

4.3 Iteration process

Now that we know that equation 4.4 is solved by the holomorphic map

σ0(z) =
∞∑
n=2

fn
λn − λ

zn

in B(δ), we may move forward to the first step of the iteration process. We set f1 =
Γ(f, h0) = Γ(f, Id + σ0), which is closer to the linear map g, and the idea is to repeat
the same step as we did in section 4.1. From now on, we will consider that |λ| ≤ 1, thus
covering Siegel’s theorem as well as one part of Koenigs’. For |λ| > 1, it will suffice to
consider from the very beginning f−1 instead, which can be defined since the multiplier
is not zero.

The first issue we run into is that we need to know more precisely where f1 is defined.
It is apparent that is holomorphic in a neighbourhood of the origin, which is a fixed
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point, but we still need to know where the composition h−1
0 ◦ f ◦ h0 makes sense. We will

also need estimates for the closeness between f1 and g, more specific of its derivative µ′1.
Recall that for σ0, the estimates were only obtained in a disk of radius smaller than δ, so
it is to be expected that for f1 the domain of definition is smaller.

Let us tackle the composition h−1
0 ◦ f ◦ h0 for which upper and lower bounding h will

be essential so as to determine the domain of f1. Since h0 = Id+σ0, we choose 0 < χ < 1
and consider |z| < δ(1− χ). Then on B(δ(1− χ))

|h0(z)| = |z + σ0(z)| ≤ |z|+ |σ0(z)|

|h0(z)| = |z − (h0(z)− z)| ≥ |z| − |σ0(z)|

and recall that

|σ0| < ρδκ
dνe!
χdνe+1

on B(δ(1 − χ)), where ρ > 0 has not yet been specified. In order to obtain rather neat
bounds for h0, it would be convenient to get rid of some of the terms in the expression
that estimates σ0, so for now let us set ρ > 0 such that

ρκdνe! < χdνe+1

However, we therefore obtain on B(δ(1− χ)) that |σ0| < δ, which implies that |h0| <
δ(2 − χ) and even though the domain for f might be bigger than a disk of radius δ, we
cannot assure that the composition f(h0(z)) takes place in B(δ(1 − χ)). So let us set
instead ρ > 0 such that

ρκdνe! < χdνe+2 (4.10)

for which we obtain |σ0| < δχ and |h0(z)| < δ on B(δ(1− χ)).

Let us now focus on the last part of the composition since this will probably be
determining. We would want indeed the biggest domain possible, so let us allow |z| =
δ(1−χ) and observe that, if we require 0 < χ < 1

2 , then |z|−δ(1−2χ) = δχ > |σ0|, hence
|h0| > δ(1 − 2χ). Since h0(0) = 0 + σ0(0) = 0, we may conclude that B(δ(1 − 2χ)) ⊂
h0(B(δ(1− χ))) where the factor 2 cannot be shrunk. Therefore we aim to find a radius
0 < r ≤ δ(1− χ) such that for |z| < r, |f(h0(z))| < δ(1− 2χ) since f(h0(0)) = 0 and h−1

0

is defined on B(δ(1− 2χ)).

If we write r = δ(1−αχ) where α ∈ N and assume |z| < r, then |f(z)| = |λz+µ0(z)| ≤
|z| + |µ0| < r + ρδ because we chose δ > 0 such that |µ′0| < ρ on B(δ). Since we need
r + ρδ = δ(1 − αχ + ρ) ≤ δ(1 − 2χ) =⇒ ρ ≤ χ(α − 2), we can get a specific value for
α. From inequality 4.10, we obtain that ρ < χ because κ, dνe! ∈ N and 0 < χ < 1

2 , hence
every α ≥ 3 suits our need. Notice that the bigger α is, the smaller χ is required to be,
therefore we take α = 3 being that the smallest possible value and set 0 < χ < 1

3 .

All there is left to do now is look for a radius r that for |z| < r, |h0(z)| < δ(1−3χ). Let
us set r = δ(1−βχ) where β ∈ N and suppose |z| < r. We obtain |h0(z)| ≤ δ(1−βχ)+δρ
and we need this estimate to be smaller than δ(1− 3χ) =⇒ ρ ≤ (β − 3). Following the
above argument, we take β = 4 and 0 < χ < 1

4 .

So it turns out that for ρκdνe! < χdνe+2 and 0 < χ < 1
4 , f1 is defined on B(δ(1− 4χ)).

As we can see, there has been a considerable loss of the domain and this is something
that will require to be dealt carefully in the iteration process since we do not want to run
out of domain for the limit function.
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When it comes to estimating |µ′1|, let us consider on B(δ(1− 4χ)) with 0 < χ < 4

f1(z) = λz + µ1(z)

f(z) = λz + µ0(z)

and we may rewrite
h0 ◦ f1 = f ◦ h0

as
λz + µ1(z) + σ0(λz + µ1(z)) = λ(z + σ0(z)) + µ0(z + σ0(z))

Since λσ0(z) = σ0(λz)− µ0(z), we get to

µ1(z) = σ0(λz)− σ0(λz + µ1(z)) + µ0(z + σ0(z))− µ0(z)

This last expression is quite useful because by the mean value theorem we may bound
the following

|σ0(λz)−σ0(λz+µ1(z))| ≤ sup
|z|<δ(1−4χ)

|σ′0(z)| sup
|z|<δ(1−4χ)

|µ1(z)| < χ

1− χ
sup

|z|<δ(1−4χ)
|µ1| <

|µ1|
3

|µ0(z + σ0(z))− µ0(z)| ≤ sup
|z|<δ(1−4χ)

|µ′0(z)| sup
|z|<δ(1−4χ)

|σ0(z)| < ρ2κδ
dνe!
χdνe+1

which leads to

sup
|z|<δ(1−4χ)

|µ1(z)| ≤ sup
|z|<δ(1−4χ)

|σ0(λz)− σ0(λz + µ1(z))|+ sup
|z|<δ(1−4χ)

|µ0(z + σ0(z))− µ0(z)|

<
|µ1|
3

+ ρ2κδ
dνe!
χdνe+1

and we obtain

|µ1| < ρ2κδ
3dνe!

2χdνe+1

on B(δ(1− 4χ)). So if we shrink a little bit the domain, say by δχ with 0 < χ < 1
5 , then

the Cauchy estimates imply that on B(δ(1− 5χ)) we have

|µ′1| < ρ2κ
3dνe!

2χdνe+2

We therefore have been able to find a domain where the composition h−1
0 ◦f ◦h0 made

sense and also bound |µ1| on B(r1) with r1
..= δ(1−5χ) and 0 < χ < 1

5 . As a consequence
of that, we know that the small divisors equation for this step

µ1 = g ◦ σ1 − σ1 ◦ g

can be solved by writing σ1 in terms of power series, that the series is holomorphic on
B(r1) and that by setting 0 < χ1 < 1, we can bound on B(r1(1− χ1))

|σ1| < ρ1κr1
dνe!
χ
dνe+1
1

|σ′1| < ρ1κ
dνe!

χ
dνe+1
1 (1− χ1)
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where ρ1
..= ρ2κ 3dνe!

2χdνe+2 . Set 0 < χ1 <
1
5 and under the assumption that ρ1κdνe! < χ

dνe+2
1 ,

we can bound on B(r1(1− 5χ1))

|µ′2| < ρ2
..= ρ2

1κ
3dνe!

2χ
dνe+2
1

So as long as we set a sequence of {χn}n∈N such that for all n, 0 < χn < 1
5 and,

alongside the sequence {ρn}n∈N, satisfies that ρnκdνe! < χ
dνe+2
n , then the process can be

iterated infinitely. However, it is important to choose a sequence wisely because we do
not want the radius to converge to zero. The following proposition provides an answer to
this choice, but it requires a stricter condition on ρ than 4.10.

Proposition 4.3.1. Set 0 < χ = 1
10 <

1
5 and ρ > 0 such that

3

2
ρκdνe! < (

χ

2
)dνe+2

If we define the sequences {χn}n∈N and {rn}n∈N as

χ0
..= χ, χn+1

..=
χn
2

r0
..= δ, rn+1

..= rn(1− 5χn)

then the process can be iterated infinitely and rn 6−→ 0. In particular, at the n− th step,
the map fn is defined on B(rn(1− 4χn)) and

|µ′n+1| < ρn+1

on B(rn+1) where the sequence {ρn}n∈N is defined as

ρ0
..= ρ

ρn+1
..= ρ2

nκ
3dνe!

2χ
dνe+2
n

as expected.

Proof. Observe that the key to proceed with the iteration is to require that

0 < χn <
1

5

and
ρnκdνe! < χdνe+2

n

for every n.

The first condition is apparent because χn = χ0

2n < 1
5 due to the choice of χ. As for

the second one, let us prove it inductively on n.

For n = 0,

3

2
ρκdνe! < (

χ

2
)dνe+2 =⇒ ρ0κdνe! <

3

2
ρ0κdνe!2dνe+2 < χ

dνe+2
0

40



Let us suppose that for n = k ≥ 1 the result holds, thus

3

2
ρnκdνe! < (

χn
2

)dνe+2

and for n = k + 1, due to the induction hypothesis, we obtain

3

2
κdνe!ρ2

k

3

2
κdνe! < (

χ

2
)dνe+2(

χ

2
)dνe+2

=⇒ ρn+1κdνe! ≤
3

2
ρn+1κdνe!2dνe+2

=
3

2
(

3
2ρ

2
nκdνe!
χ
dνe+2
k

)κdνe!2dνe+2

<(
χk
2

)dνe+2 = χ
dνe+2
k+1

Therefore at the n− th step, we know that on B(rn) the map σn is holomorphic and
solves the small divisors equation. What is more, on B(rn(1− χn))

|σn| < ρnκrn
dνe!
χ
dνe+1
n

|σ′n| < ρnκ
dνe!

χ
dνe+1
n (1− χn)

and since ρnκdνe! < χ
dνe+2
n , we know that fn+1 is defined on B(rn(1− 4χn)) and

|µ′n+1| < ρn+1 = ρ2
nκ

3dνe!
2χ
dνe+2
n

on B(rn(1− 5χn)) = B(rn+1).

So the last thing left to check is that the radius r ..= limn→∞ rn = δ limn→∞
∏n−1
i=0 (1−

5χi) does not tend to 0. It is apparent that the sequence τn ..=
∏n−1
i=0 (1− 5χi) is strictly

decreasing and τn > 0, therefore it converges to τ . However, in the interest to prove
afterwards the convergence, instead of showing τ 6= 0, we shall look for a rather interesting
lower bound.

First of all, let us set χ0 = 1
10 =⇒ 5χ0 = 1

2 . Therefore, for all i

0 > −5χi =
−5χ0

2i
=
−1

2i+1
≥ −1

2

We define the real map s(x) ..= log(1+x)−2x for x ∈ I = [−1
2 , 0] and since s′(x) 1

1+x−2 < 0
for x < 0, s′(0) = 0 and s(0) = 0, we conclude that log(1 + x) ≥ 2x in I and hence for all
i

log(1− 5χi) ≥ −
1

2i

so we obtain

∞∑
i=0

log(1− 5χi) = lim
N→∞

N∑
i=0

log(1− 5χi) = log( lim
N→∞

N∏
i=0

(1− 5χi)) = log(

∞∏
i=0

(1− 5χi))
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and that leads to

log(
∞∏
i=0

(1− 5χi)) ≥ −
∞∑
i=0

1

2i
= −2

So now we can lower bound the radius r since τ ≥ e−2 > 1
10 =⇒ r > δ

10 .

2

Now that we know that B( δ10) ⊂ B(r) and that the sequences {fn}n∈N, {ηn}n∈N ⊂ Λ δ
10

,

the convergence can be proved easily. The fact that for every n,

3

2
ρnκdνe! < (

χn
2

)dνe+2 =⇒ ρn → 0

and therefore

|fn − g| = |µn| < ρn
δ

10
→ 0

on B( δ10) and
fn → g

ηn → h

in Λ δ
10

, where h satisfies g = h−1 ◦ f ◦ h and hence it is the conjugation we were seeking

and f is indeed linearizable.
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5 Numerical study

Bearing in mind the results assuring the existence of a map’s linearization, we may now
proceed to numerically study such conjugacy. To this purpose, we choose the following
family of one-dimensional holomorphic maps to study

fλ,ε = λz + εz2

where ε ∈ (0, 1] is a perturbation of the linear map and λ ∈ C is the multiplier of the
origin, which shall either be 0 < |λ| < 1 or λ = e2πiω with a Diophantine number ω, just
for simplicity. Notice that z = −λ

ε is also another fixed point, however we shall focus
merely on the origin.

For every pair of values (λ, ε) provided, there is a change of coordinates h(z) such that

f(h(z)) = h(λz)

By writing it as

h(z) = z +
∞∑
n=2

hnz
n

we obtain the following algorithm to compute the coefficients hn as

hn =
εβn−1

λn − λ
βn−1 =

n−1∑
k=1

hkhn−k

where h1 = 1 and n ≥ 2.

Once the coefficients are computed up to a certain order, say N , an estimate of the
radius of convergence of the power series of h(z) can be obtained by the largest non-zero
coefficient hn as

Rc ≈
1

n
√
|hn|

as well as an approximation of the radius where the conjugacy holds by checking the
largest Rd > 0 for which

|f(h(z)− h(λz)| < tol

if |z| ≤ Rd, where tol is a given a tolerance.

Let us start off by displaying some examples. We set N = 100, ε = 0.5, a tolerance
of 10−8 and we take three different multipliers: λ1 = 0.2, λ2 = −0.3 + i0.1 and λ3 =
e2πi

√
2. For each case, we compute seven orbits of fλi,0.5(z) and its linear map λiz in a

neighbourhood of the origin so as to show their behaviour locally. Then, we compute
the series and both Rc and Rd. Within the area of conjugacy, we plot seven orbits of
fλi,0.5(h(z)) and h(λiz) with the same initial condition for each orbit in order to visually
compare the outcome.

Each point in a orbit is connected to the next one with a dashed line and each orbit
has a colour assigned. The red circle displays the radius Rd.

1. λ1 = 0.2
Rc ≈ 0.101 Rd ≈ 0.087

43



−0.1 −5 · 10−2 0 5 · 10−2 0.1

−0.1

−5 · 10−2

0

5 · 10−2

0.1

Figure 1: Seven orbits of fλ1,0.5(z)
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Figure 2: Seven orbits of λ1z
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Figure 3: Seven orbits of h(λ1z)
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−5 · 10−2

0

5 · 10−2

0.1

Figure 4: Seven orbits of fλ1,0.5(h(z))

2. λ2 = −0.3 + i0.1
Rc ≈ 0.180 Rd ≈ 0.153

−0.1 −5 · 10−2 0 5 · 10−2 0.1
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0
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Figure 5: Seven orbits of fλ2,0.5(z)
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Figure 6: Seven orbits of λ2z
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−0.15 −0.1−5 · 10−2 0 5 · 10−2 0.1 0.15 0.2

−0.1

0

0.1

Figure 7: Seven orbits of h(λ2z)

−0.15 −0.1−5 · 10−2 0 5 · 10−2 0.1 0.15 0.2

−0.1

0

0.1

Figure 8: Seven orbits of fλ2,0.5(h(z))

3. λ3 = e2πi
√

2

Rc ≈ 0.698 Rd ≈ 0.581

−0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

Figure 9: Seven orbits of fλ3,0.5(z)
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Figure 10: Seven orbits of λ3z
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Figure 11: Seven orbits of h(λ3z)
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Figure 12: Seven orbits of fλ3,0.5(h(z))

As we can see, both hyperbolic cases show a clear correspondence between maps within
the computed radius of convergence, which also happens to be quite close to the approxi-
mated radius of convergence of the series. Since |λ| < 1, the origin is a sink and therefore
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each map conveys a rather ease layout. However, when it comes to the Diophantine case,
even though the ratio between both radius is similar, it is not that certain whether the
conjugacy holds since, for instance, plotting orbits with initial conditions near the radius
Rd has had many numerical difficulties.

So as to overcome this issue when dealing with Diophantine numbers, since f(h(z))
is expected to behave similarly to an irrational rotation and these provide a dense orbit
for each initial condition, within the domain of conjugacy we shall expect the same.
Therefore, by taking initial conditions on one of the axis and exploring how the orbits
grow as their initial condition moves away from the origin, we can numerically determine
where the end of the conjugacy lies.

For instance, when λ = e2πi
√

2 and ε = 0, 5 the aforementioned exploration leads to
the following figure, which displays three orbits within the domain on conjugacy - in red,
blue and green - and a fourth one in grey located on the boundary.

Rd ≈ 0.581

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Figure 13: Four orbits - λ = e2πi
√
2 and ε = 1

2

The correspondence between the numeric boundary shown in the graphic and the one
provided by the computed radius Rd is apparent as well as the quasi-periodic orbits that
fill an entire somewhat circled area as expected.

Since this is a more appropriate way of studying the Diophantine case, let us now set
λ = e2πi

√
5 and explore a little bit further by varying the value of the perturbation ε. Let

us plot the previous orbits for four different values.
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Rd ≈ 1.126
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Figure 14: Four orbits - ε = 1
4

Rd ≈ 0.567
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Figure 15: Four orbits - ε = 1
2

Rd ≈ 0.379
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Figure 16: Four orbits - ε = 3
4

Rd ≈ 0.285
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Figure 17: Four orbits - ε = 1

As we can see, even as the map is less closer to the linear map λz, there is a persistent
neighbourhood where these quasi-periodic orbits remain. In all four cases, the correspon-
dence between Rd and the domain shown by the graphic still holds, however there is an
apparent shrinking of the radius according to the perturbation.

In fact, many numerical studies on the border of the domain of conjugacy can be
considered, but thus far, we have been able to spot the linearization in all cases where
we knew it existed and we have also computed an approximation of the domain, which
accomplishes the main goals in this numerical study. One last exploration we shall consider
is the study of the growth of both radius varying ε as well as the number of coefficients
so as to get an idea on how it might affect the conjugacy and its domain.

When it comes to the number of coefficients, there is barely a time cost when computing
N=100, which seems at first a fair number. However the operations needed afterwards
spend significantly more time as N increases, so setting a maximum of N=250, we compute
both radius for different numbers of coefficients, starting off with 10 coefficients and
increasing N in five. We set ε = 1

2 . The outcome follows.
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Figure 18: Growth of Rc and Rd varying the number of coefficients N

The radius of convergence of the series clearly becomes smaller as more coefficients
are computed, thus showing that the error was increasing its value. It seems as if the
value of the radius tends to range in a small interval near 0.3, which is achieved around
the 100 coefficients. Exactly the same pattern but increasing instead, Rd grows as more
coefficients are computed and it also seems to tend to range within the same interval.
This behaviour was to be expected because the domain of conjugacy cannot be larger
than the radius where the series converge and although we might not extrapolate how
both radius behave as more coefficients are computed, since they both met within the
interval they range in at N=100, it seems indeed as a fair number of coefficients to be
computed.

As for the graphic varying ε, we set N=100 and starting off with ε = 0.01 and increasing
it by 0.01, we compute both radius until the value ε = 1 is achieved.

0 0.2 0.4 0.6 0.8 1

0

10

20

30

ε

Rc
Rd

Figure 19: Growth of Rc and Rd varying the perturbation value ε

The graphic shows that throughout the unit interval where ε ranges, the correlation
between both radius is very tight, an outcome to be expected from the previous discussion
on the number of coefficients. As for their growth, it is apparent that the closer to the
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rotation, the bigger the domain is, whereas when the perturbation becomes bigger, the
linearization takes places in a much smaller place, in fact, the loss of domain is quite
remarkable.

This numerical exploration has therefore led to different, yet wonted, results on the
matter. First of all, all linearizations were indeed spotted by using a rather uncomplicated
algorithm and a suitable number of coefficients. When dealing with the Diophantine
case, looking for quasi-periodic orbits instead of plotting some orbits with random initial
conditions proved to be more useful in order to determine an area where the conjugacy
held. It is important to notice that an analogous study can also be applied for the
hyperbolic case if an alternative method to explore the conjugacy is desired. Second, it
seems as if both radius tend to the same or at least a similar value as the number of
computed coefficients grow, being 100 coefficients a fair amount. The boundary of such
domain clearly arises as a very interesting object of study in case of a further analysis on
the matter. And finally, it is also conveyed the idea that the bigger the perturbation is,
the smaller the linearization seems to become.
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6 Conclusions

It is now time to conclude this dissertation by providing an overview of it and going
through it as a whole. There are a three fundamental aspects to ponder over due to the
nature of a graduate thesis that we shall now analyze.

First of all, it is the achievements accomplished and the enhancements to be consid-
ered. The main aim was to provide, as well as personally gaining, an insight to Siegel’s
linearization theorem and all it encompasses. Within a reasonable amount of theory, the
dissertation briefly goes through all the fields that provide the reader with the tools and
then sets out a background for the theorem, which is straightforwardly attained. How-
ever, even though an overview of the conjugacy issue near an elliptic fixed point is put
forward, it is undeniable that since many questions still remain, a deeper inquiry about
the matter could have been made, especially in terms of continued fractions and unsolved
characterizations.

When it comes to the proof, it carefully goes through most of its details, despite there
are refinements on the estimates that could be improved. In fact, the KAM method is one
of the standard procedures used to prove the result, but other options can be considered,
as well as bounds and operators. It requires a great deal of experience to precisely know
which one should be chosen in order to suit and emphasize the author’s needs conveniently.
As for the numerical study, all graphics meet and broadly satisfy what was meant to be
expected, although arose many other subjects of study such as the border of the domain
of conjugacy, among others.

Secondly, since this is a graduate thesis, there is an extricable link to analyze be-
tween the degree and the herein dissertation. Subjects as Models Matemàtics i Sistemes
Dinàmics and Sistemes Dinàmics have both predisposed a certain, yet crucial, facility
when dealing with discrete dynamics concepts, more precisely in complex dynamics and
numerical explorations correspondingly. It also needs to be pointed out that Anàlisi Com-
plexa and Funcions de Variable Complexa have contributed significantly to the easiness
of handling holomorphic functions and most of its properties throughout this dissertation,
which played an essential role. Finally, it is worth mentioning Anàlisi Real i Funcional
for which notions related to Banach spaces as well as operators became less of a burden.

And last but not least, the consistency of it as a whole. While it is true that some im-
provements and deeper insights on different matters could have been made as it has been
already mentioned, this thesis gives a fulfilling overview of the subject in terms of pro-
viding the reader with the necessary knowledge, setting out a background for Schröder’s
equation, carefully dealing with every step of the proof and concluding the study with
some numerical explorations to display some of the acquired results. Thus becoming
a well-rounded dissertation and an easy introduction of the subject for undergraduates
students.
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