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ABSTRACT 

 

In order to determine the ability of 1,2-dipalmitoyl phosphatidylcholine (DPPC) and 1,2-dioleoyl 

phosphatidylglycerol (DOPG) to host peptide sequences belonging to the E2 protein of GBV virus 

C/Hepatitis G virus, the behaviour of Langmuir monolayers formed by these phospholipids and E2 (12-

26), E2 (354-363) and E2 (chimeric) peptide sequences was analysed from data of surface pressure (π) 

versus area per molecule (A) isotherms, compression modulus (Cs
-1), excess Gibbs energy of mixing 

(ΔGexc) and total Gibbs energy of mixing (ΔGmix). Three different behaviours were observed. Mixed films 

of E2 (12-26) with DPPC or DOPC showed negative values for the excess thermodynamic functions, and 

thus attractive interactions between mixed films components are greater than in ideal films. Mixtures of 

E2 (354-363) with DPPC or DOPG, exhibited positive values of excess functions, evidencing weaker 

interactions in the mixed films in relation to those of pure components. Finally, positive and negative 

excess functions were observed in E2 (chimeric)/DPPC or DOPG mixed films, depending on their 

composition. In short, the interaction between the phospholipids used in this work as models of cell 

membranes and E2 peptides varies with the type of phospholipid and the nature of the peptide (size, 

bulky, hydrophobicity and electric charge).  

 

 

Keywords: GB virus C/hepatitis G virus, chimeric peptide, compression isotherms, phospholipid 

monolayers, mixed films. 
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1. Introduction 

GB virus C/hepatitis G virus (GBV-C/HGV) is the most closely related human virus to hepatitis C 

virus (HCV), another member of the Flaviviridae family [1,2]. In contrast to HCV, GBV-C/HGV does not 

appear to be hepatotrophic, neither replicates in hepatocytes nor causes acute or chronic hepatitis [3,4]. In 

fact, GBV-C/HGV is a lymphotrophic virus that is believed to replicate primarily in the spleen and bone 

marrow [5]. 

By itself, GBV-C/HGV infection has not been associated with any specific disease nor does it 

appear to represent any substantial health risk [6]. However, in the setting of co-infection with human 

immunodeficiency virus (HIV), current evidence points to GBV-C/HGV offering a benefit in terms of 

slower progression for HIV related diseases and acquired immunodeficiency syndrome (AIDS). In fact, 

GBV-C/HGV viremia improves the response to antiretroviral therapy in HIV-infected individuals as 

measured by a greater reduction of HIV viral load, improved CD4 T cell count and less frequent changes 

of antiretroviral therapy as compared to those without GBV-C/HGV viremia [7]. In vitro studies confirm 

these clinical data and show a beneficial effect of GBV-C/HGV on HIV infection [8,9], although the 

mechanism by which GBV-C modulates HIV infection and AIDS progression is not fully understood. 

Some studies have focused on the inhibition of the HIV replication by GBV-C/HGV proteins [10,11]. 

Particularly, it has been reported that E2 protein from GBV-C blocks HIV replication at the binding 

and/or entry step [12] and, specifically, there have been described several peptide sequences of this 

protein that interfere with the HIV-1 entry through different mechanisms [13,14].  

Furthermore, the E2 protein of other Flaviviridae member, i.e., the hepatitis C virus (HCV), is also 

involved in the process of cell infection [15]. The understanding of the mechanisms, which regulates the 

entrance of the virus in human cells through the E2 protein, could undoubtedly shed light on the 

mechanism by which GBV-C/HGV infects cells and inhibits the replication of HIV. 

To get further insight into the GBV-C E2 mediated fusion and examine properties of this protein, 

we have published some articles using related peptides, one of them corresponding to the amine-terminus 

part, E2 (12-26) [16], and another one corresponding to the carboxy-terminal, E2 (354-363) [17]. In 

addition, a chimeric sequence comprising the peptides E2 (12-26) and E2 (354-363) was previously 

synthesized with the aim of obtaining a new putative antigenic peptide [18]. On the other hand, it is 

known that the fusion process of the virus and biological membranes plays a vital and important role in 

many cellular processes [19,20]. These peptide-membrane interactions have been studied using different 

biophysical techniques, where lipid vesicles were mainly used to mimic biological membranes [21]. 

Between others in vitro models (supported lipid bilayers, liposomes), Langmuir monolayers [22] are 

traditional but powerful systems for studying intermolecular interactions in a two-dimensional (2D) 

multi-components systems. Using this technique, we can control the monolayer composition, the surface 

pressure and the molecular orientation at the air-water interface [23-25]. 
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With the aim of building an in vitro membrane model, we have selected two lipids with differing 

head group, net charge and degree of unsaturation in their hydrocarbon chains: 1,2-dipalmitoyl-sn-

glycero-3-phosphocholine (DPPC), a major component of biological membranes [26], and 1,2-dioleoyl-

sn-glycero-3-[phospho-rac-(1-glycerol)] (sodium salt) (DOPG), an anionic fluid lipid at room 

temperature. In order to determine the ability of these lipid monolayers to host the selected peptide 

sequence, we have studied the behaviour of pure and mixed peptide-lipid monolayers spread at the air-

water interface by recording the surface pressure (π) - area per molecule (A) compression isotherms. 

 

2. Materials and methods 

 

2.1. Lipids and chemicals 

Ultrapure water was obtained by deionization and Nanopure purification coupled to a Milli-Q 

purification system up to a resistivity of 18.2 M·cm. Chloroform and methanol were supplied by Merck. 

DPPC and DOPC were purchased from Avanti Lipids. HEPES buffer and NaCl were obtained from 

Sigma-Aldrich. Throughout this study, the aqueous subphase was HEPES buffer 5 mM and NaCl 100 

mM at pH 7.4. 

 

2.2. Peptide syntheses and characterization 

The syntheses of peptides E2 (12-26), E2 (354-363) as well as a chimeric sequence were 

previously described [16-18]. Physicochemical properties of these peptides, such as net charge at pH 7.4, 

isoelectric point and Grand Average of Hydropathicity (GRAVY) were predicted using the Expasy-

ProtParamprogram [27]. The calculation is based on the Kyte-Doolittle scale [28]. The results are shown 

in Table 1. All the studied peptides are positively charged at pH 7.4, although the E2 (354-367) peptide 

has a net charge slightly more positive (higher isoelectric point) than the others. The GRAVY of the E2 

(12-26) peptide is negative, indicating its hydrophilicity. However, E2 (354-363) is highly hydrophobic as 

compared with the other two peptides. 

 

Please insert Table 1 

 

2.3. Langmuir monolayers 

Peptide/phospholipid mixed monolayers were spread from a chloroform/methanol (9:1:v/v) 

solution in the concentration range of 0.3-0.5 mg/mL. The stock solutions were mixed in appropriate 

proportions and dropped with a Hamilton microsyringe on the buffer surface. For the evaporation of the 

spreading solvent 20 minutes were allowed, after which the monolayers were compressed with the speed 

of 0.02 m/min. The surface pressure was monitored continuously by an electronic microbalance with an 
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accuracy of ± 0.1 mN/m, using a Whatman Chr 1 chromatography paper plate as surface pressure sensor. 

The Langmuir trough (Nima balance 601) was thermostated at 293±1.5 K.  

 

3. Results 

  

3.1. π-A isotherms 

  

3.1.1.  E2 (12-26)/Phospholipids mixed films 

Figure 1A shows the surface pressure-area per molecule, π-A, isotherm for pure DPPC monolayer. 

On compression, a liquid expanded (LE)-liquid condensed (LC) phase transition is observed as a plateau 

on the isotherm at a surface pressure (πt) near 5 mN/m. This first order phase transition is typical of the 

DPPC monolayer at room temperature [29-32]. The collapse occurs at approximately 71 mN/m, 

according to literature data [33,34]. 

The behaviour of E2 (12-26) pure monolayer was already studied in a previous article [16] using 

phosphate buffer saline (PBS) of pH 7.4 as a subphase. However, in the present work we have preferred 

to use HEPES instead of PBS, to avoid the potential presence of phosphate crystals in the PBS buffer, 

which could interfere the results. A pseudoplateau in the π-A isotherm can be seen at π~21 mN/m, a value 

somewhat higher to the previously published. This pseudoplateau is similar to that observed in the course 

of pressure/area isotherms of other peptide sequences of the Hepatitis G virus and was attributed to the 

2D-3D reorganization of the peptide residues at the A/W interface, forming loops and tails [35,36] with 

the hydrophobic region oriented to the air and the polar groups immersed in the water. Above the 

pseudoplateau, the surface pressure increases smoothly as the film compression continues until the 

collapse, which seems to occur around 43 mN/m, although it is not well defined. 

At surface pressures below 30 mN/m, the π-A isotherms of E2 (12-26)/DPPC mixed films of 

Xpeptide = 0.6 and 0.8 composition are shifted toward larger areas per molecule in comparison to that of the 

DPPC component. On the other hand, at higher surface pressures, above 40 mN/m, the isotherms are 

almost parallel, moving towards greater areas when the DPPC content increases in the mixed films as a 

consequence of the ejection of the peptide from the monolayer at π ~ 43 mN/m. All the isotherms exhibit 

some discontinuities, denoting phase changes in the monolayers. The first refers to the LE-LC phase 

transition of the DPPC, which is visualized as a small plateau in the π-A isotherms of all the investigated 

mixtures. The first dashed line in Figure 1A shows the π values corresponding to the beginning of this 

LE-LC phase transition in the mixtures. It can be seen that the transition π values and the area per 

molecule at which the LE-LC phase transition begins, increase with the peptide content of the mixed film, 

showing that the addition of the peptide to the DPPC monolayer makes it more fluid as a result of 

increasing the region corresponding to the LE phase. A second discontinuity appears in some isotherms 
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(Xpeptide = 0.6 and 0.8) in the region of π around 21 mN/m (second dashed line), which correspond to the 

loops formation of the peptide residues at the A/W interface. A new discontinuity in the π-A isotherms 

(third dashed line) is seen in the region where it is assumed that the peptide is ejected from the monolayer 

at a constant π value (πc peptide~43 mN/m), i.e. practically at the same pressure that the pure peptide is 

expelled from the monolayer. Finally, the last discontinuity in the π-A isotherms (fourth dashed line) 

corresponds to the DPPC collapse, which can be visualized only in monolayers with Xpeptide < 0.8, the 

πcollapse values being the same as that of pure DPPC.  

 

Please insert Figure 1 

 

A very useful method for characterise the physical state and phase transitions of monolayers is to 

examine values of the compressibility modulus (Cs
-1), defined as -A(dπ/dA). The higher Cs

-1 value, the 

more rigid the monolayer is. Figure 1B shows Cs
-1 versus π plots, where it is observed that the addition of 

peptide molecules to DPPC monolayer causes a remarkable decrease in Cs
-1 values, i.e. mixed films are 

more fluid upon increasing their peptide content. On the other hand, with the increasing peptide content in 

the DPPC monolayers, the LE-LC phase transition of the DPPC (visualized as a minimum in Cs
-1-π 

curves) clearly shifts to slightly higher surface pressures (see inset of Figure 1B). Indeed, the πtransition 

values vary from 4.5 mN/m (in the case of pure DPPC) to 7 mN/m (for the mixture with Xpeptide = 0.8 

composition). Others minima in Cs
-1-π curves are also observed around 21 mN/m (peptide loops 

formation). The πloops values corresponding to these minima points vary from approximately 21 mN/m in 

the pure peptide film to 26 mN/m in the Xpeptide = 0.6 mixture. Interestingly, Cs
-1-π curves show clearly 

other two minimum around 43 mN/m and 71 mN/m, respectively: the first corresponding to the peptide 

collapse and the second to that of the phospholipid. The existence of two collapses, one for each 

component, evidences components immiscibility at high surface pressures [37]. 

 

Please insert Figure 2 

 

Due to the unsaturation of the aliphatic chains and to the negatively charged polar group, the 

DOPG monolayer is more expanded (more compressible) as compared to DPPC. Indeed, Figure 2B 

shows that the DOPG monolayer exhibits a LE state along the compression (Cs
-1 values do not exceed of 

95 mN/m). On the other hand, the addition of peptide molecules to the DOPG monolayer provokes a 

gradual decrease of Cs
-1 values. This high compressibility resulted in a drastic diminution of the DOPG 

collapse pressure, around 46 mN/m (Figure 2A), in relation to that of DPPC. The isotherms show that at π 

≤ 22.5 mN/m all mixed films occupy areas per molecule lower than the pure components, although there 

are differences between them according to the region of surface pressures under consideration. Thus, at 
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surface pressures below approximately 17 mN/m, the mixed film of Xpeptide = 0.4 is the one with the 

lowest areas per molecule, while at π >17 mN/m the most “condensed” film corresponds to the mixture 

with Xpeptide = 0.8 composition. This behaviour suggests the existence of attractive interactions between 

film components, depending on the compression state of the monolayer, i.e. the packing of the molecules 

at the A/W interface. Thus, the existence of components miscibility is evident. The discontinuities at π 

values between 17 mN/m and 22 mN/m are attributed to the folding of the peptide. In the Cs
-1-π curves, 

the minimum points corresponding to the loops formation are observed with more clarity: πloops values 

vary with the composition of the system. 

 

3.1.2. E2 (354-363)/Phospholipids mixed films 

Figure 3A. shows that for pure E2 (354-363) monolayer the lift-off area per molecule is about 275 

Å2/molecule, a consistent value with similar peptides [25], but much higher than that of the E2 (12-26) 

peptide (150 Å2/molecule). This could be due to its greater bulkiness and hydrophobicity. The change of 

slope in the π-A isotherm, giving rise to the appearance of the characteristic pseudoplateau, is attributed 

to 2D-3D molecular rearrangement of the peptide, and occurs at a π value about 11 mN/m, considerably 

lower than that of the E2 (12-26) peptide. On the other hand, the pseudoplateau is larger and flatter, and 

the monolayer collapse pressure could not be obtained. 

 

Please insert Figure 3 

 

The recorded isotherms for E2 (354-363)/DPPC mixed monolayers at π ≤ 15 mN/m are more 

expanded (more fluid) than pure DPPC film, and are displaced toward that of the peptide, showing areas 

per molecule much larger than that of pure DPPC. Thus, the presence of DPPC in the mixed films seems 

to be irrelevant. Only in the mixed film with Xpeptide = 0.2, the LE-LC phase transition corresponding to 

DPPC was observed, showing the same πtransition value than that of the pure DPPC. In the mixed films with 

Xpeptide = 0.2 - 0.6 composition the values of the collapse pressure could be recorded: the πcollapse values 

match that for pure phospholipid.  

In E2 (354-363)/DOPG mixed films (Figure 3B), the addition of peptide to the monolayer of 

DOPG also causes a deep shift of isotherms towards larger areas per molecule in comparison to that of 

phospholipid and peptide. These shifts of the isotherms could be due to unfavourable interactions between 

the film components and to the disturbance provoked by the peptide molecules into more ordered DOPG 

monolayer. For the mixture with Xpeptide = 0.8 composition the collapse could not be achieved, but the 

other mixed monolayers collapse at the same surface pressures as pure DOPG. 
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3.1.3. E2 (Chimeric)/Phospholipids mixed films 

The monolayer of chimeric peptide shows a lift-off area of 550 Å2/molecule (Figure 4A). Given 

that this peptide contains 28 amino acids, the mean area per residue is approximately 20 Å2, a value 

consistent with results for other peptides, with well-extended horizontal orientation at the A/W interface 

[38-40]. Under the conditions of our assay, the chimeric monolayer collapse was not reached. The 

isotherms corresponding to the E2 (chimeric)/DPPC mixed films are situated between those of pure 

components and the addition of peptide molecules to the DPPC monolayer causes a drastic decrease in Cs
-

1 values (Figure 4B). In the region of Xpeptide ≤ 0.4, the surface pressure corresponding to the LE-LC 

phase transition of the DPPC monolayer (minimum points in Cs
-1-π curves) increases slightly from 4.5 

mN/m in the pure DPPC film to 5.3 mN/m in the mixture with Xpeptide = 0.4 composition (inset of the 

figure). In mixtures with Xpeptide ≥ 0.4 the LE-LC phase transition disappears. When the mixed films were 

compressed in the region corresponding to the peptide loops formation, the Cs
-1

 values remain practically 

constants (Cs
-1

 ~ 20 mN/m) and the slopes of the Cs
-1-π curves are practically zero. For any point in this 

region, the surface pressure (πloops) is independent of mixtures composition. The other two minima 

observed in the Cs
-1-π plots at approximately 40 mN/m and 70 mN/m correspond, respectively, to the 

peptide and DPPC collapses. This behaviour proves the existence of components immiscibility.  

 

Please insert Figure 4 

 

At surface pressures below 25 mN/m, all isotherms corresponding to E2 (chimeric)/DOPG mixed 

films are situated between those of pure components (Figure 5A), although there is not the same distance 

between them, i.e. the addition of the peptide to the DOPG monolayer causes uneven increase in its area 

per molecule, which depends on the composition of the mixed film. The mixed monolayer of Xpeptide = 0.2 

collapses at the same surface pressure than DOPG (~ 45 mN/m). In mixed films with greater peptide 

content, the collapse could not be reached. As for the previously studied systems, the increase of peptide 

molecules into the DOPG monolayers causes a significant decrease in Cs
-1 values, independently its 

composition (Figure 5B). Interestingly, the surface pressure values corresponding to the looping 

formation of peptide residues (minimum points in Cs
-1- π plots) decrease with increasing the peptide 

content in the mixed films.  

 

Please insert Figure 5 

 

3.2. Excess properties 

For quantitative information about the interaction between the molecules in the mixed films, the 

excess Gibbs energy of mixing was calculated applying Goodrich [41] and Pagano [42] approaches: 
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, where A1, A2 and A1,2 are the areas per molecule of pure 

components and mixed film, respectively. N is the Avogadro´s number. The π values selected for the 

upper integration limit were in the range of surface pressures between 10-40 mN/m. The π* value of the 

lower limit of integration is very close to zero for coherent films [43], so that ΔGexc was calculated taking 

π*=0. Thermodynamic stability of the mixed monolayers was confirmed using the values of total Gibbs 

energy of mixing, calculated according to equation: ΔGmix = ΔGexc + ΔGmix.ideal, where the ideal Gibbs 

energy of mixing can be expressed as: ΔGmix.ideal = RT(X1 ln X1 + X2 ln X2). 

Figure 6A shows, for comparison, the ΔGexc values for all studied mixed films at 20 mN/m. For 

E2 (12-26)/phospholipids mixed monolayers, negative values (in red colour) were obtained whatever the 

mixed films composition and the type of phospholipid (DPPC or DOPG) were. This behaviour suggests 

that attractive interactions between the components in the mixed films are stronger and more energetically 

favoured than those in the ideal films. On the other hand, in Supplementary Information (SI) it is 

observed that these negative ΔGexc values are enhanced with the increasing surface pressure (Figures 

SI.1A and SI.1B), according to results in literature [44-48]. This is logical, since the attractive 

intermolecular interactions become more significant as the molecules are at shorter distances, as occurs 

when the monolayer is in a more condensed state. For both mixtures (E2 (12-26)/DPPC and DOPG), two 

minimum values of ΔGexc are reached at the same film compositions (Xpeptide ~ 0.4 and 0.8). 

 

Please insert Figure 6 

 

For E2 (354-363)/DPPC and DOPG mixed films (in blue colour), positive values of ΔGexc with a 

maximum around Xpeptide ~ 0.2-0.25 suggest that the molecular interactions between the components are 

less attractive as compared to ideal mixed monolayers. Consequently, phase separation could be possible, 

as it occurred in other mixed systems with positive ΔGexc values [46-48]. Besides, the positive values of 

ΔGmix, as it is observed in Figure 6B, prove that mixed films are thermodynamically less stable as 

compared to their pure monolayers. This instability is greater in mixtures with DOPG, and increases in 

both systems upon increasing of the surface pressure (Figures SI.1C and SI.1D). The fact that for these 

mixed systems the surface pressure values corresponding to the collapse coincide with those of the 

respective phospholipids (Figures 3A and 3B) seems to confirm the peptide ejection from the monolayer 

at lower surface pressures than that of phospholipids.  

For E2 (chimeric)/DPPC mixed system, also positive values of ΔGexc were observed in mixtures 

of Xpeptide < 0.8 (Figure 6A, rhombus symbol in black), showing two maxima in the mixed films of Xpeptide  

= 0.2 and 0.6. The same behaviour can be seen in the ΔGmix versus peptide molar fraction plot (Figure 

6B). As in the previous systems, the mixed films are unstable at π > 5 mN/m, increasing instability with 
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the surface pressure (Figure SI.2E). Thus, phase separation in the mixed monolayers can occur at high 

surface pressures, where two distinct collapses, corresponding to the peptide and the DPPC, were 

observed in the π-A isotherms (Figure 4A), confirming this assumption. Beyond Xpeptide = 0.8, negative 

ΔGexc and ΔGmix values were obtained.  

When DPPC is replaced by DOPG in the mixed films, also positive and negative ΔGexc and ΔGmix 

values were obtained (Figures 6A and 6B, semi-black pentagons), with a maximum at Xpeptide = 0.2. This 

behaviour suggests that weak intermolecular interactions occurred at this low concentration of peptide in 

the mixed films. Thus, phase separation can occur in this mixture. Interestingly, this mixed monolayer 

collapses at the same surface pressure as pure DOPG component (see Figure 5), evidencing components 

immiscibility. Beyond Xpeptide = 0.3, negative ΔGexc and ΔGmix values were observed, suggesting greater 

attractive interactions between the molecules in the mixed film in comparison to the ideal behaviour and 

higher thermodynamic stability than in unmixed films. Similar results showing simultaneous positive and 

negative deviations from the ideal behaviour were obtained by Hac-Wydro et al. [45]. 

 

4. Discussion 

From the obtained results it is evident that the studied systems have three different behaviours: 

first, mixed films of E2 (12-26) with DPPC or DOPC show negative ΔGexc and ΔGmix values and thus the 

attractive interactions between mixed films components are greater than in ideal films, and are 

thermodynamically stable; second, the mixtures of E2 (354-363) with DPPC or DOPG exhibit positive 

values of ΔGexc and ΔGmix, whatever their composition are, evidencing weaker interactions in the mixed 

film in relation to those of pure components, and third, positive and negative excess functions were 

observed in E2 (chimeric)/DPPC or DOPG mixed films, depending on their composition. 

Negative deviations from ideal behaviour 

Using the diagram in Figure 7, obtained from the surface pressure values corresponding to the 

different phase transitions of E2 (12-26)/DPPC mixed films (Figures 1A and 1B), the miscibility of the 

film-forming components in the mixed system can be determined by applying the Crisp´s phase rule [49]: 

F = 3-q (F = degrees of freedom and q = number of surface phases in equilibrium under constant 

temperature and external pressure). Indeed, the a-b line in Figure 7 is associated with the surface pressure 

values corresponding to the LE-LC phase transition of the DPPC (Figure 1A). Since these values vary 

linearly with the composition of the monolayers, F = 1 (it is only necessary to specify the surface pressure 

or the molar fraction to characterize the state of the system during the transition) and consequently, q = 2, 

i.e., along the above-cited line two equilibrium phases coexist, namely: below the line, one M1 phase, 

presumably composed of peptide and DPPC molecules, both with the hydrophobic chains tilted toward 

the water surface (close horizontal orientation). Above the a-b line, there is also a homogeneous phase 

(M2), but composed by the same molecules with an almost vertical orientation on the water. Similarly, the 
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surface pressures of the c-d line, corresponding to the 2D-3D peptide loops formation, vary with the 

composition of mixtures, and so, a new homogenous surface phase M3 appears in these mixtures above 

the cited line, formed by coiled peptide molecules and by DPPC molecules with the above described 

orientation. Similar behaviour was observed in literature for other mixed systems [50-52]. Both collapse 

surface pressures corresponding to the peptide (e-f line) and to DPPC (g-h line) components do not 

depend on the monolayer composition, and therefore the number of degrees of freedom is F = 0 and q = 3, 

i.e., three phases in equilibrium coexist in these situations: in the first case the two new phases appearing 

are formed by the collapsed peptide and by pure DPPC molecules, both separated from one another. In 

the second case (g-h line), the three phases are formed by the previous two phase and by the DPPC 

collapsed. According to this phase diagram, E2 (12-26) and DPPC components are miscible only at 

surface pressures lower than approximately 43 mN/m, which corresponds to the ejection of the peptide 

from the mixed films. In these conditions the values of the excess functions are negative (Figures 6A and 

6B), suggesting the existence of strong attractive interactions between the hydrophobic chains of both 

components (van der Waals attractive forces) together with ion-dipole attractive interactions between the 

positively charged peptide and the zwitterionic DPPC. These molecular attractions disturb the peptide 

looping, which disappears when the content of phospholipid in the mixtures is greater than 40% (mole 

percent). 

 

Please insert Figure 7 

 

When the DPPC is replaced by the negatively charged DOPG, electrostatic attractions with the 

positively charged peptide headgroups could enhance the attractive interactions, especially when Xpeptide = 

0.8 (Figures 2A, 6A and 6B), where the formation of a highly stable complex is suggested. This different 

behaviour between the two mixed systems could be attributed to the packing differences between the 

monolayers of both pure components: at high surface pressures the hydrocarbon chains of DPPC 

monolayer adopt a compact conformation (densely packed chains), which, upon compression, favours the 

expulsion of the hydrophilic peptide inserted between them. However, the expanded monolayer of 

DOPG, where the hydrocarbon chains are more flexible and disordered, facilitates the permanence of the 

peptide molecules into the mixed monolayer, favouring the attraction between the hydrocarbon chains of 

both components. 

Positive deviations from ideal behaviour 

From the molecular point of view the existence of ΔGexc positive values observed in Figure 6 for 

mixed films of E2 (354-363) with DPPC or DOPG could be attributed to the steric hindrance caused by 

the bulky and hydrophobic peptide molecules, horizontally oriented, into the more ordered arrangement 

of the phospholipid monolayers [53-55]. Thus, it is suggested that the polymer strands penetrate into the 
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hydrocarbon chains of the phospholipids causing the disturbance of its packed and ordered structure and, 

consequently, an increase in fluidity and area per molecule of the monolayers, as well as a weakening of 

molecular interactions between the mixed monolayer components. 

The phase diagram for the E2 (chimeric)/DPPC system (Figure 7B) shows that at π ≥ 20 mN/m 

the surface pressure values corresponding to peptide loops formation, as well as those corresponding to 

the ejection of chimeric and DPPC films components, are independents of the mixtures composition, thus 

evidencing components immiscibility. However, at π values between 5 mN/m and 20 mN/m the 

components are miscible, coexisting two phases M´1 and M´2 in equilibrium and exhibiting positive 

deviations from the ideal behaviour when Xpeptide< 0.8, as it is shown in Figures SI.1E and SI.2E. Because 

this mixed system exhibits positive deviations from the ideal behaviour, it is suggested that the region of 

the chimeric molecule responsible of this behaviour is that corresponding to the E2 (354-363) peptide 

part, which is characterized by the existence of strong positive deviations. The same can be applied to 

mixtures of E2 (chimeric)/DOPG when their composition is less than Xpeptide = 0.3. On the contrary, for 

this system with peptide molar fraction above 0.3 and for E2 (chimeric)/DPPC of Xpeptide > 0.8, the 

negative values of the excess properties (Figures 6A and 6B) are similar to those of E2 (12-

26)/phospholipids mixed films, suggesting that in this case the region of chimeric molecule involved in 

the interaction corresponds to the E2 (12-26) peptide, which exhibits negative deviations from the ideal 

behaviour.  

In short, the interaction between the peptide and the phospholipids used in this work as models of 

cell membranes varies with the type of phospholipid and the nature of the peptide (size, bulky, 

hydrophobicity and electric charge). Even, when the peptide consists of two amino acid sequences, such 

as the chimeric peptide studied by us, the results are different depending on the composition of the mixed 

system and the peptide sequence interacting with the phospholipid. 

 

5. Conclusions 

Binary systems consisting of DPPC or DOPG with E2 (12-26), E2 (354-363) and E2 (chimeric) 

peptides were analysed. Surface pressure-area isotherms show that in all cases the addition of peptides to 

phospholipids monolayers makes them more fluid. For E2 (12-26)/DPPC mixed monolayers, negative 

deviations from the ideal behaviour were obtained, independently of the surface pressure or the 

composition of the mixtures, indicating miscibility and non ideality, and suggesting the existence of 

stronger attractive interactions between the components of the mixed monolayers than in ideal films. 

When the DPPC is replaced by the negatively charged DOPG, electrostatic attractions with the positively 

charged peptide headgroups could enhance the attractive interactions, especially when Xpeptide = 0.8, 

where the formation of a highly stable complex is suggested. Mixed films of E2 (354-363) with DPPC or 

DOPG exhibit positive values of excess functions. This behaviour is attributed to the steric hindrance 
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caused by the bulky and hydrophobic E2 (354-363) peptide molecules into the more ordered arrangement 

of the phospholipid monolayers. The mixed system formed by E2 (chimeric)/DPPC when Xpeptide< 0.8 

and the mixture of E2 (chimeric)/DOPG (Xpeptide < 0.3) exhibit positive deviations from the ideal 

behaviour. On the contrary, for E2 (chimeric)/DOPG system with peptide molar fraction above 0.3 and 

for E2 (chimeric)/DPPC of Xpeptide > 0.8, the negative values of the excess properties are similar to those 

of the E2 (12-26)/phospholipids mixed films. 
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Figure captions 

 

Figure 1. π-A isotherms (A) and Cs
-1-π plots (B) for E2 (12-26)/DPPC mixed films. Inset: Cs

-1-π plots for 

the LE-LC phase transition of DPPC.  

Figure 2. π-A isotherms (A) and Cs
-1-π plots (B) for E2 (12-26)/DOPG mixed films. 

Figure 3. π-A isotherms for E2 (354-363)/DPPC (A) and E2 (354-363)/DOPG (B) mixed films. 

Figure 4. π-A isotherms (A) and Cs
-1-π plots (B) for E2 (chimeric)/DPPC mixed films. Inset: Cs

-1-π plots 

for the LE-LC phase transition of DPPC. 

Figure 5. π-A isotherms (A) and Cs
-1-π plots (B) for E2 (chimeric)/DOPG mixed films. 

Figure 6. ΔGexc (A) and ΔGmix (B) versus XE2 plots at 20 mN/m. 

Figure 7. Phase diagrams for E2 (12-26)/DPPC (A) and E2 (chimeric)/DPPC (B) mixed films.  

 

Supporting Information: 

Figure SI.1. ΔGexc versus XE2 plots for mixed films at different surface pressures. (A) E2 (12-26)/DPPC, 

(B) E2 (12-26)/DOPG, (C) E2 (354-363)/DPPC, (D) E2 (354-363)/DOPG, (E) E2 (chimeric)/DPPC, (F) 

E2 (chimeric)/DOPG. 

Figure SI.2. ΔGmix versus XE2 plots for mixed films at different surface pressures. (A) E2 (12-26)/DPPC, 

(B) E2 (12-26)/DOPG, (C) E2 (354-363)/DPPC, (D) E2 (354-363)/DOPG, (E) E2 (chimeric)/DPPC, (F) 

E2 (chimeric)/DOPG. 

 

Graphical Abstract:  

Isotherms for pure phospholipids (DPPC and DOPG) and peptide sequences (E2 (12-26), E2 (354-363) 

and E2 (chimeric)) and hydrophobicity profiles of the three peptides. 

 

TABLE 1 

 

Peptides amino acid sequence, net charge, isoelectric point and grand average hydropathicity 

 

Peptide Amino acid sequencea 
Net charge 

 at pH 7.4 

Isoelectric 

point 
GRAVY ES-MSb 

E2 (12-26) E P G L T W Q S C S C R A N G +1 8.3 -0.667 M+=1608.0 

E2 (354-363) L A E A R L V P L I +1 11.04 1.410 M+=1093.7 

Chimeric L A E A R L V P L I -GGG- E P G L T W Q S C S C R A N G +1 8.3 0.104 M+=2853.0 

 

a In red the cationic amino acid, in blue the anionic amino acid.  

b Electrospray mass spectrometry (ES-MS) 
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FIGURE 5 
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FIGURE 6 
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FIGURE 7 
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FIGURE SI.1 
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FIGURE SI.2 
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