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Abstract 10 

Until recently, the distribution of diatom and chironomid species assemblages and their attributes (e.g. species 11 

richness and diversity) in relation to water depth and sedimentary environments have been identified but not quantified. 12 

The influence of environmental variables on assemblage distribution and taxa richness in a deep, monomitic lake in São 13 

Miguel Island is assessed. Attention is given to community variation along a depth gradient. Surface-sediment diatom and 14 

chironomid assemblages were collected along three transects from shoreline to the centre deep basin of the lake at a 15 

resolution of 1 m water depth. Linear and unimodal regressions were used to test taxon richness, taxon diversity and 16 

taxon evenness versus water depth of each transept. A hump-shaped relationship between species richness and water 17 

depth was noted, with a peak occurring at mid depth levels, meaning that samples located at that depth better represented 18 

the total subfossil assemblage of lake Azul. Also, diatom and chironomid assemblages in Lake Azul, and taphomomic 19 

effects, were influenced by sedimentary environmental processes depending on the lake morphology. Based on the 20 

present results, in order to determine ideal coring locations for lake studies combining diatom and chironomid analyses, 21 

an understanding of the spatial distribution of these biota is essential.  22 
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Introduction 26 

Lacustrine sediments are excellent archives of past climatic and environmental changes because they can record 27 

past air or water temperatures (Heiri et al. 2011; Verbruggen et al. 2011), precipitation (Nichols et al. 2009) and nutrient 28 

levels (Verbruggen et al. 2011) among other environmental variables. A large set of proxies, like the remains of organisms 29 

preserved in the sedimentary record (e.g. diatoms and chironomids) are commonly used to reconstruct these 30 

environmental and climatic changes through time. However, it is of paramount importance to hold an exhaustive and 31 

precise knowledge of the lake processes to infer these changes. This is especially significant for the biota where a 32 

comprehensive ecological understanding about their spatial distribution in lakes is essential. Conceptually, the distribution 33 

of subfossil assemblages in sediments of deep lakes, depend on: 1) their spatial distribution when they were alive (Kattel 34 

et al. 2006; van Hardenbroek et al. 2010) and 2) and their potential post-depositional redistribution (Eggermont et al. 35 

2007; Frey 1988).  36 

In fact, subfossils of diatoms and chironomids are not evenly distributed in lakes, especially in those with 37 

significant habitat and sedimentary environment variability (Eggermont et al. 2007; Heiri 2004).. While the epilimnion is 38 

characterized by presence of light, diversity in habitats, well-oxygenized, warm waters whereas the hypolimnion often 39 

absence of light, relative homogeneity of soft-sediment habitat, oxygen depletion and cold waters. For instance, light, 40 

nutrients, disturbance and substrate type are among the most frequently reported environmental controls of phytobenthos 41 

(Cantonati et al. 2009), while in chironomid assemblages water temperature, food availability, hypolimnetic oxygen, and 42 

distribution of aquatic macrophytes play a crucial role on their distribution (Cao et al. 2014; Heiri 2004; Laird et al. 2010; 43 

Wang et al. 2012). 44 

Depth has a crucial role in determining environmental factors in lakes, such as light intensity, nutrient 45 

availability, and disturbance regime (e.g. wave action; mixing water depth), and consequently shaping the biological 46 

assemblages’ distribution. Some authors (Laird et al. 2010; Peters and Lodge 2010) reported that species richness, 47 

diversity and evenness tend to be higher in shallow zones than in offshore deep zones due to higher habitat complexity in 48 

the former (e.g. presence of macrophytes), and this pattern seems universal (Kovalenko et al. 2011). So, the relationship 49 

between lake depth and its species diversity could provide important information of the characteristic on the environment 50 

that can be used to help understand the biodiversity drivers. Even though the shape of the relationship could be highly 51 

variable (VER REFS), hump-shaped relationship are the most common in aquatic systems (Dodson et al. 2000; 52 

Mittelbach et al. 2001).  53 

Sedimentation and taphonomic processes can also have significant impact on the spatial distribution and 54 

composition of subfossil assemblages (Anderson 1990; Skinner et al. 2014), but certain taxa are more affected by these 55 
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processes than others (Cao et al. 2014; Eggermont et al. 2007). According to Alin and Cohen (2004), two transitions are 56 

inherent to the formation of the fossil record: transition from life to death assemblage and from death to fossil 57 

assemblage. Several factors, such as microtopography, geology, hydrology, and differential watershed land use can 58 

control the flux of fossil remains to the lake (Heggen et al. 2012), affecting the spatial distribution of the subfossil 59 

assemblages. For example, Hakanson (1977) demonstrated that slope is crucial for sedimentation process, concluding that 60 

sediment will not accumulate on slopes higher them 14%, below 4%, slope has no effect. Despite of the knowledge that 61 

fossil assemblages in lake sediments are commonly irregularly distributed, paleolimology studies are usually based on 62 

one sediment core, which in most cases, is recovered in offshore deep-water sedimentary conditions (Brodersen et al. 63 

2001; Heiri et al. 2011; Raposeiro et al. 2017; Skov et al. 2010).  64 

By ignoring natural within-lake heterogeneity of fossil assemblages, and therefore the complex interactions of 65 

environmental and sedimentation/taphonomic drivers this simple approach can lead to imprecise paleolimnological 66 

reconstructions, such as climatic and/or environmental reconstructions (Zhang et al. 2012). Consequently, an in-lake 67 

characterization of fossil distribution should be made before any paleolimnological reconstruction. 68 

Freshwater diatom assemblages are highly diverse and ubiquitous, and constitute an important proxy to estimate 69 

primary production in lakes (Hall and Smol 1999). Similarly, chironomids are an important proxy to assess secondary 70 

production in lakes (Anderson et al. 2012). These two groups colonize many habitats both within the littoral zone and 71 

deep lake environments (Cao et al. 2012; Laird et al. 2010). Therefore, diatoms and chironomids are ideal proxies for 72 

assessing if they follow the IDH in deep lakes. 73 

The distribution of diatoms and chironomids in surface sediments of Azorean lakes has already been assessed 74 

(Pereira et al. 2014), but while the surface sediments were collected for 41 lakes, only three different locations in each 75 

lake were sampled. So, detailed in-lake studies of multiple surface samples are lacking from the Azores archipelago. 76 

Here, we assessed the spatial distribution of subfossil diatom and chironomid assemblages in surface sediments 77 

from a deep lake relating them to the main environmental, geochemical and sediment variables in the Azores archipelago 78 

(North Atlantic) using a multi-core approach. From the serial surface sampling of several transects, we predict that: a) 79 

environmental variables (e.g. light, nutrients, dissolved oxygen) are important indicators of where species occur 80 

(Matthews-Bird et al. 2016; Soininen and Weckström 2009; Yang et al. 2009); b) diversity-depth relationship in the lake 81 

be ‘hump-shaped’, where higher species diversity occurs at an intermediate depth (Chase and Leibold 2002; Dodson et al. 82 

2000; Flöder and Sommer 1999; Mittelbach et al. 2001); c) sedimentation and taphonomic processes affects the spatial 83 

distribution of the subfossil assemblages (Alin and Cohen 2004; Wang et al. 2012). 84 
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 85 

Methodology 86 

Study area 87 

The Azores archipelago is a group of nine oceanic volcanic islands located in the mid North Atlantic, roughly 88 

1500 km from Europe and 1900 km from America. At the western end of São Miguel Island lies the Sete Cidades 89 

volcanic caldera (Fig. 1A), which includes in its interior eight craters, four of them partially occupied by lakes dominated 90 

by clastic sedimentation. The largest lakes inside the caldera are Lakes Azul and Verde, which are hydrologically 91 

connected but separated as sedimentary basins by a shallow and narrow bedrock threshold. Lake Azul has a surface of 92 

3.59 km2, 28 m of maximum depth and it is located at 259 meters above sea level. 93 

 94 

Lake Azul morphology and sedimentary environments 95 

The morphology of the coast line of Lake Azul (Fig. 1A) is conditioned by: (a) the internal steep vent slope of 96 

the main Sete Cidades Caldera forming the convex NE littoral zone of the lake, (b) the emerged volcanic vents of 97 

Caldeira do Alferes to the NW and Lake Santiago vents to the SE with concave morphology, (c) the occurrence of the 98 

Cerrado das Freiras deltaic system in NE forming a delta plain and S part of the lake littoral (Sete Cidades village); and 99 

(d) the existence of two alluvial distributary systems, one in Sete Cidades village coast and the other in the NE coast of 100 

the lake. 101 

Bottom lake basin shows several morphological areas mainly configured by the orientation NW-SE of Mosteiros 102 

graben faults system (Moore 1991). From the S to the N, 5 main geomorphological units can be distinguished (Fig.1B): 103 

(1) a shallow platform-ramp (from 2 to 12 m of water depth, 0.8-2.1º slope angle) occupying the southern half part of the 104 

lake which corresponds to a raised block of the Mosteiros graben; (2) a platform slope zone dipping to the NE (from 12 to 105 

25 m of water depth, 3.2º slope angle) which occupies a bit less than one third of the lake basin and conforms the slope 106 

formed by a normal fault plane; (3) a deep plain, from 25 to 28 m depth (< 0.6º angle of slope), which represents the 107 

upper surface of a fall block of the graben occupying less than one third of the lake basin, (4) a very dip slope unit located 108 

between 27 and 0 m of water depth determined by the internal slope of the main caldera vent (>15º angle of slope) and 109 

the delta front (10º slope angle) which occupies the northern half of lake margin, and (5) alluvial littoral areas found at 0-110 

2 m of water depth located in littoral fringe of the NW and SW lake margins. Unit 1 (platform-ramp) is mainly covered by 111 

fine sediments and some patches of aquatic plant remains whereas alluvial littoral zones are sandy and accumulate 112 

terrestrial plant remains (see Fig. 1B). The delta front slope (unit 4) is composed of sand to gravelly coarse deposits while 113 

the northern dip caldera margin is occupied by big blocks accumulated from subaerial rock avalanches. 114 
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 115 

Field sampling and laboratory methods 116 

Seventy-five surface sediment samples (1cm thick) from Lake Azul were taken in 2013 with an UWITEC-90mm 117 

gravity corer along three transects representative of the lake topography. According to Raposeiro et al. (2017), the first 118 

centimetre of surface sediments of the deep plain of Lake Azul, corresponds to approximately 3 years of sedimentation. 119 

Samples were taken at each 1 m of water depth from the deep plain to the shoreline in three different transects (Fig. 1B). 120 

The location of the transects was chosen to cover of the main geomorphological units. GPS coordinates and water depth 121 

were determined for each sampling point (see Table S1). 122 

Transect 1 extends along the lake in a NE/SW orientation, from the deep plain to the alluvial village coast, 123 

crossing the platform slope and platform-ramp. Transect 2 extends along an E/W orientation, from the deep plain to the 124 

alluvial western lake coast, crossing the vent slope. Transect 3 extends along the lake in a NW/SE orientation, from the 125 

deep plain to the delta front of Cerrado das Freiras (Fig. 1B). 126 

Core samples of approximately 1 cm3 were weighted, dried for 24 h at 60°C and weighted again to estimate dry 127 

density (g.cm-3). The sand and plant fractions were estimated in smear slides using visual estimation charts (Terry and 128 

Chilingar 1955) in four defined areas per sample at 200x magnification under binocular. Samples were then grouped by 129 

percentage ranks of sand and plant fractions. Organic matter (LOI550) and residual mineral matter (LOI925) were measured 130 

by loss on ignition (LOI) at 550 °C for 4 h and at 925 °C for 2 h, respectively (Heiri et al. 2001). Water temperature (T), 131 

pH, dissolved oxygen (DO) and electric conductivity (EC) in the water column were compiled from the data collected as 132 

part of the European Water Framework Directive - Regional Monitoring Programme (monthly measured in situ with 133 

multiparametric field probes) between the 2009 - 2012 period. This approach gives a more realistic perspective of the last 134 

3 years of past environmental conditions than single spot measurements, which are often used in paleolimnology 135 

modelling. Light intensity was taken every 1 m of water depth from the surface to the maximum depth using a data-136 

logging sensor (HOBO Pendant Temperature/Light Data Logger 64k, Onset) (see Table 1 and Table S2). 137 

Sediment samples of 0.5 g dry mass were prepared for diatom analysis following the procedure of Renberg 138 

(1990). Diatom slides were mounted with Naphrax, and at least 500 valves were counted per sample at 1000x 139 

magnification using a ZEISS AXIOIMAGE A1 microscope. Diatoms were identified by reference to standard floras 140 

(Krammer and Lange-Bertalot 1986; Krammer and Lange-Bertalot 1988; Krammer and Lange-Bertalot 1991a; Krammer 141 

and Lange-Bertalot 1991b; Krammer and Lange-Bertalot 2000). The nomenclature used has been updated according to 142 

the most recent publications, as indicated in the OMNIDIA v5.3 database (Lecointe et al. 1993). Diatom species 143 

abundances are expressed as percentages, calculated using the total number of valves recorded for each sample. 144 
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Abundance estimates were combined with knowledge of habitat preference to generate percentage weighted habitat 145 

scores for planktonic, tychoplanktonic and benthic diatoms. 146 

For chironomid analysis, sediment samples of 5.0 (±0.02) g of wet mass were prepared by deflocculating them 147 

in 10% KOH at approximately 75°C for at least 15 min (Brooks et al. 2007). The sediments were passed through two 148 

sieves of 200 and 90 μm mesh size. Head capsules were hand sorted from a Bogorov counting chamber under a stereo-149 

microscope (40x magnification – Zeiss Stemi), mounted in Euparal after dehydration and identified using a microscope 150 

(ZEISS AXIOIMAGE A1) at 100x–400x magnification. Identification was largely based on mentum characteristics, as 151 

described in Brooks et al. (2007), and was performed to the highest possible taxonomic resolution, commonly species 152 

morphotypes. Taxonomical nomenclature was updated following Brooks et al. (2007). Chironomid head capsules 153 

concentrations were calculated as head-capsule abundance per gram of wet sediment (HC.g-1). 154 

 155 

Data analysis 156 

Species (diatoms) and taxon (chironomids) richness were estimated by counting the numbers of species and 157 

taxon identified in each sample. Shannon diversity index (H) (Shannon and Weaver 1963) and Hills N2 (Hill 1973) were 158 

used as an indicator of species diversity and species evenness (calculated as the total number of taxon), respectively. In 159 

diatom assemblages, a minimum of 400 valves has been accepted as representative (VER REFS), while in chironomid, a 160 

minimum of 50 head capsules is required to be representative (Heiri and Lotter 2001; Larocque 2001). However, the 161 

concentration of the head capsules varies a lot between different depths in a lake (VER REFS) sometimes resulting in 162 

counter lower than 50. Considering of the dependence of observed number of taxa on sampling effort, caution should be 163 

taken on the interpretation of these results. Therefore, we used individual based rarefaction analyses (on chironomid 164 

assemblages) to compare taxon richness between samples (i.e. depths), with unequal sample counts, which enables to 165 

assess the adequacy of sampling counts in terms of taxa detection (Gotelli and Colwell, 2001). All the analyses  were 166 

calculated using PRIMER 6.0 (Clarke and Gorley 2006). 167 

For diatoms, only taxa that reached a relative abundance of 5% on at least one sample were included in 168 

multivariate statistical analyses. Multivariate analyses were performed after fourth root transformation of relative 169 

(diatoms) and absolute (chironomids) abundance prior to numerical analyses to reduce differences in scale (Clarke and 170 

Gorley 2006). 171 

Linear and unimodal regressions were used to test taxon richness (S) and rarefied number of taxa richness (ES), 172 

taxon diversity (H’) and taxon evenness (N2) versus water depth of each transept. The adjusted R-squared was used to 173 

select the model that explained more variation, and therefore the best model for that data set. In the first model, we fitted 174 
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a linear model between taxon richness (S), taxon diversity (H’) and taxon evenness (N2) versus water depth, using the 175 

function y = ax+b; where y is the metric variable and x is the water depth at sampling site. In the second model, we 176 

adjusted to the data a quadratic function: y = ax2 + bx + c, where y is the metric variable, x is the water depth variable 177 

and a, b and c are constants; a < 0 indicates a hump-shaped curve. The curve vertex (i.e. the maximum value in a hump-178 

shaped curve) is given by x = – (b/2a) and y = a(–(b/2a))2 + b(–(b/2a)) + c.  The analyses were performed using R version 179 

3.1.2 (RCoreTeam 2015) and vegan package (Oksanen et al. 2015). 180 

Cluster analysis was used to identify homogeneous groups of diatom and chironomid assemblages and a 181 

SIMPROF test was applied to detect significant zonations. According to Clarke and Gorley (2006), SIMPROF tests data 182 

against the null hypothesis of "absence of structure" without requiring a priori groupings. A SIMPER analysis was then 183 

applied to the whole data matrix to identify the principal taxa associated with the clusters of taxonomic groups and link 184 

them with the corresponding zonation. Links between the water physico-chemistry and the subfossil diatom and 185 

chironomid assemblages were assessed using distance-based multivariate analysis for a linear model – DistLM (Anderson 186 

et al. 2008). DistLM analyses and models the relationship between the multivariate data cloud for one or more predictor 187 

variables (Anderson et al. 2008). DistLM allows predictor variables to be fitted individually or together in user specified 188 

sets. The DistLM routine was based on the AIC model selection criterion (Burnham and Anderson 2004) using a step-189 

wise selection procedure. The AIC was used to select the model that explained more variation, i.e. the ‘best’ model for 190 

that particular data set. To minimize redundancy between environmental variables, whenever two variables were highly 191 

correlated (r > 0.7 or r < -0.7), the variable with higher overall mean correlation was excluded from further analysis 192 

(LOI925; T, EC, DO and pH – see Table S3). LOI550 was as surrogates of LOI925, while depth was chosen as surrogates of 193 

water variables (temperature, electric conductivity, pH and dissolved oxygen). The environmental data were prior 194 

normalized to reduce differences in scale (Clarke and Gorley 2006). 195 

For visual interpretation of the resulting model in multi-dimensional space we used distance based redundancy 196 

analysis (dbRDA) to investigate the relationship between physicochemical variables (Anderson et al. 2008). Each vector 197 

begins at the centre of the circle (the origin) and ends at a given xy coordinates. The length and direction of each vector 198 

indicates the strength and sign of the relationship between the given variable and the dbRDA axes. The overlaying vector 199 

illustrates the relationship between the five variables identified by the DistLM procedure. 200 

The permutation procedure ANOSIM was applied to the Bray-Curtis rank similarity matrices for biological 201 

variables to test for differences and the level of significance between transects. R-values obtained in ANOSIM tests range 202 

between -1 and 1, where 1 indicates high levels of within group similarity and -1 points out that there are higher similarity 203 

levels between samples across groups than within groups (Clarke and Gorley 2006). A SIMPER analysis was then applied 204 
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to identify the principal taxa associated with the corresponding transect. Primer 6.0 and PERMANOVA + for PRIMER 205 

software were used (Anderson et al. 2008; Clarke and Gorley 2006). 206 

 207 

 Results 208 

Water and sediment variables 209 

A statistical summary for selected physical and chemical variables in sediment and in water column is provided 210 

in Table S2 and in Figures 2 and 3. The sand fraction and plant debris of the lake sediment varies between transects, 211 

slopes degrees and sedimentary environments. Transect 1 shows a low sand influx (some isolated terrigenous silicate 212 

grains) in platform-ramp and platform slope peaking at 7 and 12 m of water depth (0.6º) of the outer platform and at 14-213 

18 m depth of the rise slope platform (1.8º). Plant debris accumulates in shallow littoral waters (0-5 m depth; 5-10% plant 214 

remains). Transect 2 shows a medium content of sand (1-5% silicate grains) that is arranged in an upward sequence of 215 

increasing coarseness that occupies the complete vent slope talus (5.2º). This sequence reflects clastic inputs in the lake 216 

from the stream flowing to the lake from the NW. Sand maximum is present in alluvial sediments of NW platform found 217 

between 1 and 4 m of water depth (>10% silicate grains). Transect 3 shows the maximum slope (9.9º), and displays sand 218 

and plant debris contents carried from Cerrado das Freiras delta system. The sand fraction conforms to an increasingly 219 

coarse upward prograding delta sequence from the base (some isolated silicate grains) to the top of the slope at the 220 

shoreline (>10% silicate grains). 221 

The presence of aquatic and terrestrial plant remains in the sediments ranged between their complete absence 222 

(e.g. deepest plain samples) to a maximum of 50-80% plant remains found at 13-14 m of water depth in Transect 3. 223 

Transect 1 presented maxima plant remains in a narrow fringe of the village littoral at 0-5 m of water depth and occupied 224 

by distal alluvial deposits (1-5% plant remains). In Transect 2, a progressive increasing in plant remains, from vent slope 225 

(no plant remains) to a maximum in the narrow littoral NW platform was observed (1-5% plant remains). Transect 3 was 226 

characterized by three maximum intervals of plant remains at 14-15, 17 and 19 m of water depth and by their absence in 227 

the deep plain, at 20-25 m of water depth. A gradual decrease from the alluvial to 8 m depth of the delta front was 228 

observed. 229 

The organic content of the lake sediments ranged from 3.1% found at 2 m of water depth of the delta front in 230 

Transect 3 to 18.9% located at 2 m depth of the platform ramp in Transect 1. In general, LOI550 tended to be lower in 231 

shallow-water samples. In Transect 1, LOI550 followed a U shape curve, with a minimum value at 14 m depth. In Transect 232 

2, a gradual decrease from the deep plain sediments (17.0%) to the NW platform (7.9%) was observed. Four minimum 233 

intervals of LOI550 were observed along Transect 3 at 6, 10, 12 and 16 m of water depth, respectively. A similar pattern 234 
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was observed with the residual mineral matter that varied from 0.3 (Transect 3 – 3 m depth) to 4.6% (Transect 2 – 22 m 235 

depth). 236 

Higher values of conductivity (mean±SE; 111.7 ± 3.4 µS.cm-1) were present near the bottom in the deepest areas 237 

of the lake whereas lower values were found between 8 and 11 m of water depth. In the opposite direction temperature 238 

(mean±SE; 15.6 ± 0.3ºC), dissolved oxygen (mean±SE; 7.9 ± 0.5 mg. L-1) and pH (mean±SE; 7.7 ± 0.1) presented higher 239 

values between 1-5 m of water depth while lower values were detected in the deepest areas. The mean lower depth limit 240 

of the light zone was around 10 m. 241 

 242 

Diatom assemblages 243 

A total of 154 diatom species from 47 genera were identified from the surface sediments of the 72 sampled 244 

locations. The most abundant genera were Aulacoseira (31.5%) and Fragilaria s. l. (10.6%). Most species were 245 

extremely rare, with only 30.5% of the species reaching a maximum relative abundance above 1% (Fig. 4). From the 154 246 

diatom taxa identified, only Aulacoseira ambigua occurred in all 72 studied locations, and only 27 taxa occurred in more 247 

than 50% of the samples. These included species such as Achnanthidium minutissimum, Aulacoseira granulata, 248 

Cocconeis euglypta, Eolimna subrotundata, Fragilaria crotonensis, Fragilaria tenera, Navicula rhyncocephala, 249 

Pseudostaurosira brevistriata, Staurosira elliptica and Tabellaria flocculosa, which are all ubiquitous diatoms. 250 

Taxa richness ranged from 60 taxa recorded at the middle depth in Transect 3 (14 m of water depth - T3_14) to 26 taxa in 251 

the deep platform of Transect 3 (23 m deep - T3_23), with a mean richness of 32 taxa per sampling point. Species such as 252 

Fragilaria crotonensis, Fragilaria tenera, Eolimna subrotundata, Aulacoseira ambigua, Psammothidium sp. and 253 

Staurosira elliptica were among the taxa with the highest mean abundances (Fig. 4). 254 

The overall average number of taxa (S: 38.9±0.7) and diversity (H’: 2.6±0.1) was higher below 20 m depth (Diat-1 zone), 255 

when compared to the deeper zone (Diat-2 zone; S: 27.7±1.1; H’: 1.1±0.1; respectively) (Fig. 5). These trends in taxon 256 

richness and diversity were consistent across the three transects and were highly correlated (S: r = 0.56–0.66, p <0.001; 257 

H’: r = 0.79–0.89, p <0.001). The diversity of habitats present in the littoral zone (e.g. macrophytes, stones, sand), 258 

associated with the availability of light, is reflected in a much higher percentage of benthic and tychoplanktonic diatoms 259 

such as Eolimna spp., Psammothidium sp. and Pseudostaurosira brevistriata in samples from shallow sites of all 260 

transects. Planktonic taxa like Aulacoseira ambigua, Fragilaria crotonensis and Fragilaria tenera were most abundant in 261 

diatom assemblages in deeper zones. Species evenness (Hill’s N2) was greatest between 5 and 15 meters depth (Fig. 4) 262 

declining to around 20 meters depth and reaching lowest values in the deeper zone (> 20 meters depth). This pattern 263 

shows that more taxa occur at higher abundances in the shallow zone when compared to the deeper one. In the shallow 264 
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zone, the lowest evenness occurs between 2 and 5 meters depth. These trends were consistent across the studied transects 265 

(r = 0.55–0.81, p <0.001). 266 

The three transects display a significant negative relationship between diatom species diversity (R2
adj=0.34–0.78; 267 

p<0.001), species evenness (R2
adj=0.36–0.45; p<0.01) and water depth (Table 2). However, the quadratic model fitted the 268 

data better for both species diversity (R2
adj=0.78–0.81; p<0.001) and species evenness (R2

adj=0.56–0.74; p<0.001) than the 269 

linear model (Table 2) suggesting that the unimodal model was superior and had better support to explain the diatom 270 

species diversity and evenness along the depth gradient.  The curve vertex for the diatom diversity and evenness was 271 

highest at intermediate water depth (hump = 8.6–10.5 m deep). 272 

Cluster analysis shows that at 77% similarity samples are subdivided into two main clusters (Fig. 6). Also, the 273 

SIMPROF test identifies these two significant diatom assemblages. One cluster comprises most of the samples present 274 

from 0 to 20 m of water depth (Diat-1) and the remaining samples from the deepest zones are grouped in the second 275 

cluster (>20m depth; Diat-2). 276 

This cluster analysis, together with the SIMPER analysis of similarity (Table S4), enabled identification of the 277 

characteristic species within each group that defines each biozone. SIMPER analysis revealed a dissimilarity of 24.4% 278 

between the two biozones. Fragilaria crotonensis (10.0%), Staurosira pseudoconstruens (9.6%), Eolimna subrotundata 279 

(9.0%), Eolimna uthermoehlii (8.4%) and Psammothidium sp. (8.4%) were the species that contributed most to the 280 

dissimilarity. Diat-1 zone, with 86.3% average similarity, is characterized by the dominance of benthic diatoms belonging 281 

to the genera Eolimna, Achnanthidium, Navicula and Nitzschia, and tychoplanktonic diatoms such as the Staurosira 282 

pseudoconstruens and Pseudostaurosira brevistriata (Fig. 4A and Table S4). The samples grouped in Diat-2 zone were 283 

characterized by the dominance of the planktonic taxa Aulacoseira ambigua, A. granulata, Asterionella formosa, 284 

Fragilaria crotonensis and F. tenera (Fig. 4A and Table S4). 285 

This grouping pattern is also evident in the dbRDA scores applied to the diatom assemblages where planktonic 286 

species display low dbRDA axis 1 score, whereas the benthic and tycoplanktonic species presents higher scores on the 287 

first dbRDA axis (Fig. 6B). According to DistLM procedure, all physical and chemical variables (AIC=333.1.; R2=0.52; 288 

number of variables=5) were important to explain the diatom distribution along the lake depth gradient (p<0.006; Table 289 

3). The water column variables were the most important variables to explain diatom assemblages’ distribution in Lake 290 

Azul, where depth (surrogate of temperature, pH, dissolved oxygen and electrical conductivity) and light explained 34 291 

and 7% of fitted variance, respectively. 292 

The dbRDA illustrates how these zones were clearly separated by their location along the water depth gradient 293 

and these physical and chemical variables (Fig. 6B). The first two dbRDA axes explained 89.5% of the relationship 294 
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between the diatom assemblages and the measured physical and chemical variables, and 46.5% of the total variability in 295 

the assemblage data. The first dbRDA axis was strongly related to depth, while the second axis was related to habitat 296 

availability (sand fraction and plant remains in sediment). 297 

ANOSIM results (Table 4) showed that diatom assemblages differed significantly among transects (R=0.101; 298 

Significance P<0.1%). SIMPER results (Table S4) revealed dissimilarity levels among transects that ranged from 39 to 299 

43%, which were reflected by the percentage abundance in Eolimna subrotundata (10.5% in Transect 1; 18.4% in 300 

Transect 2; 7.0% in Transect 3), Aulacoseira ambigua (26.7% in Transect 1; 20.0% in Transect 2; 23.8% in Transect 3) 301 

Psammothidium sp. (3.5% in Transect 1; 3.8% in Transect 2; 9.3% in Transect 3) and Pseudostaurosira brevistriata (6.1% 302 

in Transect 1; 3.1% in Transect 2; 6.8% in Transect 3). These taxa were identified as the main species contributing to the 303 

observed dissimilarity (> 40%) between transects. 304 

 305 

Chironomid assemblages 306 

A total of 1,340 chironomid head capsules, which belong to 3 subfamilies, 12 genera and 17 infra-genera taxa, 307 

were recovered from the 72 surface sediment samples. Chironominae (9 taxa) showed the highest taxa richness, followed 308 

by Orthocladiinae (6 taxa) and Tanypodinae (2 taxa). The most abundant taxa with abundances exceeding 5% were 309 

Psectrocladius sordidellus (48.3%), Micropsectra contracta (23.3%), Chironomus anthracinus (7.2%) and Glyptotendipes 310 

barbipes (5.4%). Several taxa, such as Psectrocladius sordidellus and Micropsectra contracta, occurred in most samples 311 

all over the lake, albeit with low abundances in the deep plain of Lake Azul (Fig. 4B). 312 

The samples showed low densities of head capsules of chironomid larvae, with a mean of 18.3±1.8 HC. g-1 313 

reaching their maximum at 10 m water deep (Fig. 4B). Taxon richness in each sample ranged from 1 (below 20 m of 314 

water depth) to 9 (7 m water deep). The overall average number of taxa (S: 1.8±0.2) and diversity (H’: 0.4±0.0) was 315 

lower in the deeper zone (>20m), when compared to the benthic zone (S: 5.1±0.3; H’: 1.2±0.1, respectively). These trends 316 

in taxon richness and diversity were consistent across the three transects and were correlated (S: r = 0.56–0.69, p <0.01; 317 

H’: r = 0.50–0.47, p <0.05; Fig. 5). 318 

In the shallow zone, the lowest evenness (Hill’s N2) occurred between 2 to 5 meters depth in all transects. Taxon 319 

evenness was generally greatest between 5 and 15 meters depth (Fig. 5), declining to around 20 meters depth and 320 

reaching the lowest values in the deepest zone (> 20 meters depth). These trends were consistent in transects T1 and T3 (r 321 

= 0.47, p <0.05), but not along transept T2 (r = 0.40-0.45, p >0.05). As in the diatom models, the three transects for 322 

chironomid assemblages display a significant negative relationship between chironomid taxon richness (R2
adj=0.31–0.51; 323 

p<0.01), taxon diversity (R2
adj=0.37–0.50; p<0.001), taxon evenness (R2

adj=0.24–0.34; p<0.01) and water depth (Table 2). 324 
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However, the quadratic model fitted the data better for taxon richness (R2
adj=0.43–0.65; p<0.01), taxon diversity 325 

(R2
adj=0.57–0.67; p<0.001) and taxon evenness (R2

adj=0.39–0.54; p<0.001) than the linear one (Table 2) suggesting that 326 

the unimodal model was superior and had better support to explain the chironomid assemblages along the depth gradient.  327 

The curve vertex for the chironomid richness, diversity and evenness was highest at intermediate water depth (hump = 328 

7.7–10.6 m deep). 329 

Cluster analysis at similarity values of 50%, and supported by SIMPROF routine, identifies three chironomid 330 

assemblages (Fig. 7A): (i) the Chiro-1 zone, which corresponds to the near-shore and mid-depth benthic taxa, and two 331 

deeper ones (ii) Chiro-2 and (iii) Chiro-3.  332 

Chiro-1 zone is characterized by the dominance of littoral and detritivore species such as Psectrocladius 333 

sordidellus (40.0%) and Micropsectra contracta (31.5%). Assemblages in this biozone also included sub-littoral species 334 

like Chironomus athracinus (12.5%) and Glyptotendipes barbipes (4.1%). Head capsule abundances are generally higher 335 

in this zone than the other two, ranging from 0 to 64 HC.g-1, with an average of 23 HC.g-1 (SE±1.9). Chiro-1 assemblages 336 

occurred in shallow littoral areas characterized by the presence of aquatic macrophytes remains, higher water 337 

temperature, dissolved oxygen and pH, and lower conductivity and organic matter (LOI550). 338 

Chiro-2 and Chiro-3 assemblages were found in the profound zone of Lake Azul characterized by colder waters, 339 

low dissolved oxygen and pH, higher conductivity and organic matter concentration and the absence of light and plant 340 

remains. A rapid decrease in the abundance of head capsules, reflected by the decrease of Psectrocladius sordidellus and 341 

Micropsectra contracta, was observed. Head capsule abundances are particularly low in these Chiro-2 and Chiro-3 zones 342 

ranging from 1 to 7 HC.g-1 and 1 to 2 HC.g-1, with an average of 3 HC.g-1 (SE±0.6) and 2 HC.g-1 (SE±0.3), respectively. 343 

SIMPER analysis indicated that the average similarity index was low in Chiro-1 zone (61.0%), increasing in 344 

Chiro-2 (65.6%) and Chiro-3 (73.6%), which suggests greater homogeneity on deeper zones (Table S5). Three taxa 345 

contributed extensively to the differences between zones, Psectrocladius sordidellus, Micropsectra contracta and 346 

Chironomus plumosus accounted for 46.4% of the overall dissimilarity between Chiro-1 and Chiro-2 zones, 50.2% 347 

between Chiro-1 and Chiro-3 zones, and 83.7% between Chiro-2 and Chiro-3 zones. 348 

The first two statistically significant axes in the initial dbRDA between all chironomids and the five exploratory 349 

variables explained 29.0% of the total variation in the chironomid assemblages. Among the five determinants (Table 3), 350 

two water column variables and two sediment variables formed the best set of variables after Best procedure (AIC=479.8; 351 

R2=0.32; number of variables=4), which explained a statistically significant amount of the total variation in the 352 

chironomid data. 353 
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Using only these four significant variables, the first two dbRDA axes explained 89.9% of the relationship 354 

between the chironomid assemblages and the measured environmental variables, and 28.6% of the total variability in the 355 

community data (Fig. 7B). The first dbRDA axis accounted for 77.6% of the explained variation in the chironomid 356 

assemblages and was strongly related to depth, explaining 24.7% of the total variance in the chironomid assemblages. 357 

The second axis was related to sediment variables, such as the plant remains and LOI 550, and explained 12.3% of the total 358 

variation and 3.9% of the total variance in the chironomid assemblages. 359 

The ANOSIM test showed that chironomid assemblages significantly differ among transects (R=0.101; 360 

Significance p<0.1%; Table 4). Dissimilarity levels, revelled by SIMPER analysis (Table S5), were lower between 361 

Transect 1 and Transect 2 (48%), and Transect 2 and Transect 3 (52%), than between Transect 1 and Transect 3 (55%). 362 

Psectrocladius sordidellus, Micropsectra contracta, Chironomus athracinus and Glyptotendipes barbipes (with more than 363 

10% of the total difference each individually in the composition patterns) were the principal taxa contributing to the 364 

observed dissimilarity between transects. On average, higher concentration of head capsules occurred in Transect 1 (21 365 

HC.g-1), and Transect 2 (19 HC.g-1) in contrast with Transect 3 (15 HC.g-1). Regarding species richness, deltaic conditions 366 

in Transect 3 lead to an increase of species richness (15 taxa), than platform and vent slope conditions of Transect 1 (12 367 

taxa) and Transect 2 (11 taxa), respectively. In fact, Orthocladius sp. and Pseudosmittia sp., two taxa associated to lotic 368 

systems, were exclusive to Transect 3, probably transported by floods occurring at the mouth of the river delta (Fig 1B). 369 

 370 

Discussion 371 

Resource availability cause spatial heterogeneity of biota in lake Azul 372 

Described data for Azul Lake shows a significant spatial heterogeneity in the distribution of the main diatom and 373 

chironomid assemblages. Living diatom and chironomid communities are well known to show shifts in species 374 

composition with water depth (especially in deep, seasonally stratified lakes) through their response to conductivity, 375 

temperature, oxygen availability and substrate type (Gonçalves et al. 2015; Raposeiro et al. 2011). The results of the 376 

DistLM ordination revealed that depth was found to have the greatest explanatory power for both assemblages (34% and 377 

18% for diatoms and chironomids, respectively). The good correlation with depth gradient is probably a result of the 378 

original habitat of the subfossil assemblages, as the flora and fauna changes with water depth (Eggermont et al. 2007; 379 

Heggen et al. 2012). In this study, depth is negatively correlated with temperature, dissolved oxygen and pH. 380 

Conductivity in Azorean lakes is mainly related to CO2 production from organic matter decomposition (Cruz et al. 2006) 381 

that prevails in deeper, low oxygen waters. According to Talling (2009) values of electric conductivity in lake 382 

environments, especially in stratified lakes, are closely linked to food availability and lake productivity. Therefore, 383 
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electric conductivity is an important regulator (associated predominantly with redox potential - oxygen availability) in 384 

spatial distribution of diatom and chironomid assemblages. The correlation between electric conductivity, nutrients 385 

availability and oxygen concentration in Lake Azul are closely related to water-depth gradient. This pattern constrains 386 

some species to littoral shallow zone, or mid–depth (mid-slope and platform) zone distributions, whereas others restrict 387 

their distribution in the deeper offshore zone. This pattern was also found in other lakes where diatom and chironomid 388 

assemblages could change in a sequential manner from the near-shore shallow zone to the deep along a gradient of water 389 

depth (Verbruggen et al. 2011; Wang et al. 2012). For example, in Lake Azul Pseudostaurosira brevistriata, a benthic 390 

high profile taxon, reached abundances higher than 20% only in samples from less than 5 m of water depth. Also, 391 

Psectrocladius sordinellus, a sensitive taxon to hypoxia (Luoto 2009), was more abundant in the littoral zone. In the 392 

opposite direction, .Taxon richness of diatom and chironomid assemblages follows a unimodal or ‘hump-shaped’ pattern 393 

along all the lake depth transects, with maximum richness occurring at mid depths (~10 m depth) (Fig. 5; Table 2). This 394 

pattern has also been found for different freshwater taxonomic groups (macrophytes, macroalgal, macroinvertebrates) in 395 

several other lakes (e.g. Chase and Leibold 2002; Townsend et al. 1997). So, this unimodal response curve is probably 396 

caused by limitation of the biological assemblages by the high and drastic e�ects of disturbance on the littoral zone of 397 

Azul lake, moderate disturbance on the middle depth zone and a more constant environmental on the bottom. The littoral 398 

zone of Lake Azul presents high levels of disturbance such as increased natural stress from turbulence (e.g. wind, waves), 399 

and water level fluctuations, among other factors, may contribute to explain the lower diversity on littoral zones of lakes 400 

(Gabel et al. 2012; King et al. 2006). For example, waves suspend fine sediment from littoral areas and deposit into 401 

offshore areas (ver refs) and water fluctuations accelerate this sediment focusing processes. So, through the interplay of 402 

direct (e.g., physiological stress) and indirect (e.g., habitat alteration) mechanisms, water level fluctuations structure 403 

spatio-temporal heterogeneity that shape the littoral zone assemblage composition and richness (ver refs). This idea 404 

support our results, were in the littoral zone (especially between 2 and 5 meters depth) were observed lower levels of 405 

diversity and evenness for diatoms and chironomid assemblages. This trend is more marked in the chironomid 406 

assemblages because taxa distribution and abundance are largely determined by the spatio-temporal hierarchy of habitat 407 

and resource heterogeneity of the littoral zone (Heino 2008; Tolonen and Hämäläinen 2010). The less marked trend 408 

observed in diatoms response may be explained by rapid algal turnover rates (VER REFS), although a small reduction of 409 

epilithic and epipelic; increase of motile, epipsammic and epilithic taxa was observed, respectively. It seems that 410 

environmental heterogeneity, more than the habitat diversity, is crucial in controlling the assemblage composition in Azul 411 

Lake. This pattern,also described in the literature for diatom and invertebrates’ assemblages (Ptacnik et al. 2008; Shurin et 412 

al. 2007), could be explained by Connell’s intermediate disturbance hypothesis (Connell 1978). An alternative hypothesis 413 
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to explain the species richness differences across ecosystems is the environmental heterogeneity, by which more 414 

heterogeneous environments support a higher number of species (e.g. Maestre and Reynolds 2006; Oliver et al. 2010). 415 

However, the effects of the environmental heterogeneity and moderate disturbance on species richness are difficult to 416 

distinguish because both drivers frequently co-occur (Graham and Duda 2011). This might not be the case in lakes since 417 

spatial heterogeneity is normally higher in the littoral zone than in the offshore one (Lampert and Sommer 2007; Peters 418 

and Lodge 2010).  419 

In general, biological assemblages of the upper littoral are less diverse and are constituted of generalist and cosmopolitan 420 

taxa, while in the lower littoral they are more diverse and contain more specialist and relict taxa. For example, Dodson et 421 

al. (2000) reported that diatom species richness depended on the available energy in North American lakes and found that 422 

once the primary productivity increased the community responded positively in both abundance and species richness. 423 

Similarly, the peak in the chironomid taxon richness corresponded with peaks in food resources (Brodersen et al. 2001). 424 

Based in our findings, it seems that the peaks in chironomid species richness and abundance at 8.3–9.9 m depth indicate a 425 

positive association between the maximum species richness of diatoms found at 8.6–9.7 m depth and the maximum food 426 

resource diversity occurring at this lake zone. Light quality, quantity and availability are crucial, especially for diatoms 427 

allowing the co-existence of more species in the littoral zone (Moos et al. 2005). Compared to the deep offshore plain, 428 

higher species richness in mid-depth zone (Diat-1 and Chiro-1 zones) was observed in Azul Lake. This is like the results 429 

of Wang et al. (2012) for the diatoms subfossil assemblages, supporting the idea that maximum diversity of diatoms on 430 

lakes occur with low light and high nutrient availability. The same abundance pattern for the chironomid subfossil 431 

assemblages was observed before (Kurek and Cwynar 2009; Zhang et al. 2013).  432 

The formation of the descendent part of the humped shape back curve is cause by increasing dominance of diatoms 433 

species group, and by the drastic drop of chironomid head capsules. This decrease chironomid signal is well displayed in 434 

Fig. (VER), especially below the 20m depth (Chiro-2; Chiro-3 zones), with the dominance of planktonic taxa (diatoms; 435 

Diat-2;) and profundal taxa (chironomids) associated, with increasing depth. First, the species evenness (Hill’s N2), then 436 

diversity and species richness started to decrease with increasing depth. The dominance of planktonic taxa in higher 437 

depths is probably due to a higher sinking rate of heavier/larger species, lower buoyancy or reduced mobility. This effect 438 

is amplified by increased stratification and reduced mixing (Hampton et al. 2014; Reynolds 1984). For example, the 439 

larger planktonic forms of diatom such as Aulacoseira ambigua, Fragilaria crotonensis and Aulacoseira granulata, 440 

reached abundances higher than 60% only in samples below 20 m of water depth supporting this idea. The oxygen 441 

tolerant chironomid taxa like the Chironomus group and the Glyptotendipes groups, presented a higher relative abundance 442 

below 18 m of water depth, where low hypolimnetic oxygen levels are present and can reach anoxia in late summer 443 
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(Gonçalves 2008). So, lake Azul data confirm dissolved oxygen has one of the most important factors affecting 444 

chironomid distribution which limiting the presence in deeper sediments to low oxygen tolerant taxa, similar to what was 445 

observed by several authors for other lakes (Frossard et al. 2013; Luoto 2009; Luoto and Salonen 2010). 446 

Some studies highlighted that both diatoms and chironomid remains are first deposited near to where they live, that could 447 

be later transported to other areas of the lake by sediment erosion and re-deposition (Heiri 2004; Yang et al. 2009). 448 

Although they can be transported to the deepest parts of the lake by currents set up by the runoff in the margins of the 449 

lake or gravity flows generated into the lake causing sediment erosion and re-deposition, the extent to which subfossil 450 

remains are moved offshore clearly depends upon lake morphometrics (Frey 1988). These sedimentation processes have 451 

affected differently the three analysed transects in Lake Azul (see below). 452 

 453 

Sedimentation and taphonomic processes affects the spatial distribution 454 

Percentage of sand fraction is also one of the best explicative variables to understand the spatial distribution of 455 

diatom and chironomid assemblages in Lake Azul. This sediment variable has been previously reported as influencing 456 

subfossil assemblage composition (Cao et al. 2012; Eggermont et al. 2007). A higher percentage of sand fraction reveals 457 

intensive erosion from the lake shore and can provide information about the hydrodynamic intensity in lake Azul. For 458 

example, the presence of coarser grains may indicate enhanced water currents that can transport fine particles away; in 459 

contrast, the dominance of finer grain particles may be indicative of weak hydrodynamism. This is particular visible in 460 

lake Azul, where higher clastic influxes were correlated with steeper slopes, especially in delta front slopes (Figure 1). 461 

The enhanced hydrodynamic water currents, especially in Transect 3, suggested by the coarser sedimentary particles 462 

presence, would favour the occurrence of higher flow conditions. These hydrodynamic conditions were confirmed by the 463 

presence of several taxa associated to lotic systems and well represented in Azorean streams (Gonçalves et al. 2015; 464 

Raposeiro et al. 2011; Raposeiro et al. 2009; Raposeiro et al. 2013), such as Cocconeis euglypta, Eunotia exigua, 465 

Fragilaria capucina and Eolimna uthermoehlii, for the diatom assemblages, and Orthocladius sp. and Pseudosmitthia sp. 466 

in the chironomid assemblages. The change of substrate from silt to coarse sand also affects the distribution of both 467 

biological assemblages. This was evident in diatom assemblages where epilithic and epipsammic taxa, such as Geissleria 468 

decussis, Psammothidium sp. or Planothidium daui, were only found in sandy sites. With respect to the chironomids, 469 

Tanytarsini taxa showed the highest abundance on silt areas whereas Chironomini taxa were more abundant in sandy 470 

habitats. These patterns are well described in Pinder’s revision of the habitats of chironomid larvae (Pinder 1986), and 471 

could be explained by the distribution of the burrowing and tube building larvae and larvae living on the sediment 472 

surface. To avoid possible biases in the past environmental reconstructions, especially in deep stratified lakes, it is very 473 
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important to consider the origin of subfossil remains collected from the offshore (Millet et al. 2010). As discussed above, 474 

littoral sediment erosion and transport to offshore areas is a frequent mechanism occurring in clastic lakes (Brodersen and 475 

Lindegaard 1999; Heiri 2004), but the range to which organism remains are susceptible to be transported to offshore 476 

zones depends mostly on the particular processes of erosion/transport/deposition of sediments occurring in each lake. For 477 

example, Wang et al. (2012) examined the taxonomic distribution of subfossil assemblages of a deep-water lake in China 478 

and found that most organisms in deep assemblages had been transported out from the littoral zone or from the slope to 479 

offshore areas. Brodin (1986) concluded that the offshore transport of littoral remains was minimal by showing that a 480 

high proportion of remains eroded from littoral habitats seemed to deposit preferentially in the sediment accumulated 481 

close to the thermocline depth. 482 

In our study, transport of littoral subfossil diatoms and chironomids to the offshore plain of lake Azul seems to 483 

be variable between the different transects. In Transect 1 and Transect 2 sediment transport processes did not notably 484 

affect biological assemblages. Transect 1 was characterized by low clastic influx in both the platform and the platform 485 

slope, with two medium fringes of clastic accumulations in the outer platform (8–12 m deep). Terrestrial plant remains 486 

were concentrated in a narrow fringe of the littoral (3–5 m of water depth) occupied by distal alluvial deposits in the 487 

southern lake littoral area. Transect 2 presented steeper slopes, with increasing plant remains upwards towards the vent 488 

slope. Also, the most abundant terrestrial plant remains and medium clastic influx (>10% terrigenous silicate grains) was 489 

observed in the alluvial narrow NW-platform. In both transects a decreasing trend of both the ratio benthic vs planktonic 490 

diatoms and the chironomid head capsule abundance with respect to an increasing water depth was evident (Figure 2), 491 

with a maximum species diversity observed between 6 and 12 m of water depth. Diatoms characteristic of littoral 492 

habitats, such as Eolimna spp., Staurosira spp. and Pseudostaurosira spp., were present in relative high abundances in 493 

sediments above 12 m water depth (in Transect 1 platform-ramp and in Transect 2 alluvial plain and vent slop units) but 494 

rapidly decreased in deeper areas. In these two transects, biological assemblages were mostly controlled by the 495 

environmental variables. In contrast, Transect 3 shows strong indications of sediment transport processes that 496 

significantly influenced biological assemblages. The influence of sediment transport processes was more evident in the 497 

four intervals of maxima species richness of diatoms and chironomids that are related to the sand fraction particles and 498 

LOI550 between 2-16 m depth. In this transect, littoral species appear with high abundance in deeper zones (e.g. 26.4% of 499 

Pseudostaurosira brevistriata at 10 m, 13.3% of Eolimna subrotundata at 15 m or 5.6% of Staurosira elliptica at 16 m) 500 

associated with increased sand fraction, plant remains in the sediments and LOI550. The enhancement of transportation of 501 

littoral subfossils from littoral to deeper zones in Transect 3 could be related to its location in the Cerrado das Freiras 502 

delta, where sediment transportation and re-deposition is expected to be higher. The fact that Transect 3 has the steepest 503 



19 

slope of the three studied transects associated with enhanced runoff and torrential and highly erosive flow regimes that 504 

occur in the delta slope almost immediately after episodes of rainfall in Azorean lotic systems (Raposeiro et al. 2013) 505 

increase sediment transport in the NE area of the lake (along Transect 3). 506 

However, deep plain sedimentary environment has quite distinct profound assemblages in lake Azul as identified 507 

by the SIMPROF routine (Zones: Diat-2; Chiro-2; Chiro-3) compared with those in shallower areas. According to 508 

Gonçalves (2008), Lake Azul displays severe anoxia stratification during the summer period below 20 m of water depth. 509 

This corresponds with the observed separation of diatom and chironomid assemblages in the profound lake zone. In fact, 510 

the drastic change observed in the benthic vs planktonic ratio and the decrease of abundance of chironomid head capsules 511 

suggest that a high proportion of the subfossil remains are deposited directly from the water column, and arrival of 512 

particulate sediments transported from the littoral to offshore deep plain seems minimal. However, in lake Azul during the 513 

fall overturn small amounts of the benthic diatoms and chironomid head capsules are probably deposited in deep plain of 514 

the lake. The mechanism of this kind of transport is called “sediment focusing” that is a more or less continuous process 515 

of erosion of sediments from the shallow margins of the lake and re-deposition on deeper lake zones. (Davis et al. 1984). 516 

These authors found that this process of transport, which is strongest during the period of isothermal conditions, is 517 

responsible for about 40% of the total annual sediment influx to the lake bottom at a depth of 10 meters. 518 

 519 

Implications to paleolimnological studies 520 

The observed fossil assemblages’ gradient from near-shore to offshore can reflect the real living diatoms and 521 

chironomid compositions close to their living habitat, especially in areas that present a gentle slope. Although in areas 522 

with a steeper slope, the taphomomic (transport) effects have a strong effect on the spatial distribution of subfossil 523 

assemblages. The ability to determine environmental changes in lakes is a powerful tool for use in reconstructing past 524 

environmental and predicting future environmental change (such as climate change). Although, as we could see in lake 525 

Azul, complex interactions affect local assemblages’ signals in deep lakes, and therefore is crucial to increase efforts with 526 

multiple-core (spatially distributed in deep lakes) to support the interpretation of the subfossil assemblages, as well the 527 

interactions of local assemblages’ environmental variables (e.g. light, temperature, dissolved oxygen, among others) in 528 

relation to water depth. 529 

In this study, species richness, diversity and evenness follows a “hump-shaped”, with maximum richness 530 

occurring at mid depths (8-10 m depth), meaning that samples located at that depth better represented the total subfossil 531 

assemblage of lake Azul. So, based on these findings, coring in the offshore deeper zone of lake Azul will consistently 532 

highlight planktonic production, less diverse subfossil assemblages, with low concentration of chironomid head capsules 533 
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which limits the assessment of littoral and shallow habitat diversity. Also, most of the littoral samples were species-poor, 534 

with a large degree of variability among samples. These patterns have a paramount importance in paleoecological studies, 535 

since a single core taken in offshore would be unrepresentative of the local community for the whole lake basin. Several 536 

examples could be found on the literature, with opposite directions. Frey (1988) showed that littoral assemblages often 537 

show a different response to long-term changes than offshore communities, while Belle et al. (2015) showed that 538 

chironomid assemblages exhibited a uniform spatial distribution at deep lake in France. Other authors, reported the 539 

greater variation of the fossil assemblages on the offshore zone of the lake contributes to the overall prediction error 540 

associated with based inference models (Heiri et al. 2003). Nevertheless, Heiri (2004) studied subfossil assemblages of 541 

surface sediments several Norwegian lakes and concluded that, even though individual transect should great variability 542 

among each other, but the dominant taxa were present in most of the samples. 543 

Consequently, using the multi-proxy combining with multi-site approach can then be combined into regional 544 

climate and environmental reconstructions to offer additional insights. In fact, Kurek and Cwynar (2009) proposed that 545 

multiple, within-lake sampling of gradients is a powerful approach to improve the performance statistics of transfer 546 

functions and consequently to paleo reconstruction. 547 

 548 

Final remarks 549 

In deep lakes, such as lake Azul, with a variable gradient (smooth and steep), a depth greater than 10 m, and with 550 

littoral zones affected locally by intra-basin transport currents, subfossil assemblages such as diatoms and chironomids 551 

show great spatial heterogeneity along the depth gradient. This spatial heterogeneity is a product of the superposition of 552 

ecological and geological factors. To conduct paleolimnological studies based on these organisms, coring location 553 

strategy of the target lake (number and eater depth) must be established according to the objective to be achieved. For 554 

studies in which one wants to obtain a knowledge of the lake variations or to recognize the species diversity, the 555 

appropriate is to extract sedimentary sequences located in the mid depth zones, with intermediate disturbance, free of 556 

transport (soft slopes). If the objective is to know study the major ecological changes that the lake has undergone 557 

throughout its history, as it is appropriate to core the deep offshore areas. Based on the present results, the previous 558 

studies of surficial biota distribution in large, deep lakes are essential in order to make overall suggestions about ‘ideal’ 559 

coring sites for multi-proxy paleolimnological studies involving both aquatic and terrestrial organisms. 560 

 561 
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Figure 1 – A) Geographical location of the study lake, Lake Azul, São Miguel, Azores, Portugal. B) 

Location of the: i) three transects (T) in Azul Lake (dots are sampling sites, black lines with numbers are 

depths): T1 in red, T2 in black and T3 in grey; ii) main geomorphological units: 1) shallow platform-ramp 

(sand yellow); 2) platform slope (melon orange); 3) deep plain (sky blue); 4) dip slope (pea green); 5) 

alluvial littoral (light brown) 

  



 

Figure 2 - Schematic profiles of the three transects performed in Lake Azul and subfossil distribution 

biological assemblages and sediment variables along depth gradient. 

 



 

Figure 3 - PCA of all sampling sites in transect 1 (T1), transect 2 (T2) and transect 3 (T3) based on 

environmental variables showing axis 1 (PCA axis 1) and 2 (PCA axis 2). Solid vectors represent 

environmental variables, and the length of the vector is the measure of the importance of the variable. 

 



 

Figure 4 – Mean distribution (average across transects) of the most abundant (A) diatoms (>5% of 

relative abundance; only the 9 most abundant taxa are individually represented and (B) chironomids (>5% 

of relative abundance; the Head Capsule (HC) concentration is also given). 
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Figure 5 - Summary of species diversity (diatoms and chironomids) for the three transepts: Transect T1, 

red circle; Transect T2, black circle, Transect T3, grey circle. A) Taxon richness as represented by the 

total number of taxon in each sampling point; B) Taxon diversity as represented by Shannon diversity 

index based on taxa in each sample; C) Taxon evenness as represented by Hills N2 based on taxa in each 

sample 

  



 

Figure 6 – A) Group-average cluster analysis on subfossil diatom assemblages in Lake Azul surface 

sediments. The similarity profile (SIMPROF) test (p < 0.01) defines non-random zones in the analyses 

(solid lines); B) Distance-based RDA ordination of first and second fitted axes relating the physical and 

chemical variables to subfossil diatom assemblages. Vectors projections are given for the physical and 

chemical variables selected by the DistLM routine. Length and direction of the vectors represent the 

strength and direction of the relationship. 

  



 

Figure 7 – A) Group-average cluster analysis on subfossil chironomid assemblages in Lake Azul surface 

sediments. The similarity profile (SIMPROF) test (p < 0.01) defines non-random zones in the analyses 

(solid lines); B) Distance-based RDA ordination of first and second fitted axes relating the physical and 

chemical to subfossil chiromid assemblages. Vectors projections are given for the physical and chemical 

variables selected by the DistLM routine. Length and direction of the vectors represent the strength and 

direction of the relationship. 

 



Table 1 - Water temperature (T), pH, dissolved oxygen (DO), electric conductivity (EC) and light in the 
water column (data collected as part of the European Water Framework directive - Regional Monitoring 
Programme - monthly measured in situ with multiparametric field probes, during 2009 to 2012) 

Depth (m) T (ºC) DO (mg.l-1) pH EC (µS.cm-1) Light (Lux) 

1 17.4 10.1 8.1 108.6 764.3 

2 17.3 10.2 8.1 105.8 387.5 

3 17.2 10.2 8.0 103.4 261.9 

4 17.2 10.3 8.0 101.3 233.2 

5 17.1 10.2 8.0 99.7 136.3 

6 17.0 10.2 8.0 98.5 96.9 

7 16.9 10.1 7.9 97.6 53.8 

8 16.7 10.0 7.9 97.2 32.3 

9 16.6 9.8 7.9 97.2 21.5 

10 16.5 9.6 7.8 97.6 3.6 

11 16.3 9.4 7.8 98.3 0.0 

12 16.1 9.1 7.8 99.5 0.0 

13 16.0 8.9 7.7 101.1 0.0 

14 15.8 8.5 7.7 103.1 0.0 

15 15.6 8.2 7.7 105.5 0.0 

16 15.4 7.8 7.6 108.3 0.0 

17 15.2 7.4 7.6 111.5 0.0 

18 14.9 7.0 7.5 115.1 0.0 

19 14.7 6.5 7.5 119.1 0.0 

20 14.4 6.0 7.4 123.5 0.0 

21 14.2 5.4 7.4 128.3 0.0 

22 13.9 4.9 7.3 133.5 0.0 

23 13.6 4.3 7.3 139.1 0.0 

24 13.3 3.6 7.2 145.2 0.0 

25 13.0 3.0 7.2 151.6 0.0 

Average 15.7 8.0 7.7 111.6 79.7 

Max 24.8 16.7 9.6 149.0 764.3 

Min 11.7 0.2 6.5 81.0 0.0 

 

  



Table 2 - Fits to the linear and quadratic models for diatom and chironomid subfossils along the depth 
gradient 

Fossil assemblage 
 

Linear  
 

Quadratic  

  Model R2 R2
adj  Model R2 R2

ajd 
Hump 

location (m) 

Diatom 
 

 
   

   
 

Species richness 
 

 
   

   
 

Transept 1 
 

S=42.10-0.53d** 
0.37 0.34  S=32.59+1.38d-

0.07d2*** 0.61 0.58 
9.8*** 

Transept 2 
 S=46.73-

0.66d*** 
0.45 0.43  S=39.78+0.73d-

0.05d2*** 0.56 0.51 
8.1** 

Transept 3 
 S=37.21-

0.28dNS 
0.07 0.02  S=25.25+2.52d-

0.10d2** 0.43 0.37 
12.1*** 

Shannon diversity 
 

 
   

   
 

Transept 1 
 H’=2.79-

0.04d*** 
0.48 0.46  H’=2.13+0.14d-

0.01d2*** 0.80 0.78 
9.7*** 

Transept 2 
 H’=3.05-

0.04d*** 
0.59 0.57  H’=2.45+0.08d-

0.01d2*** 0.83 0.81 
8.6*** 

Transept 3 
 H’=3.05-

0.05d*** 
0.80 0.78  H’=2.22+0.12d-

0.01d2*** 0.80 0.78 
9.5*** 

Evenness Hill’s N2 
 

 
   

   
 

Transept 1 
 N2=8.42-

0.18d** 0.29 0.26 
 N2=4.46+0.62d-

0.03d2*** 0.60 0.56 
10.5*** 

Transept 2 
 N2=9.54-

0.21d** 0.41 0.38 
 N2=5.32 +0.64d-

0.03d2*** 0.76 0.74 
10.2*** 

Transept 3 
 N2=10.59-

0.26d** 
0.47 0.45  N2=6.47+0.56d-

0.03d2*** 0.72 0.69 
9.2*** 

Chironomid 
 

 
   

   
 

Taxon richness 
 

 
   

   
 

Transept 1 
 

S=6.72-0.19d*** 
0.53 0.51  

S=4.54+0.31d-0.02d2*** 0.68 0.65 
7.7*** 

Transept 2 
 

S=6.33-0.18d** 
0.34 0.31  

S=3.85+0.32d-0.02d2** 0.48 0.43 
8.7** 

Transept 3 
 

S=7.47-0.21d** 
0.35 0.32  

S=3.03+0.68d-0.03d2*** 0.67 0.64 
10.3*** 

Rarefied taxon richness 
(RS=5) 

 
 

   
   

 

Transept 1 
 

S=3.06-0.04d*** 
0.37 0.35  

S=2.54+0.06d-0.00d2*** 0.51 0.46 
8.3** 

Transept 2 
 

S=3.34-0.07d** 
0.38 0.35  

S=2.43+0.11d-0.01d2** 0.52 0.48 
8.4** 

Transept 3 
 

S=4.14-0.10d** 
0.53 0.51  

S=3.13+0.10d-0.01d2*** 0.64 0.61 
6.8*** 

Shannon diversity 
 

 
   

   
 

Transept 1 
 H’=1.53-

0.04d*** 
0.51 0.50  H’=1.02+0.06d-

0.01d2*** 0.70 0.67 
8.3*** 

Transept 2 
 H’=1.61-

0.05d*** 
0.44 0.41  H’=0.94+0.09d-

0.01d2*** 0.60 0.57 
8.5*** 

Transept 3 
 H’=1.87-

0.05d*** 
0.40 0.37  H’=0.85+0.15d-

0.01d2*** 0.69 0.66 
9.9*** 

Evenness Hill’s N2 
 

 
   

   
 

Transept 1 
 N2=3.05-

0.05d** 0.37 0.34 
 N2=2.39+0.08d-

0.01d2*** 0.50 0.45 
8.3** 

Transept 2 
 N2=3.51-

0.08d** 0.33 0.31 
 N2=2.51+0.12d-

0.01d2** 0.44 0.39 
8.0** 

Transept 3 
 N2=4.57-

0.11d** 
0.27 0.24  N2=2.00+0.41d-

0.02d2*** 0.58 0.54 
10.6*** 

 

  



Table 3 - Summary of DistLM procedure for physical and chemical variables for 

subfossil diatoms and chironomids.  

 Diatoms  Chironomids 

Variable SS (trace) Pseudo-F P Prop.  SS(trace) Pseudo-F P Prop. 

Plant Remains d 2307.9 7.0 0.001 0.17  10407 8.6 0.001 0.11 

Sand fraction c,d 1244.9 14.1 0.002 0.09  7580 6.0 0.001 0.08 

LOI 550 d 3434.0 23.3 0.001 0.25  12698 10.7 0.001 0.14 

Depth c,d 4616.5 35.5 0.001 0.34  16438 14.6 0.001 0.18 

Light c,d 880.1 4.8 0.006 0.07   2729 2.0 0.06 0.03 

Variables selected by Step-wise procedure for: d diatoms and c chironomids 

  



Table 4 – ANOSIM analysis for subfossil diatom and chironomid assemblages in Azul lake results when 
testing for differences between transects (Significance *p<5% and **p<1%)  

 Diatom assemblages Chironomid assemblages 

Tests R-value Significant level % R-value Significant level % 

Global 0.101 0.1** 0.131 0.1** 

 

Transect 1 vs Transect 2 0.167 0.3** 0.167 0.2** 

Transect 1 vs Transect 3 0.062 0.3** 0.062 2.4* 

Transect 2 vs Transect 3 0.17 1.5* 0.17 0.1** 

 

 


