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Abstract5

We present a robust and highly efficient dimension reduction Shannon-wavelet method for6

computing European option prices and hedging parameters under a general jump-diffusion7

model with square-root stochastic variance and multi-factor Gaussian interest rates. Within8

a dimension reduction framework, the option price can be expressed as a two-dimensional9

integral that involves only (i) the value of the variance at the terminal time, and (ii) the10

time-integrated variance process conditional on this value. A Shannon wavelet inverse Fourier11

technique is developed to approximate the conditional density of the time-integrated variance12

process. Furthermore, thanks to the excellent approximation properties of Shannon wavelets,13

the overall pricing procedure is reduced to the evaluation of just a single integral that in-14

volves only the density of the terminal variance value. This single integral can be accurately15

evaluated, since the density of the variance at the terminal time is known in closed-form.16

We develop sharp approximation error bounds for the option price and hedging parameters.17

Numerical experiments confirm the robustness and impressive efficiency of the method.18
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1 Introduction21

Jump-diffusion models with stochastic variance are very popular in option pricing, due to their22

ability to capture, in both short and long maturities, the two important empirical phenomena,23

namely (i) the leptokurtic features of the asset return distribution, and (ii) the observed volatility24

smile/skew. See, Alizadeh et al. (2002); Andersen et al. (2002); Bakshi et al. (1997); Bates (1996),25

among many others. In addition, from a risk management point of view, jump-diffusion models26

are useful as they permit us to explore the effects of severe market crashes on the underlying asset27

price. Recently, extensions to these models to include one-factor stochastic interest rates, such as28
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number 2014SGR-1307).
†School of Mathematics and Physics, The University of Queensland, St Lucia, Brisbane 4072, Australia, email:

duyminh.dang@uq.edu.au
‡Universitat de Barcelona School of Economics, Faculty of Economics and Business, University of Barcelona,

John M. Keynes 1-11, 08034 Barcelona, Spain

email: luis.ortiz-gracia@ub.edu

1



2 Duy-Minh Dang and Luis Ortiz-Gracia

the Hull-White (Hull and White, 1993) and the square-root CIR (Cox et al., 1985a) dynamics, have29

become more and more common in the finance literature.1 This is due to increasing popularity of30

long-dated products, as well as risk-management purposes. For example, see Ahlip and Rutkowski31

(2013); Cozma and Reisinger (2016); Grzelak and Oosterlee (2011, 2012b); Haastrecht and Pelsser32

(2011); Haentjens and in ’t Hout (2012).33

Whilst the use of one-factor interest rate dynamics has been popular in option pricing, a major34

limitation of these models is their inability to accurately capture de-correlations, i.e. non-perfect35

correlations, between rates for different maturities. In other words, under a one-factor interest36

rate model, a shock to the interest rate curve at any given time instant is transmitted equally37

through all maturities. This property of one-factor interest rate models is not only unrealistic,38

since interest rates are known to exhibit some de-correlation, but also undesirable from a risk-39

management standpoint (Brigo and Mercurio, 2006; Jamshidian and Zhu, 1997; Rebonato, 1998).40

It is suggested in some of the standard text books, such as Brigo and Mercurio (2006), that,41

in order to sufficiently capture de-correlations in the rates, multi-factor interest rate dynamics42

should be used. A number of empirical studies of the whole yield curve using principal component43

analysis also supports the use of multi-factor interest rate dynamics. As examples, in the analysis44

in Jamshidian and Zhu (1997), where JPY, USD and DEM data are considered, one principal45

component explains from 68% to 76% of the total variation, whereas three principal components46

can explain from 93% to 94%. In the analysis in Rebonato (1998) which uses the UK data, one47

component explains 92% of the total variance, whereas two components can explain 99.1% of the48

total variance.49

While from the modelling and risk-management perspectives, jump-diffusion models with50

stochastic variance and multi-factor interest rates provide realistic dynamics for the underlying,51

from the computational viewpoint, these models pose a number of significant challenges. These52

challenges are high-dimensionality, and jumps in the underlying asset price, as well as the model’s53

non-affinity, due to non-trivial correlations between the underlying asset price and its variance54

(Ahlip and Rutkowski, 2013; Grzelak and Oosterlee, 2012a,b).2 The first hurdle in using such a55

general model is calibration, which typically requires a very efficient pricing method for European56

options. Broadly speaking, existing computational methods in finance can be classified into three57

major approaches, namely Monte Carlo (MC), partial differential equation (PDE), and numerical58

integration, linked together via the famous Feynman-Kac theorem. It appears that both the MC59

and PDE computational approaches are neither feasible nor sufficiently fast for calibration of the60

type of the afore-mentioned general model.61

State-of-the-art numerical integration based methods, such as the COS method of Fang and62

Oosterlee (2008) or the Shannon-wavelet method of Ortiz-Gracia and Oosterlee (2016), if appli-63

cable, are very fast, with the Shannon-wavelet method being significantly more robust. These64

methods are originally developed upon the availability of a closed-form expression for the charac-65

teristic function of the underlying process. For a number of processes, this characteristic function66

is available, due to the well-known Lévy-Khinchine theorem for Lévy processes or by other means,67

such as solving an associated PDE (Duffie et al., 2000; Heston, 1993). As a characteristic func-68

tion is the Fourier transform of the associated density, knowing a closed-form expression for the69

characteristic function of the underlying process allows us to recover, via an inversion process,70

1 A stochastic factor is usually understood as a source of randomness which is typically modelled by a Brownian

motion.
2 Having a non-trivial correlation between the underlying asset price and its variance is important for capturing

the skewness in the underlying asset price.
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the coefficients of the projection of the density function onto the respective set of basis functions.71

These coefficients can then be used in the pricing integral that involves the density of the un-72

derlying process. However, such a closed-form expression for the characteristic function of the73

underlying process is difficult, perhaps impossible, to obtain for many interesting and realistic74

models. This also holds for the afore-mentioned type of general models, due to its non-affinity, and75

hence the approach to find the characteristic function of the underlying via solving an associated76

PDE of (Duffie et al., 2000) is not applicable.77

In this paper, we extend the applicabilities of these state-of-the-art numerical integration78

methods to a general jump-diffusion model having square-root stochastic variance and multi-factor79

Gaussian interest rates. We focus on the Shannon wavelet method of Ortiz-Gracia and Oosterlee80

(2016), due to its established robustness. We show that, within a dimension reduction framework,81

this Shannon wavelet method can be adapted for effective use with this type of models. Due to82

the very impressive efficiency of the proposed Shannon wavelet method under this general model,83

we solely devote this paper to European-style options. Its application to tackle early-exercise and84

barrier features under this model will be covered in a follow-up paper.85

To avoid difficulties in obtaining a closed-form expression for the characteristic function of the86

underlying process under the considered general model, the proposed Shannon wavelet method is87

developed within the dimension reduction framework put forward in Dang et al. (2015b, 2017).88

This framework involves (i) applying the conditional MC technique to the variance factor, and89

(ii) removing completely the noise in the interest rate factors via exact integrations. Under90

this framework, the option price and hedging parameters can be expressed as a two-dimensional91

integral that involves only (i) the value of the variance at the terminal time, and (ii) the time-92

integrated variance process conditional on this value. There are several novel computational93

aspects and significant efficiency benefits that are central to the evaluation of this two-dimensional94

integral via Shannon-wavelets.95

• The recovery of the density of the conditional time-integrated variance process from its96

known conditional characteristic function is performed by means of the highly efficient97

Shannon wavelet inverse Fourier technique, referred to as SWIFT, developed in Ortiz-Gracia98

and Oosterlee (2016). This approach of approximating the density of the conditional time-99

integrated variance process is much more computationally efficient than existing methods.100

For example, in the technique proposed in Broadie and Kaya (2006), the cumulative dis-101

tribution function is first recovered, and a root-finding method is then applied to generate102

samples of the density, and hence resulting in a great computational effort.103

• Once the conditional density is recovered by the SWIFT technique, the initial two-dimensional104

integral can be further reduced to a one-dimensional integral that involves only the known105

density of the terminal value of the variance. This is due to the fact that, as stated in106

Stenger (2011), the integral of the product of a certain function and a Shannon basis can107

be accurately approximated just by the function evaluated at a certain point, provided that108

the modulus of its Fourier transform decays rapidly, which is the case considered in our109

work.110

• A major computational advantage of the proposed method is that, regardless of the number111

of stochastic factors in the models, the method only relies on the inversion of the known112

characteristic function of the conditional time-integrated variance process. This is obviously113

an advantage over numerical integration methods that require a known closed-form expres-114
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sion for the characteristic function of the underlying process, such as Fast Fourier Transform115

(FFT) based methods in Pillay and O’Hara (2011); Zhang and Wang (2013). Furthermore,116

with Shannon wavelets, we can develop sharp approximation error bounds for the option117

price. It is not clear how this can be achieved by other techniques.118

The numerical experiments confirm the robustness and impressive efficiency of the proposed119

pricing technique, while the computational complexity remains independent of the number of120

stochastic factors in the model. In about 0.05 seconds on a personal computer, the method can121

compute the price of a European option under a 6-factor jump-diffusion model within 0.01%122

relative error of a benchmark solution obtained via a multi-level MC method.123

The remainder of the paper is organized as follows. We start by introducing a general pric-124

ing model and reviewing the dimension reduction framework in Sections 2 and 3, respectively.125

In Section 4, we discuss in detail the dimension reduction SWIFT, herein after referred to as126

drSWIFT. Section 5 develops error bounds for the option price. In Section 6, we present sev-127

eral numerical results to illustrate the robustness, error bounds, and efficiency of the drSWIFT128

method. Section 7 concludes the paper and outlines possible future work.129

2 A general jump-diffusion model130

We consider an (international) economy consisting of c + 1 markets (currencies), c ∈ {0, 1},
indexed by i ∈ {d, f}, where “d” stands for the domestic market (Dang et al., 2015b). We

consider a complete probability space (Ω,F , {Ft}t≥0,Q), with sample space Ω, sigma-algebra F ,

filtration {Ft}t≥0, and “d” risk-neutral measure Q defined on F . We denote by E the expectation

taken under Q measure. Let the underlying asset S(t), its instantaneous variance ν(t), and the

two short rates rd(t) and rf (t) be governed by the following SDEs under the measure Q:

dS(t)

S(t−)
= (rd(t)− c rf (t)− λδ) dt+

√
ν(t) dWs(t) + dJ(t) , (2.1a)

rd(t) =

n∑
i=1

Xi(t) + γd(t),

with dXi(t) = −κdi(t)Xi(t) dt+ σdi(t) dWdi(t) , Xi(0) = 0, (2.1b)

rf (t) =

l∑
i=1

Yi(t) + γf (t),

with dYi(t) = −κfi(t)Yi(t) dt+ σfi(t) dWfi(t)− ρs,fiσfi(t)
√
ν(t) dt , Yi(0) = 0, (2.1c)

dν(t) = κν (ν̄ − ν(t)) dt+ σν
√
ν(t) dWν(t) . (2.1d)

We work under the following assumptions for model (2.1).131

• Processes Ws(t) and Wν(t) are correlated Brownian motions (BMs) with a constant correla-132

tion coefficient ρ(·)(·) ∈ [−1, 1]. So are processes Wdi(t), i = 1, . . . , n, and Wfi(t), i = 1, . . . , l,133

with a constant correlation between each BM pair.134

• Processes Ws(t) and Wν(t) are independent of processes Wdi(t), i = 1, . . . , n, as well as of135

processes Wfi(t), i = 1, . . . , l.136

• The process J(t) =
∑π(t)

j=1 (xj − 1) is a compound Poisson process. Specifically, π(t) is137

a Poisson process with a constant finite jump intensity λ > 0, and xj , j = 1, 2, . . ., are138
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independent and identically distributed (i.i.d.) positive random variables representing the139

jump amplitude, and having the density χ(·).140

Several popular cases for χ(·) are (i) the log-normal distribution given in Merton (1976),141

and (ii) the log-double-exponential distribution given in Kou (2002). When a jump occurs142

at time t, we have S(t) = xS(t−), where t− is the instant of time just before the time t. In143

(2.1a), δ = E[x−1] represents the expected percentage change in the underlying asset price.144

• The Poisson process π(t), and the sequence of random variables {xj}∞j=1 are mutually inde-145

pendent, as well as independent of the BMs Ws(t), Wdi(t), i = 1, . . . , n, Wfi(t), i = 1, . . . , l,146

and Wν(t).147

• The functions κdi(t), σdi(t), i = 1, . . . , n, n ≥ 1, κfi(t), and σfi(t), i = 1, . . . , l, l ≥ 1, are148

strictly positive deterministic functions of t, with κdi(t), and κfi(t) being the positive mean-149

reversion rates. The functions γd(t) and γf (t) are also deterministic, and they, respectively,150

capture the “d” and “f” current term structures. They are defined as151

γi(t) = ri(0) e−κi1 t + κi1

∫ t

0
e−κi1 (t−s) θi(s) ds , i∈{d, f} , (2.2)

where θi are deterministic, and represent the interest rates’ mean levels. In addition, κν , σν152

and ν̄ are also positive constants.153

The constant c takes on the value of either zero or one, and essentially serves as an on/off154

switch of the “f” economy. That is, by setting c = 0, the model (2.1) reduces to an option155

pricing model in a single market. It can be used for stock options, in which case, S(t) denotes the156

underlying stock price. When c = 1, the model (2.1) becomes a foreign exchange (FX) model,157

with indexes “d” and “f” respectively denoting the domestic and foreign markets (currencies). In158

this case, S(t) denotes the spot FX rate, which is defined as the number of units of “d” currency159

per one unit of “f” currency.160

We emphasize the generality of the model. A number of widely used pricing models are a161

special case of (2.1). For example, for stock options, (2.1) covers the Heston model due to Heston162

(1993), its jump-extension, or the Bates model (Bates, 1996), as well as the popular (3D) Heston-163

Hull-White (HHW) equity model used in Grzelak and Oosterlee (2012b); Haentjens and in ’t Hout164

(2012). For FX options, the widely used four-factor model with stochastic volatility and one-factor165

Gaussian interest rates is also a special case of (2.1) (see, for example, Grzelak and Oosterlee166

(2011, 2012a); Haastrecht et al. (2009); Haastrecht and Pelsser (2011)). Furthermore, this model167

is highly suitable for long-dated products, such as Power-Reverse Dual-Currency (PRDC) swaps168

(Sippel and Ohkoshi, 2002), a very popular cross-currency exotic contract, because the prices of169

these complex FX products are very sensitive to the volatility skews or smiles (Dang et al., 2014,170

2015a; Piterbarg, 2006).171

3 Review of the dimension reduction framework172

We denote by b = n + 2 + c l, where c ∈ {0, 1}, the total number of stochastic factors in the173

model. To decompose the (correlated) BM processes into a linear combination of independent174

BM processes, we apply the standard decomposition procedure involving matrix A ≡ [aij ] ∈ Rb×b175

obtained by a Cholesky factorization. Here, A is an upper triangular matrix with ab,b = 1. The176

normalization condition on the correlation matrix requires
∑b

j=1 a
2
i,j = 1 for each row. Under the177
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afore-mentioned independency assumptions between S(t), as well as ν(t), and rd(t) and rf (t), we178

have that a1,j = aj,b = 0, j = 2, . . . , b− 1.179

We denote by

V (S(t), t, ·) ≡ V (S(t), t, rd(t), rf (t), ν(t))

the price at time t of a plain-vanilla European option under the model (2.1) with payoff Φ(S(T ))180

We further assume that the payoff Φ(x) is a continuous function of its argument having at most181

polynomial (sub-exponential) growth. This condition is satisfied in the case of call and put182

options, where Φ(S(T )) = max(S(T ) − K, 0) and Φ(S(T )) = max(K − S(T ), 0), respectively.183

Here, K is the strike of the option.184

In the following, we briefly review the main steps of the dimension reduction approach for185

the jump-diffusion model (2.1). The reader is referred to Dang et al. (2015b, 2017) for detailed186

discussions of the approach and relevant proofs.187

• Step 1: Using standard arbitrage theory (Delbaen and Schachermayer, 1994) and the “tower188

property” of the conditional expectation, the option price under our general model can be189

expressed as a two-level nested expectation, with the inner expectation being conditioned190

on all Brownian motions, except the one associated with the underlying asset.191

• Step 2: Under certain regularity conditions, which are satisfied in the present case, by the192

Feynman-Kac theorem for jump-diffusion processes (Cont and Tankov, 2004), the inner193

expectation in Step 1 can be shown to be equal to the unique solution to an associated194

(conditional) Partial Integro-Differential Equation (PIDE) (Dang et al., 2017)[Lemma 3.1].195

• Step 3: To solve the conditional PIDE, we first transform it into the Fourier space to obtain196

an ordinary differential equation in terms of a transformed option price. This ordinary197

differential equation can then be easily solved in closed-form from maturity t = T to time198

t = 0 to obtain the transformed solution of the conditional PIDE at time t = 0. This closed-199

form solution contains the term exp(λTΓ(ξ)), which arises from the jump component, where200

Γ(ξ) is the characteristic function of ln(x), i.e. the log of the jump amplitude x. This leaves201

only an outer expectation over the Brownian motion associated with the variance to be202

approximated by numerical methods.203

Another crucial step in our approach is to remove the variances associated with all the204

interest rate factors when evaluating the (outer) expectation. This step is achieved by205

applying iterated conditioning on the Brownian motion associated with the variance factor,206

and solving in closed-form for the expectations of expressions of the interest rates conditioned207

on this Brownian motion208

• Step 4: The final step in the dimension reduction framework is to inverse the result Step209

3 to obtain the option price. This step can be achieved by the convolution theorem in210

combination with expanding the term exp(λTΓ(ξ)) in a Taylor series.211

In the case that the log of the jump amplitude ln(x) ∼ Normal(µ̃, σ̃2) (Merton, 1976), the Euro-212

pean call option value is given by (Dang et al., 2017)[Corollary 3.2]213

V (S(0), 0, ·) = E

 ∞∑
j=0

(λT )j

j!

{
exp

(
jµ̃+

jσ̃2

2

)
S(0)e(G+F+H)N (d1,j)−KeHN (d2,j)

} , (3.1)
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where214

d1,j =
ln
(
S(0)
K

)
+ jµ̃+ F√

2
(
G+ jσ̃2

2

) +

√
2

(
G+

jσ̃2

2

)
, d2,j = d1,j −

√
2

(
G+

jσ̃2

2

)
. (3.2)

Here, the coefficients G, F , and H, are given by

G =
a2

11

2

∫ T

0
ν(t) dt+

1

2

b−1∑
k=2

∫ T

0

( n∑
j=1

a(j+1),k βdj (t)− c
l∑

j=1

a(j+n+1),k βfj (t)

)2

dt, (3.3a)

F = −1

2

∫ T

0
ν(t) dt+

∫ T

0
(γd(t)− cγf (t)) dt+ a1,b

∫ T

0

√
ν(t) dWν(t)− λδT

−
b−1∑
k=2

∫ T

0

( n∑
j=1

a(j+1),k βdj (t)

( n∑
j=1

a(j+1),k βdj (t)− c
l∑

j=1

a(j+n+1),k βfj (t)

))
dt (3.3b)

H = −
∫ T

0
γd(t) dt+

1

2

b−1∑
k=2

∫ T

0

 n∑
j=1

a(j+1),kβdj (t)

2

dt− λT, (3.3c)

In (3.3a)-(3.3c), βdi(t), i = 1, . . . , n, and βfi(t), i = 1, . . . , l, are defined as215

βdi(t) = σdi(t)

∫ T

t
e−
∫ t′
t κdi (t

′′) dt′′ dt′, βfi(t) = σfi(t)

∫ T

t
e−
∫ t′
t κfi (t

′′) dt′′ dt′ . (3.4)

We emphasize that quantity H is deterministic, while G and F are stochastic, but depend on the216

variance factor. The variance coming from the rd’s BMs and the rf ’s BMs, if any, is completely217

removed from the computation. The Delta of the option is (Dang et al., 2017)[Corollary 4.2]218

∂V

∂S

∣∣∣∣
(S(0),0,·)

= E

 ∞∑
j=0

(λT )j

j!

{
exp

(
jµ̃+

jσ̃2

2
+G+ F +H

)
N (d1,j)

} , (3.5)

where d1,j and d2,j are defined in (3.2). A formula of the Gamma of the option can be found219

in (Dang et al., 2017)[Corollary 4.2]. See Dang et al. (2017)[Corrolary 3.1] for the results of the220

double-exponential distribution (Kou, 2002). The formulas for the pure-diffusion model can be221

easily obtained by setting the jump intensity λ = 0 and using only j = 0 in (3.1)-(3.5) (also see222

(Dang et al., 2015b)). In our subsequently analysis, we focus on the price of the option under the223

normal jump case (Merton, 1976). The analysis for the option hedging parameters are the same,224

and hence omitted.225

4 Dimension reduction Shannon wavelet method226

Examination of (3.3) shows thatG depends only on the time-integrated variance process
∫ T

0 ν(t)dt,227

while F depends on both
∫ T

0 ν(t)dt and
∫ T

0

√
ν(t) dWν(t). We note from (2.1d) that228 ∫ T

0

√
ν(t) dWν(t) =

ν(T )− ν(0)− κν ν̄T + κν
∫ T

0 ν(t)dt

σν
.

As a result, F can be expressed in terms of
∫ T

0 ν(t)dt and the terminal value ν(T ) of the variance.229

It follows from (3.1) that the option value can be written as230

V (S(0), 0, ·) = E
[
g

(∫ T

0
ν(t)dt, ν(T )

)]
= E

[
E

[
g

(∫ T

0
ν(t)dt, ν(T )

) ∣∣∣∣∣ν(T )

]]
, (4.1)
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for a function g(·, ·) that may take different forms, depending on the model under investigation.231

Here, the second equality, which comes from the “tower property” of the conditional expectation,232

allows us to take advantage of the known characteristic function of the time-integrated variance233

process conditional on the terminal value of the variance ν(T ).234

Let f(·|y) ≡ f(·; ν(T ) = y) denote the density of the time-integrated variance process condi-

tional on the terminal value of the variance ν(T ) being y, where y ∈ [0, y0] for a y0 > 0. This

process can be roughly approximated by a central discretization∫ T

0
ν(t)dt ≈ T

2
(ν(0) + ν(T )) .

Taking this into account, without loss of generality, we assume that the conditional density235

function f(·|y) is supported on the interval [0, T ]. It is worth remarking that the SWIFT method236

employed to recover the density is capable to compute the mass underneath the curve as a237

byproduct, and therefore, this interval can be adaptively modified, if necessary. From (4.1), the238

option price can be represented by the following double integral239

V (S(0), 0, ·) =

∫ y0

0

[∫ T

0
g(x, y)f(x|y) dx

]
w(y) dy . (4.2)

Here, w(·) is the density of the terminal value of the variance ν(T ), which is known in closed-form240

(Cox et al., 1985b)241

w(y) := ζe−ζ(ν(0)e−κνT+y) ·
(

y

ν(0)e−κνT

) q
2

· Iq
(

2ζe−
1
2
κνT
√
ν(0)y

)
, (4.3)

where q := 2κν ν̄
σ2
ν
− 1, ζ := 2κν

(1−e−κνT )σ2
ν

and Iq(x) is the modified Bessel function of the first kind242

with order q.243

To evaluate the integral (4.2), the conditional density f(·|y), y ∈ [0, y0], first needs to be244

approximated, since it is not known in closed-form. Then, a quadrature rule can be applied to245

approximate the price or the hedging parameters of the option. In our approach, we recover246

the conditional density f(·|y) from its Fourier transform, i.e. the characteristic function of the247

time-integrated variance conditional on the terminal value, denoted by Ψ(ξ|ν(T )), for which a248

closed-form is (Broadie and Kaya, 2006)249

Ψ (ξ|y) = E

[
exp

(
−iξ

∫ T

0
ν(t)dt

) ∣∣∣∣∣ν(T ) = y, ν(0)

]

=

Iq

(√
ν(T )ν(0) 4γ(ξ)e−

1
2 γ(ξ)T

σ2
ν(1−e−γ(ξ)T )

)
Iq

(√
ν(T )ν(0) 4κνe

− 1
2κνT

σ2
ν(1−e−κνT )

) × γ(ξ)e−
1
2

(γ(ξ)−κν)T (1− e−κνT )

κν(1− e−γ(ξ)T )

× exp

(
ν(0) + ν(T )

σ2
ν

[
κν(1 + e−κνT )

1− e−κνT
− γ(ξ)(1 + e−γ(ξ)T )

1− e−γ(ξ)T

])
.

(4.4)

Here, γ(ξ) :=
√
κ2
ν − 2iσ2

νξ. This step can be very efficiently achieved by means of the SWIFT250

technique (Ortiz-Gracia and Oosterlee, 2016). We then show that the double integral (4.2) can251

be further simplified to a single integral, thanks to certain local approximation properties of the252

Shannon wavelets. Furthermore, we can also develop sharp approximation error bound for the253

option price. In the following subsection, we first present a brief review on Shannon wavelets and254

the SWIFT method, and then discuss the dimension reduction SWIFT (drSWIFT) method in255

detail.256
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4.1 Shannon wavelets and SWIFT257

4.1.1 Multi-resolution analysis and Shannon wavelets258

Consider the space of square-integrable functions, denoted by L2(R), where259

L2(R) =

{
f :

∫ +∞

−∞
|f(x)|2 dx <∞

}
.

A general structure for wavelets in L2(R) is called a multi-resolution analysis. We start with a260

family of closed nested subspaces in L2(R)261

. . . ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . . ,

where262 ⋂
m∈Z
Vm = {0} ,

⋃
m∈Z
Vm = L2(R) ,

and263

f(x) ∈ Vm ⇐⇒ f(2x) ∈ Vm+1 .

If these conditions are met, then there exists a function ϕ ∈ V0 that generates an orthonormal264

basis, denoted by {ϕm,k}k∈Z, for each Vm subspace, where265

ϕm,k(x) = 2m/2ϕ(2mx− k) .

The function ϕ(·) is usually referred to as the scaling function or father wavelet.266

For any f ∈ L2(R), a projection map of L2(R) onto Vm, denoted by Pm : L2(R) → Vm, is267

defined by means of268

Pmf(x) =
∑
k∈Z

cm,kϕm,k(x) . (4.5)

Here,269

cm,k = 〈f, ϕm,k〉 , (4.6)

where < f, g >=
∫
R f(x)g(x) dx denotes the inner product in L2 (R), with g(·) being the complex270

conjugation of g(·), and Pmf converges to f in L2 (R), i.e. ‖f − Pmf‖2 → 0, when m→ +∞.271

Considering higher m values (i.e. when more terms are used), the accuracy of the truncated272

series representation of the function f improves. As opposed to Fourier series, a key fact regard-273

ing the use of wavelets is that wavelets can be moved (by means of the k value), stretched or274

compressed (by means of the m value) to accurately represent the local properties of a function.275

In this paper, we employ Shannon wavelets (Cattani, 2008). Shannon wavelets represent the276

real part of the so-called harmonic wavelets. They have a slow decay in the time domain but277

a very sharp compact support in the frequency, i.e. Fourier, domain. A set of Shannon scaling278

functions ϕm,k(·) in the subspace Vm is defined as279

ϕm,k(x) = 2m/2
sin(π(2mx− k))

π(2mx− k)
= 2m/2ϕ(2mx− k) , k ∈ Z , (4.7)

where280

ϕ(x) = sinc(x) =


sin(πx)

πx
if x 6= 0,

1 if x = 0,
(4.8)

is the basic (Shannon) scaling function. We note that the Fourier transform of ϕm,k(x) can easily281

be obtained.282
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4.1.2 SWIFT method283

In this subsection, we present the SWIFT method which can be used to effectively invert the284

function Ψ(ξ|y), given in (4.4), to obtain an approximation to the conditional density function285

f(·|y) to be used in (4.2).286

We assume that f(·|y) ∈ L2 (R), and we consider its expansion in terms of the Shannon scaling287

functions at the level of resolution m. Our aim is to recover the coefficients of this approximation288

from the Fourier transform of the function f(·|y) which, as mentioned before, is known in closed-289

form (4.4). Following the wavelets theory290

f(x|y) ≈ Pmf(x|y) =
∑
k∈Z

cm,k(y)ϕm,k(x) , (4.9)

In our context, the infinite series in (4.9) can be well-approximated by a finite summation without291

loss of density mass, since the function f is supported on the finite interval [0, T ]. More specifically,292

we have the following approximation293

Pmf(x|y) ≈ fm(x|y) :=

d2mT e∑
k=0

cm,k(y)ϕm,k(x) , (4.10)

where dxe denotes the smallest integer greater than or equal to x.294

The next step is the computation of the coefficients in (4.10). Recalling (4.6) and (4.7), we295

have that296

cm,k(y) = 〈f(·|y), ϕm,k〉 =

∫
R
f(x|y)ϕm,k(x) dx = 2m/2

∫
R
f(x|y)ϕ(2mx− k)dx . (4.11)

Using the classical Vieta’s formula (Gearhart and Shultz, 1990), the cardinal sinus can be ex-297

pressed as the following infinite product298

ϕ(t) = sinc(t) =
+∞∏
j=1

cos

(
πt

2j

)
. (4.12)

If we truncate the infinite product (4.12) to a finite product with a total of J terms, then, thanks299

to the cosine product-to-sum identity, we have300

J∏
j=1

cos

(
πt

2j

)
=

1

2J−1

2J−1∑
j=1

cos

(
2j − 1

2J
πt

)
. (4.13)

The parameter J plays an important role in the efficiency of the method, and hereinafter is301

referred to as the truncation parameter. By (4.12) and (4.13) the ϕ(t) = sinc(·) function can thus302

be approximated as303

ϕ(t) = sinc(t) ≈ sinc∗(t) :=
1

2J−1

2J−1∑
j=1

cos

(
2j − 1

2J
πt

)
. (4.14)

Replacing the function ϕ(·) in (4.11) by the approximation (4.14) gives the following approxima-304

tion for coefficients cm,k(y):305

cm,k(y) ≈ c∗m,k(y) :=
2m/2

2J−1

2J−1∑
j=1

∫
R
f(x|y) cos

(
2j − 1

2J
π(2mx− k)

)
dx . (4.15)
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Next, by taking into account that any function f with Fourier transform f̂ satisfies <
(
f̂(ξ)

)
=∫

R f(x) cos(ξx) dx, where <(z) denotes the real part of z, and observing that

f̂(ξ)e
ikπ 2j−1

2J =

∫
R
e
−i
(
ξx− kπ(2j−1)

2J

)
f(x)dx ,

we can simplify (4.15) to306

cm,k(y) ≈ c∗m,k(y) =
2m/2

2J−1

2J−1∑
j=1

<
[
Ψ

(
(2j − 1)π2m

2J

∣∣∣∣y) e ikπ(2j−1)

2J

]
. (4.16)

Putting everything together gives the following approximation to f(x|y):307

f(x|y) ≈ f∗m(x|y) :=

d2mT e∑
k=0

c∗m,k(y)ϕm,k(x) , (4.17)

where ϕm,k(x) and c∗m,k(y) are defined in (4.7) and (4.16), respectively.308

4.2 Option pricing with drSWIFT309

For a fixed level of resolution m and a fixed truncation parameter J used in (4.13), replacing the310

conditional density function f(·|y) in (4.2) by the finite approximation f∗m(·|y) in (4.17), gives us311

the approximation V1(S(0), 0, ·) to the option price V (S(0), 0, ·)312

V (S(0), 0, ·) ≈ V1(S(0), 0, ·) :=

∫ y0

0

d2mT e∑
k=0

c∗m,k(y)

∫ T

0
g(x, y)ϕm,k(x) dx

w(y) dy , (4.18)

with coefficients c∗m,k defined in (4.16).313

It turns out that, thanks to certain local approximation properties of wavelets, the expression314

(4.18) can be further simplified to a single integral by using a highly accurate approximation for315

the inner integral terms. To this end, we recall the following theorem in Stenger (2011)316

Theorem 4.1 (Theorem 1.3.2 of Stenger (2011)). Let f be defined on R, and let its Fourier317

transform, denoted by f̂ , be such that, for some positive constant d318

|f̂(ξ)| = O
(
e−d|ξ|

)
, ξ → ±∞ . (4.19)

Then, as a→ 0 ,
1

a

∫
R
f(y)S(k, a)(y) dy − f(ka) = O

(
e−

πd
a

)
,

where S(k, a)(y) := sinc
(y
a − k

)
.319

To apply this theorem to function g
(∫ T

0 ν(t)dt, ν(T )
)

, we need to check whether its Fourier320

transform satisfies the condition (4.19). It turns out that the Fourier transform of g(·, ·) is the321

term322

Φ̂(ξ) exp
(
−Gξ2 + iFξ +H + λTΓ(ξ)

)
,

where Φ̂(ξ) is the Fourier transform of the payoff. First, we notice that coefficient G in the323

quadratic term in the exponent of this term is strictly positive (see (3.3)). Furthermore, G, F ,324

and H are a also bounded, due to the boundedness of the variance ν(t) (Andersen and Piterbarg,325

2007). It follows that the Fourier transform of g(·, ·) satisfies the hypothesis of Theorem 4.1.326
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Hence, we can apply Theorem 4.1 with a = 1
2m to the inner integral terms in expression (4.18).327

This gives328 ∫ T

0
g(x, y)ϕm,k(x)dx ≈ 1

2m/2
g

(
k

2m
, y

)
. (4.20)

Thus, we arrive at the approximation V2(S(0), 0, ·) to V1(S(0), 0, ·)329

V1(S(0), 0, ·) ≈ V2(S(0), 0, ·) :=
1

2m/2

∫ y0

0

d2mT e∑
k=0

c∗m,k(y) g

(
k

2m
, y

)w(y) dy , (4.21)

where c∗m,k(y) are defined in (4.16). Finally, the integral in (4.21) can be approximated by means330

of the composite trapezoidal rule.331

It is worth remarking that (4.21) is in terms of the variance process. As pointed out by332

Fang and Oosterlee (2011), the Feller condition for the variance process, which is equivalent to333

q = 2κν ν̄
σ2
ν
− 1 ≥ 0, is difficult to satisfy in a practical situation. Specifically, one often finds334

2κν ν̄ < σ2
ν from market data, this is q < 0, in which case the left tail of the variance density335

w(y), defined in (4.3), grows extremely fast in value, and this may affect the accuracy of the336

composite trapezoidal rule applied to (4.21). Based on these insights, we perform the change of337

variables v = ln(y) in (4.21), and transform the problem from the (terminal) variance domain to338

the (terminal) log-variance domain339

V2(S(0), 0, ·) =
1

2m/2

∫ ln(y0)

−∞

d2mT e∑
k=0

c∗m,k(e
v) g

(
k

2m
, ev
) w̄(v) dv , (4.22)

where340

w̄(v) = evw̃(v), with w̃(v) := ζe−ζ(ν(0)e−κνT+ev) ·
(

ev

ν(0)e−κνT

) q
2

· Iq
(

2ζe−
1
2
κνT
√
ν(0)ev

)
.

(4.23)

The first step to follow for a practical implementation of the option pricing formula (4.22) is to341

determine an appropriate truncated integration domain for the log-variance density w̄(v). In what342

follows, we briefly describe an iterative procedure to determine this truncated integration domain,343

denoted by [av, bv], according to a pre-defined tolerance εtol. We denote by [a
(j)
v , b

(j)
v ], j = 0, 1, . . .,344

the interval at the j-th iteration. Given an initial guess [a
(0)
v , b

(0)
v ], we iteratively modify the345

interval until the condition w̄(v) < εtol for v ∈ D is met, where D = (−∞, a(j)
v )∪ (b

(j)
v , ln(y0)), for346

some j, after which the truncated integration domain is taken to be [a
(j)
v , b

(j)
v ].347

We start by estimating a proper initial guess [a
(0)
v , b

(0)
v ]. As pointed out in Cox et al. (1985b),348

the expected value and the variance of ν(T ) can be calculated as349

E[ν(T )] = ν(0)e−κνT + ν̄
(
1− e−κνT

)
,

V[ν(T )] = ν(0)
σ2
ν

κν
e−κνT − e−2κνT + ν̄

σ2
ν

2κν

(
1− e−κνT

)2
.

(4.24)

If we consider a first-order Taylor expansion of ln(ν(T )) then the expected value and the variance350

of the log-variance process at terminal time T can be approximated as follows351

E[ln(ν(T ))] ≈ ln (E[ν(T )]) , V[ln(ν(T ))] ≈ V[ν(T )]

E[ν(T )]2
. (4.25)
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Taking into account that the left tail of the density decays slower than the right tail, we therefore352

consider the following initial interval353

[a(0)
v , b(0)

v ] :=

[
ln (E[ν(T )])− 7

V[ν(T )]

E[ν(T )]2
, ln (E[ν(T )]) + 3

V[ν(T )]

E[ν(T )]2

]
. (4.26)

Now, given [a
(0)
v , b

(0)
v ], we propose two methods for finding the final interval [a

(j)
v , b

(j)
v ]. The354

first one involves the Newton iteration, for which we need the derivative of w̃(v)355

w̃′(v) := ζe−u−ζe
v+v

(
ζev

u

) q
2

·
[
(−ζev + q + 1) · Iq

(
2
√
ζevu

)
+ ζ
√
ν(0)ev−κνT · Iq+1

(
2
√
ζevu

)]
,

(4.27)

where u := ζν(0)e−κνT . We suggest to use this method when the Feller condition for the variance356

process is not satisfied. This method is considered in one of the examples for a six-factor model357

in Section 6. As showed later, numerical results show that only a few iterations are needed to358

achieve convergence, even for a heavy left-tail distribution. In the second method, we just update359

the interval [a
(j)
v , b

(j)
v ] by subtracting and adding the approximated value for the variance in (4.25)360

to a
(j)
v and b

(j)
v , respectively. We suggest to use this method when the Feller condition for the361

variance process is satisfied.362

Once the truncated integration domain [av, bv] has been identified via the above steps, then363

V2(S(0), 0, ·) in (4.22) can be approximated as follows364

V2(S(0), 0, ·) ≈ V3(S(0), 0, ·) :=
1

2m/2

∫ bv

av

d2mT e∑
k=0

c∗m,k(e
v) g

(
k

2m
, ev
) w̄(v) dv . (4.28)

Finally, we consider a partition of the interval [av, bv] into NI subintervals, and by the com-365

posite trapezoidal rule, we obtain the approximation V4(S(0), 0, ·) to V3(S(0), 0, ·)366

V3(S(0), 0, ·) ≈ V4(S(0), 0, ·) :=
h

2

NI−1∑
`=0

(Sm(v`) + Sm(v`+1)) , (4.29)

where367

Sm(v) =
1

2m/2

d2mT e∑
k=0

c∗m,k(e
v)g

(
k

2m
, ev
) w̄(v) , (4.30)

and h = bv−av
NI

and v` = av + `h, ` = 0, . . . , NI .368

5 Error analysis369

In practice, the parameters to the interest rate dynamics are such that it is possible to compute370

in closed-form deterministic integrals in (3.3), namely
∫ T

0 γd(t) dt;

∫ T

0
γf (t) dt;

∫ T
0 βdi(t)βfj (t)dt,371

where i = 1, . . . , n, j = 1, . . . , l;
∫ T

0 βdi(t)βd′i(t) dt, where i, i′ = 1, . . . , n; and
∫ T

0 βfi(t)βf ′i (t) dt,372

where i, i′ = 1, . . . , l. For the case of a diffusion model, i.e. the jump intensity λ = 0 and j = 0 in373

(3.1), the function g in (4.30) is known in closed-form. For the case of a jump-diffusion model, g374

is known analytically, as the infinite series (3.1). However, we can achieve any level of accuracy375

for this quickly converging series, taking into account the boundedness of the numerator of each376

term. Furthermore, Ψ (·|y) is known in closed-form. As a result, we can assume that there are no377

numerical errors in evaluating g in (4.30), and hence the total numerical error of the drSWIFT378
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method comes from the computation of the integrals in (4.1). In this section, we perform an error379

analysis on the drSWIFT method, and discuss the computational complexity of the method. We380

also explain how to determine the value of the level of resolution m and the truncation parameter381

J in (4.13) to achieve a pre-determined error bound.382

There are four sources of error in the evaluation process of the drSWIFT method:383

(i) in (4.18) when f is approximated by f∗m defined in (4.17);384

(ii) in (4.21) when the approximation (4.20) is used in place of the inner integral (from zero and385

maturity time T ) in (4.18);386

(iii) in (4.28) when truncating the infinite interval (−∞, ln(y0)) into the finite interval [av, bv];387

and388

(iv) in (4.29), due to the use of the composite trapezoidal rule as an approximation to the outer389

integral (from av to bv) in (4.28).390

We denote by E the total numerical error of the drSWIFT method in evaluation the outer391

expectation. This error can be bounded as follows392

E := |V (S(0), 0, ·)− V4(S(0), 0, ·)| ≤ E∗m,1 + E∗m,2 + E∗m,3 + E∗m,h , (5.1)

where E∗m,1, E∗m,2, E∗m,3, and E∗m,h respectively are the errors in (i)-(iv). Here,393

E∗m,1 := |V (S(0), 0, ·)− V1(S(0), 0, ·)| =
∣∣∣∣∫ y0

0

[∫ T

0
g(x, y) (f(x|y)− f∗m(x|y)) dx

]
w(y)dy

∣∣∣∣ ,
(5.2)

where, by (4.17),394

f∗m(x|y) :=

d2mT e∑
k=0

c∗m,k(y)ϕm,k(x) , (5.3)

395

E∗m,2 : = |V1(S(0), 0, ·)− V2(S(0), 0, ·)|

=

∣∣∣∣∣∣
∫ y0

0

d2mT e∑
k=0

c∗m,k(y)

(∫ T

0
g(x, y)ϕm,k(x)dx− 1

2m/2
g

(
k

2m
, y

))w(y)dy

∣∣∣∣∣∣ , (5.4)

and396

E∗m,3 := |V2(S(0), 0, ·)− V3(S(0), 0, ·)| =

∣∣∣∣∣∣ 1

2m/2

∫
D

d2mT e∑
k=0

c∗m,k(e
v) g

(
k

2m
, ev
) w̄(v) dv

∣∣∣∣∣∣ , (5.5)

where397

D = (−∞, av)
⋃

(bv, log(y0)),

as well as398

E∗m,h := |V3(S(0), 0, ·)− V4(S(0), 0, ·)| . (5.6)

We observe that all E∗m,1, E∗m,2, E∗m,3 and E∗m,h depend on the level of resolution m. In addition,399

E∗m,h also depends on the number of subintervals NI via h = (bv − av)/NI .400
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5.1 Bound for error term E∗m,1401

We define the projection error, denoted by εp(x, y), as402

εp(x, y) = |f(x|y)− Pmf(x|y)| =

∣∣∣∣∣f(x|y)−
∑
k∈Z

cm,k(y)ϕm,k(x)

∣∣∣∣∣ , (5.7)

where, as defined earlier, cm,k(y) =
∫ +∞
−∞ f(x|y)ϕm,k(x)dx. We also define the truncation error,

denoted by εt(x, y), as

εt(x, y) = |Pmf(x|y)− fm(x|y)| =

∣∣∣∣∣∣
∑

k/∈{0,...,d2mT e}

cm,k(y)ϕm,k(x)

∣∣∣∣∣∣ .
We denote by εc(x, y) the error arising from using approximated coefficients c∗m,k(y) instead of403

the exact ones cm,k(y). We have404

εc(x, y) = |fm(x|y)− f∗m(x|y)| =

∣∣∣∣∣∣
d2mT e∑
k=0

(cm,k(y)− c∗m,k(y))ϕm,k(x)

∣∣∣∣∣∣ .
Then, we have

|f(x|y)− f∗m(x|y)| ≤ εp(x, y) + εt(x, y) + εc(x, y) .

First, we consider the projection error εp(·, ·). The projection Pmf can be written as (Maree405

et al., 2017)406

Pmf(x|y) =
1

2π

∫ 2mπ

−2mπ
Ψ(ξ|y)eiξxdξ . (5.8)

By definition of the inverse Fourier transform of f , we have407

f(x|y) =
1

2π

∫
R

Ψ(ξ|y)eiξxdξ . (5.9)

Let408

K(v, y) =
1

2π

∫
|ξ|>v

|Ψ(ξ|y)|dξ , (5.10)

then409

εp(x, y) ≤ K(2mπ, y) . (5.11)

Next, we consider the truncation error εt(·, ·). We observe that410

cm,k(y) =

∫ +∞

−∞
f(x|y)ϕm,k(x)dx =

∫ T

0
f(x|y)ϕm,k(x)dx ,

since the density function f is supported on the interval [0, T ]. Therefore, the truncation error εt411

can be neglected when k /∈ {0, . . . , d2mT e}.412

Finally, we consider εc(·, ·). The coefficients cm,k(y) are to be calculated by means of Vieta’s413

formula and the numerical error can be estimated as414

εc(x, y) ≤
d2mT e∑
k=0

|cm,k(y)− c∗m,k(y)||ϕm,k(x)| ≤ 2m/2
d2mT e∑
k=0

|cm,k(y)− c∗m,k(y)| . (5.12)
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Since f(·|·) is supported on the interval [0, T ], it follows that415

|cm,k(y)− c∗m,k(y)| = 2m/2
∣∣∣∣∫ T

0
f(x|y) (sinc(2mx− k)− sinc∗(2mx− k)) dx

∣∣∣∣
≤ 2m/2

∫ T

0
f(x|y) |sinc(2mx− k)− sinc∗(2mx− k)|dx .

(5.13)

Applying the Cauchy-Schwarz inequality to the right-hand-side of the inequality in (5.13) gives416

|cm,k(y)− c∗m,k(y)| ≤ 2m/2‖f(·, y)‖2
(∫ T

0
(sinc(2mx− k)− sinc∗(2mx− k))2 dx

) 1
2

. (5.14)

To further bound (5.14), we make use of the following lemma in Ortiz-Gracia and Oosterlee (2016)417

which gives us an estimate of the error when approximating the sinus cardinal function.418

Lemma 5.1 (Lemma 2 of Ortiz-Gracia and Oosterlee (2016)). Define the absolute error EV (t) :=

sinc(t)− sinc∗(t). Then,

|EV (t)| ≤ (πc)2

22(J+1) − (πc)2
,

for t ∈ [−c, c], where c ∈ R, c > 0 and J ≥ log2(πc).419

We observe that, since 0 ≤ x ≤ T , it follows −d2mT e ≤ 2mx− k ≤ d2mT e. Thus, by Lemma420

5.1, we have the following bound for (5.14)421

|cm,k(y)− c∗m,k(y)| ≤ 2m/2‖f(·, y)‖2
√
T

(d2mT eπ)2

22(J+1) − (d2mT eπ)2 , where J ≥ log2 (d2mT eπ) .

(5.15)

Putting everything together, we have422

εc(x, y) ≤ L(J, y) := 2m (d2mT e+ 1) ‖f(·, y)‖2
√
T

(d2mT eπ)2

22(J+1) − (d2mT eπ)2 . (5.16)

Thus,423

E∗m,1 ≤ max
(x,y)∈[0,T ]×[0,y0]

|g(x, y)|T
(

max
y∈[0,y0]

K(2mπ, y) + max
(x,y)∈[0,T ]×[0,y0]

εt(x, y) + max
y∈[0,y0]

L(J, y)

)
,

(5.17)

where K(2mπ, ·) and L(J, ·) are defined in (5.10) and (5.16), respectively.424

5.2 Bound for error term E∗m,2425

From (5.4), we have426

E∗m,2 ≤
∫ y0

0

d2mT e∑
k=0

∣∣c∗m,k(y)
∣∣ ∣∣∣∣∫ T

0
g(x, y)ϕm,k(x)dx− 1

2m/2
g

(
k

2m
, y

)∣∣∣∣
w(y)dy . (5.18)

From (4.15), we have427 ∣∣c∗m,k(y)
∣∣ ≤ 2m/2

2J−1

2J−1∑
j=1

∫
R
f(x|y)dx = 2m/2 , (5.19)

and from Theorem 4.1,428 ∣∣∣∣∫ T

0
g(x, y)ϕm,k(x)dx− 1

2m/2
g

(
k

2m
, y

)∣∣∣∣ ≤ 1

2m/2
M(y)e−πd(y)2m , (5.20)
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where d(y) and M(y) are positive bounded constants depending on y ∈ [0, y0]. As a result, we429

have the following bound for E∗m,2430

E∗m,2 ≤ U(m) := y0 (d2mT e+ 1) max
y∈[0,y0]

M(y)e−πd(y)2m . (5.21)

5.3 Bound for error term E∗m,3431

From (5.5), we have432

E∗m,3 ≤
1

2m/2

∫
D

d2mT e∑
k=0

∣∣c∗m,k(ev)∣∣ ∣∣∣∣g( k

2m
, ev
)∣∣∣∣
 w̄(v) dv . (5.22)

From (5.19) we have that |c∗m,k(ev)| ≤ 2m/2 and from Section 4.2 we know that w̄(v) < εtol, v ∈ D.433

Thus,434

E∗m,3 ≤ εtol

d2mT e∑
k=0

∫
D

∣∣∣∣g( k

2m
, ev
)∣∣∣∣ dv . (5.23)

If we assume that the integrals in (5.23) are convergent and define Ȳ (k,m) :=
∫
D |g

(
k

2m , e
v
)
|dv435

and436

Y (m) := max
k∈{0,...,d2mT e}

Ȳ (k,m) , (5.24)

then437

E∗m,3 ≤ εtol(d2mT e+ 1)Y (m) . (5.25)

5.4 Bound for the error term E∗m,h and the total error E438

The error of the composite trapezoidal rule in (4.29) is439

E∗m,h =
(bv − av)3

12N2
I

|S ′′m(ξ)|, ξ ∈ (av, bv) .

If |S ′′m(·)| is bounded over (av, bv) by a positive constant C(m), then the total error term E is440

bounded by441

E ≤ ‖g‖∞T
(

max
y∈[0,y0]

K(2mπ, y) + ‖εt‖∞ + max
y∈[0,y0]

L(J, y)

)
+ U(m) + εtol(d2mT e+ 1)Y (m)

+
(bv − av)3

12N2
I

C(m) ,

(5.26)

where ‖g‖∞ := max(x,y)∈[0,T ]×[0,1] |g(x, y)| denotes the infinite norm of g, and K(2mπ, ·), L(J, ·),442

U(m) and Y (m) are defined in (5.10), (5.16), (5.21), and (5.24), respectively.443

5.5 Choice of m and J for Fourier inversion444

It is observed from (4.29) and (4.30) that for each discretization point v`, a Fourier inversion445

needs to be performed to compute the coefficients c∗m,k(e
v`), k = 0, . . . , d2mT e, by the formula446

(4.16). From (4.16), we note that the two parameters, namely the level of resolution m and the447

truncation parameter J , need to be determined before this inversion. In this section, we discuss448

how to select m and J . Once these values have been chosen, the discretization error introduced449

by the composite trapezoidal rule can be controlled by varying NI .450
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From (5.15), we know that once an appropriate value for m has been selected, we can pick J451

such that J ≥ log2 (d2mT eπ), so we first discuss how to select an appropriate value for m. We452

proceed by finding m such that the projection error εp, defined in (5.7), is below a pre-determined453

tolerance tol. We denote by ε
(m)
p an approximation to εp, given the level of resolution m. From454

the bound (5.11), together with (5.10), we approximate ε
(m)
p by455

ε(m)
p :=

1

2π
max
v`

(|Ψ(−2mπ|ev`)|+ |Ψ(2mπ|ev`)|) . (5.27)

We can find the level of resolution by iteratively computing the first m such that ε
(m)
p ≤ tol.456

While we can choose a different m for each discretization point v` ∈ [av, bv], the above proce-457

dure selects a common m that first satisfies (5.27) for all v`. This leads us to a more conservative458

estimation of the error at the cost of extra computational complexity, since the higher the level of459

resolution m, the more coefficients are used for the approximation at a particular discretization460

point v`. Nonetheless, timing results indicate that, even under this choice, the drSWIFT method461

is already extremely efficient.462

Once the parameter m has been selected by the above-described procedure, we consider J =463

dlog2 (d2mT eπ)e. However, inspection of (4.16) show that, in evaluating c∗m,k, k = 0, . . . , d2mT e, a464

different J can be selected for each k. For simplicity and efficiency, we prefer the above fixed value465

J = dlog2 (d2mT eπ)e for all k. If we use this value of J in (5.16), it appears that the resulting466

bound for εc(·, ·) may not be very sharp. Nonetheless, we observe that, in practice, this selection467

of J gives us a good balance between accuracy and computational complexity. More specifically,468

the most computationally involved part in (4.16) is the evaluation of Ψ(·, ·) at the grid points v`,469

` = 1, . . . , NI . Those values need to be computed only once for each value of v`, and then be470

used by an FFT algorithm to compute the set of coefficients c∗m,k(e
v`), for all k = 0, . . . , d2mT e.471

More specifically, assuming Ψ

(
(2j+1)π2m

2J

∣∣∣∣ev`) = 0, from 2J−1 to 2J − 1, we have (Ortiz-Gracia472

and Oosterlee, 2016)473

c∗m,k(e
v`) =

2m/2

2J−1

2J−1∑
j=1

<
[
Ψ

(
(2j − 1)π2m

2J

∣∣∣∣ev`) e ikπ(2j−1)

2J

]

=
2m/2

2J−1
<

e ikπ2J

2J−1∑
j=1

Ψ

(
(2j + 1)π2m

2J

∣∣∣∣ev`) e 2ijkπ

2J

 ,

(5.28)

and hence the FFT algorithm can be applied to compute c∗m,k(e
v`). An algorithm to approxi-474

mate V (S(0), 0, ·) using the drSWIFT method is given in Algorithm 5.1. We study the overall475

computational complexity of the algorithm in the next subsection.476

5.6 Computational complexity477

Examination of (4.29) reveals that a total of (NI + 1) terms Sm(v`), ` = 0, . . . , NI , need to be478

evaluated for the computation of V4(S(0), 0, ·). Further examination of (4.30) reveals the following479

complexity for evaluating each of these Sm(v`) terms.480

• For a given v`, all the coefficients c∗m,k(e
v`), k = 0, . . . , d2mT e, need to be computed via481

(5.28) using the FFT algorithm. So the complexity of this step is O(NJ log(NJ)), where482

NJ = 2J − 1 is the number of terms required to compute each coefficient c∗m,k(e
v`).483
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Algorithm 5.1 Algorithm to approximate V (S(0), 0, ·)
1: compute matrix A using a Cholesky decomposition;

2: compute βdi(t), i = 1, . . . , n, and βfi(t), i = 1, . . . , l, using (3.4);

3: compute the deterministic terms of (3.3), namely∫ T
0 γd(t) dt;

∫ T

0
γf (t) dt;

∫ T
0 βdi(t)βfj (t)dt, i = 1, . . . , n, j = 1, . . . , l;∫ T

0 βdi(t)βd′i(t) dt, i, i′ = 1, . . . , n;
∫ T

0 βfi(t)βf ′i (t) dt, i, i′ = 1, . . . , l;

4: compute the interval [av, bv] as explained in Section 4.2;

5: compute the first m such that ε
(m)
p ≤ tol by iteratively using (5.27);

6: set J = dlog2 (d2mT eπ)e;
7: for each v` compute coefficients c∗m,k(e

v`), k = 0, . . . , d2mT e, by FFT using (5.28), where Ψ(·|·)
defined in (4.4);

8: compute V4(S(0), 0, ·) using (4.29);

9: return V (S(0), 0, ·) ≈ V4(S(0), 0, ·);

• Given the computed c∗m,k(e
v`), k = 0, . . . , d2mT e, each term Sm(v`) in (4.30) can be com-484

puted with O(NJ) complexity.485

As a result, the total complexity of the drSWIFT method is O(NINJ log(NJ)).486

We note that this is an upper bound of the computational complexity, since as explained in487

Section 5.5 we can select a smaller value of the scale m for each v` ∈ [av, bv]. It is worth underlining488

that the computational complexity remains the same regardless of the number of factors in the489

underlying model.490

6 Numerical experiments491

In this section, we present selected numerical results to illustrate the performance of the drSWIFT492

method. For verification purposes, we will start with the well-known two-factor Heston (Heston,493

1993) and Bates, i.e. jump-extended Heston, Bates (1996)) models, for which a semi closed-494

form or an analytical solution does exist for a European option. We then consider the jump-495

extended version of the popular three-factor Heston-Hull-White (HHW) model, and finally, a496

6-factor pure- and jump-diffusion FX model, under all of which, an analytical solution does not497

exist for a European option. In these examples, the correlation between the underlying asset and498

its instantaneous variance is non-zero, and, where relevant, the interest rate factor(s) and the499

underlying asset, as well as the instantaneous variance, are pairwise independent.500

For all the experiments, in determining the integration interval [av, bv], we consider εtol = 10−6,501

and follow the procedure explained in Section 4.2, where a Newton search is used when the Feller502

condition is not satisfied, and the alternative method otherwise. While in the first three models503

considered, namely Heston, Bates and jump-extended HHW, the Feller condition is satisfied for504

the variance process, in the 6-factor FX model, we also experiment with a variance process in505

which the Feller condition is not satisfied to illustrate the benefit of the log-variance transformation506

discussed in Section 4.2. The programs were coded in MATLAB, and run on a Surface Pro 3 with507

Intel Dual Core i7-4650U @ 1.70GHz 2.30GHz processor and 8GB RAM.508
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6.1 Heston model509

For the Heston model (Heston, 1993), the function g(x, y) is defined as510

g(x, y) = S(0)e(G(x)+F (x,y)+H)N (d1,0(x, y))−KeHN (d2,0(x, y)) , (6.1)

where511

G(x) =
a2

1,1

2
x , with a1,1 =

√
1− ρ2

s,ν ,

F (x, y) = −1

2
x+ rd(0)T + a1,2

(
y − (ν(0) + κν ν̄T − κνx)

σν

)
with a1,2 = ρs,ν ,

H = −rd(0)T .

(6.2)

where d1,0(x, y) and d2,0(x, y) are defined in (3.2). Here, we use (·, ·) to clearly indicate the512

dependence of the quantities under discussion on the parameters x and/or y.513

In Table 6.1, we present computed prices of a European call option under the Heston dynamics514

for different maturities T . The payoff in this case is Φ(S(T )) = max(S(T )−K, 0), with K being515

the strike. In this test, for each maturity, we also consider different levels of resolution m, namely516

m = {6, 7, 8} and different number of subintervals NI for the composite trapezoidal rule, namely517

NI = {15, 25, 50}. For each value of m, we also report the corresponding error ε
(m)
p , defined in518

(5.27). (Note that ε
(m)
p is independent of NI .) Finally, for each parameter combination, we also519

report the absolute error (”abs. error”) between the computed price and the exact price obtained520

via formulas in Gatheral (2006).

NI m T = 0.2 T = 1 T = 5

ε
(m)
p abs. error time ε

(m)
p abs. error time ε

(m)
p abs. error time

(sec.) (sec.) (sec.)

15 6 2.89e-01 5.26e-01 0.03 2.84e-03 1.66e-03 0.03 6.04e-13 1.00e-05 0.04

7 2.17e-01 6.54e-02 0.03 4.16e-06 1.03e-06 0.04 5.50e-24 9.53e-06 0.05

8 7.01e-02 1.53e-04 0.03 1.22e-10 1.24e-06 0.04 6.79e-41 9.52e-06 0.09

25 6 5.25e-01 0.04 1.66e-03 0.04 1.00e-05 0.05

7 6.53e-02 0.04 3.67e-06 0.04 9.59e-06 0.07

8 4.62e-05 0.04 3.87e-06 0.05 9.59e-06 0.10

50 6 5.25e-01 0.04 1.66e-03 0.05 8.40e-06 0.05

7 6.52e-02 0.04 2.32e-06 0.05 7.94e-06 0.07

8 3.99e-05 0.04 2.52e-06 0.05 7.95e-06 0.15

Table 6.1: European call option under Heston dynamics with parameters: S(0) = 100, K = 100, rd(0) =

0.15, ρs,ν = 0.4, ν(0) = 0.2, κν = 3, ν̄ = 0.09, σν = 0.3. The Feller’s condition is satisfied for the

variance process. Reference values are obtained via Gatheral (2006): 8.831873326617753 for T = 0.2,

20.967685183036807 for T = 1, and 55.881189957646598 for T = 5.

521

We make the following observations.522

• First, for the case NI = 15, we observe that when T = 0.2, the absolute error decreases523

when the level of resolution m increases (e.g. 5.26e-01 when m = 6 versus 1.53e-04 when524

m = 8); however, when T = 5, the absolute error is approximately the same for all three525

levels of resolution m, (e.g. 1.00e-05 when m = 6 versus 9.52e-06 when m = 8), and the526

approximation is already significantly accurate with the smallest m = 6.527
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• Next, across different values of NI , we observe that, for a given m, an increase in NI does528

not seem to improve the accuracy, and this appears to hold true for all maturities T . For529

example, for m = 6, with T = 0.2, the absolute errors are 5.26e-01 and 5.25e-01 for NI = 15530

and NI = 50, respectively; with T = 5, the respective absolute errors are 1.00e-05 and531

8.40e-06, which are almost the same.532
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Figure 6.1: Modulus of the characteristic function of the conditional time-integrated variance process

Ψ(·|·) for different maturities and parameters ν(0) = 0.2, κν = 3, ν̄ = 0.09, σν = 0.3. The terminal value

of the log-variance in this case is v = ln(E(ν(T ))).

To investigate this further, in Figure 6.1, we plot the modulus of the characteristic function533

of the conditional time-integrated variance process Ψ(·|ev), when v = ln(E[ν(T )]), for the three534

maturities considered in this example. From this plot, taking into account the computed ε
(m)
p535

values in Table 6.1, we conclude that the bound of the total error in the method, given in (5.26),536

is dominated by K(2mπ, y), defined in (5.10), which essentially measures the mass in the tails of537

the modulus of Ψ.538

In view of these insights, in the remaining examples, we will consider NI = 15 and the539

tol = 10−2 in estimating the level resolution m, i.e. find the first level of resolution m such that540

for ε
(m)
p ≤ tol, as discussed in Subsection 5.5. We emphasize that with this choice of m and541

NI = 15, the price under the Heston model is obtained in less than 0.05 seconds.542

6.2 Bates model543

Next, we consider the Bates model in Bates (1996), where log of the jump amplitude follows a544

normal distribution with mean µ̃ and variance σ̃2. For this model, the function g(x, y) is545

g(x, y) =
∞∑
j=0

(λT )j

j!

{
exp

(
jµ̃+

jσ̃2

2

)
S(0)e(G(x)+F (x,y)+H)N (d1,j(x, y))−KeHN (d2,j(x, y))

}
,

(6.3)
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where

G(x) =
a2

1,1

2
x , with a1,1 =

√
1− ρ2

s,ν ,

F (x, y) = −1

2
x+ rd(0)T + a1,2a1,2

(
y − (ν(0) + κν ν̄T − κνx)

σν

)
− λδT ,

with a1,2 = ρs,ν , δ = eµ̃+ 1
2
σ̃2 − 1 ,

H = −(rd(0) + λ)T .

In this test, the parameters for the model are T = 1, S(0) = 80, rd(0) = 0.15, ρs,ν = −0.5,546

ν(0) = 0.04, κν = 3, ν̄ = 0.09, σν = 0.3, λ = 1, µ̃ = −0.08, σ̃ = 0.3.547

j-th term
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no
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Figure 6.2: Norm of the j-th term, j = 0, 1, . . ., in the infinite series (6.3).

In the implementation of the infinite series (6.3), we need to determine the number of terms548

to keep. In Figure 6.2, we plot in log-scale the norm of the j-th term, j = 0, 1, . . ., in the infinite549

series (6.3). As shown in this figure, the infinite series (6.3) converges very quickly, and we choose550

to keep the first 20 terms of (6.3) in the implementation, for which the truncation is already much551

less than 10−10.552

In determining the level of resolution m, we find the first m such that ε
(m)
p < tol = 10−2. For553

the above set of parameters, the computed level of resolution is m = 7. In Table 6.2, we present

K reference abs. error rel. error (%)

66.2563 26.1843 2.79e-03 0.01

70.5529 23.4604 2.83e-03 0.01

75.1281 20.7564 2.69e-03 0.01

80.0000 18.1113 2.50e-03 0.01

85.1878 15.5675 1.94e-03 0.01

90.7121 13.1693 1.37e-03 0.01

96.5945 10.9581 5.13e-04 < 0.01

Table 6.2: European call under the Bates model with parameters: T = 1, S(0) = 80, rd(0) = 0.15,

ρs,ν = −0.5, ν(0) = 0.04, κν = 3, ν̄ = 0.09, σν = 0.3, λ = 1, µ̃ = −0.08, σ̃ = 0.3. The Feller’s condition

is satisfied for the variance process. Other parameters are m = 7 and NI = 15. All the results are obtained

in less than 0.05 seconds.

554

selected results for a European call option for different strikes. The reference prices (“reference”)555

are those obtained by the exact formula in Bates (1996). The absolute and relative errors, “abs.556
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error” and “rel. error”, respectively, are computed based on these reference prices. As observed557

from Table 6.2, all the option prices computed by the drSWIFT method are highly accurate. The558

efficiency of the method is impressive. The method is able to achieve, for the option price, a559

relative error of about 0.01% in less than 0.05 seconds.560

6.3 Jump-extended Heston-Hull-White model561

In the third example considered in this work, we focus on the jump-extended Heston-Hull-White

(HHW) model, where log of the jump amplitude follows a normal distribution with mean µ̃ and

variance σ̃2. While the diffusion version of this model is considered in a number of works, such as

Grzelak and Oosterlee (2012b); Haentjens and in ’t Hout (2012), pricing methods for European

options under this model have not been discussed in the literature. In this case, the model is

dS(t)

S(t)
= rd(t) dt+

√
ν(t) dWs(t) + dJ(t) ,

rd(t) = rd(0) e−κdt + κd

∫ t

0
e−κd(t−t′) θd(t

′) dt′ +X(t) ,

with dX(t) = −κdX(t) dt+ σd dWd(t) , X(0) = 0,

dν(t) = κν (ν̄ − ν(t)) dt+ σν
√
ν(t) dWν(t) ,

where κd, σd, κν , σν and ν̄ are constants. In this example, the g(x, y) is defined as in (6.3), where

G(x) =
a2

1,1

2
x+

1

2
a2

2,2

∫ T

0
(βd(t))

2 dt , with a1,1 =
√

1− ρ2
s,ν , and a2,2 = 1 ,

F (x, y) = −1

2
x+

∫ T

0
γd(t) dt+ a1,3

(
y − (ν(0) + κν ν̄T − κνx)

σν

)
− a2

2,2

∫ T

0
(βd(t))

2 dt− λδT ,

with a1,3 = ρs,ν , δ = eµ̃+ 1
2
σ̃2 − 1 ,

H = −
∫ T

0
γd(t) dt+

1

2
a2

2,2

∫ T

0
(βd(t))

2 dt− λT ,

and ∫ T

0
(βd(t))

2 dt =

(
σd
κd

)2
[
T +

1− e−2κdT

2κd
−

2
(
1− e−2κdT

)
κd

]
,∫ T

0
γd(t) dt = θdT +

rd(0)− θd
κd

(
1− e−κdT

)
.

In the implementation of the drSWIFT method, after carrying out the same test as in the Bates562

example, we choose to keep only the first 20 terms of the series g(x, y).563

With this setting, we price a European call option with different maturities. In these tests,564

similar to previous tests, the level of resolution is the first m such that ε
(m)
p < tol = 10−2.565

To compute benchmark solutions, we use the multi-level MC method presented in Dang (2017),566

where the multi-level MC technique is applied only to the variance factor. To simulate ν(t), we use567

the Lamperti-Backward-Euler timestepping method that preserves the positivity of the original568

dynamics (2.1d), and has a good strong convergence property, recently established in Neuenkirch569

and Szpruch (2014). In the experiment with multi-level MC, the root-mean-square error is 10−3.570

571

In Table 6.3 we present selected results. The standard deviations in the benchmark option572

prices all are ≤ 10−3
√

2
≈ 0.000707, as expected from analysis of multi-level MC methods (Giles,573

2008). We note that prices computed by the drSWIFT lie within the 95% confidence intervals574
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T multi-level MC drSWIFT

(years) (price, std. dev. ) 95% CI m price abs. error rel. error (%) time (sec.)

0.5 (14.8127, 0.0007) [14.8113 14.8140] 7 14.8129 2e-4 < 0.01 < 0.05

1 (21.3952, 0.0007) [21.3939, 21.3966] 7 21.3948 4e-4 < 0.01 0.05

1.5 (26.7991, 0.0007) [26.7979, 26.8001] 6 26.7987 4e-4 < 0.01 0.05

Table 6.3: European call prices under jump-extended HHW dynamics with parameters: S(0) = 100,

K = 100, ν(0) = 0.2, κν = 3, ν̄ = 0.1, σν = 0.3, rd(0) = 0.05, κd = 1.5, θd = 0.1, σd = 0.1, λ = 1,

µ̃ = −0.08, σ̃ = 0.3. The correlations are ρs,ν = −0.3, ρs,d = ρd,ν = 0.

obtained by the multi-level MC method. Moreover, they are in excellent agreement with the575

benchmark prices. Finally, we note again the impressive efficiency of the drSWIFT method,576

being able to achieve, for the option price, a relative error of about 0.01% in 0.05 seconds.577

6.4 A 6-factor foreign exchange model578

Finally, we consider the valuation of a European option under a 6-factor FX model. We consider

both the pure-diffusion and jump-diffusion versions of the model, for which g(x, y) are respectively

defined in (6.1) and (6.3). The functions G(·), F (·, ·) and H for the jump-diffusion case are given

by

G(x) =
a2

1,1

2
x+

1

2

5∑
k=2

2∑
j=1

2∑
j′=1

aj+1,kaj′+1,k

∫ T

0
βdj (t)βdj′ (t) dt

+
1

2

5∑
k=2

2∑
j=1

2∑
j′=1

aj+3,kaj′+3,k

∫ T

0
βfj (t)βfj′ (t) dt+

1

2

5∑
k=2

2∑
j=1

2∑
j′=1

aj+1,kaj′+3,k

∫ T

0
βdj (t)βfj′ (t) dt

F (x, y) = −1

2
x+

∫ T

0
(γd(t)− γf (t)) dt−

5∑
k=2

2∑
j=1

2∑
j′=1

aj+1,kaj′+1,k

∫ T

0
βdj (t)βdj′ (t) dt

+
5∑

k=2

2∑
j=1

2∑
j′=1

aj+1,kaj′+3,k

∫ T

0
βdj (t)βfj′ (t) dt+ a1,6

(
y − (ν(0) + κν ν̄T − κνx)

σν

)
− λδT

H = −
∫ T

0
γd(t) dt+

1

2

5∑
k=2

2∑
j=1

2∑
j′=1

aj+1,kaj′+1,k

∫ T

0
βdj (t)βdj′ (t) dt− λT .

Here,∫ T

0
γd(t) dt = θdT +

rd(0)− θd
κd1

·
(
1− e−κd1T

)
,

∫ T

0
γf (t) dt = θfT +

rf (0)− θf
κf1

·
(
1− e−κf1T

)
,∫ T

0
βi(t)βj(t) dt =

σiσj
κiκj

·

[
T − 1− e−κiT

κi
−
(
1− e−κjT

)
κj

+

(
1− e−(κi+κj)T

)
κi + κj

]
,

where i, j ∈ {d1, d2, f1, f2}, and κdi , κfi , σdi , σfi , i = 1, 2, κν , σν and ν̄ are constants. For the579

pure-diffusion case, the respective functions G(·) and F (·, ·) and H can be obtained by setting580

the jump intensity λ = 0. For the jump-diffusion case, after carrying out the same test as in the581

Bates example, we also choose to keep only the first 20 terms of the series g(x, y).582

To perform the numerical experiments, we consider two different sets of parameters for the583

variance.584

• Set 1: ν(0) = 0.2, κν = 2.5, ν̄ = 0.6, σν = 0.5 for which Feller’s condition is satisfied585
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• Set 2: ν(0) = 0.2, κν = 0.1, ν̄ = 0.6, σν = 0.5 for which Feller’s condition is not satisfied.586

For the maturity, we choose T = 5 (years).587
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Figure 6.3: Density plots. Top-left: w̃(·) when the Feller’s condition is satisfied (Set 1). Top-right: w̃(·)
when the Feller’s condition is unsatisfied (Set 2). Bottom-left: w̄(·) when the Feller’s condition is satisfied

(Set 1). Bottom-right: w̄(·) when the Feller’s condition is unsatisfied (Set 2).

To illustrate the benefit of changing from the variance to the log-variance, as discussed in588

Section 4.2, in Figure 6.3, we plot the densities of the terminal variance value w̃(·) and of terminal589

log-variance value w̄(·), defined in (4.23), for both set of the variance parameters. As clearly shown590

in Figure 6.3’s top- and bottom-left panels, when the Feller’s condition is satisfied, both w̃(·) and591

w̄(·) present a similar shape, with tails decaying very quickly. However, when the Feller’s condition592

is not satisfied, we observe a very heavy left tail in w̃(·), see top-right panel, but not in w̄(·), see593

the bottom-right panel.594

To further investigate the decay of the left tails, in Figure 6.4, we plot in log-scale w̃(·) and595

w̄(·). It is clearly from this plot that the decay of w̄(·)’s left tail is very fast. As such, we clearly596

benefit from the use of w̄(·) when we apply the composite trapezoidal rule in (4.29) to get the597

final approximation for the option value.598

In Table 6.4 we present selected pricing results of a European put option. In this test, the599

benchmark solutions are again obtained by the multi-level MC in Dang (2017) as described in the600

previous experiment. As noted earlier, the standard deviations in the benchmark option prices601

all are ≤ 10−3
√

2
≈ 0.000707, as expected. For the drSWIFT, the level of resolution m is chosen602

with the error ε
(m)
p = 10−3. We observe from Table 6.4 that all prices computed by the drSWIFT603
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Figure 6.4: Density plots in log-scale when Feller condition is not satisfied (Set 2). Left: w̃(·). Right:w̄(·).

variance multi-level MC drSWIFT

param. (price, std. dev. ) 95% CI m price abs. error rel. error (%) time (sec.)

pure 1 (7.1934, 0.0007) [7.1921, 7.1947] 3 7.1928 5.5e-04 < 0.01 < 0.05

diffusion 2 (5.5730, 0.0007) [5.5716, 5.5743] 5 5.5724 6.0e-04 0.01 0.05

jump 1 (7.4835, 0.0007) [7.4821, 7.4847] 7.4839 4.5e-04 < 0.01 0.05

diffusion 2 (6.1230, 0.0007) [6.1216, 6.1243] 6.1238 8.0e-04 0.01 0.06

Table 6.4: European put prices under the 6-factor FX model dynamics with parameters: S(0) = 10,

K = 10, T = 5, κd1 = 0.97, κd2 = 0.24, σd1 = 0.20, σd2 = 0.16, rd(0) = 0.02, θd = 0.02, κf1 = 0.77,

κf2 = 0.08, σf1 = 0.02, σf2 = 0.012, rf (0) = 0.05, θf = 0.05, λ = 1, µ̃ = −0.08, σ̃ = 0.3. The correlations

between the asset and the interest rate factors, as well as those between the interest rate factor and the

variance are zero. The other correlations are ρs,ν = −0.2, ρd1,d2 = −0.590, ρd1,f1 = 0.125, ρd1,f2 = 0.125,

ρd2,f1 = 0.125, ρd2,f2 = 0.125, ρf1,f2 = −0.702.

lie within the 95% confidence intervals obtained by the multi-level MC method. Moreover, they604

are in excellent agreement with the benchmark prices, regardless of whether or not the Feller605

condition is satisfied. Finally, we note the impressive efficiency of the drSWIFT method.606

7 Summary and future work607

In addition to being useful for risk-management purposes, jump-diffusion models with square-608

root stochastic variance and multi-factor Gaussian interest rates can provide realistic dynamics609

for the underlying. Nonetheless, the first hurdle in using such these models is calibration, which610

typically requires a very efficient pricing method for European options. A direct application611

of existing state-of-the-art numerical integration technique to these models appears impossible,612

since a closed-form expression for the characteristic function of the underlying process under these613

models is not known614
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In this paper, we show that under the dimension reduction framework put forward in Dang615

et al. (2015b, 2017), it is possible to extend the applicabilities of existing state-of-the-art nu-616

merical integration methods to this broad class of models. We focus on the Shannon wavelet617

method of Ortiz-Gracia and Oosterlee (2016), due to its established robustness. Within this di-618

mension reduction framework, the option price and hedging parameters can be expressed as a619

two-dimensional integral that involves only the densities of (i) the value of the variance at the620

terminal time, and (ii) the time-integrated variance process conditional on this value. We de-621

velop a highly efficient Shannon wavelet inverse Fourier technique to recover the density of the622

conditional time-integrated variance process from its known conditional characteristic function.623

Furthermore, excellent approximation properties of Shannon wavelets allow to reduce the overall624

pricing procedure to the evaluation of just a single integral that involves only the density of the625

terminal variance value. This single integral can be accurately evaluated, since the density of the626

variance at the terminal time is known in closed-form. We develop sharp approximation error627

bounds for the option price and hedging parameters.628

We present a number of examples to validate the method and to illustrate its robustness.629

Numerical results validate the methods and its impressive efficiency. In about 0.05 seconds on a630

personal computer, the method can compute the price of a European option under a 6-factor jump-631

diffusion model within 0.01% relative error of a benchmark solution obtained via a multi-level632

Monte Carlo method (Dang, 2017). In addition, the complexity of the method is independent of633

the number of factors in the model. These advantages of the method make it particularly suitable634

for calibration of high-dimensional models.635

Future work includes extensions of the method to pricing early exercise options. Within the636

dimension reduction framework, the key challenge in tackling the early exercise feature is the637

development of efficient computation of the solution of (i) the conditional PIDE and (ii) the638

conditional continuation value. Preliminary results indicate that the developed Shannon method639

can be modified to effectively handle this challenge. Another research direction is to extend the640

method to handle interest rates following multi-factor square-root CIR dynamics (Cox et al.,641

1985a). It turns out that the developed Shannon methods can also be effectively employed for642

this purpose.643
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