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for the nonmesonic weak decay of }C. Compact expressions for the matrix elements in momentum
space are given for nucleons in any orbital. It is shown that, in contrast to nuclear matter, the S— S and
S — P transitions contribute significantly to the total rate. Implications are discussed for the ratio of the
neutron- to proton-induced rates and of the parity-violating to parity-conserving transitions. Further-
more, transitions coming from initial relative AN P states are shown to be small.
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Partial transitions between initial and final states of definite relative angular momentum are studied
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Brookhaven [1] and KEK [2] we have recently presented
calculations [3] for the nonmesonic weak decay of }2C.
This decay channel, AN—NN, which due to Pauli
suppression is the dominant weak decay mechanism for
all but the lightest hypernuclei, may help to shed some
light on weak quark-quark interactions in the presence of
the strong force. Our calculations were based on a rela-
tivistic nuclear model in which the details of finite nu-
clear structure are treated as well as possible. Final-state
interactions of the ejected nucleons with the residual nu-
clear state were incorporated via a relativistic optical po-
tential. The nucleon and lambda bound-state wave func-
tions were solutions of the Dirac equation with large po-
tentials. Short-range correlations were included with a
realistic AN-correlation function. Appropriate spectro-
scopic factors, corrected for the c.m. motion, took the
shell structure of ''C into account. The transformation
into the relative AN two-body frame was avoided which
allowed a straightforward inclusion of higher nucleon or-
bitals. Minimizing the model dependency with these in-
gredients we found that the pion exchange part of the
AN — NN amplitude is insufficient to reproduce experi-
mental data. This is in contrast to nuclear matter results
[4-6] which found reasonable agreement with the mea-
surements after extrapolating in some way to }*C.

The purpose of this study is to compare the contribu-
tions of partial transitions between nuclear matter and
finite nucleus calculations. By dividing the AN —NN
operator into a central, tensor, and parity-violating part
we obtain the strengths of the partial transitions for nu-
cleons in the 1s and 1p shells. For s-shell nucleons this
corresponds to the relative S—S, S—D, and S—P
transitions, while for p-shell nucleons many more transi-
tions are possible as shown in Table I.

In order to allow a more qualitative discussion in this
Brief Report we perform our calculations in a nonrela-
tivistic framework and neglect final-state distortions.
Both approximations combined change the total rate by
about 30% [3].

Limiting ourselves to pion exchange we can write the
nonrelativistic reduction of the AN-—NN transition
operator as [7]

(1)

where A and g, are coupling constants determining the
strengths of the parity-conserving (PC) and parity-
violating (PV) interactions. The form factor is denoted
by F(q®) which depends on the momentum transfer q.
The parity-conserving amplitude is analogous to the NN
one pion exchange potential and can be divided into a
central and a tensor part using
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Without performing a transformation into the two-body
relative momentum frame we evaluate matrix elements
for the three distinct operators between final asymptotic
nucleon states of momentum k,; and k, along with their
spin projections m, and m;_, and initial bound lambda

and nucleon states. The lambda is assumed to be in a
ls, ., state while the nucleon can be in any orbital defined
by {nlj}.

Evaluating the matrix elements in momentum space we
obtain for the central part (suppressing isospin for simpli-
city)

TABLE 1. Partial transitions present for s- and p-shell nu-
cleons and different parts of the operator.

Central Tensor Parity violating
s shell S-S S—D S—>P
p shell S—S S—D S—P
PP PP P—->S
P—>F P—>D
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where p, =k, +k,—

p is the lambda momentum and q=p, —k,. The integration over p, which is the Fermi momen-

tum of the bound nucleon, is performed numerically. Similarly, we obtain the matrix elements for the tensor part
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and the parity-violating contribution
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We have employed harmonic oscillator radial wave func-
tions @(p) for simplicity using the range parameters of
Ref. [3] (by=1.64 fm, b, =1.87 fm). Including short-
range correlations in momentum space is not trivial since
it requxres replacing the integrals f d’p in Egs. (3)-(5) by
f d®p d3p’ f(p,p’) where the correlation function is of
the form f(p,p')=8(p—p')—g(lp—p’l). We have in-
stead used a monopole form factor with a very soft cutoff
of A,=600 MeV since this reproduces the combined
correlation and form factor reduction of the rates, as we
have verified with our r-space calculation [3].

The results of our calculations are presented in Table
II for the central, tensor, and parity-violating parts of the
operator separately: The rate ', is about 1/3 of T,
and thus contributes significantly to the total nonmesonic
rate. This is in contrast to nuclear matter [4] where the
ratio of I' ., to 'y, is less than 1/30. Note that compar-
isons for the central part between nuclear matter and
finite nucleus calculations should only be made after form

@15 (P AP (P)Y, (D) . (5)

q’+m?

k

factors have been included, otherwise the nuclear matter
integrals diverge. The PV part of the interaction is also
larger in finite nuclei yielding about 30% of the total rate.
Therefore, our results I', /T, ~0.2 and Tpy/Tpc~=0.5
are much larger than in nuclear matter where most calcu-
lations give numbers of less than 0.1 for both ratios.
Note also that the p-shell rates add incoherently to the s-
shell rates. This is due to the different parity of the two
orbits; in heavier nuclei contributions from orbits with
the same parity will add up coherently.

Another result evident from Table II is the important
contribution of p-shell nucleons. The magnitude of the
initial relative AN P-state and S-state contributions can
be calculated separately by transforming to relative and
center-of-mass variables, using an average parameter
b=(by+b,)/2 for the harmonic oscillator wave func-
tions. In order to facilitate the discussion we rewrite the
spatial part of the two-body element in coordinate space

TABLE II. Total and partial rates for the nonmesonic decay of }>C in units of the free A decay rate.

an /FA Fccnt Ftens I‘PV I‘tot rn /rp I‘PV/I‘PC
s shell 0.024 0.070 0.045 0.139 0.208 0.481
p shell 0.039 0.105 0.083 0.228 0.188 0.571
Total 0.062 0.175 0.128 0.366 0.196 0.536
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where r=r,—r,, R=(r;+r,)/2, k=(k,—k,)/2, and
K=k,;+k,. The relative wave function is denoted by
@, (r,V2b), while

d’R

¢L(K,b/\/i>=f( ¢ R (R,b/VD) (D)

2m)
is the c.m. wave function in momentum space. Note that
the wave functions have been written as functions of two
arguments, the coordinate (r or k) and the range parame-
ter (b), in order to clearly illustrate their change due to
the transformation to the c.m. system. For s-shell nu-
cleons, where one has an S wave in both the relative and
center-of-mass motions, the transition amplitude gives a
maximum contribution at the back-to-back kinematics
k,=—k, [8] yielding K=0. For p-shell nucleons one
would expect the contribution from the initial relative
AN S-state to be suppressed compared to that of the rela-
tive P-state, since @p(K=0,b/v'2)=0. This assumption
has been used in Ref. [9]. Surprisingly, after integration
over all other kinematics for which k,7k,, this relative
L =0 term contributes about 90% to the p-shell rate.
This is correcting our result of Ref. [3] where we had er-
roneously stated that the initial relative AN S-state is
suppressed and contributes about 30%. Figure 1 depicts
the p-shell double differential decay rates d ZF,, /dQ, dky,
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FIG. 1. Double differential decay rate as a function of the
proton momentum for the AN relative P state (dotted line), rela-
tive S state (dashed line), and the total p-shell contribution (solid
line).

[

at various angles 0, between the two exiting nucleons,
for the relative S- and P-state contributions separately.
For |k,|=1k,|=378 MeV/c and 6,,=180° the relative S-
state part is zero while the relative P-state rate is at its
maximum. However, as soon as k;|7|k,| and also for
0,,7180° the S-state rate dominates. Therefore, after in-
tegration over the whole phase space, most of the decay
rate of p-shell nucleons comes from the relative AN S-
state.

Finally, we list in Table III the ratio R"”=T, /T, for
various parts of the AN— NN transition operator. As
pointed out before [4-8], the ratio R}2 of the s-shell is
zero since only the spin triplet S — D transition is permit-
ted in the tensor contribution. Antisymmetry in the final
two-nucleon state requires the isospin to be T=0 and,
therefore, the transition An —nn is excluded. However,
for p-shell nucleons the presence of the relative AN P-
state allows tensor transitions to 7=1 final states leading
to a R{#  which is small but nonzero. For the central
part of the operator, R, is the same for both s- and p-
shell nucleons and is close to 1/2. This comes from the
fact that the neutron-induced decay rate has to be multi-
plied with a statistical factor of 1/2 since it contains two
identical particles in the final state. Therefore, Table II1
demonstrates that the non-negligible contributions of
S —S (central) and S—P (parity-violating) transitions
lead to an enhanced ratio R . However, within the pion
exchange model this ratio cannot exceed ~0.5, whereas
the experiments [1] suggest a ratio closer to one albeit
with large error bars.

In conclusion, we have shown that in a finite nucleus
calculation the S—S and S —P transitions contribute
significantly to the total decay rate. This is in contrast to
nuclear matter where almost all the strength came from
the dominant S—D transition. Our ratios I', /T, and
I'py/T'pc—even though still small—are therefore much
larger than the nuclear matter results. It remains to be
seen how the inclusion of heavier mesons—especially the
p meson [10]—affects these ratios in a finite nucleus com-
putation. Furthermore, we found the magnitude of the
relative AN P-state to be small compared to the S state.
It is not clear if this conclusion will hold for heavier hy-
pernuclei when nucleons in 1d,2d,2p, and higher orbits
will contribute to the total rate; then it is advantageous to

TABLE III. The ratio ', /T, for various pieces of the opera-
tor.

r,/r, Central Tensor PC PV
s shell 0.53 0 0.10 0.53
p shell 0.53 0.03 0.12 0.31
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avoid separating the AN — NN two-body matrix elements
into relative and c.m. contributions. Studying the A4
dependence of the nonmesonic decay will tell us when
saturation is achieved, thus permitting a direct compar-
ison between nuclear matter and finite nucleus results.
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