PHYSICAL REVIEW C

VOLUME 49, NUMBER 6

JUNE 1994

Energy weighted sum rules for spectral functions in nuclear matter
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The energy weighted sum rule of single-particle spectral functions in nuclear matter is studied.
The spectral functions include the influence of short-range correlations as generated by the Reid
potential in the framework of the self-consistent Green’s function method. For the range of momenta
studied, the sum rule is rather accurately fulfilled numerically (within 5%). It is observed that the
high-energy tail of the particle part of the spectral function exhausts most of the sum rule, which
confirms the need for the appearance of single-particle strength at very high energies.

PACS number(s): 21.65.4+f

I. INTRODUCTION

The recent experimental information on the single-
particle spectral functions [1-4] has motivated a consid-
erable theoretical effort towards the microscopic calcula-
tion of these quantities [5-19]. The general goal of these
investigations can be summarized by stating that they es-
tablish to what extent a mean-field description of nuclei
is meaningful.

Due to the additional difficulties, at both the formal
and computational level, implied in the treatment of a
finite nucleus, most of the microscopic calculations of
spectral functions up to now have been performed for
nuclear matter. The presently available techniques to
calculate spectral functions are based either on orthog-
onal correlated basis function theory (CBF) [5,6] or on
the perturbation expansion of the one-body propagator
[7-19]. Although the spectral functions themselves can-
not be calculated exactly and one is forced to resort to
approximations, present results have reached a high level
of sophistication. It is therefore useful to explore new
tools which can shed further light on the properties of
spectral functions.

Energy weighted sum rules, which have played an im-
portant role in analyzing the response of the nucleus
[20], may provide such tools. Energy weighted sum rules
for the single-particle spectral functions are well estab-
lished in the literature [21,22] but to our knowledge they
have not been considered from a numerical point of view.
Therefore, the main purpose of this paper is to analyze
the physical implications of the fulfillment of these sum
rules for nuclear matter spectral functions which, in the
present case, have been calculated in the framework of
self-consistent Green’s function (SCGF) theory.

In Sec. II two different derivations of the sum rules
are presented. In Sec. III the results are discussed and
the consequences on the distribution of single-particle

strength analyzed. The conclusions are summarized in
Sec. IV.
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II. SUM RULES FOR THE SINGLE-PARTICLE
SPECTRAL FUNCTIONS

The physical meaning of the single-particle spectral
functions is rather simple. The hole spectral function
Sh(k,w) is the probability of removing a particle with
momentum k from the target system of A particles leav-
ing the resulting (A — 1) system with an energy EA~1 =
E§ —w, where E is the ground-state energy of the tar-
get. Analogously, the particle spectral function S,(k,w)
is the probability of adding a particle with momentum k&
and leaving the resulting (A + 1) system with an excita-
tion energy w measured with respect to the ground state
of the A system, i.e., w = EAT! — E4*. The spectral func-
tions can be directly related to the single-particle propa-
gator of the corresponding many-particle system through
the Lehmann representation

Sn(k,w) = S [(TA7 ax |¥8) 6w — (B — EATY))

(1a)

Splk,w) = D [(Tat|al |28)[*5(w — (B2 - E)),

(1b)

where |¥8') is the ground state of the target, and |¥/™")
and |¥A*!) are excited states of the (A —1) and (A +1)
systems with energies EA~! and EA*!, respectively.

Equations (1a) and (1b) are a convenient representa-
tion for the derivation of the sum rules. The lowest-order
sum rule mg(k) is obtained by using the completeness re-
lation in the energy integration of the spectral functions.
In this way one can express mg(k) as the expectation
value of the anticommutator {ay, a;'(} which, due to the
fermion character of the nucleons, is equal to the unit
operator:
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mo(k) = /_ " dwSh(k,w) + / ~ S, (k,w)
= (¢ |{a, 0} |¥8) = 1, (2)

where ep is the Fermi energy of the system.

The same type of procedure, but with a little more
algebra, leads to the first-order energy weighted sum rule
(EWSR) mq(k):

ma (k) = /GF WS (ky w)dw + /w WS, (k, w)dw

= (95| {lox, H), L } [¥3). (3)

In order to evaluate the right hand side of the EWSR,
it is necessary to assume a Hamiltonian, which in the
present case is taken to be nonrelativistic and of the two-
body type. Under these assumptions,

(03| {[ox, H], 0l } |25)

_kP 1
T 2m - (2m)3

/ Br n(k') (kK| V [k, k), , (4)

where n(k) is the occupation probability of the single-
particle state |k)

(k) = (¥o afax %) = [ T Sakw)de  (5)

and (k,k’|V |k, k'), is the antisymmetrized two-body
matrix element of the bare nucleon-nucleon interaction.
Notice that in order to simplify the notation the spin-
isospin variables have been omitted.

The second term on the right hand side of Eq. (4) can
be identified with the energy independent part of the self-
energy which is obtained as the high frequency limit of
Y(k,w) [11],

3051
(k) = lgm Y(k,w)
- (21103 / EE k) K|V K),.  (6)

The limit ¥°°(k) represents the average potential of a
given particle with momentum k resulting from its inter-
action (V') with all the other particles weighted with their
corresponding occupation probabilities. In fact, (k)
is the generalization of the Hartree-Fock (HF) approxi-
mation to the self-energy:

1
B () = s fk L PF GKIVIKK), (1)
F

The diagrammatic representations of £*°(k) and L#¥ (k)
are shown in Figs. 1(a) and 1(b), respectively.

It is interesting to realize that the energy weighted sum
rules can be related to the asymptotic behavior of the real
part of the Green’s function for large w. In fact, from the
one-body Green'’s function for a homogeneous system

1
w— 2 —¥(k,w)

the following expansion of the real part of G(k,w) is read-
ily obtained:

ReG(k,w):%{l—i-:zijzf(—k)--F---}. (9)

On the other hand, the Lehmann representation of
G(k,w), namely

Glk,w) = / M

T,
o W—w —1in

G(k,w) = (8)

b

Sh(k7wl) dwl+/°° Sp(kl’w’)' dw'
ep W— W +1n

(10)

can be expanded in a similar way to get the real part of
the propagator

1 €ER oo 1 €F oo
Re G(k,w) = -{/ Sh(k,w")dw’ +/ Sp(k,w')dw' + = (/ W' Sh(k,w')dw' +/ w'Sp(k,w')dw')+ . } (11)
w —00 €p w — 00 €p
By comparing the two expansions, one recovers the expressions for my and m;. Higher-order sum rules are obtained
if more terms are retained in the expansion. For example, the next sum rule relates the spectral function to the
imaginary part of the self-energy

where the dispersion relation for ReX(k,w) has been
used.

oo 2 2 oo
1
/ w28 (k,w)dw = (lc_ + Ew(k)) + —/ Im ¥(k,w)| dw, (12)
— oo 2m T J_oo
The sum rules are rigorous relations between the en-
ergy weighted integrals of the spectral functions and cer-

T @ T Q
tain expectation values in the ground state of the system.

It should be noted that the sum rules involve the exact a b
spectral functions. Consider now the case where a certain
approximation is used to calculate the self-energy. It is
both interesting and important to know whether the sum
rules are satisfied by the approximate spectral functions.

FIG. 1. Diagrammatic representation of the energy inde-
pendent part of the self-energy (a) and the HF approximation
to the self-energy (b).



3052 POLLS, RAMOS, VENTURA, AMARI, AND DICKHOFF 49

The asymptotic expansion of the real part of the Green’s
function can be used to show that a self-consistently de-
termined spectral function satisfies sum rules which have
the same form as those of the exact solution. For exam-
ple, the EWSR is satisfied if the momentum distribution
is calculated from the self-consistent spectral function
through Eq. (5). The fact that the self-consistent spectral
function satisfies sum rules which have the same form as
those satisfied by the exact solution, does not constitute
a measure of the accuracy of the approximation since
any self-consistent solution enjoys this property. It is
certainly a guarantee that the numerical solution is cor-
rectly carried out. These sum rules would be a strong
constraint on the approximation itself if the right hand
sides of these rules could be determined experimentally.
The availability of the momentum distribution for exam-
ple determines the first moment of the spectral function
if the bare interaction is known (as in many-electron sys-
tems) [23].

III. RESULTS AND DISCUSSION

The specific test of the sum rules has been carried out
for the Reid interaction [24]. The spectral functions have
been calculated in the framework of SCGF theory. The
SCGF method and all details necessary for performing
the calculations are discussed in Ref. [9]. The basic idea
underlying this method is that the properties of a particle
are determined by its interaction with the other particles.
Due to the short-range repulsion, the minimum mean-
ingful approximation consists in summing up the ladder
diagrams which, in the present case, include also hole-
hole propagation to all orders. The inclusion of hole-hole
propagation is required since at the single-particle level
it yields the coupling to the excited states of the (A — 1)
system and therefore provides the necessary information
for the calculation of the hole spectral function. The re-
sulting effective interaction is used to calculate the self-
energy from which the spectral functions are obtained.
The interaction should then be recalculated since the par-
ticles are dressed by their interactions with the medium.
A nonlinear formulation of the many-particle system is
thus obtained which requires the self-consistent deter-
mination of the single-particle propagator. In principle,
a complete self-consistent calculation implies the use of
fully dressed single-particle propagators in the solution
of the ladder equation for the effective interaction. At
present, self-consistency has been established only in an
averaged way [9] but progress is being made towards ob-
taining the full solution [25].

Before the numerical analysis is presented, it is useful
to comment on the general features of m, (k). Note that
the momentum distribution n(k) on the right hand side of
the sum rule is calculated from the hole spectral function
Sh [see Eq. (5)] which in turn is used, together with the
particle spectral function S, in the evaluation of the left
hand side of the sum rule [see Eq. (3)]. The first thing to
observe is that due to the short-range repulsion present
in any realistic interaction, the right hand side of the sum
rule, explicitly shown in Eq. (4), is a large positive num-

ber. On the other hand, for nuclear matter at saturation
density, one has e < 0. This means that the contribu-
tion to mq (k) of the hole part of the spectral function is
negative. The same is true for the first portion of the S,
contribution. Therefore, it is the high-energy tail of S,
that should compensate for these negative contributions
and bring the sum rule up to the large positive values
obtained by evaluating the right hand side. For mg, how-
ever, the sum rule is already exhausted around 80% by
the hole part of the spectral function S if k < kp. In
the case k > kp, the largest contribution to my comes
from the strength around the peak of S, the high-energy
tail giving only about 6% of the sum rule [8].

The mo sum rule is satisfied better than 1% for all k.
The hole part of the contribution to mg is given by n(k)
which has already been discussed for example in Refs.
[5,9,11]. Nevertheless, for the following discussion, it is
useful to remember that for the Reid potential at normal
density the occupation at zero momentum is n(0) = 0.82
and the discontinuity at kg, which measures the strength
of the quasiparticle pole at kg, is Z(kr) = 0.72.

In Fig. 2, the left and the right hand sides of the EWSR
are compared as a function of k. The contributions of S,
and S, are separately shown. Both display a disconti-
nuity with a size equal to Z(kp)er = 18 MeV and of
opposite sign making the sum continuous across kr. The
sum rule is well satisfied, especially for low momenta,
the maximum discrepancy being about 5% for the mo-
menta shown in the figure. This small discrepancy can
be traced to the fact that the effective interaction has
been constructed only for the low angular momentum
partial waves (35;-3D;, 1S;) whereas all the other par-
tial waves have been treated in the Born approximation.
Therefore, while on the right hand side all partial waves
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FIG. 2. Illustration of the fulfillment of the EWSR. The
dot-dashed lines represent the S, and S, contributions to the
left hand side of the EWSR [see Eq. (3)] with the latter
rapidly approaching zero above kr. The sum of both terms
is represented by the full line which should be compared with
the dashed line giving the right hand side. The dotted line
gives the HF estimate to the right hand side.
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are considered, the spectral functions on the left hand
side have been obtained from a self-energy ¥(k,w) which
energy dependence does not contain the contribution of
the high angular momenta of the interaction. This may
produce slight inaccuracies in the distribution of single-
particle strength, especially at high energy and momen-
tum, which are reflected in some deviations in the ful-
fillment of the sum rule. It has been shown in Ref. [9]
that the inclusion of higher partial waves influences the
momentum distribution at about the 1% level.

As mentioned before, the fulfillment of the m; sum
rule is possible due to the existence of a high-energy tail
in S, which compensates for the negative contributions
coming from Sj. It is thus clear that m; is very sensitive,
not only to the amount of single-particle strength, as mg
is, but also to the way the strength is distributed over
energy. Therefore, even if different many-body methods
satisfy the lowest-order sum rule mgo and possibly gener-
ate a similar momentum distribution, they can still pre-
dict very different results for m; if the strength is not
distributed similarly. The results of Fig. 2 show that the
SCGF method gives a reasonable fulfillment of m;.

It is interesting to comment on the result for m (k)
obtained when one uses the quasiparticle approximation
to the spectral function Sgp(k,w) [8,9]. The resulting
my (k) is given by Z(k)egp(k), where egp(k) is the quasi-
particle energy at which the Lorentzian approximation
to the peak of the spectral function is centered. As Sgp
misses the high-energy tail of S,, the quasiparticle esti-
mate of m, is very poor. At kg, for instance, one obtains
m?P = 18 MeV whereas the proper value is 334 MeV.

The evaluation of the right hand side of the EWSR
using the HF estimate LHF (k) is also reported in Fig. 2
(dotted line). It is clearly seen that it gives an excellent
approximation since the differences are less than 2% with
respect to the calculation with ¥°°(k), which uses the
correlated momentum distribution n(k). Nevertheless,
this observation cannot be extended to the higher-order
sum rules. A simple inspection of Eq. (12) shows that this
is no longer true for the second-order sum rule my, since
there are large additional contributions coming from the
imaginary part of the self-energy.

It is interesting to notice that the HF approximation to
the spectral function, which corresponds to a § function
at the HF energy efF (k) = 5"’% + ZHF(k), satisfies the
sum rules exactly in the sense mentioned above. This
does not mean that HF provides a good description of the
correlated many-body problem but it is a consequence of
the self-consistent nature of the HF solution.

The contribution of the interaction to the right hand
side of the EWSR [Eq. (6)] is analyzed in Fig. 3 where
the contributions to £°°(k) integrating up to kp,3kr,
and oo are explicitly shown. The contribution up to kg
gives 79% of the total, reflecting the fact that the mo-
menta smaller than kr are partially occupied. An addi-
tional contribution of 18% comes from momenta between
kr and 3kr. The HF approximation to the right hand
side of the EWSR has also been included in the figure to
emphasize that SHF (k) is a very good estimate of £°°(k).

The fraction of the sum rule for my and m; exhausted
by integrating up to a given energy is reported in Fig. 4
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FIG. 3. Contributions to the asymptotic value of the
self-energy X°°(k) integrating up to kr (dashed line), up to
3kr (dash-dotted line) and total (full line). The dotted line
is the HF estimate T (k).

for k = 0.79 fm~!. As expected, the saturation is reached
at lower energies for mg than for m;. For other momenta
one obtains approximately the same saturation energy,
reflecting the fact that the high-energy tail of S, is basi-
cally the same for all k£ [8,9]. Notice that for the momen-
tum reported in the figure, which is smaller than kg, it
is necessary to integrate up to approximately 2 GeV to
start to overcome the negative contributions to mq (k).
As a final remark, note that the value of the sum rule
depends on the model used for the NN interaction, the
short range behavior of which is directly related to the
high-energy tail of the spectral function. Clearly, evalu-
ating the sum rule for different potentials would be very
useful to make more quantitative statements on the re-
lation between the repulsive core of the interaction and
the amount of single-particle strength at high energy.
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FIG. 4. Illustration of the saturation of the sum rules mo
(dashed line) and m; (full line) for a momentum k = 0.79
fm™t.
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IV. CONCLUSIONS

It has been shown that the spectral functions obtained
with the SCGF method fulfill the energy weighted sum
rule m; to a high degree of accuracy. The discrepancies
are less than 5% and can easily be improved if higher
angular momentum partial waves are retained in the cal-
culation. Since the sum rules can be used as a test of
the numerical accuracy of microscopic calculations of the
spectral functions, this result is a measure of the good
quality of the spectral functions obtained in SCGF the-
ory. It has also been observed that the HF approximation
to the self-energy can be used to get a good estimate of

the right hand side of m, (k). This observation cannot be
generalized to higher-order sum rules. Finally, it has been
observed that S, exhausts most of the EWSR and that
a proper fulfillment of the sum rule requires the appear-
ance of strength at very high energy, which corroborates
in a quite model independent way the limitations of the
mean-field theory.
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