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Deuteron properties are studied using the one-pion exchange potential truncated at a radius R,
with a constant interior potential. The spectrum of bound states and their properties are put in
evidence. We discuss the relation of this model to more realistic models of the nucleon-nucleon

interaction.
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I. INTRODUCTION

It is a well established fact of nuclear physics that
the long-range part of the nucleon-nucleon interaction is
due to one-pion exchange (OPE). Hence, all of the usual
nonrelativistic potential models include the one-pion ex-
change potential (OPEP) as the asymptotic part of the
potential. Since the deuteron is primarily a loosely bound
neutron-proton system, with a rms radius 1.95 fm, one
should expect that its properties are to a large extent
determined by the OPEP, providing that the remainder
of the potential is adjusted to give the correct binding
energy. This expectation was put on a firm footing by
Klarsfeld et al. [1] in a model-independent way. Using
only the OPEP beyond R = 1.6 fm, they established
close correlations among various deuteron properties.

Early work by Glendenning and Kramer [2] showed
that using only the OPEP outside R = 0.4915 fm, and
a hard core inside, one could fit J = 1 phase parameters
and deuteron properties reasonably well. More recently,
Friar et al. [3] and Ballot et al. [4] used a regularized
OPEP, which becomes repulsive inside 1 fm, and sur-
veyed carefully the extent to which this simple model
could account for the experimental data. The present
paper is an extension of this line of investigation.

In the past decade it has become accepted that nucle-
ons are composite objects built from quarks. A number
of attempts have been made to determine the short-range
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part of the nucleon-nucleon interaction on this basis. In
some of these, such as the P-matrix method (PMM) or
the boundary condition model (BCM), the short-distance
information is expressed by a boundary condition on the
N-N wave function at a distance R of order 0.7-1.4 fm.
Outside this radius a potential acts, which incorporates
the OPEP as one of its main ingredients. The quark com-
pound bag (QCB) is a similar but more complex model.
In the above cases, the deuteron wave function is the
ground state of the resulting potential, just as it is in the
classic nonrelativistic potential models. Other authors
[5,6] have proposed that the deuteron should be the first
excited state of the potential, the deep lying ground state
representing a state forbidden by the Pauli principle act-
ing on the quarks within the nucleons. This is in analogy
to alpha-alpha scattering [7]. The alphas are bosons, but
because they are made of nucleons, they cannot overlap
completely without violating the Pauli principle. This
phenomenon is also discussed in connection with super-
symmetric quantum mechanics and nucleon-alpha scat-
tering [8]. We shall see that our truncated OPEP model
can provide a simple example of this type of wave func-
tion as well.

In this paper we discuss a simple model of a trun-
cated OPEP, with a central flat potential in the interior.
The cutoff radius and the potential depth are adjusted
in all cases to give a bound state at the deuteron bind-
ing energy. While this is not a realistic model of the
nucleon-nucleon interaction, it does incorporate its most
important features, and it is an interesting exercise in
quantum mechanics to observe the behavior of a system
with strong channel coupling.

In Sec. II, we study the spectrum of the truncated
OPEP in the coupled 35;-3D; states. The nodal struc-
ture of the various wave functions is examined in Sec. III.
In Sec. IV, we draw out the analogy between this simple
potential and the more realistic models mentioned above.
Section V contains the conclusions.
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II. TRUNCATED OPEP

A. Zero cutoff

The potential we consider is

V = Vo + VrSi2, (1)
with
Ve(r)=Vs, r<R
—pr
= —fzy,c26 , T>R, (2)
ur
and
Vr(r)=0, r<R
—HT 3 3
=—f2uc? [1+—+ ], r > R. 3
! pr pr - (pr)? ®

For consistency with previous work [2], we adopt
the values f2uc? = 11.156184 MeV, and p~! = 1.415
fm. In the calculations we use m/h® = 0.024113235
MeV~!fm~2, where m is the nucleon mass, and for con-
venience we set the potential equal to zero for distances
larger than 15 fm. Notice that inside the truncation ra-
dius R, the potential is purely central. We will be inter-
ested in certain intervals of R while varying the depth V,
of the core potentials. We require that there be a bound
state at energy £ = —B. When this is the only bound
state (as in the case of conventional potential models),
we are dealing with the first or nodeless branch of our
parameter space. When the deuteron is the first excited
state, we say that we are dealing with the second branch,
and so on.

To begin we shall take Vo = 0. Inside R, the wave
function is a spherical Bessel function for both the S-wave
and D-wave components, u(r) and w(r), respectively. To
look for a bound state solution, we solve the coupled
Schrédinger equations in the region » > R, and match to
the plane-wave boundary condition at R.

If R > 1.055 fm, the truncated OPEP above is too
weak to support a bound state. As R decreases, a bound
state appears, and reaches the deuteron energy F =
—B = —2.224575 MeV, at R = 0.87492058 fm. (The
large number of digits quoted is required to accurately
reproduce the desired energy, due to the great depth of
the OPEP.) This state continues to descend as R de-
creases further. A second bound state appears when R is
about 0.3 fm, and it reaches —B at R = 0.281223 38 fm,
at which point the ground state has reached —1400.638
MeV. At R ~ 0.15 fm, a third bound state appears. At
these distances, the OPEP is very strong, due to the r—3
singularity of the tensor force, and so the wavelength is
tending rapidly to zero. As R — 0, an infinite number of
bound states will appear. The origin would be an essen-
tial singular point of the wave equation, if the OPEP were
continued into R = 0. But for any small but finite cutoff,
the problem will have a large but finite number of solu-
tions. Some of these are illustrated in Fig. 1. Deuteron
wave functions for potentials with different cores corre-
sponding to the first five branches are drawn in Fig. 2.
We see that unlike for the nodeless state, all the others
are essentially the same in the region where the OPEP
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FIG. 1. Wave functions of a potential that supports three

bound states, the ground state at —17155.85 MeV (long
dashes), the first excited state at —1445.837 MeV (short
dashes), and the second excited state at the deuteron energy
(solid line). The function u(r) has the larger amplitude in
each case.
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FIG. 2. Wave functions of the zero cutoff potentials. The
solid curves correspond to R = 0.87492058 fm, the long-
dashed curves to R = 0.281 223 38 fm, the short-dashed curves
to R = 0.142801106 fm, and the dotted curves to R =
0.086 796 284 and 0.058 423 48 fm.
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applies to them. In particular, they all show nearly coin-
cident nodes in both the S- and D-wave components, at
0.48 fm. The other deuteron properties, listed in Table I,
are likewise independent of the number of nodes, once
one fixes the binding energy.

The stability of the wave function inside 0.5 fm can be
ascribed to the dominant role of the tensor coupling of
u(r) and w(r) at these short distances. This is analyzed
in some detail in the Appendix. Even at large distances,
it was argued by Ericson and Rosa-Clot [9] that w(r)
is largely determined by the coupling term 8V (r)u(r)
acting as a driving force. But at short distances, the
singular nature of Vr(r) makes w(r) play the same role in
determining u(r), with the result that both components
are in phase and nearly equal inside the outermost node.

B. Internal repulsion

We now let Vp be positive, giving a (finite) repul-
sive core. For the nodeless branch, R decreases from
0.874 92058 fm to 0.481511 865 fm, as V; rises from zero
to infinity (hard core), to maintain £ = —B. The lat-
ter solution is potential 1 of Glendenning and Kramer
[2]. For the higher branches, R is much more rigid. For
the second branch, R need only decrease by 0.08 fm to
0.200988 28 fm, with an infinite hard core. This is be-
cause of the great strength of the OPEP in the narrow
deep pocket outside R. The corresponding wave func-
tions, plotted in Fig. 3, again show striking similarity for
r > R, and differ negligibly from those of the case V = 0.
If one lays the drawings on top of each other, one cannot
see a difference. This shows that for a given binding en-
ergy, the outer wave function is determined primarily by
the truncated OPEP, and is almost independent of the
inner potential.

C. Internal attraction

For the branches other than the first, a very minor
increase of R is sufficient to compensate for a decrease
of Vo to —1000 MeV. The wave functions again show a
similar stability as in the case of internal repulsion.

TABLE I
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FIG. 3. Wave functions of OPEP’s with a hard core.

The core radii are R = 0.481511865 fm (solid curve),
0.200 988 28 fm (long-dashed curve), 0.111 742741 fm (short-
dashed curve), 0.07142390365 fm (dotted curve), and
0.049673663 75 fm (dotted curve).

The first branch reveals more interesting behavior
which we now discuss. A square well of radius 1 fm by
itself can provide significant attraction. As V decreases
in steps of 10 MeV, R increases, by 0.016 fm as V; de-
creases from 0.0 to —10.0 MeV and by about 0.05 fm as
Vo goes from —40.0 to —50.0 MeV. For V; = —30 MeV,
we find two solutions for R, an R_ = 0.9334281 fm and
R, = 2.18939255 fm. For the larger R, the square well
provides most of the binding, as shown by the reduced
values of the properties Pp, Q, and n in Table II. As
Vo further decreases, R_ approaches R, , and the two
meet for V, just under —58.966 MeV. A deeper V, gives
a bound state deeper than the required —B and no so-
lution is possible. Table II shows clearly the transition

Deuteron properties of the OPEP plus core potential. The binding energy is 2.224 575

MeV in each case; the quantity n is the number of nodes in the wave function.

Vo R (fm) n n Py (%) rp (fm) Qp (fm?®) A, (fm™'/?) p, (fm)

0 0.87492058 0 0.026583 5.9779  1.9378 0.27623 0.87004 1.67743
0 0.28122338 1 0.027116 7.4599 1.9477 0.28633 0.87405 1.70167
0 0.142801106 2 0.027114 7.4949 1.9483 0.28649 0.87433 1.70335
0 0.086796284 3 0.027114 7.4997 1.9484 0.28652 0.87437 1.70359
0 0.05842348 4 0.027114 7.5008 1.9484 0.28652 0.87438 1.70365
o] 0.481511865 0 0.027119 7.4132 1.9533 0.28800 0.87657 1.71671
0o 0.20098828 1 0.027114 7.4873 1.9490 0.28670 0.87465 1.70527
oo 0.111742741 2 0.027114 7.4978 1.9486 0.28657 0.87445 1.70406
0o 0.07142390365 3 0.027114 7.5002 1.9485 0.28654 0.87441 1.70380
[¢) 0.04967366375 4 0.027114 7.5009 1.9484 0.28653 0.87440 1.70373
oo®  0.44263936 0  0.025352 7.0494 1.9216 0.26650 0.86387 1.63938
Experimental values 0.0268(7) 1.950(3)  0.2859(3)  0.8846(8) 1.764(5)

# In this case the OPEP is multiplied by 0.9. See discussion in Sec. IV.
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TABLE II. Deuteron properties of the OPEP plus core potential of different depths. The
deuteron wave functions have no nodes.

R (fm) Vo (MeV) ] P; (%) rp (fm) Qp (fm®) A, (fm™/?) p, (fm)
0.8906313 —10.00 0.02653 5.862 1.9366 0.2751 0.86952 1.674
0.9095809 —20.00 0.02645 5.721 1.9351 0.2737 0.86891 1.670
0.9334281 —30.00 0.02636 5.542 1.9333 0.2719 0.86815 1.666
0.9656522 —40.00 0.02622 5.299 1.9309 0.2693 0.86718 1.660
1.0162786 —50.00 0.02597 4.921 1.9275 0.2650 0.86583 1.652
1.1751603 —58.966 0.02505 3.821 1.9209 0.2508 0.86347 1.637
1.1801612 —58.966 0.02502 3.789 1.9208 0.2503 0.86345 1.637
1.4973470 —50.00 0.02265 2.180 1.9287 0.2207 0.86870 1.669
1.7886961 —40.00 0.02020 1.290 1.9561 0.1943 0.88321 1.755
2.1893925 —30.00 0.01682 0.627 2.0141 0.1609 0.91354 1.922
2.8831722 —20.00 0.01172 0.183 2.1446 0.1125 0.98415 2.253
4.7528665 —10.00 0.00384 0.007 2.5660 0.0377 1.24926 3.036

from a primarily OPEP-dominated solution at R = 1 fm
to primarily square-well-dominated solutions at R > 1.3
fm. This behavior of the first branch serves to empha-
size that the other branches are indeed cases where the
bound state properties are dominated by the OPEP and
essentially independent of the interior potential, in the
sense that a minor adjustment of the cutoff radius R will
compensate for any interior potential.

III. NODAL STRUCTURE OF THE DEUTERON
WAVE FUNCTION

The potential models studied in the previous section all
yield wave functions that have the same number of nodes
in v and w. Further, as seen in Figs. 1-3, the positions of
the nodes appear to be quite fixed. For a given interior
potential, as one moves from branch two to the higher
branches, new nodes appear at smaller radii, but the re-
maining nodes coincide (very nearly) with the nodes of
the lower branch wave functions. A realistic potential
model, which also has an additional deep bound state, is
the Moscow potential [5, 6]. Its deuteron wave function
has one node in u, but none in w. In this section we fur-
ther clarify the possible nodal structure of the deuteron
wave function for potentials of the type given by Eq. (1).

We consider the V versus R relationships for the dif-
ferent branches. Figure 4 shows the V,-R relationship
for the deuteron being the ground state. The curve has
a minimum at around 1.2 fm, which was discussed in the
previous section as the transition from domination by the
OPEP to square-well domination. All wave functions of
this branch are nodeless.

In Fig. 5 a similar curve is plotted for the deuteron as
the first excited state. It has roughly the same shape, but
is much deeper and displaced toward smaller values of R.
For R < 0.4 fm both v and w have a single node, whereas
for R > 0.4 fm u has a node, but w does not. The latter
case yields wave functions with the same nodal structure
as that given by the Moscow potential. Whereas in the
previous case the D-state probability decreased as larger
values of R were chosen, now the D-state probability in-
creases to nearly 100% when R exceeds 4 fm. Neverthe-
less, when Vj is less than —1500 MeV reasonable D-state

probabilities are obtained for values of R up to 0.6 fm.

The nodal structure becomes more complex for the
third branch, shown in Fig. 6, and the fourth branch,
Fig. 7. The three-bound-state case has reasonable D-
state probabilities up to R = 0.3 fm. Beyond that Pp
increases to a maximum of 18% at R = 0.75 fm and then
for larger values of R drops to zero. The deuteron prop-
erties of a sample of potentials with three bound states
are listed in Table III. The fourth branch has two in-
tervals of R for which reasonable deuteron properties are
obtained, i.e., R < 0.18 fm and 0.4 < R < 0.6 fm. In the
first interval, v and w have three or fewer nodes, whereas
in the second interval u has two nodes, but w has zero or
one nodes. For these intervals the wave function can have
quite different behavior for radial distances less than 0.5
fm, but they are virtually identical for larger distances
(see Fig. 8). For large values of R the fourth-branch wave
function is predominantly D state.

: . T T T . T T
0 — —
-10 - -
%20
$
o
£l
g -30 -
]
n
B
o
o
-40
50 -
-60 L L L L '
0 2 3
Core radius R (fm)
FIG. 4. The Vo versus R relationship for potentials having

the deuteron as the ground state. The wave functions have
no nodes.
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the deuteron as the first excited state. The nodal character of
the wave functions are indicated in parentheses (i.e., number
of v nodes, number of w nodes), and the transition points,
giving the core radius and strength at which the number of
nodes changes, are given in the square brackets.

In each branch, potentials with cores of the shortest
range generate deuteron wave functions with an equal
number of nodes in the u and w functions. For such
short distances the tensor force is the dominant compo-
nent of the interaction and the mechanism mentioned in
Sec. IT A explains the similarity of the two functions. At
larger distances however the strong central core is capa-
ble of producing situations in which the two functions
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FIG. 7. Asin Fig. 5 for the deuteron as the third excited
state.

have a different number of nodes. When this is the case
the nodes of v and w that remain will still occur at their
previous locations. Exceptions occur in the transition
regions where nodes are introduced or eliminated. For
large values of R the central square-well character of the
potential becomes dominant and the wave function ap-
proaches a pure S or D state.

IV. DISCUSSION

The model of the nucleon-nucleon interaction studied
in this paper is an exaggerated one that imposes a clean
separation between the exterior and interior parts of the
potential. This is a simplification since there are various
underlying processes leading to the potential function in
coordinate space, and these processes generally result in
knowledge of the interaction in overlapping regions. Nev-
ertheless, it is of interest to determine how much of the
deuteron can be understood with only the OPEP in the
external region.

In contrast to the analyses of Friar et al. [3] and Bal-
lot et al. [4], in which a pion-nucleon form factor is used
to regularize the OPEP at the origin, our model retains
more of the OPEP at shorter distances and allows for
strong short-range interaction. The Friar central poten-
tials become more repulsive inside 1 fm as the order m
of the regularization increases from 1 to 10. The corre-
sponding tensor force is weakened, with a minimum in
the region of 0.1-0.5 fm. In the region beyond 0.5 fm the
tensor forces are considerably weaker than pure OPEP
but approach it as m increases. The deuteron binding
energy is maintained by the interplay of stronger cen-
tral repulsion and tensor attraction as m increases. In
our approach the strong short-range tensor force is the
dominant effect. We can obtain “reasonable” deuteron
properties, although the effective range at the deuteron
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TABLE IIIL

Deuteron properties of the OPEP plus core potential of different depths. The

deuteron is the second excited state of these potentials.

R (fm) Vo (MeV) n Py (%) rp(fm) Qp (fm®) A, (fm™/2) p, (fm)
0.1435074 —1000.00 0.02711 7.494 1.9483 0.2865 0.87432 1.703
0.1462245 —4000.00 0.02711 7.493 1.9481 0.2864 0.87426 1.703
0.1534158 —8000.00 0.02711 7.485 1.9476 0.2863 0.87402 1.701
0.1575460 —9000.00 0.02711 7.480 1.9472 0.2862 0.87384 1.700
0.1733165 —9987.23 0.02711 7.464 1.9454 0.2856 0.87305 1.696
0.2215493 —9000.00 0.02711 7.502 1.9446 0.2854 0.87265 1.693
0.3674381 —7000.00 0.02708 8.162 1.9429 0.2844 0.87194 1.689
0.4489938 —5000.00 0.02687 10.700 1.9067 0.2706 0.85575 1.589
0.7065090 —2000.00 0.02399 18.269 1.6891 0.1737 0.75761 0.835

pole and S-wave asymptotic amplitude are consistently
on the low side. This is also characteristic of the results
of Friar et al.

Although our model can produce wave functions with
the same nodal structure as the Moscow potentials [5,
6], there is again an important difference. The potentials
cited rely on a very strong central Gaussian attractive po-
tential, —1100 exp [—(r/0.7)%] MeV, for which there is no
known physical origin, to produce the deep-lying Pauli-
forbidden state. Since our understanding of the nuclear
interaction is based on the one-boson exchange mecha-
nism, it is difficult to believe that such a long-range scalar
interaction which is many times deeper than OPEP even
at 1.5 fm can exist. In the present model a similar wave
function is produced through the tensor coupling mech-
anism which respects the hierarchy of force ranges, and
without the need to invoke ad hoc components.

0.6 T e e R

LA B R B S B S e

u(r), w(r)

FIG. 8. Three wave functions representing the deuteron as
the third excited state with different nodal structure. For the
solid lines R = 0.116 fm and Vo, = —30135.3235 MeV, for the
short-dashed lines R = 0.4 fm and Vo = —7571.86981 MeV,
and for the long-dashed lines R = 0.55 fm and V, = —6534.31
MeV.

There are other nucleon-nucleon interaction models
that make a sharp separation between the interior and
the exterior regions of the interaction. In the boundary
condition model of Feshbach and Lomon [12], the inte-
rior part of the interaction is represented by the logarith-
mic derivative of the wave function at the core radius.
The boundary conditions are independent of energy, but
they do couple the S and D states. Although our model
has energy-dependent logarithmic derivatives of the wave
function at the core radius, tensor coupling occurs only
in the exterior region through the OPEP.

As already mentioned, in our model the nodes of the
wave function for potentials with sufficiently small core
radii occur at the same place for the u and w functions
and the locations of these nodes seem to be indepen-
dent of the core strength (see Figs. 1-3). The deuteron
static properties determine the external part of the wave
function and are somewhat sensitive to the position of
the outermost node(s), if there are any, but the deuteron
properties do not allow one to distinguish between dif-
ferent behaviors of that part of the wave function inside
the outermost node. Furthermore, the zeros of the two-
nucleon wave function are quite insensitive to the energy
of the scattering state. For example, we calculated the
scattering states (up to 300 MeV) of the same potentials
used to plot Fig. 1, and found that the nodes inside the
potential region occur at exactly the same positions as
for the “deuteron” wave function.

Beyond 1.5 fm, all the deuteron wave functions agree
very closely, and even beyond 1 fm the differences are
minor. This agrees with the conclusion of Klarsfeld et
al. [10], who used methods independent of the short-
distance nucleon-nucleon interaction to deduce a model-
independent deuteron wave function consistent with its
static observables. Other evidence for the essential de-
termination of the deuteron wave function is provided
by the comparison of wave functions determined by the
many realistic potential models. Even models that incor-
porate explicit quark structure at small distances, such
as Yamauchi and Wakamatsu [11], fall in this class; their
final result agrees almost exactly with the Paris wave
function. Where our present model falls short is in some
lack of attraction in the intermediate-distance region near
1 fm, where empirical potentials incorporate some type
of two-pion exchange interaction.

Looking at Tables I and III, we note that the trun-
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cated OPEP tends to yield D-state probabilities which
are larger than those of most realistic nucleon-nucleon
potentials. Only when R is larger than 0.8 fm does
the D-state probability approach the values of the realis-
tic potentials. Realistic potentials which yield deuteron
D-state probabilities that are on the large side tend to
underbind the three-nucleon system [13], and thus one
might conclude that the OPEP part of the potential is
strictly valid only for distances greater than 0.8 fm. A
careful phase shift analysis of the pp scattering data indi-
cates that limiting the tail of the potential to the OPEP
is reasonable only outside 1.8 fm [14].

There are recent suggestions that the charged-pion-
nucleon coupling constant is smaller than given by earlier
determinations [14, 15]. In Ref. [15] the fit to deuteron
properties is used to obtain a 7% reduction of the cou-
pling constant. The second to last line in Table I shows
the effect of reducing the OPEP strength by 10% on the
deuteron properties; this is to be compared with six lines
above. Results of a recent phase shift analysis by Hen-
neck [16], specifically the larger values of €; for 50 and
100 MeV, however, suggest a stronger tensor force, i.e.,
less reduction of the OPEP tensor force by the p and
other contributions.

V. CONCLUSION

The model of this paper explores the behavior of a
quantum mechanical system with strong channel cou-
pling. The various branches corresponding to different
numbers of bound states yield wave functions which for
large core radii approach either a pure S state or pure
D state as R increases. The two possibilities alternate;
i.e., for the single-bound-state branch it is the S, for the
two-bound-state branch the D, etc. This reflects the fact
that for large R the potential is predominantly a central
square well in which the S and D bound states would
alternate.

Another feature of note is the location of the nodes of
the wave functions. When R is small the positions of the
nodes of the S and D states are very nearly coincident
and independent of the strength of the core (see Figs. 1,
2, and 3). The coincidence of the nodes of the u and
w components of the wave function is the result of the
strong coupling between the two functions, since at short
distances the tensor component of the OPEP dominates
and is much stronger than the centrifugal and the central
parts. The behavior of the wave function when the tensor
force dominates is discussed in the Appendix. The ap-
proximate analytic solution obtained there by neglecting
all but the lowest-order term in the expansion of the po-
tential bears remarkable similarity to the exact numerical
solution. Indeed the presence of such a region in which
the tensor force dominates seems to effectively screen the
interior part of the potential. Different strengths and
core sizes affect the deuteron properties little when the
deuteron wave function has at least one node.

Only the outer part of the deuteron wave function is
directly accessible to experiment. From Figs. 2 and 3 one
sees that only the nodeless wave functions corresponding

to R < 1 fm are qualitatively different; in all other cases
the wave functions agree closely for 7 R 0.5 fm. This is
confirmed by the properties tabulated in Table I. The
nodeless case leads to P; ~ 6%, and all the other cases
to Py ~ 7.5%. These precise values are sensitive to the
value of the coupling constant f2, and would be further
tuned by introducing additional components to the outer
potential. However, there is a clear qualitative difference
between the two cases. It demonstrates that the usual
deuteron properties are sensitive to the existence of a
node in the wave function near 0.5 fm, but are insensitive
to the details of the wave function inside that distance.
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APPENDIX: BEHAVIOR OF THE WAVE
FUNCTION AT SMALL DISTANCES

Here we present a simple model confirming our thesis
that the behavior of the « and w components of the wave
function at short distance is due to the dominance of the
OPEP tensor force at short distances. Let us consider
the Schrodinger equation for the two-nucleon system,

( @ a? - vc) u = V8urw , (A1)

s

d? 6
(W —a? = ;f —vc + 2vT) w = \/—S_UTuv (A2)

where vc and vy are the central and tensor parts of the
OPEP when r > R, and o? is the deuteron binding en-
ergy in units of h?/m. Suppose that R is small and that
we are considering values of » which also are small. In
that case the terms involving vr will dominate. For suf-
ficiently small distances we can neglect the centrifugal
term as well. The equations then become

( LA vc> u = V8vrw , (A3)

drz

2

(E— —a?—ve + 2UT) w = V8vpu . (A4)
dr?

These equations admit solutions for which the v and w

functions are proportional to each other, i.e., u(r) =

aw(r) where a is a constant. The two possibilities are

a =2 or —1/v/2. When a = /2, either u(r) or w(r) is

the solution of the second-order differential equation

y" — o’y — (vo + 2vr)y =0, (A5)
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and when @ = —1/+/2, they are solutions of the equation
y" — o’y — (vo — 4dvr)y = 0. (A6)

The general solutions of Egs. (A5) and (A6) for u(r) and
w(r) can be used to form a linear combination which is
the general solution of Egs. (A3) and (A4). Thus the
system of coupled differential equations uncouples when
the centrifugal term is dropped.

We do not have analytic solutions of Egs. (A5) and
(A6), but as we are considering small values of r we may
further expand the potential about r = 0, giving

6 3
vc+2vT=V1[E§—1+ZM-+...] (A7)
and
12 3
vc—4vT=V1[—W+-p—r_1+...], (A8)
where
Vi = —fuc’. (A9)

In both cases the 1/r® term dominates the potential for
small r; in the first case the potential is strongly attrac-
tive, but in the second it is strongly repulsive. Keeping
only the lowest-order term in 7 is equivalent to setting
ve = 0 and vy = —k2/r3, where 2 is a constant with
dimensions length/2.

Neglecting further the o term in Egs. (A5) and (A6),
we obtain the general solutions

u(r) =,,1/2{\/§ [ClJl (2,;\/?) +CY; (25\/5)]

e () e ()]}

(A10)
w(r) =r1/2{C1J1 (2K\/§) + C2Yq <2K\/§)

+CsIy (%) + C4K, (%) } (A11)
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where the C;’s are constants of integration and the
J,Y,K,I are cylindrical Bessel functions. In order to
test the validity of the approximations, we consider the
potential that gives rise to Fig. 3. Empirically, the wave
functions exhibit oscillatory behavior rather than expo-
nential growth and decay, and so we expect that C3 and
C4 should be zero. Further, the I; and K; solutions
arise from the repulsive potential Eq. (A6) and we expect
these to be suppressed relative to the attractive poten-
tial of Eq. (A5). The value of x is given by the potential
strength and C; and C, are found by setting the wave
function equal to zero at the core and by fitting one other
nonzero point of the wave function in order to fix the nor-
malization. The resulting analytic wave function is found
to be very similar to the exact numerical solution up to
the second outermost zero and only beyond that begins
to deviate from the numerical wave function. Since the
same constants C; apply to both u(r) and w(r), they
oscillate in phase.

In the case of soft-core potentials, e.g., that of Fig. 2,
for which we observe that the wave functions are similar
to those of the (small) hard-core potential, the behav-
ior can also be understood in terms of the above solu-
tion. We see that again C3 = C4 = 0 because as r gets
larger \/rI;(4x/+/T) approaches 2k and /7Ki(4K//T)
increases linearly with . In this case the logarithmic
derivatives of u and w inside the core must be matched
with those outside the core at R. This matching con-
dition determines R and one of the constants, say, Ca.
Then C, is fixed by the overall normalization. For small
values of R and r the solution just outside R behaves as
r3/4 multiplied by a sine or cosine function. This agrees
well with the observed progression of the heights of max-
ima.

The great strength of the tensor force at short dis-
tances, which is such that the centrifugal term of the
potential can be neglected, explains the short-range be-
havior seen in the numerical solution of the hard-core and
soft-core potentials. In particular the coincidence of the
nodes of the u and w functions, the ratio of the u to w
of very nearly /2, the clustering of the nodes near the
origin, and the decrease of the amplitude as r approaches
zero are all properties of the above analytic solution.
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