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Width of the A resonance in nuclei
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In this work we evaluate the imaginary part of the isobar A self-energy ¥ a from the two-
body absorption process A + N — 2N. This contribution is calculated using a recently developed
nonrelativistic scheme, which allows for an evaluation of the self-energy with a basis of single-particle
states appropriate for both bound hole states and for particle states in the continuum. In order
to test the medium dependence of the self-energy, we calculate the two-body absorption term Y42
for several finite nuclei with N = Z, i.e., ®0, *°Ca, and '°°Sn. The resulting self-energy, which
is energy dependent and nonlocal, is compared with a simple parametrization derived from nuclear

matter.

PACS number(s): 14.20.Gk, 21.60.—n, 24.10.Cn

The self-energy of the A resonance is central in the
understanding of nucleus-nucleus collisions, pion-nuclear
processes, and photonuclear reactions at intermediate en-
ergies, see e.g., Refs. [1-3] for recent reviews. The self-
energy Xa(w,k,k’) is in general a nonlocal and energy
dependent operator where w and k, k' are the energy and
momenta of the isobar, respectively.

Within the framework of perturbative many-body the-
ories, various contributions to the self-energy can picto-
rially be represented by so-called Feynman diagrams, of
which examples are shown in Fig. 1. Experimental data
for pion scattering [4] and absorption at various energies
covering the isobar resonance region, suggest that the
dominant process for absorption of pions at low energies
is represented by diagram (a), which couples the isobar
to two-nucleon one-hole states (A + N — 2N). Within
the terminology of the isobar-hole model [3,5,6], diagram
(b) is then supposed to represent the rescattering of e.g.,
a real pion, so-called reflection contributions to quasifree
scattering. Diagram (c) is an example of a self-energy
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FIG. 1. Example of diagrams which arise in the evaluation
of the self-energy of the isobar. (a) is the two-body absorption
term evaluated in this work, (b) is an example of a so-called
reflection contribution to quasifree scattering, and (c) stands
for a three-body contribution. The wavy line represents the
G~ matrix, the single line is a nucleon, and the double line
stands for the isobar A.
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contribution arising from three-body absorption mecha-
nisms.

There is no such thing as an experimental measure-
ment of the A self-energy, although indirect information
about the self-energy can be derived from pion-nucleus
scattering, see, e.g., Refs. [2,7,8] and references therein.
In the extensive analyses of Ref. [9], contributions arising
from diagrams like (a) and (b) in Fig. 1, are represented
by way of a A-spreading potential, fitted to provide best
results for pion-nucleus elastic scattering.

The authors of Ref. [10] evaluate the imaginary part of
the A self-energy by considering the contributions from
the diagrams in Fig. 1, accounting thus for quasielastic
corrections, two-body and three-body absorption. The
calculations were carried out in nuclear matter. The
nuclear matter results are then compared to the A-
spreading potential from the empirical determination in
Ref. [9] by allowing for a density dependent self-energy,
which is decomposed into various terms by

ImZa = ImT4? + ImT42% + ImE%. (1)

The term Q accounts for the quasielastic part while A2 is
the two-body absorption part. A3 represents three-body
absorption. A numerical parametrization for these terms
was given by Oset and Salcedo [10], while analytical ex-
pressions based on the results of Ref. [10] were recently
presented by Nieves et al. [11]. In the latter work the
42 term of Eq. (1) has been calculated for a “typical”
A, which is excited in the A-hole model, when a pion of a
certain kinetic energy is absorbed. This parametrization
reads

Im¥4%(z) = Imaa(z) o—

,3( 2) arctan [B(z)(p/po)], (2)

with z = —‘— Tr and m, being the kinetic energy and
mass of the plon respectively. p is the density of parti-
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cles and pg the corresponding density at nuclear matter
saturation. Further, the function Ima, is

Iman (z) = —38.3 (1 — 0.85z + 0.54z%) MeV,  (3)
and
B(z) = 2.72 — 4.07z + 3.07z>. (4)

The parametrization of Eq. (2) can be interpreted as
the width of a A, which is excited when an energy w =
Ty + my, is deposited at a nucleon in nuclear matter of
density p.

The intention behind this Brief Report is to study the
4% term directly for finite nuclei, since this contribu-
tion is expected to be the dominant one at energies be-
low the isobar resonance [10]. For that purpose we will
here employ a recently developed method to calculate
the self-energy of the A in a finite nucleus. Microscopic
calculations of the nucleon or A self-energy have com-
monly been carried out in nuclear matter, the results of

Ref. [10] being one example. One of the advantages of
studies in nuclear matter is the possibility to describe the
single-particle wave functions by plane waves. For a mi-
croscopic calculation in finite nuclei one has to take into
account the fact that one needs different representations
for bound hole states and particle states in the contin-
uum. A method which allows for this has recently been
developed [12,13]. The bound hole states are described in
terms of harmonic oscillator (HO) wave functions while
particle states are given by plane waves. The basic ingre-
dients in our microscopic calculation of £42 are briefly
outlined below. The finite nuclei we consider are 160,
40Ca, and 1%9Sn.

In order to calculate £42, we need first to define the
transition potential Vyynya for the A+ N — 2N process.
For a nucleon and an isobar A interacting through the
exchange of 7w plus p mesons, the transition potential
VNNNa is usually written, in the static nonrelativistic
limit, as [3]

Vnna(k) = — {DﬁA(k)@—%ﬂa kS -k + D;VA(k)fLN%a xk-S x k} T, (5)

™

with S(T') the transition matrix which creates a spin
(isospin) 3/2 object from a spin (isospin) 1/2 one. The
meson propagator Dy ,(k) is defined as in Ref. [13] as

1 1
NA(Ly _ +
Dy (k) = 2 (mfw + k2

1
+ . 6
mfzr,p + k% + ma p(ma — mN)) (©)

The coupling constant for the = meson is given by a rela-
tion obtained from the nonrelativistic quark model [14]

6 6 My
fana = -V2fann = V2anN 7, (7)
5 5 2mpy
and similarly for the p meson we have
fxNa m, ( foNN )
= 1+ , 8
fona f"NngNN‘lmN doNN (8)
with
m NN
foNn = Vamg,nn —F (1 + fp_“) . (9)
my gpNN

In addition we include monopole form factors in or-
der to regularize the potentials at short distances. The
cutoff masses are A, = 1.2 GeV and A, = 1.3 GeV,
while the coupling constants are g2, /47 = 14.6 and
g,z,NN/47r = 0.95, which are equal to the parameters
which define the Bonn B nucleon-nucleon potential Vi
of Table A.2 in Ref. [15]. Further, gﬁ = 6.1. Thus,

the parameters which define the Vyyna potential, agree
with those used in the Bonn B potential, since this po-
tential is used to calculate the G ya matrix, the next in-
gredient in our calculations. The reader should, however,
observe that there is a great deal of uncertainty in the

P

[
definitions of both the NAw coupling constant and the
cutoff masses. Choices for the cutoff mass range from
a few hundred MeV [16] up to 2 GeV [10]. Moreover,
coupling constants deduced from A width are up to 20%
larger than the one deduced from the quark model. Note
that a reduction of the coupling constant by 20% reduces
the result for the self-energy by almost 40%. Finally, the
effects of two-particle correlations are taken into account
in different ways. We try to treat all these ingredients
consistently by employing the parameters of the Bonn
potential and evaluating also the correlation effects from
the same source.

To calculate the Gya matrix, we need first to evalu-
ate the nucleon-nucleon G-matrix G . This is done by
solving the Bethe-Goldstone equation

GNN () = VNN + Van@ QGnNn(2). (10)

1

Q- QHoQ
Here Vv is the free nucleon-nucleon interaction. In this
work Vi is defined by the parameters of the Bonn B
potential in Table A.2 of Ref. [15]. The term Hj is the
unperturbed Hamiltonian. This equation is solved with
an angle-average nuclear matter Pauli operator Q with
a fixed starting energy Q2 = —10 MeV and a Fermi mo-
mentum kr = 1.4 fm~!. From the nucleon-nucleon Gy
matrix, we can evaluate the Gya matrix [13] through
the relation

1
Gna(Q) =VNnna + VNNNAQQ__—QEIOEQGNN(Q)-
(11)
Having accounted for the short-range correlations

through the introduction of the Gy matrix, we are then
able to set up the expression for the imaginary part of
42
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ImE42 (Gplpkpkew) = ——————
m A(]bbb w) 2(2]b+1)

nplnjn JT ILST

The single-hole energy ¢, is given by the eigenvalues
of the harmonic oscillator minus a constant shift to place
the Fermi energy at zero, while the energies of the par-
ticle states are represented by the pure kinetic energy.
The variables k, K are the relative and center-of-mass
momenta of the intermediate particle states p; and p,
in Fig. 1. Further, ! and L are the corresponding or-
bital momenta of the relative and center-of-mass motion.
S, J, and T are the total spin, total angular momen-
tum, and isospin, respectively. Finally, My is the av-
erage proton and neutron masses. A HO single-particle
state is defined by the quantum numbers nplyjn, while
plane waves are defined by k,l,j,. For further details, see
Refs. [13,17]. In Ref. [17] a prescription for orthogonal-
izing the intermediate particle states to the hole state is
discussed. The authors of Ref. [17] find these corrections
for the 2plh diagram of the nucleon self-energy in 160
to be rather small. Because of the uncertainty in cou-
pling constants and cutoff masses, these corrections are
neglected. The orthogonalization could lead to a sizable
reduction in particular for the heavier nuclei.

The energy variable w refers to the energy of the A
relative to the mass of a nucleon. Only positive energies
w contribute, as can be deduced from the § function in
Eq. (12).

To study the medium dependence of Im¥42, we eval-
uate Eq. (12) for the nuclei 10, 4°Ca, and 1%°Sn. The
medium dependence of Eq. (12) is accounted for by the
summation over single-hole states, represented by the
0s1/2, 0py/2, and Ops/, single-hole states in 160, 0s, /2,
0p1/2, Op3/2 1812, 0d3/2, and 0ds/, single-hole states in
40Ca, and 0sy/3, 0py1/2, Ops/2 1812, 0d3/2, 0ds/z 1p1/2,
1p3;2, 0fs/2, 0f7/2, and Ogg, single-hole states in 1%°Sn.
Moreover, the oscillator parameters used in the calcula-
tion of the single-hole wave functions are 1.72 fm for €0,
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I / k2dk / K2dKJT (kolyjsnnlninJT| Gy |KIKL(J)SJT)

X (KIKL(J)SJT|Gna |kelsjonnlninJT)

Kk

xw&(w-{-z—:h — My — ——MN

(12)

2.04 fm for °Ca, and 2.20 fm for 1°°Sn.

In the discussion presented here, we only consider A
isobar states with orbital angular momentum I, = 0.
Guided from our experience in evaluating the imaginary
part of the nucleon self-energy we assume that the global
features are similar for A isobar states with larger an-
gular momenta. A Fourier transformation of Im¥4? in
Eq. (12) leads to an imaginary part, which depends on
energy w and is nonlocal in the coordinate r, the distance
from the center of the nucleus. From the inspection of
this function we observe that the nonlocality is weak in
the sense that it is different from zero only for distances r
and r', which are close to each other. Therefore it makes
sense to look at the local component of Im)]‘g2 for the
various energies as a function of the distance r [17]. As
an example we present in the left part of Fig. 2 this lo-
cal approximation obtained for 4°Ca. The shape of these
functions is not really identical to a Woods-Saxon shape
or a conventional density distribution. In particular at
lower energies (w below 200 MeV) one observes a clear
surface contribution to Im¥42%. Similar results are also
obtained for the other nuclei (see right side of Fig. 2).

Finally, in Fig. 3, we compare the imaginary part of
the A self-energy calculated in the local approximation
for a typical radius of r=1.5 fm at various energies w with
the parametrization of Nieves et al. [11]. This compar-
ison must be considered with some care. As discussed
above, the parametrization of Eq. (2) represents the av-
erage imaginary part of a A, which is typically excited,
when a pion is absorbed in nuclear matter of density p,
depositing an energy w = T + m,. On the other hand,
the results for finite nuclei show a nontrivial radial de-
pendence and Fig. 3 just displays results for one “typical”
radius. The nuclear matter parametrization is presented
for a density p= 0.75 po which is the average density of

FIG. 2. Local representation of the imagi-
nary part of —~X42 as function of the distance
7 from the center of the nucleus. In the left
part of the figure results are shown for the
nucleus *°Ca, considering the energies w =
100, 200, and 400 MeV. In the right part of
the figure the results are displayed for the nu-
clei 10, %°Ca, and 1°°Sn assuming an energy
w=300 MeV.
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FIG. 3. Strength of the imaginary part of —%4? at vari-
ous energies. Results obtained for the local representation at
r=1.5 fm, derived from the microscopic calculation of the A
self-energy in the finite nuclei 0, *°Ca, and '°°Sn are com-
pared to the parametrization of Nieves et al. [11], displayed
in Eq. (2) for a density p = 0.75p0. This parametrization has
been extrapolated from w = m, to w=0.

nucleons in !°°Sn. The agreement between the micro-
scopic calculation for this nucleus and the parametriza-
tion, which is based on studies of nuclear matter is re-
markable. This is true for both the absolute value as
well as the shape of the energy-dependence. Only for
the lightest nucleus which we considered, 80, the calcu-

lated width lies considerably below the parametrization.
These results should, however, be considered with some
care. Although Oset and Salcedo [10] use the same cou-
pling constants and cutoff mass for the pion, they differ
in A,, which in Ref. [10] is set to 2.0 GeV. With such a
choice in our calculations, the results for the lightest nu-
clei would agree better with the parametrization of Ref.
[10]. This parametrization has also been rather success-
ful in the description of pion-nucleus scattering for light
nuclei, see also [7,8]. An enhancement of our results due
to the use of the stronger NA transition potential of Ref.
[10] may partly be compensated for the heavy nuclei by
the orthogonalization of the plane wave particle states to
the HO hole states, discussed above. However, in order
to be consistent with the parameters which define our
NN potential, we adopt the value A, = 1.3 GeV.

In conclusion we would like to point out that our mi-
croscopic evaluation of the A-spreading potential in fi-
nite nuclei supports the parametrization of [11], which
is based on studies of nuclear matter. For low energies,
however, it may be important to consider a surface en-
hancement of the imaginary part in the self-energy of the
A isobar.
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