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Abstract

In this project we study the convergence of Fourier series. Specifically, we first give
some positive results about pointwise and uniform convergence, and then we prove two
essential negative results: there exists a continuous function whose Fourier series diverges
at some point and an integrable function whose Fourier series diverges almost at every
point. In the case of divergence, we show that one can use other summability methods in
order to represent the function as a trigonometric series.
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Introduction

In the present work we study Fourier series, specifically their convergence. A Fourier
series is the decomposition of a function as a series of sines and cosines, also known as
a trigonometric series. This decomposition, in turn, has numerous applications on the
resolution of basic and significant problems of mathematics and physics.

Precisely, the origin of Fourier series was due to the lack of any other technique to
resolve a problem in physics. Indeed, these arose in the XVIIIth century as a way of trying
to solve the differential equation of the vibrating string, which is nothing else but the
one-dimensional wave equation:

∂2u
∂t2 = v2 ∂2u

∂x2 ·

The first person to consider that the general solution of this equation could be regarded as
a trigonometric series was Daniel Bernoulli in 1753. However, renowned characters such
as Euler, Lagrange and d’Alembert disagreed with Bernoulli, claiming that this kind of
solution could not be the general one.

Despite having such a controversial birth, Fourier series did not begin to be taken
seriously until the beginning of the XIXth century. In 1807, Joseph Fourier, whose name
was later given to the series, introduced them together with Fourier integrals to the Paris
Academy of Sciences. Specifically, he did so by presenting his resolution to the heat
transfer equation

∇ · K∇T = c
∂T
∂t
·

In spite of his inaccuracy and the opposition of such a notable figure as Lagrange, he
managed to spread the word about this technique.

Later, Poisson, Cauchy and Dirichlet were the first to study the convergence of Fourier
series, being Dirichlet the one to publish, in 1829, the first accurate result. He limited him-
self to find sufficient conditions for the convergence rather than try to solve the problem
with all generality. His example was followed by personalities like Lipschitz, Jordan and
Dini, who either generalized Dirichlet’s results or found other criteria for the convergence.

In 1867, Riemann’s work on trigonometric series was published. After generalizing
Cauchy’s integral concept, he found the expression of the coefficients on the Fourier series
in order to represent the desired function. Also, he proved some essential results in
harmonic analysis such as the Riemman-Lebesgue lemma.

Back then, the majority shared the idea that the Fourier series of a continuous function
had to converge. However, this was proven false by du Bois-Reymond [2] in 1873, who
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2 Introduction

showed that there exists a continuous function whose Fourier series diverges at a point.
This issue apparently disabled the possibility of recovering a function when only given
its Fourier series. Nevertheless, just like Féjer published in 1900, if we modify the way of
summing the series, this problem is solved most of the times.

In 1902, Lebesgue introduced his integral and he then generalized the Riemann-
Lebesgue lemma. In addition, he defined a summability method similar to that of Féjer
and also proved that if a trigonometric series converges to an integrable function, it must
be its Fourier series.

The beginning of the XXth century also brought the development of functional analy-
sis, which allowed the resolution of some problems of harmonic analysis and lead to the
generalization of its questions. From then on, the pointwise convergence and the p-mean
convergence, both in Lp - the space of functions f such that | f |p is finite -, began to be
considered.

The cases p = 1 and p = ∞ on p-mean convergence were proven negative, meaning
that there exists a function in Lp such that its Fourier series does not converge in p-
mean for these p, whereas the rest of cases were proven positive by Marcel Riesz in 1923,
meaning that every function in Lp has a Fourier series which is convergent in p-mean for
1 < p < ∞.

In regard to pointwise convergence in Lp, Kolmogorov [8] proved in 1923 that there
exists an integrable function, that is from L1, such that its Fourier series diverges almost
everywhere. Therefore, the case p = 1 was dismissed. The case p = 2 was conjectured
to be true by Lusin in 1915 and proven true by Carleson [3] in 1965. The result was later
generalized by Hunt [7], who in 1967 showed that there is convergence in Lp for every
p > 1.

But this did not settle the question. At that point, the inquiry became: which is the
biggest space in which every function has got a convergent Fourier series? Notice that
between the space L1 and the spaces Lp ⊂ L1 for any p > 1 we have several spaces on
which we can check convergence. Until now, we know that:

• Essentially, the biggest space in which the convergence of the Fourier series of any
function has been proven is, as done by Antonov [1] in 1996,

L logL log log logL :=
{

f ;
∫
| f |(log+ | f |)(log+ log+ log+ | f |) < ∞

}
,

where log+ denotes the positive part of the logarithm.

• Essentially, the smallest space in which it has been proven that there exists a function
whose Fourier series diverges is, as proven by Konyagin [9],[10] in 2000,

LϕL :=
{∫
| f |ϕ(| f |) < ∞

}
,

where ϕ is an increasing function such that ϕ(t) = o

( √
log t√

log log t

)
when t→ ∞.

As of today, from the spaces chain

Lp ⊂ · · · ⊂ L logL log log logL ⊂ · · · ⊂ LϕL ⊂ Lϕ ⊂ · · · ⊂ L1,
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we know that the biggest space in which convergence can be granted is somewhere be-
tween the Antonov space and the Konyagin one, but such space has not been found yet.

In Chapter 1 of this project, we define Fourier series and prove their basic properties,
as well as Bessel’s inequality, Theorems 1.10 and 1.12.

In Chapter 2, we start proving the Riemann-Lebesgue lemma, Lemma 2.3, which was
originally published by Riemann in 1867 and generalized by Lebesgue 1902. Then, the
basic positive results on pointwise and uniform convergence of Fourier series are proven.
These give sufficient conditions for the series to converge. The results involving pointwise
convergence, Theorems 2.7 and 2.9, are due to Dirichlet and Dini and were published in
1829 and 1880 respectively. In addition to a basic positive result on uniform convergence,
a simple negative criterion is given.

For these two chapters, the main references have been Cerdà’s book [4] and
Duoandikoetxea’s notes [6].

In Chapter 3, we prove du Bois-Reymond’s and Kolmogorov’s results, Theorems 3.1
and 3.4, first published in 1873 and 1923 respectively. For the first one, which grants the
existence of a continuous function whose Fourier series diverges at a point, we give both
a proof of existence - based on the uniform boundedness principle - and a constructive
one. For the second theorem, which claims the existence of an integrable function whose
Fourier series diverges almost everywhere, we give the original proof of the author.

The principal references for Chapter 3 have been Duoandikoetxea’s notes [6] and book
[5], Ul’yanov’s paper [13] and Reed’s and Simons’ book [12], from which I studied the
proof of the uniform boundedness principle.

In Chapter 4, the last of this project, we give the Cesàro and the Abel-Poisson summa-
bility methods, which can be used as an alternative to the sum of the Fourier series when
this one diverges. We study not only the pointwise convergence of the summability cri-
teria but also the p-mean convergence. From the case p = 2 we deduce the Plancherel-
Parseval identity. Finally, we note the relation between the Abel-Poisson summability and
the classic Dirichlet problem, which we solve.

For this chapter, the main sources have been Duoandikoetxea’s notes [6] and Körner’s
book [11].

It should be pointed out that, since I did not take Anàlisi real i funcional course, whose
content was essential in order to develop this project, I had to independently study it with
the help of my thesis director. However, for space reasons this part of my work could not
be added to the report. Some of the corresponding results, that were needed throughout
the project, are collected in the appendices.
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Chapter 1

Fourier Series

In this chapter we give the basic definitions revolving around Fourier series and we
prove their basic properties. In the last section we prove Bessel’s inequality. The main
references for this chapter have been Cerdà’s book [4] and Duoandikoetxea’s notes [6].

1.1 Trigonometric polynomials and trigonometric series

Definition 1.1. A trigonometric polynomial of period T > 0 is an expression of the form:

a0

2
+

N

∑
k=1

[
akcos

(
2π

T
kt
)
+ bksin

(
2π

T
kt
)]

,

where t ∈ R and ak, bk ∈ C. Such a polynomial is said to be of degree N if either of the coefficients
aN or bN is different from 0.

Remark 1.2. For the sake of simplicity we shall take, from now on, T = 2π. In this specific
case the polynomial above turns into the following way simpler expression:

a0

2
+

N

∑
k=1

(akcoskt + bksinkt).

The generalization to an arbitrary positive period T is achieved by defining a linear trans-
formation x = at + b which turns [−π, π] into [0, T].

Remark 1.3. Using the exponential expression of trigonometric functions,

cos x =
eix + e−ix

2
sin x =

eix − e−ix

2i
,

the trigonometric polynomial above can be expressed as a sum of exponential functions:

N

∑
k=−N

ckeikt,

where ck ∈ C.

5



6 Fourier Series

Let us find the relation between the trigonometric coefficients and the exponential
ones. Since

N

∑
k=−N

ckeikt =
a0

2
+

N

∑
k=1

(akcoskt + bksinkt) =
a0

2
+

N

∑
k=1

(
ak

eikt + e−ikt

2
+ bk

eikt − e−ikt

2i

)
=

a0

2
+

N

∑
k=1

(
ak

1
2
+ bk

1
2i

)
eikt +

(
ak

1
2
− bk

1
2i

)
e−ikt = c0 +

N

∑
k=1

(
ckeikt + c−ke−ikt

)
,

we can conclude that a solution for this equation is the following one, where k ≥ 1:

c0 =
a0

2
ck =

1
2

ak +
1
2i

bk c−k =
1
2

ak −
1
2i

bk. (1.1)

In particular, note that c−k = ck. These relations can also be expressed as follows, where
k ≥ 1 as well:

a0 = 2c0 ak = ck + c−k bk = i(ck − c−k).

As we will show below, the set composed of the exponential functions with respective
arguments ikt turns out to be an orthogonal set, wich implies that the solution above is
the only one.

Definition 1.4. A trigonometric series is a function series of the form:

a0

2
+

∞

∑
k=1

(akcoskt + bksinkt) =
∞

∑
k=−∞

ckeikt

where ak, bk, ck ∈ C.

Remark 1.5. Usually, ak, bk ∈ R. Otherwise, we separate these coefficients into their real
and their imaginary parts.

Observe that the partial sums of a trigonometric series are trigonometric polynomials.

1.2 Orthogonality

The families of functions

{1, cos t, cos 2t, . . . , sin t, sin 2t, . . .} and
{

eikt
}

k∈Z

are both orthogonal sets of functions, which means that if ϕ, ψ are two different functions
of the same family, then ∫ π

−π
ϕ(t)ψ(t)dt = 0.

The proof is below the level of this project. It suffices to integrate by parts in order to
prove it.



1.3 Fourier Series 7

1.3 Fourier Series

The main problem of harmonic analysis is to try to express an arbitrary given function
f as a trigonometric series.

We will only work with functions that are integrable and 2π-periodic. Otherwise,
it is not possible to find suitable trigonometric series for them. From now on, we will
use Lebesgue integrability, which is more general than the Riemann one if one does
not take into account improper integrals. Therefore, our basic assumption will be that
f ∈ L[−π, π]. The reason why we only demand f to be defined on [−π, π] (and only a.e.)
is its periodicity.

Usually, the functions we will work with will be real. If they are complex, it suffices to
split them into their real and imaginary parts so that we can apply them the results that
we obtain for strictly real functions.

As stated above, our main goal is to determine whether there exist ak, bk ∈ R such that
the following equality holds for every t ∈ [−π, π]:

f (t) =
a0

2
+ ∑

k≥1
(akcoskt + bksinkt).

An equivalent question is whether there exist ck ∈ C such that, for any t ∈ [−π, π]:

f (t) = ∑
k

ckeikt.

Next, we find the most suitable trigonometric series for the function, which is called
its Fourier series. Assume the equalities above hold. This means that the trigonometric
series converges pointwisely to the function. Assume also this convergence is uniform.
Then, we can integrate the series term-wise. Using this fact and orthogonality properties:

∀ l ∈ Z,
∫ π

−π
f (t)eiltdt =

∫ π

−π

(
∑
k

ckeikt

)
eiltdt = c−l

∫ π

−π
ei(−l+l)tdt = 2πc−l .

Similarly,

∀ l ∈N,
∫ π

−π
f (t) cos lt = πal ,

∫ π

−π
f (t) sin lt = πbl .

Definition 1.6. Let f ∈ L[−π, π]. We define its Fourier coefficients as

ak =
1
π

∫ π

−π
f (t) cos ktdt, bk =

1
π

∫ π

−π
f (t) sin ktdt, ck =

1
2π

∫ π

−π
f (t)e−iktdt,

which are called the Euler-Fourier formulas. The Fourier series of f is

S f (t) =
a0

2
+ ∑

k≥1
(akcoskt + bksinkt) = ∑

k
ckeikt,

where the coefficients are those defined above. The partial sums of the Fourier series of f ,

SN f (t) =
a0

2
+

N

∑
k=1

(akcoskt + bksinkt) = ∑
|k|≤N

ckeikt,

are called the Fourier sums of f .
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Notice that the procedure above will not be, in general, valid unless the uniform con-
vergence is granted. This is why not every function can be expressed as a trigonometric
series. Nevertheless, the definitions above are completely general.

Example 1.7. If f is a trigonometric polynomial, we can integrate term-wise and therefore
S f = f .

1.4 Properties of Fourier coefficients

Let f ∈ L[−π, π].

Proposition 1.8. Let us denote ak( f ), bk( f ), ck( f ) the Fourier coefficients of f .

1. Fourier coefficients are bounded. Specifically,

|ak|, |bk| ≤
1
π

∫ π

−π
| f (t)|dt, |ck| ≤

1
2π

∫ π

−π
| f (t)|dt.

2. Linearity. Let f , g ∈ L[−π, π] and λ, µ ∈ R. Then, ak(λ f + µg) = λak( f ) + µak(g), and
similarly for bk and ck.

3. Let f ∈ C1[−π, π], that is, the derivative of f exists and it is continuous. Then, the Fourier
coefficients of f and f ′ are related according to the following expressions:

ak( f ) = − bk( f ′)
k

, bk( f ) =
ak( f ′)

k
, c±k(k) = ∓i

c±k( f ′)
k
· (1.2)

4. If f has a defined parity, its Fourier coefficients take special forms:

(i) f even⇒ ak =
2
π

∫ π

0
f (t) cos ktdt and bk = 0.

(ii) f odd⇒ ak = 0 and bk =
2
π

∫ π

0
f (t) cos ktdt.

Proof.

1. We use the following property of integrals:∣∣∣∣∫A
f
∣∣∣∣ ≤ ∫A

| f |,

so

|ak| =
∣∣∣∣ 1
π

∫ π

−π
f (t) cos ktdt

∣∣∣∣ ≤ 1
π

∫ π

−π
| f (t)|dt,

and similarly for bk and ck.

2. These properties are due to the linearity of the integral.
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3. Let us integrate by parts:

ak( f ) =
1
π

∫ π

−π
f (t) cos ktdt =

 u = f (t) ⇒ du = f ′(t)dt

dv = cos ktdt ⇒ v =
1
k

sin kt

 =

1
π

[
1
k

f (t) sin kt
]π

−π

− 1
π

∫ π

−π

1
k

f ′(t) sin ktdt = −1
k

bk( f ′),

where the first term vanishes because the argument of the sine is an integer multiple
of π. Similarly, we get the analogous result for bk( f ). For the other two equalities,
one does not need to integrate again. It suffices to apply the relation between ck and
ak, bk, that is equations (1.1), so:

c±k( f ) =
1
2

ak ±
1
2i

bk =
1
2
·
(
− bk( f ′)

k

)
± 1

2i
·
(

ak( f ′)
k

)
=

1
k

[
± 1

2i
ak( f ′)− 1

2
bk( f ′)

]
=

1
ik

[
±1

2
ak( f ′)− i

2
bk( f ′)

]
=

− i
k
·
[
±1

2
ak( f ′) +

1
2i

bk( f ′)
]
= − i

k
· [±c±k( f ′)] = ∓ i

k
c±k( f ′).

4. (i) If f is even, then f · cos is also even and f · sin is odd.

(ii) On the other hand, if f is odd, f · cos is odd too, whereas f · sin is even.

In fact, it can be proven that (1.2) holds in more general conditions, specifically if f ′ is
piecewise continuous.

1.5 Bessel’s inequality

Along this project, we will study different types of convergence, not only the pointwise
or the uniform one. In this section we study a few aspects of the mean square convergence,
which is the convergence in norm in the space (L2, || · ||2). Spaces Lp are defined in
Definition A.9.

Let f be a square-integrable function, f ∈ L2. Given an arbitrary N ∈ N, we want
to find the trigonometric polynomial of degree N, pN that best approximates f in mean
square convergence, that is, the one that minimizes the integral

|| f − pN ||22 =
∫ π

−π
| f − pN |2.

Proposition 1.9. Let f ∈ L2. The trigonometric polynomial of degree N which best approximates
f in the norm || · ||2 is the Nth Fourier sum of f , SN f .

Proof. Let

p(t) =
c0

2
+

N

∑
k=1

(ck cos kt + dk sin kt)
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be a trigonometric polynomial of degree N. Let us square the integrand and compute the
integrals of the three resulting addends:∫ π

−π
| f − p|2 =

∫ π

−π
( f 2 − 2 f p + p2).

Using orthogonality properties:

∫ π

−π
p(t)2dt =

∫ π

−π

[
c0

2
+

N

∑
k=1

(ck cos kt + dk sin kt)

]2

dt =

∫ π

−π

{( c0

2

)2
+

N

∑
k=1

[(ck cos kt)2 + (dk sin kt)2]

}
dt =

c2
0

4
·
∫ π

−π
1dt +

N

∑
k=1

(
c2

k ·
∫ π

−π
cos2 ktdt + d2

k ·
∫ π

−π
sin2 ktdt

)
=

c2
0

4
· 2π +

N

∑
k=1

π · (c2
k + d2

k) = π ·
[

c2
0

2
+

N

∑
k=1

(c2
k + d2

k)

]
,

which is known as Plancherel-Parseval’s identity for trigonometric polynomials (in The-
orem 4.21 we prove that this equality holds for any square-integrable function). In the
second place, using the definition of Fourier coefficients:

∫ π

−π
f (t)p(t)dt =

∫ π

−π
f (t) ·

[
c0

2
+

N

∑
k=1

(ck cos kt + dk sin kt)

]
dt =

c0

2
·
∫ π

−π
f (t)dt +

N

∑
k=1

(
ck ·

∫ π

−π
f (t) cos ktdt + dk ·

∫ π

−π
f (t) sin ktdt

)
=

c0

2
· πa0 +

N

∑
k=1

(ckak + dkbk)π = π ·
[

1
2

a0c0 +
n

∑
k=1

(akck + bkdk)

]
.

Therefore, using these two expressions and adding and subtracting ∑(a2
k + b2

k) to the
result:∫ π

−π
| f − p|2 =

∫ π

−π
f 2 +

∫ π

−π
p2 − 2

∫ π

−π
f p =

∫ π

−π
f 2 + π ·

[
1
2

c2
0 − 2 · 1

2
a0c0 +

N

∑
k=1

(c2
k + d2

k − 2akck − 2bkdk)

]
=

∫ π

−π
f 2 + π ·

[
c2

0 − 2a0c0 + a2
0

2
− 1

2
a2

0+

+
N

∑
k=1

(
c2

k − 2akck + a2
k − a2

k + d2
k − 2bkdk + b2

k − b2
k

)]
=

∫ π

−π
f 2 − π ·

[
a2

0
2
+

N

∑
k=1

(a2
k + b2

k)

]
+ π ·

{
(a0 − c0)

2

2
+

N

∑
k=1

[
(ak − ck)

2 + (bk − dk)
2
]}

.
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The first two terms of the last expression do not depend on p, whereas the last one does.
Since all the terms in the last term are positive, the only choice to minimize it is ck = ak
and dk = bk for every 0 ≤ k ≤ N, which was to be shown.

From this proof, we also deduce Bessel’s inequality (which in Theorem 4.21 will be
shown to be, in fact, an equality).

Theorem 1.10 (Bessel’s inequality). Let f ∈ L2. Then,

a0

2
+

∞

∑
k=1

(a2
k + b2

k) ≤
1
π

∫ π

−π
f 2.

Notice that the right term in the equality is finite because f is square-integrable by
hypothesis.

Proof. Let p = SN f . As we have shown, in this case the last term of the last expression in
the proof above vanishes, so

0 ≤
∫ π

−π
| f − p|2 =

∫ π

−π
f 2 − π ·

[
a2

0
2
+

N

∑
k=1

(a2
k + b2

k)

]
.

An essential consequence of this result is that the Fourier coefficients of any square-
integrable function tend to 0, otherwise the left term in Bessel’s inequality could not be
finite.

Corollary 1.11. Let f ∈ L2. Then, ak, bk → 0.

Bessel’s inequality also holds for the complex form of the trigonometric series.

Theorem 1.12 (Complex Bessel’s inequality). Let f ∈ L2. Then,

∞

∑
k=−∞

|ck|2 ≤
1

2π

∫ π

−π
| f |2.

Notice that now | · | denotes the complex norm instead of the absolute value, for which
reason it is not trivial to deduce this form of the theorem from the previous one.

Proof. The integrand takes the following form:∣∣∣∣ f (t)− ∑
|k|≤N

ckeikt
∣∣∣∣2 =

(
f (t)− ∑

|k|≤N
ckeikt

)
·
(

f (t)− ∑
|k|≤N

cke−ikt
)
=

f (t)2 − ∑
|k|≤N

[
f (t)cke−ikt + f (t)ckeikt

]
+ ∑
|k|,|l|≤N

ckclei(k−l)t.
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Integrating and using orthogonality properties:

0 ≤

∫ π

−π

∣∣∣∣ f (t)− ∑
|k|≤N

ckeikt
∣∣∣∣2 =

∫ π

−π
f (t)2dt− ∑

|k|≤N

(
ck

∫ π

−π
f (t)e−iktdt + ck

∫ π

−π
f (t)eiktdt

)
+ ∑
|k|,|l|≤N

∫ π

−π
ckclei(k−l)tdt =

∫ π

−π
f (t)2dt− ∑

|k|≤N
(ckck · 2π + ckck · 2π) + ∑

|k|,|l|≤N
ckcl · 2πδ(k− l) =

∫ π

−π
f (t)2dt− 2 · 2π ∑

|k|≤N
|ck|2 + ∑

|k|≤N
|ck|2 · 2π =

∫ π

−π
f (t)2dt− 2π ∑

|k|≤N
|ck|2.

Since this inequality holds for every N, it also does for the limit N → ∞, which was to be
shown.

Corollary 1.13. Let f ∈ L2. Then, ck → 0.



Chapter 2

Pointwise and uniform
convergence of Fourier Series:
Positive results

In this chapter we study the pointwise and uniform convergence of the Fourier series
of a function. More specifically, we shall give some different, independent, sufficient con-
ditions for a function in order for its Fourier series to converge pointwisely or uniformly.

2.1 Dirichlet Kernel

The Dirichlet kernel allows us to write Fourier sums in a very compact, useful integral
form. In this section, for which the main source have been Duoandikoetxea’s notes [6], we
include the definition and properties of this kernel.

Let us write Fourier sums in integral form. For any N ∈N:

SN f (x) = ∑
|k|≤N

ckeikx = ∑
|k|≤N

(
1

2π

∫ π

−π
f (t)e−iktdt

)
eikx =

1
2π

∫ π

−π
f (t) ∑

|k|≤N
eik(x−t)dt.

Definition 2.1. Given N ∈N, the Dirichlet Kernel of degree N is defined as the function

DN(t) :=
1
2 ∑
|k|≤N

eikt.

Taking this into account, the integral expression of Fourier sums takes the following
form:

SN f (x) =
1
π

∫ π

−π
f (t)DN(x− t)dt. (2.1)

If we start from the trigonometric expression of SN f rather than the exponential one,
we get the same expression. The trigonometric form of the Dirichlet kernel is

DN(t) =
1
2
+

N

∑
k=1

cos kt. (2.2)

13
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Let us see another expression for the Dirichlet Kernel that is way more compact and
will be of great utility later. Using the well-known trigonometric identity of the sine of a
sum,

sin(x + y) = cos x sin y + sin x cos y,

one can easily prove that, for every y ∈ R such that sin y 6= 0:

cos x =
1
2

sin(x + y)− sin(x− y)
sin y

·

Therefore, taking x = kt and y =
t
2

(where 1 ≤ k ≤ N, and let us assume that t is such that

sin(t/2) 6= 0, even though I will further discuss the validity of the resulting expression for
any t ∈ R):

cos kt =
1
2

sin
(

k +
1
2

)
t− sin

(
k− 1

2

)
t

sin(t/2)
,

so:

DN(t) =
1
2
+

N

∑
k=1

cos kt =
1
2
+

N

∑
k=1

1
2

sin
(

k +
1
2

)
t− sin

(
k− 1

2

)
t

sin(t/2)
=

1
2
·
{

1 +
1

sin(t/2)
·
[
���

��
sin
(

3
2

t
)
− sin

(
1
2

t
)
+

���
��

sin
(

5
2

t
)
−

���
��

sin
(

3
2

t
)

+��· · ·+

+ sin
(

N +
1
2

)
t−

�������
sin
(

N − 1
2

)
t
]}

=
1
2
·

�1 + sin
(

N +
1
2

)
t−����sin(t/2)

sin(t/2)

 ,

and therefore

DN(t) =
sin
(

N +
1
2

)
t

2 sin(t/2)
· (2.3)

Notice that the denominator can vanish and hence this expression holds, a priori, only if t
is not an even multiple of π. However, at these points, the expression on the right of (2.3)
shows a removable discontinuity. That is, the left and right limits of the function both
exist and they are equal. Furthermore, their value equals the value of the Dirichlet Kernel
in that point. Let us show it. Let x = 2kπ with k ∈ Z. Then:

lim
t→x±

sin
(

N +
1
2

)
t

2 sin(t/2)
= lim

y→π±

sin
(

N +
1
2

)
2ky

2 sin(2ky/2)
= lim

y→π±

sin k · (2N + 1)y
2 sin ky

=

lim
y→0±

��± sin k · (2N + 1)y

��±2 sin ky
=

k · (2N + 1)
2k

=
2N + 1

2
,
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while

DN(x) =
1
2 ∑
|l|≤N

eilx =
1
2 ∑
|l|≤N

eil·2kπ =
1
2 ∑
|l|≤N

1 =
2N + 1

2
·

In conclusion, (2.3) holds for all t ∈ R if we convene that, at the points where it is not
well-defined, we take its limit at them.

Let us prove some basic still useful properties of the Dirichlet Kernel.

Proposition 2.2.

1. DN is 2π-periodic,

2. DN is an even function,

3.
1
π

∫ π

−π
DN(t)dt = 1.

Proof. The first two properties are obvious taking into account equation (2.2). To prove the
third one, we also use that expression. Note that if we integrate it over [−π, π], the only
addend that will not vanish will be the one corresponding to the constant term 1/2, since
the cosines are being integrated over a (multiple of a) period. So

1
π

∫ π

−π
DN(t)dt =

1
π

∫ π

−π

1
2

dt =
1
π
· 2π · 1

2
= 1.

Let us see a couple of alternative integral expressions for the Fourier sums. First of all,

SN f (x) =
1
π

∫ π

−π
f (x− t)DN(t)dt. (2.4)

Indeed:

SN f (x) =
1
π

∫ π

−π
f (t)DN(x− t)dt =

1
π

∫ π+a

−π+a
f (t)DN(x− t)dt =

∫ π

−π
f (s + a)DN(x− s− a)ds =

1
π

∫ −π

π
f (x− t)DN(t) · (−dt) =

1
π

∫ π

−π
f (x− t)DN(t)dt,

where we have made a couple of changes of variables and used the fact that f and DN are
2π-periodic, so the integral of f ·DN over [−π, π] equals the integral over [−π + a, π + a]
for any a ∈ R.

Another useful expression is:

SN f (x) =
1
π

∫ π

0
[ f (x + t) + f (x− t)] DN(t)dt, (2.5)

which can be easily proven using similar arguments.
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2.2 Riemann-Lebesgue Lemma

Recall that Bessel’s inequality allowed us to claim that Fourier coefficients of any
square-integrable function tend to 0 (Corollary 1.11). The Riemann-Lebesgue lemma tells
us that this is not only true for square-integrable functions, but in fact it also is for any
integrable function. Note that this is a more general result since L2 ⊂ L.

The principal reference for this section has been Cerdà’s book [4].

Lemma 2.3 (Riemann-Lebesgue). Let f ∈ L and λ ∈ R. Then,

lim
λ→∞

∫ π

−π
f (t) sin λtdt = lim

λ→∞

∫ π

−π
f (t) cos λtdt = 0.

Remark 2.4. A more general version of the lemma is the following. Let f ∈ L , a, b ∈ R

such that a ≤ b and α, β ∈ R. Then,

lim
|α|→∞

∫ b

a
f (t) sin(αt + β)dt = 0.

The result for the cosine is obtained by taking β = π/2. We only give the proof for Lemma
2.3, being the proof for this last version similar but longer.

One of the most important consequences of this lemma, but not the only one, is the
aforementioned:

Corollary 2.5. If f ∈ L, then ak, bk → 0.

Proof. (Corollary) It suffices to take λ = k ∈N in Lemma 2.3.

Proof. (Lemma) Let us start proving the lemma for very specific functions. Then, we will
generalize until we prove it for any integrable function.

(i) f = χ(a,b) (characteristic function of an interval).∣∣∣∣∫ π

−π
f (t) sin λtdt

∣∣∣∣ = ∣∣∣∣∫ b

a
sin λtdt

∣∣∣∣ = ∣∣∣∣− 1
λ

cos λt
∣∣∣∣b
a
=

∣∣∣∣cos λa− cos λb
λ

∣∣∣∣ ≤ 2
|λ|

λ→∞−−−→ 0,

and similarly for the cosine.

(ii) f =
N

∑
k=1

ykχ(ak ,bk)
(step function). The corresponding result is easily obtained from (i)

by linearity.

(iii) f = χE (characteristic function of a measurable set E ⊂ (−π, π)). Recall the definition
of the Lebesgue measure in Theorem A.2, and that of regular measure, Definition A.3.
From Theorem A.4, the Lebesgue measure, which we are using, is regular. By outer
regularity, given any ε > 0 there exists an open set E ⊂ G ⊂ (−π, π) such that
|G \ E| < ε, where | · | denotes the Lebesgue measure. Now, let us see that∫

G
sin λtdt k−→ 0.
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Since G ⊂ R is an open set it can be expressed as a countable union of open in-
tervals, G =

⋃
k(ak, bk). Its characteristic function is then χG = χ⋃

k(ak ,bk)
, which

can be inferiorly approximated by the growing sequence of functions {χGn}n, where
Gn :=

⋃n
k=1 Ik :=

⋃n
k=1(ak, bk). Define the set sequence {Fm}m≥1 as follows:

• F1 := I1,

• Fk := int(Ik \ Ik−1),

so Fk is a finite, disjoint union of open intervals. Define G′n :=
⋃n

k=1 Fk too, which is
also a finite disjoint union of open intervals. We have that:

χG ≥ 0 measurable,
χG′n+1

≥ χG′n ≥ 0 measurables,

χG
∀x
= limn χGn

a.e.x
= limn χG′n a.e. x,

so we can apply MCT↑ and MCT↓ (which can be found in Theorem A.5) to the
positive and negative parts of χG sin kt, respectively. Thus, we get:∫ π

−π
χG sin λtdt = lim

n

∫ π

−π
χG′n sin λtdt, so

∫
G

sin λtdt = lim
n

∫ π

−π
χG′n sin λtdt,

which, since χG′n are step functions (because Gn′ are finite unions of intervals), satisfies
the theorem by (ii). Consequently,

lim
λ→∞

∫
G

sin λtdt = lim
λ→∞

lim
n

∫ π

−π
χG′n sin λtdt = lim

n
lim

λ→∞

∫ π

−π
χG′n sin λtdt = lim

n
0 = 0.

Finally,∫
G

sin λtdt =
∫

G\E
sin λtdt +

∫
E

sin λtdt⇒
∫

E
sin λtdt =

∫
G

sin λtdt−
∫

G\E
sin λtdt,

so by the triangle inequality:∣∣∣∣∫E
sin λtdt

∣∣∣∣ ≤ ∣∣∣∣∫G
sin λtdt

∣∣∣∣− ∣∣∣∣∫G\E
sin λtdt

∣∣∣∣ .

The first term on the right is arbitrarily close to 0 when λ → ∞. The second term
is also arbitrarily close to 0 - regardless of the value of λ - choosing a suitable set G.
That is:

∀ ε > 0 ∃ 0 < M ∈ R such that ∀ λ ≥ M,
∣∣∣∣∫E

sin λtdt
∣∣∣∣ < ε,

which was to be proven.

(iv) f =
N

∑
k=1

αkχEk such that Ek is measurable for every 1 ≤ k ≤ N (simple function). The

corresponding result is easily obtained from (iii) by linearity.
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(v) f ∈ L (general case, integrable function). Now, thanks to Theorem A.1 we know that,

given ε > 0, there exists a simple function s such that
∫ π

−π
| f − s| < ε/2, so:∣∣∣∣∫ f (t) sin λtdt

∣∣∣∣ = ∣∣∣∣∫ [ f (t)− s(t) + s(t)] sin λtdt
∣∣∣∣ =∣∣∣∣∫ s(t) sin λtdt +

∫
| f (t)− s(t)| sin λtdt

∣∣∣∣ ≤∣∣∣∣∫ s(t) sin λtdt
∣∣∣∣+ ∣∣∣∣∫ | f (t)− s(t)| sin λtdt

∣∣∣∣ ,

where the first term can be also bounded by ε/2 according to (iv). Therefore,

lim
λ→∞

∣∣∣∣∫ f (t) sin λtdt
∣∣∣∣ = 0.

2.3 Localization principle

By definition, the Fourier coefficients (and hence the Fourier series) of a function de-
pend on the entire set of values of the function. The localization principle claims that,
even so, the value of the Fourier series at a given point only depends on the local values
of the function near that point.

The main source for this section - and the remaining ones of this chapter - have been
Duoandikoetxea’s notes [6].

Theorem 2.6. (Localization principle)

(i) Let f ∈ L such that there exists δ > 0 such that f (x) = 0 for all x ∈ (x0 − δ, x0 + δ).
Then, S f (x0) = 0.

(ii) Let f , g ∈ L such that there exists δ > 0 such that f (x) = g(x) for all x ∈ (x0− δ, x0 + δ).
Then, either S f (x0) = Sg(x0) if either limit exists, or the limits do not exist.

Proof. The proof is purely based on the Riemmann-Lebesgue lemma, Lemma 2.3.

(i) Taking into account (2.3) and (2.4) in the first equality and the hypothesis in the
second one, we have:

SN f (x0) =
1
π

∫ π

−π
f (x0− t)

sin
(

N +
1
2

)
t

2 sin(t/2)
dt =

1
π

∫
δ≤|t|≤π

f (x0 − t)
2 sin(t/2)

sin
(

N +
1
2

)
tdt.

The function

g(t) :=


f (x0 − t)
sin(t/2)

, if δ ≤ |t| ≤ π,

0 , if |t| ≤ δ

is integrable. Indeed, it is measurable because
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• Both f and sin are measurable and sin does not vanish in δ ≤ |t| ≤ π.

•
∫
|g| ≤ 1

| sin(δ/2)| ·
∫
| f | < ∞ because f is integrable.

Therefore we can apply Lemma 2.3 to g, which taking λ = N leads us to:

lim
N

∫ π

−π
g(t) sin

(
N +

1
2

)
tdt = 0,

that is, S f (x0) = 0.

(ii) It is easy to see that SN f (x0)− SN g(x0) = SN( f − g)(x0) (using the integral form 2.4
and linearity of the integral). Taking the limit, S f (x0)− Sg(x0) = S( f − g)(x0) too.
Since f , g ∈ L, then f − g is also integrable and, by hypothesis, this function satisfies
the hypothesis of (i). Therefore, S( f − g)(x0) = 0, and finally S f (x0) = Sg(x0).

The main positive theorems on pointwise convergence of Fourier series are Dirichlet’s
and Dini’s, which we will state and prove in the following sections.

2.4 Dirichlet’s theorem

Theorem 2.7 (Dirichlet). Let f ∈ L and x0 ∈ R such that:

• Lateral limits f (x−0 ), f (x+0 ) exist and are real.

• Lateral derivatives f ′(x−0 ), f ′(x+0 ) exist and are real.

Then,

S f (x0) =
1
2
[ f (x+0 ) + f (x−0 )].

Remark 2.8. If f is continuous and differentiable at x0, then S f (x0) = f (x0).

Proof. From (2.5), S f (x0) =
1
2
[ f (x+0 ) + f (x−0 )] is equivalent to

lim
N

1
π

∫ π

0
[ f (x + t) + f (x− t)] DN(t)dt =

1
2
[ f (x+0 ) + f (x−0 )].

Taking into account Dirichlet’s kernel properties (Proposition 2.2), this is equivalent to

lim
N

∫ π

0
[ f (x0 + t) + f (x0 − t)− f (x+0 )− f (x−0 )]DN(t)dt = 0.

Hence, it suffices to prove the two following equalities:

lim
N

∫ π

0
[ f (x0 ± t)− f (x±0 )]DN(t)dt = 0,

which written into integral form become:

lim
N

∫ π

0

f (x0 ± t)− f (x±0 )

2 sin(t/2)
sin
(

N +
1
2

)
tdt = 0.
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Taking into account the general version of Riemann-Lebesgue’s lemma (Remark 2.4), it
suffices to see that

g±(t) :=
f (x0 ± t)− f (x±0 )

2 sin(t/2)
∈ L(0, π].

First of all, observe that these functions are both measurable, since the numerator is mea-
surable - because f is - and the denominator is measurable (continuous) and does not

vanish on (0, π]. Now we have to see that
∫ π

0
|g±| < ∞.

Since lateral limits f (x±0 ) exist, there exists δ > 0 such that f is continuous on
[x0 − δ, x0) ∪ (x0, x0 + δ], and therefore both functions f (x0 ± t) − f (x±0 ) are continuous
on (0, δ]. Functions g±(t) are consequently also continuous on (0, δ], since sin(t/2) is con-
tinuous and does not vanish on this interval. Once δ is defined, we separate the original
integral into two integrals and we will later prove that both of them are finite.

∫ π

0
|g±(t)|dt =

∫ δ

0

∣∣∣∣∣ f (x0 ± t)− f (x±0 )

2 sin(t/2)

∣∣∣∣∣ dt +
∫ π

δ

∣∣∣∣∣ f (x0 ± t)− f (x±0 )

2 sin(t/2)

∣∣∣∣∣ dt =: I1 + I2.

• I1 < ∞. It suffices to see that g± are bounded on (0, δ]. In the first place, since g± are
continuous on this interval, then they are continuous on [a, δ] for all 0 < a ≤ δ, and
therefore bounded on all these intervals. So it suffices to see that lim

t→0+
g±(t) ∈ R,

which is indeed true because

lim
t→0

g±(t) = lim
t→0

f (x0 ± t)− f (x±0 )

2 sin(t/2)
= lim

t→0

t
2 sin(t/2)

·
f (x0 ± t)− f (x±0 )

t
= 1 · f ′±(x0)

is real by hypothesis.

• I2 < ∞. Indeed, using the triangle inequality and the fact that sin(t/2) is increasing
between δ and π:∫ π

δ

∣∣∣∣∣ f (x0 ± t)− f (x±0 )

2 sin(t/2)

∣∣∣∣∣ dt =
∫ π

δ

∣∣∣∣ f (x0 ± t)
2 sin(t/2)

∣∣∣∣ dt +
∫ π

δ

∣∣∣∣∣ f (x±0 )

2 sin(t/2)

∣∣∣∣∣ dt =

1
sin(δ/2)

·
[∫ π

δ
| f (x0 ± t)|dt +

∫ π

δ

∣∣ f (x±0 )
∣∣ dt
]

,

which is finite because f ∈ L.

2.5 Dini’s criterion

Theorem 2.9 (Dini’s criterion). Let f ∈ L, x0 ∈ R and l ∈ R such that the function

φ(t) := f (x0 + t) + f (x0 − t)− 2l satisfies
φ(t)

t
∈ L(0, δ) for some δ > 0.

Then, S f (x0) = l.
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Proof.

SN f (x0)− l =
1
π

∫ π

0
[ f (x0 + t) + f (x0 − t)]DN(t)dt− l =

1
π

∫ π

0
[ f (x0 + t) + f (x0 − t)− 2l]DN(t)dt =

1
π

∫ π

0
φ(t)DN(t)dt =

1
π

∫ π

0

φ(t)
2 sin(t/2)

· sin
(

N +
1
2

)
dt.

It suffices to see that
φ(t)

2 sin(t/2)
∈ L(0, π) to apply Lemma 2.3, which would lead us

to S f (x0) − l = 0. In the first place,
φ(t)

2 sin(t/2)
is measurable in (0, π) because it is

the quotient of two measurable functions and the denominator does not vanish. Now,∫ π

0

∣∣∣∣ φ(t)
2 sin(t/2)

∣∣∣∣ dt < ∞. To prove it, we separate (0, π) = (0, δ] ∪ (δ, π) for any 0 < δ < π

and see that the integral on both subintervals is finite:

• Since t increases faster than 2 sin(t/2) and lim
t→0

t
2 sin(t/2)

= 1, then:

∫ δ

0

∣∣∣∣ φ(t)
2 sin(t/2)

∣∣∣∣ dt =
∫ δ

0

∣∣∣∣φ(t)t
· t

2 sin(t/2)

∣∣∣∣ dt ≤ δ

2 sin(δ/2)
·
∫ δ

0

∣∣∣∣φ(t)t

∣∣∣∣ dt,

which is finite by hypothesis.

• On the other hand, since 2 sin(t/2) is increasing in (δ, π), then∫ π

δ

∣∣∣∣ φ(t)
2 sin(t/2)

∣∣∣∣ dt ≤ 1
2 sin(δ/2)

·
∫ π

δ
|φ(t)|dt,

which is finite because f ∈ L.

2.6 Uniform convergence

Recall the Weierstrass M-test, Theorem B.1. We can apply it to our problem in the
following way. Our function series is the Fourier series of f , the function to analyze:

∑
n≥1

fn(t) =
a0

2
+ ∑

n≥1
(an cos nt + bn sin nt),

and we can bound each term of the series like this:

| fn| = |an cos nt + bk sin nt| ≤ |ak|+ |bk| =: Mn,

so a sufficient condition for the absolute and uniform convergence of S f is

∞

∑
n=1

(|an|+ |bn|) < ∞,
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which can be easily be shown to be equivalent to
∞

∑
n=1
|cn| < ∞. Therefore we have proven

the following simple criterion for uniform convergence.

Proposition 2.10. Let f ∈ L and let an, bn, cn be its Fourier coefficients. If
∞

∑
n=1

(|an|+ |bn|) < ∞,

or equivalently
∞

∑
n=1
|cn| < ∞, then S f absolutely and uniformly converges to f .

Another important criterion is the following. Consider the sequence {SN f (x)}N ,
which is a sequence of continuous functions. Theorem B.2 tells us that, if S f converges
uniformly (to f ), then f must be continuous. So we have got a simple negative result on
uniform convergence of Fourier series:

Proposition 2.11. If f is not continuous on [−π, π], then S f does not converge uniformly to f .

Next we enunciate and prove the most basic theorem on uniform convergence of
Fourier series. Let us first introduce some notation.

Definition 2.12. Let f be a function.

(i) f is said to be piecewise continuous on [a, b] if:

• f is continuous except, at the most, at a finite set of points, where it does not need to be
defined.

• At discontinuity points, lateral limits of f do exist and are finite.

(ii) f is piecewise smooth on [a, b] if f ′ is piecewise continuous.

Theorem 2.13. Let f be continuous on [−π, π] and piecewise smooth on (−π, π). Then, S f
converges uniformly on [−π, π].

Proof. Let us show that the hypothesis of the Weierstrass M-test hold. That is, we will
prove that ∑k |ck| < ∞.

Recall that, from (1.2), the relation between the Fourier coefficients of f and f ′ is:

c±k( f ) = ±i
c±( f ′)

k
.

Denoting c±k = c±k( f ) for every k ≥ 1 and c′±k = c±k( f ′), this leads us to |ck| =
1
|k| |c

′
k|

for every |k| ≥ 1. So, since

0 ≤
(

k · ‖ck| −
1
k

)2
= k2|ck|2 +

1
k2 − 2k|ck|

1
k

,

then

|ck| ≤
1
2

(
1
k2 + k2|ck|2

)
=

1
2

(
1
k2 + k2 1

k2 |c
′
k|

2
)
=

1
2

(
1
k2 + |c′k|

2
)

,



2.6 Uniform convergence 23

and it suffices to see that

∑
|k|≥1

(
1
k2 + |c′k|

2
)
< ∞.

It is well-known that ∑
k≥1

1
k2 < ∞, so we only need to prove that ∑

|k|≥1
|c′k|

2 < ∞. Thus, we

have been able to transform an inequality involving Fourier coefficients to an inequality
involving the square of Fourier coefficients. The utility of this is that now we can use
Bessel’s inequality, Theorem 1.12. Since f ′ is, by hypothesis, piecewise continuous, ( f ′)2

also is, and therefore f ′ is square-integrable. This assures that Bessel’s inequality holds:

∑
k
|c′k|

2 ≤ 1
2π

∫ π

−π
| f ′(t)|2dt < ∞.
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Chapter 3

Divergence of Fourier series:
Negative results on pointwise
convergence

Until now, we have exposed some criteria that set sufficient conditions for Fourier
series to converge. How far can we weaken these conditions? Is it enough for a function
to be continuous for its Fourier series to converge? Is it enough for it to be integrable?
The answer to both questions is negative, as we shall prove in the following sections.

3.1 Divergence of Fourier series of continuous functions

Theorem 3.1. There exists a function whose Fourier series diverges at a point.

The first one to prove this fact was Paul du Bois-Reymond [2] in 1873. His counterex-
ample is complex, and simpler constructions of such function were done by Schwarz, Féjer
and Lebesgue.

We will give two different proofs of this theorem. The first one is based on the con-
structive proof of Lebesgue, whereas the other one is a proof of existence based on the
uniform boundedness principle.

The main sources for this section have been Duoandikoetxea’s notes [6] for the con-
structive proof and Duoandikoetxea’s book [5] and Reed’s, Simon’s book [12] for the
existence one.

Let us first see the constructive proof.

Proof. Consider the following sequences:

• {cn}n such that cn ≥ 0 for every n and cn → 0,

• {νn}n an increasing sequence of odd positive integers,

• {an}n such that an := ν0 · · · νn,

25
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• In :=
[

2π

an
,

2π

an−1

]
; n ≥ 1, which is consistent because an is an increasing sequence.

Next, let us define the function

f (t) :=


0 if t = 0,

cn sin
(

an|t|
2

)
sin(|t|/2)
|t| if |t| ∈ In,

Notice that:

• Its domain is
[
−2π

a0
,

2π

a0

]
.

• It is an even function because f (t) depends only on |t|.

• It is well-defined (that is, it is not multivalued at the endpoints of the intervals In).
Indeed, the value of f at all these points is 0:

– f
(
±2π

an

)
= cn sin

(
± an2π

2an

)
sin(t/2)

t
= 0, since sin

(
± an2π

2an

)
= sin(±π) = 0,

– f
(
± 2π

an−1

)
= cn sin

(
± an2π

2an−1

)
sin(t/2)

t
= 0, since sin

(
± an2π

2an−1

)
= sin(πνn) = 0

because νn is an integer.

• It is continuous on all its domain. Indeed, it is piecewise continuous on all the intervals
In, it is continuous at the extremes of these intervals as we have just seen, and finally it
is continuous at 0. In order to see this, we have to prove that

0 = f (0) ?
= lim

t→0
f (t) = lim

t→0
n→∞

cn sin
(

ant
2

)
sin(t/2)

t
·

Given t ∈ R, for every n ∈N:

0 ≤
∣∣∣∣cn sin

(
ant
2

)
sin(t/2)

t

∣∣∣∣ = cn

∣∣∣∣sin
(

ant
2

)∣∣∣∣ ∣∣∣∣ sin(t/2)
t

∣∣∣∣ ≤ cn

∣∣∣∣ sin(t/2)
t

∣∣∣∣ n−→ 0

by definition of cn. Therefore, taking the limit on n, for all t ∈ R:

0 ≤ lim
n

∣∣∣∣cn sin
(

ant
2

)
sin(t/2)

t

∣∣∣∣ ≤ 0⇒ lim
t→0

n→∞

cn sin
(

ant
2

)
sin(t/2)

t
= 0,

which was to be proven.

Now, let us extend the definition of f by f (t) = 0 for every
2π

a0
≤ |t| ≤ π, making f a

continuous function on the whole interval [−π, π]. If
2π

a0
> π, we don’t extend f but

restrict it to this interval. Let us now write Fourier sums in their integral form (2.5):

SN f (x) =
1
π

∫ π

0
[ f (x + t) + f (x− t)]DN(t)dt,
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so using the parity of f :

πSN f (0) =
∫ π

0
[ f (t) + f (−t)]

sin
(

N +
1
2

)
t

2 sin(t/2)
dt =

∫ π

0
f (t)

sin
(

N +
1
2

)
t

2 sin(t/2)
dt =

∑
n≥1

∫
In

f (t)
sin
(

N +
1
2

)
t

sin(t/2)
dt =

∑
n≥1

∫
In

cn sin
(

ant
2

)
sin(t/2)

t

sin
(

N +
1
2

)
t

sin(t/2)
dt =

∑
n≥1

cn

∫
In

sin
(

ant
2

) sin
(

N +
1
2

)
t

t
dt

Let us now consider a subsequence of the sequence of Fourier sums. Let Nk :=
ak − 1

2
(which is an integer because ak is a product of odd integers), then:

πSNk f (0) =
∫ π

0
[ f (x + t) + f (x− t)]DN(t)dt =

∫ 2π
ak

0
(. . .)dt +

∫ π

2π
ak

(. . .)dt =

∫ 2π
ak

0
(. . .)dt +

k

∑
j=1

∫
Ij

(. . .)dt =
∫ 2π

ak

0
f (t)

sin
(

akt
2

)
sin(t/2)

dt +
k

∑
j=1

cj

∫
Ij

sin
( ajt

2

)
sin
(

akt
2

)
t

dt.

Now, we will bound each of the addends on the previous expression.

• Since
∣∣∣∣∫ g

∣∣∣∣ ≤ ∫ |g| and
∣∣∣∣ sin at

sin t

∣∣∣∣ ≤ πa
2

, then

∣∣∣∣∣∣∣∣
∫ 2π

ak

0
f (t)

sin
(

akt
2

)
sin(t/2)

dt

∣∣∣∣∣∣∣∣ ≤
πak

2

∫ 2π
ak

0
| f (t)|dt.

Now, since | f (t)| is continuous, it is Riemann integrable and thus there exists a primitive
F(t) of | f (t)|, which allows us to write:

lim
k

πak
2

∫ 2π
ak

0
| f (t)|dt = lim

k

πak
2

[F(t)]
2π
ak

0 = lim
k

[
F
(

2π

ak

)
− F(0)

]
πak

2
,

which, writing h =
2π

ak
, equals

lim
h→0

π2 F(h)− F(0)
h

= π2F′(0),



28 Divergence of Fourier series

that equals π2 f (0) = 0 by the Fundamental Theorem of Calculus.

• If j < k: ∣∣∣∣∣∣∣∣cj

∫
Ij

sin
( ajt

2

)
sin
(

akt
2

)
t

dt

∣∣∣∣∣∣∣∣ ≤ cj

∫
Ij

1
t

dt = cj[log t]
2π

aj−1
2π
aj

= cj log νj.

• If j = k, let us integrate by parts:

ck

∫
Ik

sin2
(

akt
2

)
t

dt = ck


[

sin2
(

akt
2

)
log t

] 2π
ak−1

2π
ak

−
∫

Ik

(log t)d
[

sin2
(

akt
2

)] =


u = sin2

(
akt
2

)
⇒ du = d

[
sin2

(
akt
2

)]
dv =

1
t

dt ⇒ v = log t

 = −ck

∫
Ik

(log t)d
[

sin2
(

akt
2

)]
=

− ck

∫
Ik

(log t)d
[

1
2
(1− cos akt)

]
=

1
2

ck

∫
Ik

(log t)d(cos akt),

where the first term of the integral by parts vanishes because so does sin2
(

akt
2

)
at t =

2π

ak
,

2π

ak−1
. Also, we have used the well-known trigonometric identity

sin2 x =
1
2
(1− cos 2x). Now, let us integrate again by parts:

1
2

ck

∫
Ik

(log t)d(cos akt) =

 u = log t ⇒ du =
1
t

dt

dv = d(cos akt) ⇒ v = cos akt

 =

1
2

ck

{
[log t cos akt]

2π
ak−1
2π
ak

−
∫

Ik

cos akt
t

dt

}
=

1
2

ck log νk −
1
2

ck

∫
Ik

cos(akt)
t

dt,

where the last integral is bounded in k, which can be easily seen integrating by parts
again.

Once all the addends on the expression of SNk f are bounded in this way, and using the fact

that
∣∣∣∣∑

i
ai

∣∣∣∣ ≥ |ak| −∑
i 6=k
|ai|, we can finally write the following bound for the subsequence

of the Fourier sums:

|πSNk f (0)| ≥ 1
2

ck log νk −
(

k−1

∑
j=1

cj log νj + rk

)
,

where rk is a bounded sequence. Now, choosing suitable sequences ck and νk, one can
make the sequence on the right tend to +∞. For example, if ck = 4−k and νk = 316k



3.1 Divergence of Fourier series of continuous functions 29

(which satisfy the properties at the beginning of this proof) one gets, after some simple
calculation, that

|πSNk f (0)| ≥ log(3)
1
6

4k − r′k

(with r′k a bounded sequence), which tends to +∞ with k.

Before giving the existence proof of this theorem, we have to prove the following
lemmas.

Lemma 3.2. There exists a bounded sequence an such that
n

∑
j=1

1
j
= log n + an.

Proof. Consider the function
1
x
· We have the following order relation among its integral

and its lower and upper sums:

n

∑
j=1

1
j + 1

≤
∫ n

1

1
x

dx ≤
n

∑
j=1

1
j

,

so

0 ≤
n

∑
j=1

1
j
− log n ≤

n

∑
j=1

1
j
−

n

∑
j=1

1
j + 1

=
n

∑
j=1

(
1
j
− 1

j + 1

)
=

n

∑
j=1

1
j2 + j

,

and taking the limit superior:

0 ≤ lim
n

(
n

∑
j=1

1
j
− log n

)
≤ lim

n

(
n

∑
j=1

1
j2 + j

)
=

∞

∑
j=1

1
j2 + j

<
n

∑
j=1

1
j2

,

which we know to be finite. Consequently,

0 ≤ lim
n

(
n

∑
j=1

1
j
− log n

)
< ∞,

which means that the sequence
n

∑
j=1

1
j
− log n is bounded, which was to be proven.

Lemma 3.3. Lebesgue’s numbers LN :=
1
π

∫ π

−π
|DN(t)|dt satisfy LN =

4
π2 log N + RN , where

RN is a bounded sequence.
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Proof.

LN =
1
π

∫ π

−π
|DN(t)|dt =

1
π

∫ π

−π

∣∣∣∣∣
sin
(

N +
1
2

)
t

2 sin(t/2)

∣∣∣∣∣dt =
2
π

∫ π

0

∣∣∣∣sin
(

N +
1
2

)
t
∣∣∣∣

2 sin(t/2)
dt =

2
π

∫ π

0

∣∣∣∣sin
(

N +
1
2

)
t
∣∣∣∣ ( 1

2 sin(t/2)
+

1
t
− 1

t

)
dt =

2
π

∫ π

0

∣∣∣∣sin
(

N +
1
2

)
t
∣∣∣∣

t
dt +

1
π

∫ π

0

∣∣∣∣sin
(

N +
1
2

)
t
∣∣∣∣ [ 1

sin(t/2)
− 1

t/2

]
dt =: I1 + I2.

I2 is bounded with respect to N because the integrand is. Indeed:

• 0 ≤
∣∣∣∣sin

(
N +

1
2

)
t
∣∣∣∣ ≤ 1 ∀N.

• Given an arbitrary 0 < δ < π, the function
1

sin(t/2)
− 1

t/2
is bounded in [δ, π] because

it is continuous on this interval. Since δ is arbritrary, in order to see that the function is

bounded on (0, π) we only need to see that lim
t→0

(
1

sin(t/2)
− 1

t/2

)
< ∞, which is true

becase this limit equals 0.

Let us now compute I1 making a change of variables.

∫ π

0

∣∣∣∣sin
(

N +
1
2

)
t
∣∣∣∣

t
dt =

{
s :=

(
N +

1
2

)
tdt
}

=
∫ (N+ 1

2 )π

0

| sin s|
s

ds =

N−1

∑
j=0

∫ (j+1)π

jπ

| sin s|
s

ds +
∫ (N+ 1

2 )π

Nπ

| sin s|
s

ds =: I3 + I4,

and let us bound each one of the resulting integrals:

0 ≤ I4 =
∫ (N+ 1

2 )π

Nπ

| sin s|
s

ds ≤
∫ (N+ 1

2 )π

Nπ

1
s

ds =
[
− 1

s2

](N+ 1
2 )π

Nπ

=

(
1

Nπ

)2
−

 1(
N + 1

2

)
π

2

=: rN .

Notice that 0 ≤ I4 ≤ rN ≤ 1 and rN → 0, so I4
N−→ 0. On the other hand,

I3 =
N−1

∑
j=0

∫ (j+1)π

jπ

| sin s|
s

ds =
N−1

∑
j=0

∫ π

0

| sin s|
s + jπ

ds =
∫ π

0
| sin s|

(
N−1

∑
j=0

1
s + jπ

)
ds.

Observe that we can superiorly and inferiorly bound the second factor on the integrand
as follows:

N−1

∑
j=0

1
(j + 1)π

≤
N−1

∑
j=0

1
s + jπ

≤ 1
s
+

N−1

∑
j=1

1
jπ

,
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so there exists a sequence r′N such that:

• I3 =
∫ π

0
| sin s|

(
N−1

∑
j=0

1
(j + 1)π

)
ds =

∫ π

0
| sin s|

(
N−1

∑
j=0

1
(j + 1)π

)
ds + r′N ,

• 0 ≤ r′N ≤
∫ π

0
| sin s|

(
1
s
− 1

Nπ

)
ds =

∫ π

0

| sin s|
s

ds − 1
Nπ

∫ π

0
| sin s|ds, which is

bounded because:

– The first term is bounded because the integrand is continuous and satisfies

lim
s→0

| sin s|
s

= 1, which is finite.

– The second term is bound because it is the integral of a finite function over a finite
interval.

Therefore,

I3 =
N−1

∑
j=0

1
(j + 1)π

∫ π

0
| sin s|ds =

2
π

N

∑
j=1

1
j
+ r′N =

2
π

log N + r′N ,

since, according to Lemma 3.2,
N

∑
j=1

1
j
= log N + r′′N

with r′′N bounded. Above, we have included r′′N in r′N , so r′N remains a bounded sequence.
Finally, so:

LN = I1 + I2 = I2 +
2
π

I3 +
2
π

I4,

and let R′N := I2 +
2
π

I4, which is bounded as we have proven. Therefore:

LN =
2
π

I3 + R′N =
2
π

2
π

log N +
2
π

r′N + R′N ,

so denoting RN :=
2
π

r′N + R′N , which is bounded, we have

LN =
4

π2 log N + RN ,

with RN bounded, which was to be proven.

Now we can see the second proof of the theorem.

Proof. Let us consider the Banach space (C0[−π, π], || · ||∞), the normed space (R, | · |) and
the family of lineal operators F = {TN}N defined by

TN : C0([−π, π]) −→ R

f 7−→ SN f (0) =
1
π

∫ π

−π
f (t)DN(t)dt.
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Note that given N ∈ N, the function DN has a finite number of zeros, and consequently
the function sgn(DN) has a finite number of discontinuities. Given ε > 0, this fact allows
us to modify sgn(DN) on a small neighbourhood of each of the discontinuities in a way
that the resulting function f is continuous and satisfies:

• || f ||∞ = max
t∈[−π,π]

{sgn(DN(t))} = 1.

• Modifying sgn(DN) conveniently, we can make f to have the same sign as DN every-
where, so f · DN is everywhere non negative and:

|TN f | =
∣∣∣∣ 1
π

∫ π

−π
f (t)DN(t)dt

∣∣∣∣ = 1
π

∫ π

−π
| f (t)||DN(t)|dt ≥ LN − ε,

by definition of Lebesgue’s numbers.

Since ε was arbitrary, this tells us that ||TN || ≥ LN , which using Lemma 3.3, leads us to

||TN ||
N−→ ∞. Next we apply the Uniform Boundedness Principle, Theorem A.14. We can

do this because all the hypothesis hold:

• (C0([−π, π]), || · ||∞) is a Banach space and (R, | · |) is a normed space.

• Each of the lineal operators TN ∈ F is bounded, because by definition,
|TN f | ≤ LN || f ||∞.

The contrapositive of Theorem A.14 tells us then that there exists f ∈ C0[−π, π] such that
|TN f | = ∞, that is, |SN f (0)| = ∞, which was to be proven.

3.2 Almost everywhere divergence of Fourier series of in-
tegrable functions

The following theorem is due to Kolmogorov, who published it in 1923. The principal
reference for this section has been Ul’yanov’s paper [13].

Theorem 3.4. There exists a function f ∈ L(−π, π) whose Fourier series diverges a.e.

In this case we give the original proof, which is based on the next lemma. It refers to
functions of bounded variation, which are defined in Definition B.4.

Lemma 3.5. There exists a sequence {ϕn}n ≥ 1 ⊂ L(−π, π) such that:

(i) ϕn(t) ≥ 0 ∀ t ∈ [−π, π] and
∫ π

−π
ϕn(t)dt = 2 ∀n ≥ 1.

(ii) ϕn is a function of bounded variation ∀ n.

(iii) For every function ϕn there exists a number Mn ∈ R, a set En ⊂ [−π, π] and an integer
qn ∈N such that:
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(a) Mn
n−→ ∞,

(b) |En|
n−→ 2π,

(c) ∀ t ∈ En ∃pn = pn(t) such that pn(t) ≤ qn and |Spn(t)ϕn(t)| > Mn ∀ n ≥ 1.

What this lemma states is basically that there exist functions of bounded variation
whose L1-norm is 2 and for which, though, their Fourier sums are arbitrarily large at all
the points of a set whose measure is arbitrarily close to 2π.

We first prove the theorem from the lemma and then proceed to prove the lemma.

Proof. (Theorem) Let us inductively define an increasing sequence of natural numbers
{nk}k such that:

(A)
1√
Mnk

<
1
2k ∀k ≥ 1,

(B) If Bn := sup
N≥0

x∈[0,2π]

|SN ϕn(x)|, then
k−1

∑
i=1

Bni <
1
2

√
Mnk ∀k ≥ 1,

(C) 2qni + 1 ≤
√

Mnk

2k ∀i < k.

Lemma B.5 assures that, since ϕn are of bounded variation, and ϕn ≥ 0 and
∫ π

−π
ϕ = 2⇒

sup
t∈[0,2π]

|ϕn(t)| < ∞, then the numbers Bn are finite.

Why can we find a sequence that satisfies (A), (B), (C)?

(A) Because Mn → ∞,

(B) Because Mn → ∞, ni are defined for every i < k by induction and for Lemma B.5.

(C) Because Mn → ∞ and ni are defined for every i < k.

Consider the function series
∞

∑
i=1

1√
Mni

ϕni (t) a.e. t. From Lemma 3.5.(i) and from (A), we

have that
∞

∑
i=1

1√
Mni

∫ π

−π
ϕni (t)dt =

∞

∑
i=1

2√
Mni

< 2 ·
∞

∑
i=1

1
2k = 2.

So, from Beppi-Levo’s lemma (Lemma A.6), we have that:

0 ≤ 1√
Mni

ϕni ∈ L(−π, π) ∀i

∞

∑
i=1

∫ π

−π

1√
Mni

ϕni (t)dt = 2 < ∞

⇒
there exists Φ(t) ∈ L(−π, π)

such that
∞

∑
i=1

1√
Mni

ϕni (t) = Φ(t) a.e. t,

so we can consistently define Φ(t) :=
∞

∑
i=1

1√
Mni

ϕni (t) a.e. t, which will be the function

whose Fourier series we will prove diverges a.e.
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Now,

ck(Φ) =
1
π

∫ π

−π
Φ(t)e−iktdt =

1
π

∫ π

−π

∞

∑
i=1

1√
Mni

ϕni (t)e
−iktdt MCT

=

∞

∑
i=1

1√
Mni

1
π

∫ π

−π
ϕni (t)e

−iktdt =
∞

∑
i=1

1√
Mni

ck(ϕni ),

so
SNΦ(t) = ∑

i=1

1√
Mni

SN ϕni (t).

Let k ∈ N and t ∈ Enk and let us consider the Fourier sums corresponding to N = pnk (t).

Then, since
∣∣∣∣∑

i
ai

∣∣∣∣ ≥ |ak| −∑
i 6=k
|ai|:

∣∣∣Spnk
Φ(t)

∣∣∣ = ∣∣∣∣∣∑i

1√
Mni

Spnk
ϕni (t)

∣∣∣∣∣ ≥ 1√
Mnk

∣∣∣Spnk
ϕnk (t)

∣∣∣−∑
i 6=k

1√
Mni

∣∣∣Spni
ϕni (t)

∣∣∣ ,

and let us now bound the resulting addends. We separate the series on the right into a
finite sum and another series and we bound them.

I1 :=
k−1

∑
i=1

1√
Mni

|Spnk
ϕni (t)| ≤

k−1

∑
i=1

1√
Mni

sup
1≤p<∞

t∈[−π,π]

|Sp ϕni (t)|
(B)
≤

k−1

∑
i=1

Bni√
Mni

(A)
<

k−1

∑
i=1

Bni

(B)
<

1
2

√
Mnk .

For the following bound, we use the next general bound of Fourier sums:

SN f (x) =
1
π

∫ π

−π
f (x− t)DN(t)dt⇒ |SN f (x)| =

∣∣∣∣ 1
π

∫ π

−π
f (x− t)DN(t)dt

∣∣∣∣ ≤
1
π

∫ π

−π
| f (x− t)||DN(t)|dt ≤

N +
1
2

π

∫ π

−π
| f (x− t)|dt =

2N + 1
2π

∫ π

−π
| f (t)|dt,

where we used the fact that |DN(t)| =
∣∣∣∣∣12 +

N

∑
k=1

cos kt

∣∣∣∣∣ ≤ 1
2
+ N, and the periodicity of f .

Therefore:

I2 :=
∞

∑
i>k

1√
Mni

|Spnk
ϕni (t)| ≤

∞

∑
i>k

1√
Mni

[
1
2
+ pnk

]
1
π

∫ π

−π
ϕni (y)dy

(iii).(c)
≤

∑
i>k

1√
Mni

(
1
2
+ qnk

)
1
π

∫ π

−π
ϕni (y)dy = ∑

i>k

1√
Mni

2qnk + 1
2

1
π

2︷ ︸︸ ︷∫ π

−π
ϕni (y)dy =

1
π ∑

i>k

2qnk + 1√
Mni

(C)
≤ 1

π ∑
i>k

1
2i < ∑

i>k

1
2i =

1
2k ,



3.2 Almost everywhere divergence of Fourier series of integrable functions 35

and
1√
Mnk

∣∣∣Spnk
ϕnk (t)

∣∣∣ (iii).(c)>
√

Mnk .

Thus, ∣∣∣Spnk
Φ(t)

∣∣∣ ≥ 1√
Mnk

∣∣∣Spnk
ϕnk (t)

∣∣∣− I1 − I2 >
√

Mnk −
1
2

√
Mnk −

1
2k =

1
2

√
Mnk −

1
2k ≥

1
2

√
Mnk −

1
2

,

which holds for all t ∈ Enk .

Now let E := lim sup
k

Enk , which can also be expressed as E =
∞⋂

j=1

∞⋃
k=j

Enk , so:

2π ≥
∣∣∣∣ ∞⋃
k=j

Enk

∣∣∣∣ ≥ |Enl | ∀ l ≥ j,

and taking the limit on l:

2π ≥
∣∣∣∣ ∞⋃
k=j

Enk

∣∣∣∣ ≥ lim
l
|Enl |

(iii).(b)
= 2π ⇒

∣∣∣∣ ∞⋃
k=j

Enk

∣∣∣∣ = 2π ∀ k.

Then,

|E| =
∣∣∣∣ ∞⋂

j=1

∞⋃
k=j

Enk

∣∣∣∣ = 2π

because it is a numerable intersection of sets with measure 2π, all of them contained in
[−π, π].

Finally, we have that for all t ∈ E (that is, a.e. t ∈ [−π, π]), since t ∈
∞⋂

j=1

∞⋃
k=j

Enk then

t ∈ Enk for an infinite set of different k. Therefore, since∣∣∣Spnk
Φ(t)

∣∣∣ ≥ 1
2

√
Mnk −

1
2k ≥

1
2

√
Mnk −

1
2
∀ t ∈ Enk ,

(which holds for every k) and Mk → ∞, then lim sup
N

|SNΦ(t)| = ∞.

Proof. (Lemma) Let us define the following items:

• n, n0 ∈ N such that n0 ≤ n, with n0 satisfying a certain condition that we will later
impose. And, for each n:

• An increasing sequence of odd numbers {λk(n)}1≤k≤n such that λ1 = 1. We will later
impose certain conditions on these sequences.

• A sequence of natural numbers {mk(n)}1≤k≤n such that{
m1 := n,
2mk + 1 = λk · (2n + 1) ∀ 1 ≤ k ≤ n.
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• A sequence of real numbers {Ak(n)}1≤k≤n with Ak =
4π

2n + 1
· k for every 1 ≤ k ≤ n.

• A sequence of intervals {∆k(n)}1≤k≤n as:

∆k :=

[
Ak −

1
m2

k
, Ak +

1
m2

k

]
∀ 1 ≤ k ≤ n.

These intervals satisfy:

– {∆k} are all mutually disjoint. Indeed, {Ak} is a strictly growing sequence, so it
suffices to see that

d

(
Ak, Ak ±

1
m2

k

)
<

1
2

d(Ak, Ak±1),

because in that case the interval ∆k will be contained in the ball centred at Ak with ra-

dius
1
2

d(Ak, Ak±1), and these balls are all mutually disjoint. Let us see the inequality

above holds. It is equivalent to the inequality
1

m2
k
<

2π

2n + 1
, which holds because:

mk =
λk(2n + 1)− 1

2
⇒ m2

k =
[λk(2n + 1)− 1]2

4
>

[λk(2n + 1)− 1]2

2π
>

2n + 1
2π

,

where in the last inequality we use that

∗ [λk(2n + 1)− 1]2 ≥ (2n)2 because λk ≥ 1, and
∗ (2n)2 > 2n + 1 ∀ n ≥ 1.

– ∆k ⊂ [0, 2π] ∀k. Indeed:

∗ ∆k ⊂ [0,+∞) because

1
m2

1
<

2π

2n + 1
⇒ A1 −

1
m2

1
>

4π

2n + 1
− 2π

2n + 1
=

2π

2n + 1
> 0,

which tells us that ∆1 (and therefore ∆k for every k ≥ 1) lies at the right of 0.
∗ ∆k ⊂ (−∞, 2π] because

An +
1

m2
n
<

4π

2n + 1
n +

2π

2n + 1
=

2π

2n + 1
(2n + 1) = 2π,

which tells us that ∆n (and therefore ∆k for every k ≤ n) lies at the left of 2π.

• A function ϕn : R→ R such that, on [0, 2π]:

ϕn(t) :=

 m2
k

n
if t ∈ ∆k, 1 ≤ k ≤ n,

0 if t ∈ [0, 2π] \⋃n
k=1 ∆k,

and, on t ∈ R \ [0, 2π], we consider the periodic extension of it. Also, we define, for
every 1 ≤ k ≤ n, the steps ϕ

(k)
n : R→ R such that, on [0, 2π]:

ϕ
(k)
n (t) :=

{
ϕn(t) if t ∈ ∆k

0 if t ∈ [0, 2π] \ ∆k,
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and, on t ∈ R \ [0, 2π], we consider the periodic extension of it, so ϕn(t) =
n

∑
k=1

ϕ
(k)
n (t).

These functions will be the ones satisfying lemma’s statements, as we shall prove next.

On the first place, (i) holds because:

• ϕn(t) ≥ 0 ∀ t ∈ [0, 2π],

• ϕn is 2π-periodic and integrable, and

•
∫ 2π

0
ϕn(t)dt =

n

∑
k=1

m2
k

n
2

m2
k
= 2 · ∑

k=1

1
n
= 2 · n · 1

n
= 2.

Furthermore, ϕn is obviously of bounded variation on [0, 2π] because it is a step func-
tion. This implies (ii).

Now, let us define, for each n, the sequence of intervals {σk}2≤k≤n as

σk :=
[

Ak−1 +
2
n2 , Ak −

2
n2

]
.

Notice that this definition is consistent because, for every 2 ≤ k ≤ n, Ak−1 +
2
n2 < Ak−

2
n2 .

Indeed:

Ak−1 +
2
n2 =

4π

2n + 1
(k− 1) +

2
n2 <

4π

2n + 1
k− 2

n2 = Ak −
2
n2 ⇔

4
n2 <

4π

2n + 1
⇔ 2n + 1

π
< n2,

which holds for every n ≥ 1 because 2n + 1 ≤ 3n2 < πn2 for such n.
Let us show that these intervals are interspersed among the intervals ∆k, and therefore

σk are mutually disjoint. Specifically, σk is strictly between ∆k−1 and ∆k, that is, we have
the following order relations:

Ak−1 +
1

m2
k−1

< Ak−1 +
2
n2 < Ak −

2
n2 < Ak −

1
m2

k
.

The second inequality has just been seen, so we only need to prove the first and the last
one:

1
m2

k−1
<

2
n2 ∀ 2 ≤ k ≤ n⇔ 1

m2
k
<

2
n2 ∀ 1 ≤ k ≤ n− 1⇔

n2

2
< m2

k =
[λk(2n + 1)− 1]2

2π
⇔ n2 < [λk(2n + 1)− 1]2,

which is true because λk ≥ 1 ∀k ⇒ λk(2n + 1) − 1 > n ∀ n ≥ 1. This proves the first
inequality, but also the last one because it holds for every k.

Each one of these intervals almost completely fill up the interval [Ak−1, Ak] as n grows.
That is,

|σk| = |[Ak−1, Ak]| −
4
n2 =

4π

2n + 1
− 4

n2
n∼ 4π

2n + 1
= |[Ak−1, Ak]|,
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so their union almost completely fills up the main interval [0, 2π], because they are all
contained in [0, 2π] and:∣∣∣∣ n⋃

k=2

σk

∣∣∣∣ = (n− 1)
(

4π

2n + 1
− 4

n2

)
= 4π

n− 1
2n + 1

− 4
n− 1

n2
n−→ 2π.

Let us now impose certain conditions on the sequence {mk}k. Specifically, let us induc-
tively define mk as follows. Assume we have already defined λ1, . . . , λk−1 (and therefore
m1, . . . , mk−1), and consider the Fourier sums Smk ϕ

(i)
n (x) with x ∈ σk and 1 ≤ i ≤ k− 1:

Smk ϕ
(i)
n (x) =

1
π

∫ 2π

0
ϕ
(i)
n (t)Dmk (t− x)dt =

1
π

∫
∆i

m2
i

n

sin
[(

mk +
1
2

)
(t− x)

]
2 sin[(t− x)/2]

dt

m2
i

2πn

∫
∆i

1
sin[(t− x)/2]

sin
[(

mk +
1
2

)
(t− x)

]
dt.

Notice that, for any x ∈ σk and t ∈ ∆i, t and x belong to two disjoint closed intervals.
Hence, there exists δ > 0 such that |t− x| ≥ δ, and consequently

1
sin[(t− x)/2]

is a continuous function of t on the closed interval ∆i. Therefore, such function is in-
tegrable and we can apply the Riemann-Lebesgue lemma (Lemma 2.4) to the integral,
leading us to:

lim
|mk |→∞

∫
∆i

1
sin[(t− x)/2]

sin
[(

mk +
1
2

)
(t− x)

]
dt = 0,

so choosing mk large enough:∣∣∣Smk ϕ
(i)
n (x)

∣∣∣ < 1
n
∀ x ∈ σk ∀ i < k.

Now we consider the following subsequence of Fourier sums of ϕn,
{

Smk ϕn(x)
}

mk
,

whose absolute value we will inferiorly bounded by something arbitrarily bigger in order
to prove the last section of the lemma. By definition of ϕn:

Smk ϕn(x) =
1
π

k−1

∑
i=1

∫
∆i

ϕn(t)Dmk (t− x)dt +
1
π

n

∑
i=k

∫
∆i

ϕn(t)Dmk (t− x)dt =: J1(x) + J2(x).

Then:

|J1(x)| =
∣∣∣∣∣ 1
π

k−1

∑
i=1

∫
∆i

ϕ
(i)
n (t)Dmk (t− x)dt

∣∣∣∣∣ ≤ k−1

∑
i=1

∣∣∣∣ 1
π

∫
∆i

ϕ
(i)
n (t)Dmk (t− x)dt

∣∣∣∣ =
k−1

∑
i=1

∣∣∣Smk ϕ
(i)
n (x)

∣∣∣ < k−1

∑
i=1

1
n
< 1 ∀ x ∈ σk,

where we use the inequality just proved and the fact that k ≤ n.
On the other hand, let us make some remarks in order to bound the addends of J2:
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(1)
2mk + 1

2
(Ai − Ak) =

λk(2n + 1)
2

4π

2n + 1
(i− k) = (i− k)λk2π, which is an even mul-

tiple of π, so:

sin
[

2mk + 1
2

(Ai − x)
]
= sin

[
2mk + 1

2
(Ai − x)− 2mk + 1

2
(Ai − Ak)

]
=

sin
[

2mk + 1
2

(Ak − x)
]

.

(2) Dirichlet kernel’s derivative satisfies:

Dp(t) =
1
2
+

p

∑
ν=1

cos νt⇒ D′p(t) =
p

∑
ν=1

(−ν sin νt)⇒

|D′p(t)| ≤
p

∑
ν=1
|ν sin νt| ≤

p

∑
ν=1
|ν| ≤

p

∑
ν=1

p = p2.

(3) For all t ∈ ∆i, |Ai − t| ≤ 1
m2

i
by definition of ∆i, and:

∀ x ∈ σk ∀ i ≥ k, 0 < Ai − x < Ai − Ak−1 =
4π

2n + 1
(i− k + 1) < (i− k + 1)

2π

n
·

(4)

Smk ϕ
(i)
n (x) =

1
π

∫
∆i

ϕn(t)Dmk (t− x)dt =

1
π

∫
∆i

ϕn(t)Dmk (Ai − x)dt +
1
π

∫
∆i

ϕn(t)[Dmk (t− x)− Dmk (Ai − x)]dt =:

1
π

sin
[

2mk + 1
2

(Ai − x)
]

2 sin[(Ai − x)/2]

∫
∆i

ϕn(t)dt + K(x) =

sin
[

2mk + 1
2

(Ak − x)
]

1
πn sin[(Ai − x)/2]

+ K(x).

(5) Now we apply Lagrange’s Mean Value theorem (Theorem B.3) to Dmk (which is dif-
ferentiable) between t− x and Ai− x. This tells us that there exists c ∈ [t− x, Ai − x]
such that

|D′mk
(c)| =

|Dm−k(t− x)− Dmk (Ai − x)|
|Ai − t| ·

Then, from (2), |Dm−k(t− x)− Dmk (Ai − x)| ≤ m2
k |Ai − t|, which, from (3), is less

than or equal 1 for all t ∈ ∆i. Therefore:

|K(x)| =
∣∣∣∣ 1
π

∫
∆i

ϕn(t)[Dmk (t− x) + Dmk (Ai − x)]dt
∣∣∣∣ ≤

1
π

∫
∆i

ϕn(t)|Dmk (t− x) + Dmk (Ai − x)|dt ≤ 1
π

m2
k

n
1

m2
k
· 1 <

1
n

.
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So, from (4):

Smk ϕ
(i)
n (x) = sin

[(
mk +

1
2

)
(Ak − x)

]
1

πn sin[(ai − x)/2]
+

τ

n
,

with |τ| < 1. Hence:

J2(x) =
1
π

n

∑
i=k

∫
∆i

ϕn(t)Dmk (t− x)dt =
n

∑
i=k

Smk ϕ
(i)
n (x) =

sin
[(

mk +
1
2

)
(Ak − x)

] n

∑
i=k

1
πn sin[(Ai − x)/2]

+ τ.

Now from (3) we have that for all x ∈ σk:

• 0 < Ai − x <
2π

n
(i− k + 1) ≤ π, so

• Ai − x
2

∈ (0, π)⇒ sin
(

Ai − x
2

)
<

(
Ai − x

2

)
,

from which

n

∑
i=k

1
πn sin[(Ai − x)/2]

>
n

∑
i=k

1
πn[(Ai − x)/2]

>
n

∑
i=k

1

πn
π

n
(i− k + 1)

=

1
π2

n

∑
i=k

1
i− k + 1

=
1

π2

n−k+1

∑
j=q

1
j
·

Thus, since |a + b| ≥ |a| − |b|:

|J2(x)| =
∣∣∣∣∣sin

[(
mk +

1
2

)
(Ak − x)

] n

∑
i=k

1
πn sin[(Ai − x)/2]

+ τ

∣∣∣∣∣ >
1

π2

(
n−k+1

∑
j=1

1
j

) ∣∣∣∣sin
[(

mk +
1
2

)
(Ak − x)

]∣∣∣∣− 1 ≥

1
π2

∣∣∣∣sin
[(

mk +
1
2

)
(Ak − x)

]∣∣∣∣ log(n− k + 2)− 1,

as we saw in Lemma 3.2.
Using again that |a + b| ≥ |a| − |b|, we have that for all x ∈ σk and every 2 ≤ k ≤ n:

|Smk ϕn(x)| ≥ |J2(x)| − |J1(x)| ≥
∣∣∣∣sin

[(
mk +

1
2

)
(Ak − x)

]∣∣∣∣ log(n− k + 2)− 2. (3.1)

We can finally find the sequences Mn, qn, En. Take, in the inequality above, k ≤ n−
√

n
(which indeed satisfies 2 ≤ k ≤ n for every n ≥ 4):

|Smk ϕn(x)| ≥ 1
π2 | sin(. . .)| log(n− n +

√
n + 2)− 2 ≥ 1

2π2 | sin(. . .)| log n− 2.

Let us define then:



3.2 Almost everywhere divergence of Fourier series of integrable functions 41

• Mn =
√

log n− 2,

• qn = mn,

• En =
⋃

2≤k≤n−
√

n

E(k)
n , with E(k)

n :=

{
x ∈ σk ;

∣∣∣∣sin
[(

mk +
1
2

)
(Ak − x)

]∣∣∣∣ ≥ 2π2√
log n

}
.

Choosing n0 and m2 large enough,∣∣∣∣∣
{

x ∈ [Ak−1, Ak] ;
∣∣∣∣sin

[(
mk +

1
2

)
(Ak − x)

]∣∣∣∣ < 2π2√
log n

}∣∣∣∣∣ = O
(

1
n
√

log n

)
,

and

|E(k)
n | = |σk| − O

(
1

n
√

log n

)
when n→ ∞. Therefore:

|En| = ∑
2≤k≤n−

√
n

|σk| − O
(

1√
log n

)
=

(
4π

2n + 1
− 4

n2

)
(n−

√
n)−O

(
1√

log n

)
=

2π − o(1),

that is, |En|
n−→ 2π.

From (3.1) we have finally that

∀x ∈ E(k)
n ∀ 2 ≤ k ≤ n−

√
n, |Smk ϕn(x)| ≥

√
log n− 2 = Mn,

with Mn > 0 a sequence such that Mn
n−→ ∞. Thus, (iii).(a),(b) and (c) are satisfied for

every n ≥ n0. For 1 ≤ n ≤ n0 we can take ϕn(t) = ϕn0(t), so we have completed the
proof.

Kolmogorov also proved that there exists an integrable function whose Fourier series
diverges everywhere, but we will not prove it here.
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Chapter 4

Summability of Fourier series

Consider that we only know, from an unknown 2π-periodic integrable function, its
Fourier coefficients. How can we recover the function from them?

We know that, under certain conditions (for instance the hypothesis on Dirichlet’s
theorem, Theorem 2.7) it suffices to sum the Fourier series of f . Nevertheless, as seen
in Chapter 3, in general we cannot recover f from its Fourier series, not even almost
everywhere.

In this chapter we show that we can sometimes use other series in order to recover f .
These series converge to f whenever S f does, but they can even converge to f when the
Fourier series does not.

For the following sections, the main reference have been Duoandikoetxea’s notes [6].

4.1 Cesàro summability

In this case we study the limit of the arithmetic mean of the Fourier sums. This summa-
bility method is inspired by the following basic result for numerical sequences and series.

Proposition 4.1 (Cesàro). Let {an}n be a convergent sequence and let l := limn an. Then, the
sequence {

bn :=
a1 + · · ·+ an

n

}
n

also converges to l.

Féjer was the first one to apply this summability method to Fourier series. Specifically,
he considered the Cesàro partial sums of the sequence of Fourier sums of f . We will
denote these partial sums as σN f :

σN f (x) :=
1

N + 1

N

∑
j=0

Sj f (x). (4.1)

Also, we denote σ f (x) = lim
N

σN f (x) the Cesàro sum of f (x).

43
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Remark 4.2. The index N in σN denotes the maximum degree of the Fourier sums that
we add. This is why we have N on the left and N + 1 on the denominator on the right,
because we compute the mean of the first N + 1 Fourier sums, from 0 to N.

Let us now rewrite (4.1). Expressing each Sj f in its integral form:

σn f (x) =
1

N + 1

n

∑
j=0

1
π

∫ π

−π
Dj(t) f (x− t)dt =

1
N + 1

1
π

∫ π

−π
f (x− t)

N

∑
j=0

Dj(t)dt.

Now, let us rewrite the integrand in a more compact form:

N

∑
j=0

Dj(t) =
N

∑
j=0

sin
(

j +
1
2

)
t

2 sin(t/2)
=

1
[2 sin(t/2)]2

N

∑
j=0

2 sin(t/2) sin
(

j +
1
2

)
t. (4.2)

This can be rewritten in a simpler form using the following trigonometric expression:

sin x sin y = cos x cos y− cos(x + y),

which leads us to
2 sin x sin y = cos(x− y)− cos(x + y),

and taking x = t/2 and y =

(
j +

1
2

)
t:

2 sin(t/2) sin
(

j +
1
2

)
= cos jt− cos(j + 1)t.

Replacing this in (4.2):

N

∑
j=0

Dj(t) =
1

[2 sin(t/2)]2
[1− cos(N + 1)t],

which using the trigonometric identity

2 sin2 x = 1− cos 2x

can be finally expressed as

N

∑
j=0

Dj(t) =
2 sin2[(N + 1)(t/2)]

4 sin2(t/2)
=

1
2

(
sin[(N + 1)(t/2)]

sin(t/2)

)2

.

Definition 4.3. We define the Féjer kernel as

FN(t) :=
∑N

j=0 Dj(t)

N + 1
=

1
2(N + 1)

(
sin[(N + 1)(t/2)]

sin(t/2)

)2

.

Hence, the integral form of the Cesàro sums is:

σN f (x) =
1
π

∫ π

−π
FN(t) f (x− t)dt.
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Taking into account the different integral expressions of the Fourier sums in terms of the
Dirichlet kernel, (2.1) and (2.5), one can easily find the following integral expressions for
Cesàro sums in terms of the Féjer kernel:

σN f (x) =
1
π

∫ π

−π
f (t)FN(x− t)dt,

σN f (x) =
1
π

∫ π

0
FN(t)[ f (x + t) + f (x− t)]dt.

Let us show some basic properties of the Féjer kernel.

Proposition 4.4.

1. FN is an even, non negative and 2π-periodic function,

2.
1
π

∫ π

−π
FN(t)dt = 1 ∀N,

3. ∀ δ > 0, FN(t)
N
⇒ 0 on [−π,−δ] ∪ [δ, π].

Proof.

1. To see that FN is an even, 2π-periodic function it suffices to look at the expression

FN(t) :=
∑N

j=0 Dj(t)

N + 1
, which is a sum of even, 2π-periodic functions. To prove that

it is not negative, we only have to look at
1

2(N + 1)

(
sin[(N + 1)(t/2)]

sin(t/2)

)2

, which is

the square of a real function.

2. From Dirichlet kernel properties, Proposition 2.2:

1
π

∫ π

−π
DN(t)dt = 1⇒ 1

π

∫ π

−π
FN(t)dt =

1
π

N

∑
j=0

DN(t)

N + 1
dt =

N + 1
N + 1

= 1.

3. Given δ > 0, we have that for all δ ≤ |t| ≤ π, since sin2(t/2) is an increasing function
in these intervals, sin2(t/2) ≥ sin2(δ/2). So, for all δ ≤ |t| ≤ π:

FN(t) =
1

2(N + 1)
sin2[(N + 1)(t/2)]

sin2(t/2)
≤ 1

2(N + 1) sin2(t/2)
≤ 1

2(N + 1) sin2(δ/2)
·

Notice that this bound tends to 0 with N independently of t, that is, uniformly on
the intervals [−π,−δ] ∪ [δ, π], which was to be proven.

Next we show the main result of this section, Féjer’s theorem, which assures that
continuity is a sufficient condition for Cesàro sums to converge to the function. Notice
that, taking into account du Bois-Reymond example, this was not the case for the sum of
the Fourier series.
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Theorem 4.5 (Féjer). Assume f ∈ L has got lateral limits at x. Then,

σ f (x) =
1
2
[ f (x+) + f (x−)].

Remark 4.6. If f is continuous at x, then σ f (x) = f (x).

Proof. From Féjer’s kernel properties (Proposition 4.4), we can write:

σN f (x)− 1
2

∫ π

0
FN(t)[ f (x− t) + f (x + t)− f (x−)− f (x+)]dt.

Therefore, for every N:∣∣∣∣σN f (x)− 1
2
[ f (x+) + f (x−)]

∣∣∣∣ ≤
1
π

{∣∣∣∣∫ π

0
FN(t)[ f (x− t)− f (x−)]dt

∣∣∣∣+ ∣∣∣∣∫ π

0
FN(t)[ f (x + t)− f (x+)]dt

∣∣∣∣} ,

and we can bound each addend in the following way:∣∣∣∣∫ π

0
FN(t)[ f (x− t)− f (x−)]dt

∣∣∣∣ ≤ ∫ π

0
|FN(t)[ f (x− t)− f (x−)]dt =∫ δ

0
FN(t)| f (x− t)− f (x−)|dt +

∫ π

δ
FN(t)| f (x− t)− f (x−)|dt,

where we have used the fact that, given ε > 0 we can choose δ > 0 such that

sup
0≤t≤δ

| f (x− t)− f (x−)| < 1
π
· ε

2
,

because f (x−) := lim
t→0+

f (x− t). Therefore, we can bound the first term like:

∫ δ

0
FN(t)| f (x− t)− f (x−)|dt ≤

∫ δ

0
FN(t)dt · sup

0≤t≤δ

| f (x− t)− f (x−)| <
∫ π

−π
FN(t)dt

1
π
· ε

2
=

ε

2
·

The second term can be bounded like:∫ π

δ
FN(t)| f (x− t)− f (x−)|dt ≤ sup

δ<t≤π

FN(t) ·
∫ π

δ
| f (x− t)− f (x−)|dt,

and ∫ π

δ
| f (x− t) + f (x−)|dt ≤

∫ π

δ
| f (x− t)|dt +

∫ π

δ
| f (x−)|dt ≤∫ π

−π
| f (x− t)|dt +

∫ π

0
| f (x−)|dt =

∫ π

−π
| f (t)|dt + π| f (x−)|,

where the last equality holds by the periodicity of f . Notice that the result is finite because
f is integrable. Also, from the last property of Fejér’s kernel on Proposition 4.4, for N large
enough

sup
δ<t≤π

FN(t) <
1∫

| f |+ π| f (x−)|
· ε

2
,
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so ∫ π

δ
FN(t)| f (x− t)− f (x−)|dt <

ε

2
·

Therefore,

∀ε > 0 ∃N0 ∈N such that ∀N ≥ N0,
∣∣∣∣∫ π

0
FN(t)[ f (x− t)− f (x−)]dt

∣∣∣∣ < ε,

so ∫ π

0
FN(t)[ f (x− t)− f (x−)]dt N−→ 0.

Similarly,
∫ π

0
FN(t)[ f (x + t)− f (x+)]dt N−→ 0, so finally

σN f (x)− 1
2
[ f (x+) + f (x−)] N−→ 0,

which was to be proven.

4.2 Abel-Poisson summability

Now we study another kind of series, specifically a power series that is obtained with
the Fourier coefficients of the function. This kind of summability is based on the following
known result for numerical series.

Proposition 4.7 (Abel). Let
∞

∑
n=1

an = s be a convergent numerical series. Then:

• The function S(r) :=
∞

∑
n=1

rnan is well defined (convergent) ∀ 0 ≤ r ≤ 1, and

• lim
r→1−

S(r) = s.

We now apply this summability method to Fourier series. Consider the following Abel
power series, where the coefficients are the Fourier coefficients of f :

Sr f (x) =
a0

2
+

∞

∑
k=1

rk(ak cos kx + bk sin kx), (4.3)

of which we have to study its limit S1− f (x) := lim
r→1−

Sr f (x), what we call the Abel sum of

f (x).

Note that the exponential form of (4.3) is not
∞

∑
k=−∞

rkckeikx, but:

Sr f (x) =
∞

∑
k=−∞

r|k|ckeikx. (4.4)
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Indeed,

∀ k ≥ 0, c±k =
1
2

ak ±
1
2i

bk ⇒
1
2
(rkak)±

1
2i
(rkbk) = (rkc±k),

that is,

rk
(

1
2

ak ±
1
2i

bk

)
= rkc±k,

and the sign of k on the power rk is always positive.
The Abel power series (4.4) are well defined, that is, convergent, for all 0 ≤ r < 1. Let

us show, in fact, that for any given 0 ≤ r < 1, Sr f (x) is uniformly convergent with respect
to x. It suffices to see that, for any 0 ≤ r < 1, defining fn(x) = r|n|cneinx, then

∑
n

sup
x
| fn(x)| < ∞ ∀ x ∈ [−π, π].

Indeed, in that case, using the Weierstrass M-test (Theorem B.1), Sr f (x) = ∑n fn(x) con-
verges uniformly with respect to x. We have that:

∑
n

sup
x
| fn(x)| = ∑

n
sup

x
|r|n|cneinx| = ∑

n
r|n||cn| ≤

1
2π

∫ π

−π
| f (t)|dt ·∑

n
r|n|,

which is finite because f ∈ L and r < 1⇒∑
n

r|n| < ∞, which was to be shown.

Now let us find the integral form of the Abel power series:

Sr f (x) =∑
k
(r|k|ckeikx) = ∑

k

[
r|k|eikx 1

2π

∫ π

−π
f (t)e−iktdt

]
=

1
2π ∑

k

∫ π

−π
r|k| f (t)eik(x−t)dt =

1
π

∫ π

−π

[
f (t)∑

k

(
1
2

r|k|eik(x−t)
)]

dt.

Definition 4.8. We define the Poisson kernel as

Pr(t) :=
∞

∑
k=−∞

1
2

r|k|eikt ∀ 0 ≤ r < 1.

Therefore,

Sr f (x) =
1
π

∫ π

−π
f (t)Pr(x− t)dt.

Let us see some alternative expressions for the Poisson kernel. In the first place, its
trigonometric expression can be obtained with Euler’s formula eix = cos x + i sin x:

Pr(t) =
∞

∑
k=−∞

1
2

r|k|eikt =
∞

∑
k=−∞

1
2

r|k|(cos kt + i sin kt) =
∞

∑
k=−∞

1
2

r|k| cos kt =
1
2
+ ∑

k≥1
rk cos kt,

where we have used sine’s and cosine’s parities. Thus,

Pr(t) =
1
2
+

∞

∑
k=1

rk cos kt.
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Like Dirichlet’s and Féjer’s kernels, the Poisson one can also be expressed as a quotient

of trigonometric functions. Let S := Pr(t) −
1
2

= ∑
k≥1

rk cos kt. Recall the trigonometric

identity
cos(x + y) = cos x cos y− sin x sin y,

which leads us to
2 cos x cos y = cos(x + y) + cos(x− y),

so:

2S cos t = ∑
k≥1

rk2 cos t cos kt = ∑
k≥1

rk[cos(k + 1)t + cos(k− 1)t] =

1
r ∑

k≥2
rk cos kt + r ∑

k≥0
rk cos kt =

1
r
(S− r cos t) + r(S + 1) =

(
r +

1
r

)
S + r− cos t,

and isolating S:

S =
r cos t− r2

1− 2r cos t + r2 ·

Finally, Pr(t) = S + 1/2, so:

Pr(t) =
1− r2

2(1− 2r cos t + r2)
·

Let us show the basic properties of the Poisson kernel.

Proposition 4.9.

1. Pr is an even, non negative and 2π-periodic function.

2.
1
π

∫ π

−π
Pr(t)dt = 1.

3. ∀ δ > 0, Pr(t)
r→1−

⇒ 0 on [−π,−δ] ∪ [δ, π].

Proof.

1. From its exponential form we see that it is non negative. From its trigonometric form
we see that it is even and 2π-periodic.

2. The Poisson kernel is a particular case of an Abel power series, which we proved to
be uniformly convergent. Therefore, we can swap the integral and the series:

1
π

∫ π

−π
Pr(t)dt =

1
π

∫ π

−π

(
1
2
+ ∑

k≥1
rk cos kt

)
dt =

1
π

∫ π

−π

1
2

dt = 1.

3. Given δ > 0, we have that for every δ ≤ |t| ≤ π:

2(1− 2r cos t + r2) =2(1− 2r + r2 − 2r cos t + 2r) = 2[(1− r)2 + 2r(1− cos t)] ≥

2[(1− r)2 + 2r(1− cos δ)]⇒ Pr(t) ≤
1− r2

2[(1− r)2 + 2r(1− cos δ)]
·
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This bound tends to 0 when r → 1− independently of t, that is, uniformly. Indeed:

1− r2

2[(1− r)2 + 2r(1− cos δ)]
r→1−∼ 1− r2

4r(1− cos δ)
r→1−−−−→ 0.

It is easy to see that a couple of alternative integral expressions for the Abel power
series in terms of the Poisson kernel are:

Sr f (x) =
1
π

∫ π

−π
f (x− t)Pr(t)dt,

Sr f (x) =
1
π

∫ π

0
Pr(t)[ f (x− t) + f (x + t)]dt.

Let us now show the main result about Abel summability of Fourier series.

Theorem 4.10. Let f ∈ L bounded. If f has got lateral limits at x, then

S1− f (x) =
1
2
[ f (x+) + f (x−)].

Remark 4.11. If f is continuous at x, then S1− f (x) = f (x).

The proof is completely similar to the Féjer’s theorem one, Theorem 4.5, the key argu-
ment being the uniform convergence of the kernel on any closed subinterval of (0, π].

4.3 Uniform summability

We already claimed that, if S f converges uniformly, then f must be continuous. The
same happens if, instead of studying the convergence of the Fourier series, we study the
summability, either the Abel or the Cesàro one. Indeed, since σN f and Sr f are contin-
uous for every N and for all r respectively, if they converge uniformly then f must be
continuous.

The interesting fact about summability is that the continuity of the limit (in case of
uniform convergence) is not only necessary but also sufficient, which thanks to du Bois-
Reymond, Theorem 3.1, we know to be in general false for the convergence of the Fourier
series.

Theorem 4.12. Let f ∈ C0. Then, σN f
N
⇒ f and Sr f

r
⇒ f on [−π, π].

Proof. We only give the proof for σN . The one for the Abel power series is similar.

|σN f (x)− f (x)| =
∣∣∣∣ 1
π

∫ π

0
FN(t)[ f (x + t) + f (x− t)]dt− f (x)

∣∣∣∣ =∣∣∣∣ 1
π

∫ π

0
FN(t)[ f (x + t)− f (x) + f (x− t)− f (x)]dt

∣∣∣∣ ≤
1
π

∫ π

0
FN(t)| f (x + t)− f (x)|dt +

1
π

∫ π

0
FN(t)| f (x− t)− f (x)|dt,
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and let us bound both terms in the same, following way:∫ π

0
FN(t)| f (x± t)− f (x)|dt =

∫ δ

0
(. . .)dt +

∫ π

δ
(. . .)dt,

and:

•
∫ δ

0
FN(t)| f (x± t)− f (x)|dt ≤

π/2︷ ︸︸ ︷∫ π

0
FN(t)dt · sup

0≤t≤δ

| f (x± t)− f (x)|.

• Since f is continuous, let M := max
δ≤t≤π

| f (t)|. Then:∫ π

δ
FN(t)| f (x± t)− f (x)|dt ≤

∫ π

δ
FN(t)(| f (x± t)|+ | f (x)|)dt ≤ 2M

∫ π

δ
FN(t)dt,

so: ∫ π

0
FN(t)| f (x± t)− f (x)|dt ≤ 1

π
2

[
π

2
sup

0≤t≤δ

| f (x± t)− f (x)|+ 2M
∫ π

δ
FN(t)dt

]
=

sup
0≤t≤δ

| f (x± t)− f (x)|+ 4M
π

∫ π

δ
FN(t)dt.

We want to see uniform convergence, so we need to prove that

∀ ε > 0 ∃ δ > 0, ∃N0 such that |σN f (x)− f (x)| < ε ∀ x, ∀N ≥ N0 with δ 6= δ(x).

On the one hand, recall that for all δ > 0, FN(t)
N
⇒ 0 on [−π,−δ] ∪ [δ, π], so:

4M
π

∫ π

δ
FN(t)dt ≤ 4M

π

π

2
sup

δ≤t≤π

FN(t) = 2M sup
δ≤t≤π

FN(t)
N
⇒ 0,

so for N0 great enough, this term is, for any N ≥ N0, bounded by ε/2.
On the other hand, by continuity of f on [−π, π], then f is uniformly continuous on

[−π, π]. Hence, by definition of uniform continuity, given ε > 0 there exists δ > 0 such
that sup

0≤t≤δ

| f (x− t)− f (x)| < ε/2.

Therefore, for this δ > 0 and for every N ≥ N0, |σN f (x)− f (x)| < ε, which was to be
proven.

Corollary 4.13. Let f ∈ C0. Then there exists a sequence {pn}n of trigonometric polynomials
that converges uniformly to f .

Proof. From the theorem, since f is continuous then σN f
N
⇒ f , where {σN}N is a sequence

of trigonometric polynomials.

Corollary 4.14. Two continuous functions with the same Fourier series are equal.

Proof. If S f = ∑n fn and Sg = ∑n gn are the same, then fn = gn ∀ n. Therefore, the
respective partial sums are the same, that is, Sj f = Sjg for every j, so σN f = σN g for every

N. Since f and g are continuous, from the previous corollary σN f
N
⇒ f and σN g

N
⇒ g, but

since the limit is unique, then f = g.
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4.4 Convergence in Lp

Until now we only considered pointwise and/or uniform convergence of Fourier series
or Cesàro and Abel sums. But there exist another kinds of convergence, one of the most
important being the convergence in Lp.

Definition 4.15. The sequence of functions {gN}N is said to converge in p-mean - or, simply, in
Lp -, for 1 ≤ p ≤ ∞, to a function f on [−π, π] if

lim
N

∫ π

−π
|gN(t)− g(t)|pdt = 0,

that is, if lim
N
||gN − g||pp = 0.

If p = 1, the convergence is said to be in mean, and if p = 2, it is said to be in (root)
mean square.

Let us see the main results of this section, which are referred to the converge in Lp of
the Cesàro and Abel series. We consider separately the case p = 1 and the cases p > 1.

Theorem 4.16. Let f ∈ L. Then, lim
N

∫ π

−π
|σn f − f | = 0 and lim

r→1−

∫ π

−π
|Sr f − f | = 0.

Proof. Once again, we only give the proof for the Cesàro sums, since the one for the Abel
series is similar. For any δ > 0,∫ π

−π
|σN f (x)− f (x)|dx =

∫ π

−π

∣∣∣∣ 1
π

FN(t)[ f (x− t)− f (x)]dt
∣∣∣∣ dx ≤∫ π

−π

∫ δ

−δ
FN(t)| f (x− t)− f (x)|dtdx +

∫ π

−π

∫
δ≤|t|≤π

FN(t)| f (x− t)− f (x)|dtdx ≤∫ π

−π

∫ δ

−δ
FN(t)| f (x− t)− f (x)|dtdx + 2|| f ||1π sup

δ≤|t|≤π

FN(t),

where the last inequality is due to:∫ π

−π

∫
δ≤|t|≤π

FN(t)| f (x− t)− f (x)|dtdx =
∫

δ≤|t|≤π

∫ π

−π
FN(t)| f (x− t)− f (x)|dtdx ≤∫

δ≤|t|≤π
FN(t)

∫ π

−π
(| f (x− t)|+ | f (x)|)dxdt =

∫
δ≤|t|≤π

FN(t)
∫ π

−π
2| f (x)|dxdt =

2|| f ||1
∫

δ≤|t|≤π
FN(t)dt ≤ 2|| f ||1π sup

δ≤|t|≤π

FN(t).

Now, from the last property of the Féjer kernel on Proposition 4.4, we know that for any

δ > 0, 2|| f ||1π supδ≤|t|≤π FN(t)
N−→ 0.

We know from Theorem A.15 that

lim
t→0

∫ π

−π
| f (x− t)− f (x)|dx = 0,
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so, for any ε > 0:∫ π

−π

∫ δ

−δ
FN(t)| f (x− t)− f (x)|dtdx =

∫ δ

δ
FN(t)

∫ π

−π
| f (x− t)− f (x)|dxdt ≤

ε

2π

∫ δ

−δ
FN(t)dt ≤ ε

2π
π =

ε

2
·

Theorem 4.17. Let f ∈ Lp for 1 < p < ∞. Then, lim
N

∫ π

−π
|σN f − f |p = 0 and

lim
r→1−

∫ π

−π
|Sr f − f |p = 0.

Proof. This proof is similar to the previous one.

|σN f (x)− f (x)|p ≤
(

1
π

∫ π

−π
FN(t)| f (x− t)− f (x)|dt

)p
.

Now, let us apply Hölder’s inequality (Theorem A.11) to this integral. Specifically:
g(t) := FN(t)1/p| f (x− t)− f (x)|

h(t) := FN(t)1/q such that
1
q
= 1− 1

p

=⇒ ||gh||1 ≤ ||g||p||h||q,

which translates into:∫ π

−π
FN(t)| f (x− t)− f (x)|dt ≤

(∫ π

−π
FN(t)| f (x− t)− f (x)|pdt

) 1
p
·
(∫ π

−π
FN(t)dt

) 1
q
⇒(

1
π

∫ π

−π
FN(t)| f (x− t)− f (x)|dt

)p
≤ 1

πp

∫ π

−π
FN(t)| f (x− t)− f (x)|pdt

(∫ π

−π
FN(t)dt

) p
q

=
πp/q

πp

∫ π

−π
FN(t)| f (x− t)− f (x)|pdt ≤

q≥1

1
π

FN(t)| f (x− t)− f (x)|pdt,

so
|σN f (x)− f (x)|p ≤ 1

π
FN(t)| f (x− t)− f (x)|pdt,

and ∫ π

−π
|σN f (x)− f (x)|pdx ≤

∫ π

−π

∫ δ

−δ
FN(t)| f (x− t)− f (x)|pdtdx+

+
∫ π

−π

∫
δ≤|t|≤π

FN(t)| f (x− t)− f (x)|pdtdx.

Let us bound both addends:∫ π

−π

∫
δ≤|t|≤π

FN(t)| f (x− t)− f (x)|pdtdx =
∫

δ≤|t|≤π
FN(t)

∫ π

−π
| f (x− t)− f (x)|pdxdt,

which defining gt(x) = f (x− t), equals∫
δ≤|t|≤π

FN(t)||gt(x)− f (x)||ppdt.
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Since || · ||p is a norm (see Theorem A.10), then the triangle inequality tells us that:∫
δ≤|t|≤π

FN(t)||gt(x)− f (x)||ppdt ≤
∫

δ≤|t|≤π
FN(t)(||gt(x)||p + || f (x)||p)pdt,

which by definition of gt and periodicity of f equals∫
δ≤|t|≤π

FN(t)(2|| f ||p)pdt = 2p|| f ||pp
∫

δ≤|t|≤π
FN(t)dt ≤ 2p|| f ||ppπ sup

δ≤|t|≤π

FN(t)
N−→ 0,

because FN
N
⇒ 0 on δ ≤ |t| ≤ π. Now, for the second addend, we bound it similarly to the

case p = 1. We use Theorem A.15, that is,

lim
h→0

∫
X
| f (x + h)− f (x)|pdx = 0 ∀ f ∈ Lp.

Then, ∫ π

−π

∫ δ

−δ
FN(t)| f (x− t)− f (x)|pdtdx =

∫ δ

−δ
FN(t)

∫ π

−π
| f (x− t)− f (x)|pdxdt ≤

ε

2π

∫ δ

−δ
FN(t)dt ≤ ε

2π
π =

ε

2
.

We have seen that two continuous functions with the same Fourier series are in fact
the same function. For integrable functions, we have the following result.

Corollary 4.18. If f , g ∈ L have the same Fourier series, then
∫ π

−π
| f − g| = 0.

Remark 4.19. Recall that if
∫

X f = 0 then f = 0 a.e. X. Therefore, the corollary tells us
that if two integrable functions have the same Fourier series, then they are equal almost
everywhere.

Proof. Let h = f − g. If S f = Sg, then Sh = S( f − g) = S f − Sg = 0, so all the Fourier
coefficients of h are 0. Thus, σNh = 0 for all N and, from the theorem,

∫
|h| = 0, which

was to be proven.

4.5 Mean square convergence: Plancherel-Parseval’s iden-
tity

We apply the results of the previous section to the case p = 2.

Corollary 4.20. Let f ∈ L2. Then, lim
N

∫ π

−π
|SN f − f |2 = 0.
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Proof. Recall Theorem 1.9, which tells us that, among all the trigonometric polynomials of
degree N, the one that best approximates f in square mean is SN f . So the trigonometric
polynomial σN f of degree N satisfies∫ π

−π
|SN f − f |2 ≤

∫ π

−π
|σN f − f |2 ∀N.

Therefore, from the previous section:

0 ≤ lim
N

∫ π

−π
|SN f − f |2 ≤

∫ π

−π
|σN f − f |2 = 0.

Now we show that Bessel’s inequality is, in fact, an equality, which is called Plancherel-
Parseval’s identity.

Corollary 4.21 (Plancherel-Parseval’s identity). Let f ∈ L2 bounded. Then,

1
π

∫ π

−π
f 2 =

a2
0

2
+ ∑

k≥1
(a2

k + b2
k).

In exponential form, the identity is

1
2π

∫ π

−π
f 2 =

∞

∑
k=−∞

|ck|2,

which can be easily proven from the relation between ak, bk and ck, that is equations (1.1).

Proof. In the proof of Theorem 1.9 we saw that

∫ π

−π
|SN f − f |2 =

∫ π

−π
f 2 − π

[
a2

0
2
+

N

∑
k=1

(a2
k + b2

k)

]
,

and taking the limit N → ∞ we get the identity.

Corollary 4.22. The trigonometric basis is a complete basis of L2(−π, π).

4.6 Dirichlet problem

In this section we solve the classic Dirichlet problem. The main reference for this
section has been Körner’s book [11].

The general Dirichlet problem consists on trying to solve Laplace’s equation, ∆u = 0,
on an open region Ω ⊂ Rn, with the requirement that, for a given function f , then f = u
on ∂Ω. The problem can be generalized for any differential equation on any differentiable
manifold. Nevertheless, we will study the original problem:

Let f : ∂D → R be a continuous funtion. We are searching for a function u : D → R

such that:
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(i) u is harmonic, that is, u ∈ C2(D) and satisfies Laplace’s equation ∆u = 0 on D.

(ii) u is continuous on D.

(iii) u = f on ∇D.

It is convenient to work in polar coordinates.

Theorem 4.23. Let f ∈ C0[−π, π]. Then, the function

u : D → R

(r, θ) 7→ Sr f (θ)

is the unique function such that

(i) ∆u = 0 on D,

(ii) lim
r→1−
θ→θ0

u(r, θ) = f (θ0) ∀ θ0.

Therefore, the function

u : D → R

(r, θ) 7→
{

Sr f (θ) ∀ 0 ≤ r < 1,
f (θ) if r = 1,

is the only solution of Dirichlet’s problem.

Proof. For (i), recall the complex expression of Abel power series (4.4)

Sr f (θ) =
∞

∑
k=−∞

r|k|ckeikθ ,

which, writing z = reiθ and recalling that c−k = ck becomes

Sr f (θ) =c0 + ∑
k≥1

ckrkeikθ + ∑
k≥1

c−krke−ikθ = c0 + ∑
k≥1

ck(reiθ)k + ∑
k≥1

ck(reiθ)k =(
1
2

c0 + ∑
k≥1

ckzk

)
+

(
1
2

c0 + ∑
k≥1

ckzk

)
= 2Re

(
1
2

c0 + ∑
k≥1

ckzk

)
,

which is the real part of an analytic complex function (because it can be written as a well-
defined, - uniformly - convergent series), and therefore, by Cauchy-Riemann’s equations,
is harmonic. For (ii), one only needs to apply Abel-Poisson summability, Theorem 4.10.



Conclusions

Since I first knew about Fourier series and integrals and their applications, I have
always found them quite appealing. The fact that I never studied harmonic analysis
accurately made me contemplate choosing it as my undergraduate thesis subject, what
I finally did. Honestly, I did not know what I would be facing, but once the project is
over, I’m glad to say that my joy for this branch is greater than then. One of the reasons
that made me stay curious about it is the fact that the problem which I study in this
project, the convergence of Fourier series, is still open. My interest has been reinforced
by my director’s attitude towards my lacks and difficulties; instead of ignoring them, she
gave me the tools to overcome them by myself. For instance, when she found out that I
had not taken Anàlisi Real i Funcional course, which I needed to develop this project, she
encouraged me to study it by myself. Even though I could not include this part of my
work in the report, I also enjoyed it.

The task of bibliographic collection has been a double-edged sword. On the one hand,
it has been quite frustrating not to instantly find every result that I needed to check. One
time, this matter stopped me from advancing for some days. Furthermore, the lack of a
main source to look up forces you to compare the different versions of the authors about
a similar subject. On the other hand, this is an essential ability in the professional world,
either at research or at teaching, and I have improved my search skills thanks to this
project.

To sum up, my experience has been positive. I found what I currently consider my
favourite branch of mathematics, to which I am looking forward to dedicate more than
this project.
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Appendix A

Real and Functional Analysis

In this appendix I include the definitions and the studied results that could not be
added to the main body of the project but are required at some point.

A.1 Measure theory and the integral with respect of a mea-
sure

Theorem A.1. Let f : X → R+ a measurable function. Then, there exists an increasing sequence
{sn}n of simple, non negative functions such that sn(x)→ f (x) for all x ∈ X.

Theorem A.2. Let F : R → R be an increasing function. The exterior measure associated to the
elemental function β(a, b] := F(b)− F(a) is a metric outer measure.

• If, in addition, F is right-continuous, the corresponding measure is called the Lebesgue-
Stieltjes measure, and it satisfies

µ(a, b] = F(b)− F(a) and µ({a}) = F(a)− F(a−).

• If F(x) = x, the measure is called the Lebesgue measure.

Definition A.3. A measure is said to be:

• Outer regular if, for any measurable set E,

µ(E) = inf{µ(U); E ⊂ U, U is open }.

• Inner regular measure if, for any measurable set E,

µ(E) = sup{µ(K); K ⊂ E, K is compact }.

• Regular if it is inner and outer regular.
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Theorem A.4. Every Lebesgue-Stieltjes measure is regular.

Theorem A.5 (Monotone Convergence Theorem). Let f be a positive measurable func-
tion and { fn}n a sequence of measurable functions such that fn ≤ fn+1 for every n. If
f (x) = limn fn(x) a.e. x, then ∫

f dµ = lim
n

∫
fndµ.

This is the increasing version of the theorem. The analogous decreasing version also
holds.

Lemma A.6 (Beppo-Levi). Let { fn : E → R}n be a sequence of non negative, integrable func-
tions. If

∞

∑
n=1

∫
E

fn(t)dt < +∞,

then there exists an integrable, everywhere finite function f such that

f (t) =
∞

∑
n=1

fn(t) a.e. t.

A.2 Banach Spaces

Definition A.7. A normed space is a vector space with a norm.

Definition A.8. A Banach space is a normed, complete space.

Definition A.9. Given a measure µ, we define the Lebesgue spaces Lp(µ) for each 1 ≤ p ≤ ∞ as
follows:

• For all 1 ≤ p < ∞, Lp(µ) :=
{

f measurable ; || f ||p < ∞
}

, where

|| f ||p :=
(∫

X
| f (x)|pdµ(x)

)1/p
.

• L∞ := { f measurable ; || f ||∞ < ∞}, where

|| f ||∞ := inf {M > 0 ; | f (x)| ≤ M a.e. x}

is the infinity norm, also-known as the supreme norm or the Chebyshev norm. According to this
definition, one can write L∞(µ) = { f measurable ; f bounded a.e. x} .

Theorem A.10. For all 1 ≤ p ≤ ∞, (Lp, || · ||p) is a Banach space.
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Theorem A.11 (Hölder’s inequality). Let f ∈ Lp and g ∈ Lq such that
1
p
+

1
q
= 1 (if p = 1,

q = ∞ and conversely). Then, f g ∈ L1 and:

∫
X
| f (x)g(x)|dµ(x) ≤

(∫
X
| f (x)|pdµ(x)

)1/p
·
(∫

X
|g(x)|qdµ(x)

)1/q
.

Definition A.12. Let E, F be vector spaces over a field K. A linear operator is a K-linear function
from E to F.

Definition A.13. Let T : E→ F be a linear operator. Its norm is defined as

||T|| := sup
||x||E≤1

||Tx||F,

if such supreme exists. In this case, T is said to be bounded.

Theorem A.14 (Uniform boundedness principle). Let E be a Banach space and F a normed
space. Consider the family of linear and bounded operators F = {T : E→ F}. If, for every x ∈ E,
the set {||Tx||F | T ∈ F} is bounded, then the set {||T|| | T ∈ F} is also bounded.

Lemma A.15. Let f ∈ Lp for some 1 ≤ p < ∞. Then,

lim
h→0

∫
| f (x + h)− f (x)|pdx = 0.
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Appendix B

Other basic results and definitions

Here we include well-known results or results which are below the level of this project
but that are needed at some point.

Theorem B.1 (Weierstrass M-test). Let ∑
n

fn be a function series and ∑
n

Mn a convergent

numerical series such that Mn ≥ 0 ∀ n. If | fn(x)| ≤ Mn for all x ∈ D and every n, then the
function series converges absolutely and uniformly on D.

Theorem B.2. Let { fn}n be a sequence of continuous functions. If there exists f such that fn ⇒ f ,
then f is continuous.

Theorem B.3. Let f : (a, b) → R be a differentiable function. Then, there exists c ∈ (a, b) such
that

f ′(c) =
f (b)− f (a)

b− a
·

Definition B.4. Let f : [a, b]→ R. For every partition τ ∈ P , let

v( f , τ) :=
n

∑
k=1
| f (τk)− f (τk−1)|.

The total variation of f on [a, b] is

Vb
a ( f ) := sup

τ∈P [a,b]
v( f , τ).

We say f is of bounded variation on [a, b] if Vb
a ( f ) < ∞.

Lemma B.5. Let f ∈ L be a 2π-periodic function of bounded variation on [0, 2π]. Then,

∀ x ∈ [0, 2π], ∀N ≥ 0, |SN f (x)| ≤ sup
y∈[0,2π]

| f (y)|+ V2π
0 ( f ).
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