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Introduction

Complex dynamics is concerned with the long term behaviour of the iterates of a given
holomorphic function f ,

f n := f ◦
n)
· · · ◦ f

when applied to different initial conditions. In this work we will restrict to rational func-
tions, defined on the extended complex plane C ∪ {∞}, the Riemann Sphere. These type
of dynamical systems appear in many different contexts, for example as complexifications
of real or interval dynamics, or as root finding algorithms like Newton’s method in the
complex setting.

The dynamics of rational maps on the Riemann sphere is one of the most beautiful and
well-known topics in complex dynamics. As holomorphic functions, they can be treated
both as power series from the analytic point of view, and as locally conformal mappings
from the geometric one. Therefore all powerful tools from complex analysis can be used,
gathering the work of many analysts, geometers, topologists and algebraists over the time.

Its origins date back to the manuscripts of Pierre Fatou and Gaston Julia submitted
independently to the 1918 Grand Prize in Mathematics promoted by the French Academy
of Sciences. Both of them were inspired a few months before by the theory of normal
families of the also French mathematician Paul Montel. They realized that sequences of
functions in Montel’s work could be treated as iterates of a certain map, hence the complex
plane could be partitioned into a normality and non-normality sets, nowadays known as
Fatou and Julia sets, respectively, with stunning topology and dynamics. Actually the
Julia set corresponds to those points with a chaotic behaviour after many iterations, and
the Fatou set, as its complementary, can be seen as the set of stable or well-behaved points.
Fatou focused his attention on what he called singular domains, since he believed in the
existence of components of the normality set that were not in a domain of attraction for a
periodic cycle, although it was always wrongly refused by Julia. A few years later Cremer
noticed that these hypothetical domains for rational maps should be doubly connected,
anticipating Herman rings. In fact he pointed out that the local behaviour near periodic
points was not always clear. Later on, many important mathematicians such as Siegel,
Arnol’d, Herman or Baker contributed on the topic, but there were many unanswered
questions left and gradually the subject lost its interest during the next sixty years.

Fortunately in the early 1980s powerful computer graphics of complex dynamical sys-
tems, as well as the fractal geometry and its applications introduced by Mandelbrot, revi-
talised the study of rational maps. There was a strong interest in the final fate or long-term
behaviour of the points on the Fatou and Julia sets, as well as in the properties of their
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iv Introduction

components. At the same time one of the greatest and the most revolutionary contri-
butions in the complex dynamics field was brought to light by Sullivan’s No-wandering
domains Theorem, a wonderful solution to the old Fatou’s conjecture using the recent
quasiconformal surgery theory. This result was pleasantly enhanced by the Classifica-
tion Theorem of periodic domains already developed by Fatou and Cremer, and by some
theorems provided by Siegel, Arnol’d and Herman on the existence of rotation domains.
This was complemented recently with the Shishikura’s sharp inequality for the number
of periodic cycles in the Fatou set proved thanks to the relation between critical points
and Fatou components, using quasiconformal surgery for his Master’s thesis in 1987. All
these important results, which were developed throughout the last century, configure a
very complete and simple description of the dynamics of rational maps.

The central topic of the current work is the Classification of periodic Fatou compo-
nents for a rational map into the five possibilities: attractive basins, superattractive basins,
parabolic basins, Siegel discs and Herman rings. Several versions of this central theorem
have appeared [7, 9, 12] using alternative techniques. Our intention is to give a clear, pre-
cise and self-contained proof of this theorem, based on key tools from complex analysis,
iteration theory and hyperbolic geometry. For this purpose, these topics are presented in
a coherent and reasonable manner. We have made an effort to show the proofs in a way as
simple as possible by gathering geometric and analytic ideas in the literature. Important
information and detailed exposition of theses subjects as well as further topics in complex
dynamics are included in the books of Milnor [9], Beardon [2], Steinmetz [12] or Keen and
Lakicv [6], for example.

This work is divided into four chapters:
In chapter 1 we present briefly some definitions and basic results from complex analy-

sis in one dimension that we will be required. The main concepts introduced here are con-
formal mappings, covering maps and connectivity related to relevant theorems such as the
Riemann Mapping Theorem, the Uniformization Theorem or the Riemann-Hurwitz For-
mula. Some background reading in complex analysis is needed, see for example Ahlfors
[1].

In chapter 2 we make an introduction to hyperbolic geometry. We define the hyperbolic
metric on the open unit disk and we transfer it to other hyperbolic domains. We study the
hyperbolic metric and geodesics on the special case of doubly connected sets. Moreover,
we proof the Schwarz-Pick Lemma, a key theorem in these notes.

In chapter 3 we show some basic results and statements about rational functions. We
introduce the notion of normality and the Montel’s theorem, very important in the Fatou-
Julia theory. At this point, we give a formal definition of the Fatou and Julia sets and we
prove some relevant properties of them that will be needed.

Finally, in chapter 4 we study the five types of periodic Fatou components by the
Classification Theorem for rational functions. This, together with some statements on
connectivity, as well as with the No-Wandering Domains Theorem and the Shishikura’s
inequality, although they are beyond of the current work’s scope, allow us to present a
complete description of the stable dynamics of rational maps.



Chapter 1

Preliminaries on Complex
Analysis

In this chapter we present briefly some definitions and basic results from complex
analysis in one dimension that we will need in other sections. We assume the reader has
some familiarity with the algebra and geometric representation of complex numbers, and
with basic theorems such as the Cauchy formula, the principle of analytic continuation
or the maximum modulus principle. As background reading in complex analysis, see for
example [1].

1.1 Conformal mappings

We start considering a complex-valued function of one complex variable f : Ω→ C in
a certain domain Ω ⊂ C.

By a domain, we mean an open non-empty and connected subset of C. Recall that a
subset of C, or any topological space, is connected if it is not the union of two disjoint
open sets. This may be a hard property to verify but luckily, in the complex plane, an
open subset is connected if and only if it is pathwise connected, that is any two points in
the subset can be joined by a continuous path completely contained in the subset.

In the purpose to extend the tools from calculus to complex analysis, we need the
notion holomorphic functions (also called complex differentiable functions), the only ones
that can be freely differentiated and integrated in the complex sense.

Definition. A function f : Ω→ C is differentiable at z0 ∈ Ω if the limit

lim
z→z0

f (z)− f (z0)

z− z0

exists. In that case, the limit is called the derivative of f at z0 and is denoted by f ′(z0) . We
say that f is holomorphic in Ω if it is differentiable at every point in Ω.

1



2 Preliminaries

We note that the common differential rules such as the quotient rule or the chain
rule are also valid in this context. But the complex differentiability condition is stronger
because it implies an approach to the limit from all directions in the complex plane, while
in the real case there is only the positive and negative ones.

One important property of holomorphic functions is their analyticity in the complex
plane, so that every holomorphic function in a neighbourhood of any point z0 ∈ Ω can be
expanded as a convergent power series:

f (z) =
∞

∑
n=0

an(z− z0),

where the coefficients can be given by the Cauchy integral formula, or as the coefficients
of the Taylor series since analytic functions are infinitely differentiable in their domains.

Alternatively, from the geometric point of view, a holomorphic function can be treated
as a conformal mapping.

Definition. We say that a holomorphic function f : Ω → C is a conformal mapping if
f ′(z) 6= 0 for all z ∈ Ω.

We observe that it is locally injective and preserves oriented-angles between smooth
curves. This is due to the behaviour of the function near a point z0 with non-zero deriva-
tive:

f (z)− f (z0) ∼ f ′(z0)(z− z0).

Then clearly f scaled the difference z − z0 by a factor | f ′(z0)| and rotate it an angle
arg( f ′(z0)).

Conformal mappings theory is extremely rich due to its geometric background. In
fact, one powerful example of that is the following classical Schwarz’s Lemma, which we
are going to use several times through these notes. Its proof is a direct application of the
Maximum Modulus Principle.

Theorem 1.1. (Schwarz’s Lemma) Let f : D → D be holomorphic, and let f (0) = 0. Then
| f ′(0)| ≤ 1. Moreover, one of the following conditions hold:

(1) | f ′(0)| < 1, and | f (z)| < |z| for every z 6= 0.

(2) | f ′(0)| = 1, and f (z) = eiθz for some θ ∈ R.

It essentially says that a holomorphic function from the disc onto the disc that fixes
the origin is either a contraction near the origin or a rotation about the origin. In the
second case, f is called a conformal automorphism of the unit disc that fixes the origin.
Even though such statements are correct in the Euclidean sense, they are invariant under
conformal mappings only when we introduce the hyperbolic metric, as we will do in
Chapter 2.

Another important result on conformality is the following one that let us transfer the
study of the dynamical behaviour of a certain domain to the well-known unit disk D via
a conformal homeomorphism called the Riemann map φ.
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Theorem 1.2. (Riemann Mapping Theorem) Let Ω be a domain in C, and let z0 ∈ Ω. Then
there is a conformal homeomorphism φ : Ω → D such that φ(z0) = 0. Moreover, if we impose
that φ′(z0) > 0, then the map φ is unique.

In fact, this is a particular case of the Uniformization Theorem that we will present
later,

We would like to recall the definition of some class of maps that we will use in these
notes to avoid confusions. An invertible map f : X → Y between topological spaces is a
homeomorphism if f and f−1 are continuous. In that case, X and Y are called equivalent or
homoeomporhic, denoted as X ∼= Y, such as a donut and a coffee cup. A homeomorphism
is called a holomorphic diffeomorphism if f and f−1 are holomorphic. Finally a holomor-
phic diffeomorphism is called conformal or conformal homeomorphism if it is conformal
in every point of the domain. In that way, in general we will often use conformal maps
such as globally bijective maps by abuse of notation.

Usually we will consider maps defined on domains, but this can be generalized to
the notion of Riemann surfaces, i.e. connected complex analytic manifolds of complex
dimension one. Roughly speaking, a Riemann surface is a space that is locally equivalent
to the complex plane via a proper change of coordinates. Another example is the Riemann
sphere that we will introduce in next section.

1.2 Riemann sphere

In complex dynamics, it is useful to consider the ∞ just another point since it has
associated a dynamical behaviour such any other point of the plane. With this intention
in mind, we consider the extension of the complex plane C to the Riemann sphere by adding
the point at infinity, that is

Ĉ = C∪ {∞}.

In that way, the neighbourhood of ∞ are the complements of the compact subsets of C.
In order to get a natural geometrical idea of this construction, we may use the stereo-

graphic projection to map the complex plane C into the Euclidean sphere

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}.

The stereographic projection π simply projects each point z ∈ C linearly towards (or
away from) the north pole, i.e. the point N = (0, 0, 1), such that the ray between z and N
intersects the sphere at the point π(z), which can be defined in Cartesian coordinates as

π(z) =
(

2x
|z|2 + 1

,
2y

|z|2 + 1
,
|z|2 − 1
|z|2 + 1

)
,

where x = Re(z) and y = Im(z) are the real and imaginary part of z ∈ C, respectively.
In fact, points outside the unit disc D ⊂ C map to the northern hemisphere, and points

inside D to the southern hemisphere. We note that the origin 0 ∈ D is projected to the
south pole S = (0, 0,−1). Then we can identify the point at ∞ with the north pole since
points far away from the origin are mapped really close to it.
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The chordal distance on Ĉ is given by the Euclidean length of the chord joining π(z) to
π(w), which is defined as:

σ(z, w) = |π(z)− π(w)| = 2|z− w|
(1 + |z|2)1/2(1 + |w|2)1/2 .

The chordal metric represents a more useful metric for the points in Ĉ. In fact, when
w = ∞, passing to the limit, we have

σ(z, ∞) =
2

(1 + |z|2)1/2 .

In particular σ(0, ∞) = 2 as we can observe from the figure. Therefore we can use the
chordal metric on Ĉ to work with the point ∞ as we do with the Euclidean metric for
points on the complex plane.

Now we define an equivalent metric that we will commonly use, for example, to handle
convergence properties on Ĉ:

Definition. The spherical distance d
Ĉ
(z, w) is the Euclidean length of the shortest path on

S1 (an arc of a great circle) between two points π(z) and π(w) of the sphere.

The equivalence is easy to check. If the chord joining these two points in the unit
sphere subtends an angle θ ∈ [0, 2π) at the origin, then

d
Ĉ
(z, w) = θ.

From the picture, we deduce the relation σ = 2 sin(θ/2). Therefore the spherical metric
and the chordal metric on Ĉ are equivalent since

2
π

d
Ĉ
(z, w) ≤ σ(z, w) ≤ d

Ĉ
(z, w)

for all z, w ∈ Ĉ.
A really special and useful property of Ĉ is that the holomorphic functions on it are

just the rationals maps.

Proposition 1.3. f : Ĉ→ Ĉ is holomorphic if and only if f is a rational function, that is

f (z) =
p(z)
q(z)

for all z ∈ Ĉ, where p(z) and q(z) are polynomials with complex coefficients.

This can be shown by the Fundamental Theorem of Algebra-
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1.3 Möbius transformations

Linear fractional or Möbius transformations are a type of rational maps that will be
very useful throughout these notes.

Definition. A Möbius transformation is a map of the form

f (z) =
az + b
cz + d

,

where a, b, c, d ∈ C and ad− bc 6= 0.

We observe that if c 6= 0,

f (∞) =
a
c

, f (−d
c
) = ∞

Otherwise f (∞) = ∞.
We can easily compute the following relations that will be useful later:

f ′(z) =
ad− bc
(cz + d)2

Im( f (z)) =
ad− bc
|cz + d|2 Im(z)

Re( f (z)) =
(ac|z|2 + bd) + (ad + bc)Re(z)

|cz + d|2

f−1(w) =
dw− b
−cw + a

,

where w = f (z) is a preimage of z.
The importance of the Möbius transformations in complex analysis is reflected in the

following statement:

Proposition 1.4. The conformal automorphisms of Ĉ is equal to the group of Möbius transforma-
tions

R(z) =
az + b
cz + d

,

where the coefficients are complex numbers with ad− bc 6= 0.

There are four special types of conformal automorphism that should be listed:

Proposition 1.5. Every Möbius transformation is composition of the 4 basic homographies:

• Translation: Tb(z) = z + b, b ∈ C

• Rotation: Rθ(z) = eiθz, θ ∈ R

• Homothecy: Ha(z) = az, a ∈ R
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• Inversion: I(z) = 1
z

In fact Möbius transformations are determined just by three distinct points:

Proposition 1.6. Let z1, z2, z3 ∈ Ĉ be three different points. If w1, w2, w3 ∈ Ĉ are three other
different points, then there is a unique Möbius transformation such that f (zi) = wi. In particular,
we can suppose f (z1) = 0, f (z2) = 1 and f (z3) = ∞.

Moreover, an Euclidean circumference of the Riemann sphere is either a straight line
in the plane, if it passes through the pole north, i.e. the point ∞, or a circumference in
the complex plane. Since three distinct points of the Riemann sphere determine a unique
element of the set of all Euclidean circles of Ĉ, and. Since each generator of the Möbius
group preserves this family Ci, it follows that the same hold for all elements of the Möbius
group.

Proposition 1.7. Möbius transformations send circles in Ĉ to circles in Ĉ (a circle through ∞ is
a straight line in C).

1.4 The Uniformization Theorem

In order to give the central Uniformization Theorem as general as possible, we may
give some definitions for Riemann surfaces that, of course, include every domain and the
Riemann sphere.

A Riemann surface S is simply connected if any closed curve in it is homotopic to a
constant curve, that is it can be continuously deformed to a point. It follows that S is
simply connected if and only if its complement is connected, otherwise there will be a
hole inside the surface. In that case, the connected component of a point z ∈ S is the
largest connected subset of S that contain z.

Since the connectivity number is a conformal invariant, there is not conformal map
from the unit disc onto a multiply connected domain. In that case, we must replace
the conformal map by so-called universal cover map in order to get a generalization of
the Riemann Mapping Theorem that classifies simply connected domains (or Riemann
surfaces).

Definition. Let R and S be Riemann surfaces.
A covering map π : S→ R is a covering map if every point p ∈ R has a neighbourhood

Up ⊂ R such that π−1(Up) ⊂ S is a disjoint union of open sets, each of which is mapped
one-to-one by π onto Up. S is called a covering space or cover of R.

A covering automorphism or deck transformation is a conformal map φ : S → S such
that π(φ(p)) = π(p) for every point p ∈ S.

Therefore the deck transformation allows us to map each connected component of
π−1(U) conformally to another one that lies on the same Riemann surface S.
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Definition. Let R and S be Riemann surfaces. S is the universal covering space of R if S is
simply connected and π : S→ R is a covering map (called the universal covering map).

Then the universal covering is unique up to homeomorphisms, and we denote it as R̃.
Any domain having at least three boundary points is called hyperbolic. In the simply

connected case the Uniformization Theorem is nothing other than the Riemann Mapping
Theorem.

By using the concept of the universal covering space, we can generalize the Riemann
Mapping Theorem to non-simply connected domains. It was proved by Poincaré, Klein
and Koebe. A more recent proof is in [Keen], for example.

Theorem 1.8. The universal covering space Ũ of a Riemann surface U is conformally equivalent
to either Ĉ, C or D.

In particular, the universal covering of a hyperbolic surface is D.

A domain or a Riemmann surface U is called hyperbolic if its complementary Ĉ \U
contains at least three points. By the Uniformization theorem we can study Riemann sur-
faces by its universal covering space. In fact, this will be key to transfer the hyperbolic
metric between different domains as we wiil show in next chapter.

Before that, we present a powerful tool that relate the connectivity of the input and
output domains of a proper map, that is d − to − 1 map, where d > 0 is its topological

degree. For example, let f : D1
d:1−→ D2 is a proper map, that is every point in D2 has

exactly d preimages in D1. If D1 and D2 have connectivity numbers n1 and n2, respectively,
then n2 ≤ n1 ≤ dn2. In particular, if f is a conformal mapping (d = 1 since is locally one-
to-one), then n1 = n2, that is, the connectivity number is a conformal invariant. The
Riemann-Hurwitz formula may be regarded as a generalization of this fact.

Theorem 1.9. (Riemann-Hurwitz Formula) Let f be a proper (holomorphic) map of degree d
of some n1-connected domain D1 onto some n2-connected domain D2. Suppose f has exactly nc
critical points in D1, including/counting multiplicity. Then

n1 − 2 = d(n2 − 2) + nc.

The proof will require to apply the Euler’s formula to suitable triangulations of Dj.
See [12].
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Chapter 2

Hyperbolic Geometry

The hyperbolic geometry is a powerful tool in many mathematical and physical fields.
Everyone is comfortable with the Euclidean geometry but we have to get familiar with the
hyperbolic one because it can be very really useful when we are working with conformal
mappings.

In this chapter we introduce the hyperbolic metric on D and we transfer it to other
hyperbolic domains via the Uniformization Theorem. Then we prove the Schwarz-Pick
Lemma, a key statement for the rest of this work. Finally, we present the special case
of doubly connected domains and a proposition that compare hyperbolic and spherical
distance, which will be needed to understand the last part of the Classification Theorem
in Chapter 4.

2.1 Hyperbolic metric

Let Ω ⊂ C be a domain. As a vector space, C has the standard R2 Euclidean metric
|dz| that defines infinitesimal displacements in the tangent space of any point. In fact,
we can think C both as a topological space or as a a vector space. A Riemannian metric
consists of an inner product that varies smoothly on the tangent space of each point. Thus
it let us attribute length to tangent vectors.

Definition. A conformal metric is a Riemannian metric that is invariant under local Eu-
clidean rotations, that is the length of tangent vectors to a point remain constant in a small
neighbourhood. In that case, the metric is of the form ds = ρ(z)|dz|, where ρ is a smooth,
positive function on Ω.

We will use the density function ρ to denote the metric in question by abuse of notation.
Note they are locally equivalent to the Euclidean or chordal metric.

Definition. A conformal metric ρΩ on Ω ⊂ Ĉ is conformally invariant if

ρΩ( f (z))| f ′(z)||dz| = ρΩ(z)|dz|

for every conformal automorphism of Ω.

9
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In the same way, we define isometries.

Definition. If ρU and ρV are conformal metrics on two domains U, V ⊂ Ĉ is an isometry
if it sends tangents vectors to other tangents vectors of the same length, that is

ρV( f (z))| f ′(z)v| = ρU(z)|v|

for every point z ∈ U and vector v ∈ C.

We can say a lot about the geometry of a metric space:

Definition. Let γ : [0, 1] → Ω be a smooth path joining z and w in Ω. The ρΩ-length of γ

is defined as
lΩ(γ) =

∫
γ

ρ(γ(t))|γ′(t)|dt.

The ρΩ-distance from z to w is defined as

dΩ(z, w) = inf
γ

ρΩ(γ),

where the infimum is taken over all possible smooth curves from z to w in Ω.
A geodesic segment in Ω is locally the shortest smooth path γ between two points.

A geodesic line, or simply a geodesic, is the same of a geodesic segment in Ω but
globally. We also say that a closed geodesic is such that γ(0) = γ(1) with the same tangent
vector at this endpoint, and a simple closed geodesic is the one without self-intersections.
One can prove that geodesics are solutions of a certain second-order ordinary differential
equation. From the existence and uniqueness theorem for EDOs it follows that given
z ∈ Ω and a vector v ∈ C there exits a unique geodesic passing through z and whose
tangent vector at this point is v. Clearly isometries preserve the length of any path, so
they map geodesics into geodesics. Moreover, we have a special metric with negative
curvature:

Theorem 2.1. (Hyperbolic metric) There exists a Riemannian metric on D whose isometry
group is the one of conformal automorphisms of D, which is conformal, complete (geodesics with
infinite length) and with constant negative curvature. In fact, there is a unique such metric with
curvature −1. The geodesics of this metric are circles orthogonal to the boundary.

Such Riemannian metric on D is called the hyperbolic metric or Ponincaré metric on
D, which we are going to determinate in the following section. For a proof, see [Well].

2.2 The Poincaré metric on D

Proposition 2.2. The conformal automorphisms of D are maps of the form

fθ,a(z) = eiθ z− a
1− āz

, a ∈ D, θ ∈ R
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Proof. Since f is a conformal automorphism of D, we may assume f−1(0) = a ∈ D. Then
the Möbius transformation

g(z) =
z− a

1− az

sends a to 0 and the unit circle to itself, so it sends D to itself. Thus f ◦ g−1 is a conformal
automorphism of D sending 0 to 0. From the classical Schwarz’s Lemma it follows that
f ◦ g−1 is a rotation around 0, that is f ◦ g−1(z) = λz such that |λ| = 1, where w =

g(z).

Proposition 2.3. There is a unique (up to multiplication by positive real numbers) conformally
invariant metric on D, given by

ds =
2|dz|

1− |z|2 .

This is a very special metric called the Poincaré metric. By the Riemann Mapping
Theorem, we can transfer the Poincaré metric to any proper, simply connected domain in
C. In fact, the Poincaré metric can be lifted to any simply connected hyperbolic domain
by a conformal map. Moreover, we will discuss later that this is also possible for arbitrary
hyperbolic domains by the Uniformization Theorem, although there is not a conformal
map.

In fact, the hyperbolic metric on D can be lifted to a corresponding metric on any
Riemann surface whose universal cover is D. In general, if π : D→ X is a covering map,
then we can push forward and backward the hyperbolic metric on D to get a metric on X
that is locally isometric to the hyperbolic metric, which obviously is called the hyperbolic
metric on X. But given a point z ∈ X, there is an ambiguity in the choice of the preimage
of z to copy the metric from. However, this is an easy problem to solve with the hyperbolic
metric on X because given any two preimages of z, there is a deck transformation φ : D→
D in such a way that the hyperbolic metric on D remains invariant as we defined in last
chapter.

We note that although all geodesics in D go off to infinity, that is to ∂D, a hyperbolic
surface X can have closed geodesics that are projections to X of any geodesic of D passing
through two points with the same image under the corresponding covering map π.

2.3 The upper half plane model H

We may transfer the Poincaré metric on D to a hyperbolic metric on the upper half
plane H, which will be helpful to made some computations on hyperbolic distances in an
easy way.

Proposition 2.4. The conformal automorphism of H are the Möbius transformation of the form

f (z) =
az + b
cz + d

,

where a, b, c, d ∈ R and ad− bc = 1.
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Proof. The Riemann conformal map from D onto H is

h(z) = i
1 + z
1− z

and its inverse, from H onto D,

h−1(w) =
w− i
w + i

.

The conformal automorphisms of H should be of the form f = hgh−1, where g is any
conformal automorphism of D, which we have explicitly found in last section. Then
we can substitute the explicitly form of g from last preposition, and we get a conformal
automorphism of H with the same form f given in the statement.

Proposition 2.5. There is a unique (up to multiplication by a positive constant) conformally
invariant metric on D, given by

ds =
|dz|

Im(z)
.

Moreover, the geodesic lines of H in its hyperbolic metric consist of circles or lines that are orthog-
onal to ∂H.

Since H is conformally equivalent to D via the conformal mapping given in last prepo-
sition, we can transfer the Poincaré metric on D to a unique Riemannian metric on H for
which the above Möbius transformation are isometries. Alternatively, since translations
and multiplication by real numbers are isometries of the hyperbolic metric, we can also
deduce the same formula of the metric density ρH.

Moreover, it is easy to check that the vertical lines are geodesics on H. therefore, using
the the metric density ρH, we deduce the hyperbolic distance between two points in the
imaginary axes, z = ai and w = bi (b > a > 0) is given by

dH(z, w) = |log (b/a)|

From this we can derive a nice formula for the hyperbolic distance between any two
points. First, let us consider the cross-ratio of four distinct points in the Riemann sphere,
which is given by the expression

Cr(z1, z2, z3, z4) =
(z1 − z4)(z2 − z3)

(z1 − z2)(z3 − z4)
.

It can be easily proven that the cross ratio is preserved by the generators of the Möbius
group and, consequently, by any Möbius transformation.

At this point, the hyperbolic distance on H between the points ai and bi correspond to

dH(ai, bi) = log(1 + Cr(0, ai, bi, ∞)).

Since any geodesic can be mapped to this vertical line by a proper isometry, we deduce
by the invariance of the cross-ratio that the hyperbolic distance between any two point
z, w ∈H is equal to

dH(z, w) = log(1 + Cr(z∞, z, w, w∞))
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where z∞ and w∞ are the points at infinity associated to the endpoints of the geodesic
between z and w in H. Since all factors in this formula are invariant under conformal
automorphisms by constructions of the hyperbolic metric, we have also successfully get
the distance between any two points in D.

2.4 The Schwarz-Pick Lemma

The classical Schwarz’s Lemma is only invariant under conformal maps when they are
interpreted in terms of hyperbolic geometry instead of Euclidean ones. in fact, in 1915
Pick stated a conformal invariant reformulation of Schwarz’s Lemma. Moreover, he note
that in this case the requirement that f has a fixed point in D is redundant.

Theorem 2.6. (Schwarz-Pick Lemma) Let f : D → D be holomorphic, and let dD be the
hyperbolic distance on D. Then one of the following conditions hold:

(1) f is a hyperbolic contraction, i.e., for any two different points z, w ∈ D, we have

dD( f (z), f (w)) < dD(z, w).

(2) f is a hyperbolic isometry; that is, f is a conformal automorphism and for all z and w in D,

dD( f (z), f (w)) = dD(z, w).

Proof. We distinguish between two cases:
On one hand, if f is an isometry, then we have directly condition (2) since the hyper-

bolic distance is invariant under conformal automorphisms of D.
On the other hand, suppose f is not an isometry. Here our intention is to use the

classical Schwarz Lemma and the fact that the hyperbolic plane is homogeneous. Let
z0 ∈ D, and let

F = h ◦ f ◦ g,

where g and h are conformal automorphism of D (thus isometries) such that g(0) = z0 and
h(w0) = 0 with w0 = h(z0), so they are defined as the following Möbius transformations:

g(z) =
z + z0

1 + z0z
, h(z) =

z− w0

1− w0z
.

Then F is a holomorphic self-map of D such that F(0) = 0 but it is not an isometry since
f is not one. Therefore by the case (1) of Schwarz’s Lemma, we have |F′(0)| < 1 and
|F(z)| < |z|, or equivalently dD(0, F(z)) < dD(0, z) for all z ∈ D. Therefore, as g and h are
hyperbolic isometries, and F◦, we have

dD( f (z0), f (z)) = dD(h ◦ f (z0), h ◦ f (z)) = dD(F ◦ g−1 (z0), F ◦ g−1(z)),

Since F(0) = 0 and |F(z)| < |z|, or equivalently dD(0, F(z)) < dD(0, z) for all z ∈ D, we
obtain

dD(0, F ◦ g−1(z)) < dD(0, g−1(z)) = dD(g−1(z0), g−1(z)) = dD(z0, z),

for all z0, z ∈ D, and hence we are in condition (1).
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So if f : D → D is a holomorphic map then either f strictly contracts the hyperbolic
metric or it is an isometry.

Let us consider a holomorphic covering map π : D→ V. Since the covering automor-
phism group is a subgroup of the group of Möbius transformations, which is a subgroup
of the isometry group of the hyperbolic metric of D, it follows that there exists a unique
complete Riemann metric on V that is locally isometric to the hyperbolic metric on D.
This is the hyperbolic metric of V. We will show later that any domain of the Riemann
sphere whose complement contains at least three points has a hyperbolic.

Theorem 2.7. (General Schwarz-Pick Lemma) Let f : R → S be a holomorphic map between
two hyperbolic Riemann surfaces. Then one of the following conditions hold:

(1) f strictly decrease non-zero distances.

(2) f is a local isometry and a covering map. Moreover, if f is injective, then f is a conformal
automorphism and a global isometry.

Proof. By the Uniformization Theorem, the universal covering spaces of any hyperbolic
Riemann surface is D. Then the lift of f is given by f̃ : D→ D.

Now we apply the previous Schwarz-Pick Lemma to the lift of f , then f̃ is either a
hyperbolic contraction or a hyperbolic isometry. In the first case, it follows that f must
also strictly decrease non-zero hyperbolic distances. However, in the second case, f could
be either also a covering automorphism or simply a covering map if it is not injective (and
hence, a local isometry).

This generalization of the Schwarz-Pick Lemma is the key tool to develop the proof of
the Classification Theorem of Fatou components. Before we continue with the following
section, let us present another important proposition for that Classification Theorem that
compares the hyperbolic and spherical distances:

Proposition 2.8. Let U ⊂ Ĉ be a hyperbolic surface (a connected open subset of Ĉ which omits at
least 3 points). If zn ∈ U is a sequence all of whose accumulation points lie on ∂U, as z converge
towards the boundary ∂U in d

Ĉ
, then for all r > 0, the spherical diameter (i.e. the diameter in the

spherical distance d
Ĉ

) of the hyperbolic closed ball BU(zn, r) = {z ∈ U : dU(zn, z)} ≤ r tends to
0.

2.5 The Hyperbolic metric on a doubly connected region

As we observed before, unlike the case of simply connected domains, a covering map
f : D→ Ω from the unit disc onto a multiply connected hyperbolic domain Ω (and hence,
f is not injective) is only a local isometry, not a global isometry. That is, each point z ∈ Ω
has a neighbourhood U such that f |U is an isometry. In that case, the hyperbolic metric is
not invariant under general conformal mappings, but it is locally invariant under covering
maps .



2.5 The Hyperbolic metric on a doubly connected region 15

Here we present a study of doubly connected domains in Ĉ. We have that if Ω is a
doubly connected region in Ĉ, then it is conformally equivalent to exactly one of: C∗, D∗,
or an annulus A(r, R). But first, we observe that Ω is itself the Riemann sphere with two
punctures, and hence it is not hyperbolic, so there is not an associated hyperbolic metric.

In the second case, we have the following properties on D∗:

Definition. The hyperbolic metric on the punctured disk D∗ = D \ {0} is given by:

ρD∗ =
|dz|

|z| log(1/|z|)

It can be verified using the universal covering map from H onto D∗, that is f (z) = eiz.
In that case, we have

ρH = ρD∗( f (z))| f ′(z)| = ρD∗(eiz)|eiz|
By change of variable w = eiz and using the hyperbolic metric expression on H, we

obtain
ρD∗ =

1
|w|ρH(i log(1/w)) =

1
2|w| log(1/|w|) .

Note that the points i and i + π project down to the points 1/e and −1/e under the
covering map. Let γ(t) be an arc of a circle orthogonal to the real axis, such that γ(t)
starts at i and ends at i + π. Set γ̂(t) = γ(t) + π. Both f (γ) and f (γ̂) are geodesics in
D∗. Moreover, each realizes the distance between their endpoints 1/e and −1/e. Note we
can find other geodesics joining these points that are longer than these and may have self
intersections. Thus, in D∗ geodesics joining pairs of points are not unique.

Since each hyperbolic geodesic in D∗ is the image of a hyperbolic geodesic in H under
the covering map f (z) = eiz, we have that every radial segment γr,R from reiθ to Reiθ] is
part of a hyperbolic geodesic. Since the hyperbolic metric density does not depend on θ,
we can compute the hyperbolic length of this geodesic segment as

lD∗(γr,R) =
∫
[r,R]

ρD∗(z)|dz| =
∫ R

r

dt
t log t

= log
∣∣∣∣ log R

log r

∣∣∣∣ .

In the case that Ω is conformally equivalent to an annulus, we may deduce its hyper-
bolic metric by two steps:

(1) We compute the hyperbolic metric for the band strip L = {z ∈ C : 0 < Im(z) < λ}
from the hyperbolic metric on H:

The conformal map f (z) =
λ log z

π takes the upper half plane H to L. Therefore, as
an isometry we have

ρH(z) = ρL( f (z))| f ′(z)| = ρL

(
γ log z

π

)
λ

π|z|

By change of variable w = f (z) and by the inverse map of f given by z = e
πw
λ , we

have that

ρL(w) =
π|e πw

λ |
λ

1
2 Im(πw

λ )
=

π

2λ sin(π
λ Im(w))

.
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(2) Then we calculate the hyperbolic metric on the corresponding annulus:

Note that the conformal map g(w) = eiw maps the strip L to the annulus Ae−λ =

{t ∈ C : a < |t| < 1}. Therefore, for a = e−λ, we have

ρAa(g(w))|g′(w)| = ρl(w)

If we set t = g(w) and substitute we get

ρAa(t) =
π

2|t|λ sin
(

π
λ log(1/|t|)

) .

We can check that
ρAa → ρD∗

when λ → ∞, i.e. the hyperbolic metric on the annulus Aa tends to the one on the
punctured disc D∗, as we could have expected.

As we can find in [McM], the modulus of an annulus A(1, R) = 1 < |z| < R is defined
by

mod(A(1, R)) =
log(R)

2π
.

Then for a general round annulus A(r, R) with 0 < r < R, the modulus of A(r, R)
correspond to

mod(A(r, R)) = log(R/r)

This characteristic number is important because it is known that two annuli A(r1, R1) and
A(r2, R2) are conformally equivalent if and only if

R1/r1 = R2/r2,

that is, if and only if they have equal moduli.
Moreover, thanks to that modulus we have the following property

Proposition 2.9. The core curve γ of an annulus A(1, R) of finite modulus is its unique geodesic
with hyperbolic length

lA(γ) =
π

mod(A)

as can be checked by considering the circle |z| =
√

R.
The annulus A(1, R) is conformally equivalent to A(1/R, 1). Then for teh annulus in

the previous example Aa = A(a, 1), by the change of variable a = 1/R, the modulus is
2π/ log(1/a), and thus scaling, we obtain that the core curve of the annulus Aa in the
example is the circumference |z| =

√
a.



Chapter 3

Dynamics of rational functions

In this chapter we present the most important topics on the dynamics of rationals maps
in order to define properly the Fatou and Julia sets.

Here we are interested in the iteration of a rational maps f : Ĉ → Ĉ. The sequence of
iterates of such maps is denoted as

f , f 2 = f ◦ f , ... , f n = f ◦ f n−1 = f n−1 ◦ f , ...,

where f n represent the n-th iterate by composition ◦. It should not be confusion with the
ordinary power, which would be explicitly written as ( f (z))n. By convention, f 0 = id.

In section 1 we present the basic definitions and results about rationals maps related
to critical points. Then we tall about its fixed and period points in section 2.

In section 3 we introduce the notions of normality and equicontinuity, and then we
prove the Montel’s theorem, a normality criterion.

Finally, in section 4 we give a formal definition of the Fatou and Julia sets, and some
proofs of the properties of these sets thanks to Montel’s theorem.

3.1 Rational maps

A rational map is a map of the form

f (z) =
P(z)
Q(z)

where P(z) and Q(z) are polynomials with complex coefficients. We may assume without
loss of generality that these polynomials are coprime, that is they have no common factors.
Then the degree of f (z) is defined as

d = deg( f ) = max{deg(P), deg(Q)}.

In this work, we assume d ≥ 2 since these types of rational maps are the Möbius transfor-
mations studied in Chapter 1, and their dynamics are almost trivial. We should remind a
useful property of the degree:

deg( f ◦ g) = deg( f )deg(g) ⇒ deg( f n) = (deg( f ))n.

17
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We recall that in Chapter 1 we show that rational maps are the only holomorphic
maps of the Riemann sphere Ĉ to itself, and we consider that f is holomorphic if the map
z→ f (1/z) is well-defined and holomorphic.

It is well known that for any point w ∈ Ĉ, the set

f−1(w) = {w ∈ Ĉ : f (z) = w} = {z1, ..., zd}

consists of exactly d elements, counting multiplicity.
A point w ∈ Ĉ for which f−1(w) has less than d different elements is called a critical

value of f . Then at least one zi ∈ f−1(w) will have multiplicity greater than one. In that
case zi is called a critical point of f .

In fact, critical points will be zeros of the derivative f ′(z) or poles of f (z) with multi-
plicity greater than one, where f fails to be injective in any neighbourhood of the point.
By a pole of f we mean a point z0 ∈ C such that f (z0) = ∞.

By direct application of the Riemann-Hurwitz Formula of Chapter 1, we obtain an
upper bound of the number of critical points.

Corollary 3.1. A rational map of positive degree d has at most 2d− 2 critical points in Ĉ.

3.2 Fixed and periodic points

In order to study the iteration of rational maps f : Ĉ→ Ĉ, we introduce some concepts:

Definition. The orbit (or forward orbit) of f at z0 is the sequence of iterates

O+(z0) = { f n(z0)}n∈N.

The backward orbit of f at z0 is defined as

O−(z0) = ∪n∈NR−n(z0) = ∪n∈N{w ∈ Ĉ : Rn(w) = z0}.

Definition. A periodic point of f of period p ≥ 1 is a point z0 ∈ Ĉ such that f p(z0) = z0
and f n(z0) 6= z0 for every 0 < n < p.

A fixed point of f is a point z0 ∈ Ĉ such that f (z0) = z0, that is a periodic point of
period 1. The multiplier of f at such a fixed point is the complex value λ = f ′(z0).

We classify fixed points according to their multiplier:

Definition. A fixed point z0 of f is called:

• Superattracting if λ = 0.



3.2 Fixed and periodic points 19

• Attracting if |λ| < 1.

• Repelling if |λ| > 1.

• Indifferent or neutral if |λ| = 1, that is λ = e2πiθ for some θ ∈ R.

– Rationally indifferent or parabolic if λn = 1 for some n ∈N.

– Irrationally indifferent if λn 6= 1 for all n ∈N.

The same classification applies to a periodic point z0 of period p with a multiplier
λ = ( f p)′(z0).

In fact, a cycle of length p defined by such a periodic point is

α = {z0, f (z0), ..., f p−1(z0)}

Its multiplier λ = λ(α) is just defined to be the multiplier of the periodic point z0, and by
the Chain Rule,

( f p)′(z0) =
p−1

∏
j=0

f ′( f j(z0)),

so λ depends only on α. Its elements are also called periodic points.
Although we are not to analyse the local theory of fixed points (see [Mil]), which gives

a description of f near a fixed point up to conjugacy, we give some information. An
attracting fixed point has a local inverse near it, but not if it is a superattracting fixed
point since it is a critical point of f . For an indifferent fixed point z0 the best linear
approximation to f near it is a rotation about z0, that could have finite or infinite order if
it is rationally or irrationally indifferent, respectively.

At this point, we add another definition to our list:

Definition. Let α = {z0, ..., zp−1} be an attracting cycle of length p. The basin of attraction
of C is defined as

A(α) = {z ∈ Ĉ : f n(z)→ zj as n→ ∞, 0 ≤ j ≤ p− 1}.

The union of the connected components of A(α) which contains the cycle is denoted by
A∗(α) and it is called the immediate basin of (attraction) of α.

At this point, we introduce conjugacy, the natural notion of conformal automorphism
for dynamical systems:

Definition. Let f and g be rational maps. We say that f and g are conjugate if there exists
a Möbius transformation h such that

g ◦ h = h ◦ f
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In that case, its diagram commutes:
Conjugate maps have the same dynamical behaviour since

gn ◦ h = h ◦ f n,

that is their iterates are also conjugate.
Therefore we can transfer conformally a dynamical problem about f to a possibly

easier one about a conjugate map g of it. For example, h sends fixed points of f to fixed
points of g, periodic points of f to periodic points of g, or critical values of f to critical
values of g, and vice versa.

Moreover, the degree is a conjugation invariant property, and it respect the multipliers
if they are not 0 or ∞.

Finally, we state an important theorem that classify a fixed point under certain condi-
tions, which will be needed to prove the Classification Theorem in next chapter.

Theorem 3.2. (Snail Lemma) Let f (z) = λz + a2z2 + a3z3 + ... be a map which is defined and
holomorphic in some neighbourhood V at the origin, and which has a fixed point with multiplier
λ at z0 = 0. Let p : [0, ∞) → V \ {0} be a path which converges to the origin , that is a
continuous map such that p(t) → 0 as t → 0, and which is mapped into itself by f such that
f (p(t)) = p(t + 1). Then either the origin is an attracting (|λ| < 1) or parabolic (λ = 1) fixed
point.

For a proof, see [9]. It is called the Snail Lemma since in its proof appear a sequence of
nested images of a certain simply connected domain that tend to an irrationally indifferent
fixed point so slowly that the union of them would fill a neighbourhood of the fixed point,
just like a trace of a snail does.

3.3 Montel’s Theorem

Before state a definition of the Fatou set and the Julia set of a rational map, we must in-
troduce two fundamental concepts in order to extend the notion of continuity for families
of functions. Remind that d

Ĉ
is the spherical metric on Ĉ.

Definition. Let Ω ⊂ C be a domain, and let F be a family of holomorphic functions from
Ω to Ĉ. The family F is equicontinuous at z0 ∈ Ω if given any ε > 0, there exists δ > 0
such that

d
Ĉ
(z, z0) < δ ⇒ d

Ĉ
( f (z), f (z0)) < ε,

for all z ∈ Ω and every f ∈ F .

Then if F = { f n} is equicontinuous at z0, we have that the orbit of a point near z0
remains always close to the orbit of z0.
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Definition. Let Ω ⊂ C be a domain, and let F be a family of holomorphic functions from
Ω to Ĉ. The family F is normal at z0 if every infinite sequence { fn}n∈N ⊂ F contains a
subsequence { fnj}j∈N

that converges locally uniformly on Ω.

Note that locally uniform convergence (with respect the spherical metric) on Ω means
uniform convergent on compact subsets of Ω, so it is sufficient to check normality on open
discs inn Ω. Moreover by the well-know Weierstrass Theorem, the limit function of the
convergent subsequence is a holomorphic map, but it could not belong to the family such
as the z 7→ ∞ constant map.

In fact, both notions, equicontinuity and normality, are equivalent by the Arzela-Ascoli
Theorem that we can present in the following way since Ĉ is compact. For a proof, see for
example [1].

Theorem 3.3. (Arzela-Ascoli Theorem) Let Ω ⊂ C be a domain, and let F be a family of holo-
morphic functions from Ω to Ĉ. The family F is normal if and only if it is locally equicontinuous
on Ω.

Before present the so-called Montel’s Theorem, we present a little version of it that use
this equivalence of both concepts. It was present in Montel’s thesis of 1907.

Theorem 3.4. Let Ω ⊂ C be a domain, and let F be a family of holomorphic functions from Ω to
Ĉ. If the family F is uniformly bounded, then F is a normal family.

Proof. Since normality (or equicontinuity) is a local property we only need to prove it on
an open disc, and so by an appropriate translation and a homothety we may assume that
it is the unit disc.

Then by Cauchy’s Integral Formula, we have

f (z)− f (w) =
1

2πi

∫
∂D

f (ζ)
(

1
ζ − z

− 1
ζ − w

)
=

z− w
2πi

∫
∂D

f (ζ)
(ζ − z)(ζ − w)

for every z, w ∈ D.
In particular, we can take the points z, w in the open disc Dr ∈ D with radius r < 1

and centre 0 and F , such that

|ζ − z| > 1− r, |ζ − w| > 1− r.

Moreover, since the family F is uniformly bounded, i.e. there is a positive constant M
such that | f (z)| ≤ M for all z ∈ Ω and every f ∈ F . Therefore, we obtain that

f (z)− f (w) =
|z− w|

2π

2π

(1− r)2 M.

Finally, since C = M
(1−r)2 does not depend on f , we have that f is locally equicontinuous

on Ω, and then by the Arzela-Ascoli Theorem, F is a normal family.
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At this point, we have all the tools to prove the Montel’s Theorem (1911) that, as it was
said in the Introduction, is a key theorem to characterise the Fatou and Julia sets.

Theorem 3.5. (Montel’s Theorem) Let Ω ⊂ C be a domain, and let F be a family of holomorphic
functions from Ω to Ĉ. If there are three points in C that are omitted by every f ∈ F , then F is a
normal family.

Proof. Since normality is a local property we may assume again that Ω is the unit disc
without loss of generality. Morevor, via a Möbius transformation, we may assume that the
functions in F omits the values 0, 1 and ∞. Since U = C \ {0, 1} is a hyperbolic domain,
by the Uniformization Theorem, its universal covering space is conformally equivalent to
D. Observe that the set of lifts f̃ : D → D of all f ∈ F , self-maps of the unit disk, form a
normal family F ′ due to the previous Theorem 3.4. However a sequence of functions φ ◦ f̃
may contain a boundary point in U, where φ : D→ U is the covering map. Therefore we
have to find some way to avoid that.

We note that the covering map φ transfer the Poincaré metric on D to a metric in U
where the three omitted points are pairwise infinitely distant boundary points. Each lift
f̃ does not increase hyperbolic distances as state the Schwarz-Pick Lemma, and therefore
it is also the case of each f . Since there is a positive number d such that the hyperbolic
distance between any two neighbourhoods of each omitted point exceed d, the image of a
small disc D in U has diameter at most d, that is the image φ ◦ f̃ (D) can meet at most one
of these neighbourhoods. Then there is an infinite subsequence {f̃n} in F ′ such that each
disc φ ◦ f̃n(D) is disjoint from one particular of those neighbourhoods, say the one about
0. If g is the Möbius transformation that maps this neighbourhood onto the exterior of D,
then f = g ◦ φ ◦ f ′n form a normal family in D, thus F is a normal family.

3.4 The Fatou and Julia sets

We consider a rational map f (z) and partition the Riemann sphere into two disjoint
invariant sets: the Fatou set, where f (z) is well-behaved, and the Julia set, where f (z) has
a chaotic behaviour.

In what follows, unless it is explicitly explained, we will assume the family F is the
one given by the iterates of a rational map f : U → Ĉ on a certain domain U ⊂ C, that is

F = { f n|U}n∈N = { f |U , f 2|U , ...}.

Definition. The Fatou set F ( f ) of f is the set of points z ∈ Ĉ such that the family { f n}n∈N

is normal in some neighbourhood of z. The Julia set J ( f ) of f is the complement of the
Fatou set, that is

J ( f ) = Ĉ \ F ( f ).
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By definition, the Fatou set is the largest open set of normality, and hence the Julia set
is closed and also compact (since Ĉ is compact). Here we have defined the Fatou set as
the normality set of a family of the family of iterates of a rational map, but we could also
have done as the equicontinuity set of this family. Both notions are fully interchangeably.

A property common to Fatou and Julia sets is the complete invariance. Recall that a
non-empty set E ⊂ Ĉ is invariant if f (E) ⊂ R, and backward invariant if f−1(E) ⊂ E. If
both hold, i.e. if f (E) = E = f−1(E), then E is called completely invariant.

Theorem 3.6. The Fatou and Julia sets are completely invariant under f .

The completely invariance of the Fatou set follows from the definition of it as an open
set, the continuity of f and the fact that rational maps are open.

We also have that F ( f ) = F ( f p) and J ( f ) = J ( f p), which is obtained from the fact
that a finite union of families of holomorphic maps is normal if and only if each of these
families is normal.

In this section, we are going to see how useful the Montel’s theorem is as we explore
the structure of the Julia set. Our first task is to check that Julia set can be non-empty.
The case when the rational map R has degree one is trivial and of little interest, but in all
other cases, J is non-empty as we are going to show.

Proposition 3.7. Let f be a rational map of degree d ≥ 2. J ( f ) is non-empty, that is J ( f ) 6= ∅.

Proof. Let f be a rational map of degree d ≥ 2.
Suppose that the Julia set J ( f ) is empty, that is the family { f n}n∈N are normal in the

whole Riemann sphere. Then any sequence in the family would contain some uniformly
convergent subsequence such that f nj(z) → g(z) as j → ∞, whose limit g : Ĉ → Ĉ is
holomorphic, so it would be either the constant map ∞ or else a rational map.

If g is constant, then the images of f nj are eventually contained in a small neighbour-
hood of the constant value ∞, which is impossible since f n covers the whole Ĉ.

If g is not constant, the sequence f nj with limit g eventually has the same number of
zeros as f by the Argument Principle, which is also impossible since d ≥ 2 and

deg( f nj) = dnj → ∞,

so the Julia set should be empty.

At this point, we need to introduce th exceptional set of a rational map f in order to
prove that the Julia set is infinite.

Montel’s theorem has many applications in theory of rational maps. For example,
it implies that any invariant hyperbolic domain, i.e. its complements has at least two
points, is contained in the Fatou set. Also any backward invariant hyperbolic domain and
compact set containing at least three points in fact contains the Julia set. Then we have that
J ( f ) is the smallest completely invariant closed set containing at least three points. This
is because the complement of a completely invariant closed set containing at least three
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points is an open completely invariant set omitting at most three points, hence contained
in the Fatou set by Montel’s Theorem.

Moreover, for any domain Ω intersecting the J ( f ), the set E(D) = Ĉ \O+(Ω) contains
at most two points.

In fact, the points of E(Ω) are called exceptional points and play an important dynamic
role, and E(Ω) is the exceptional set of f .

The next theorem is concerned with the structure of the exponential set E(Ω). It shows
that E(Ω) may be non-empty only in particular, albeit important, cases.

Theorem 3.8. If Ω∩J ( f ) 6= ∅, and if the exceptional set E(Ω) contains exactly one point, then
f is conjugate to some polynomial. If E(Ω) contains two points, then f is conjugate to one of the
functions z→ z±d.

Proof. Since J ( f ) 6= ∅, let z ∈ J ( f ) and let U be any neighbourhood of z. By Montel’s
theorem, the sequence { f n}n∈N on U omits a set Ez containing at most two points.

By definition f−1(Ez) ⊂ Ez. If Ez is one point a ∈ Ĉ, then f (a) is conjugate to some
polynomial. In this case we may assume, by conjugacy, that Ez = a = ∞. Since f−1(∞) =

∞, there are no other poles, and f is a polynomial. Otherwise f would have a finite pole
z0 not contained in

∪n∈N f n(Ω) = Ĉ \ {∞}.

Clearly Ez is independent of z.
The second case is studied in the same way. If Ez consists of two points, we may assume

without loss of generality that these are 0 and ∞, and either f (0) = 0 and f (∞) = ∞, or
f (0) = ∞ and f (∞) = 0. In the first situation, f is a polynomial with 0 as its only zero,
so f (z) = Czd. Similarly, f (z) = Cz−d in the second situation since f has all its zeros and
poles in E(Ω) = {0, ∞}. Both of them are conjugate to the map z→ z±d.

We note that there is non-dependence of E(Ω) on Ω. Obviously E(Ω) belongs to the
Fatou set, since the points of E(Ω) either are superattracting fixed points or else form a
superattracting cycle.

Another useful consequence of the Riemann-Hurwitz Formula is the next one:

Corollary 3.9. Let f be a rational map of degree d ≥ 2. If E is a finite completely invariant subset
of Ĉ, then E contains at most two points.

Now we are ready to prove the next corollary of the last proposition about J ( f ).

Corollary 3.10. J ( f ) is an infinite set.

Proof. Since J ( f ) is non-empty, we have that J ( f ) contains some point z0 ∈ Ĉ.
If we suppose that J ( f ) is finite, as we know that J ( f ) is the completely invariant,

the only possibilities up to conjugacy are {∞} or {0, ∞}, so we have that z0 must be
an exceptional point. This is not possible as exceptional point lie in F ( f ); thus J is
infinite.
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Another important property that we will use for the Classification Theorem’s proof is
the following one:

Proposition 3.11. J ( f ) is perfect, that is it is closed with no isolated points.

Proof. Let J0 be the set of accumulation points of J ( f ), then J0 is non-empty as J ( f ) is
infinite, closed by definition, and completely invariant because f is continuous, open and
of finite degree.

But J0 cannot be finite since it would then be exceptional, and hence contained in F ( f ).
Therefore, J0 = J ( f ) since J ( f ) is the smallest completely invariant closed set containing
at least three points.

A condition for a cycle to belong to the Fatou or to the Julia set could be the following
one:

Proposition 3.12. If α be an (super)attracting cycle of length p, then A(α) ⊂ F ( f ). But if α is
a repelling cycle of length p, then α ⊂ J ( f ).

Proof. As F ( f ) = F ( f p) it suffices to consider fixed points, and by a proper Möbius
transformation, we may assume the fixed point z0 = 0.

If | f ′(0)| < 1, then there exists some arbitrarily small neighbourhood U of 0 such that
f (U) ⊂ U, and hence f n(U) ⊂ U for n ∈ N. This proves the normality of { f n}. Since U
contains the origin and, in fact tend to it, we have that any iterate of a point in the basin
of attraction will fall in U.

On the other hand, if | f ′(0)| > 1, then ( f n)′(0) = ( f ′(0))n → ∞ as n → ∞. Therefore,
there is no subsequence f nk that converge uniformly to a holomorphic limit function φ

since, as φ(0) = 0, ( f nk )′(0) should tend to the finite value φ′(0), and this in not our
case.
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Chapter 4

Classification of Fatou
Components

4.1 Properties of Fatou components for rational maps

The Fatou set F ( f ) of a rational map f : Ĉ→ Ĉ of degree d ≥ 2 is the largest open set
of normality, and hence it can be expressed as a countable union of connected components
called Fatou components, that is a maximal domain of normality of the iterates of f .

In fact, they are stable domains as the following important property says for a rational
map f .

Proposition 4.1. If U is a Fatou component, then f (U) is also a Fatou component.

Proof. Suppose two points z1, z2 in a Fatou component U are mapped by f to f (z1) and
f (z2) in two distinct Fatou components U1 and U2. Since U is connected there is a smooth
path between z1 and z2 that is entirely contained in U. Then the image of this path should
intersect the boundary of each component, as the rational map f is continuous. But this is
a contradiction since the path should lie in F ( f ) but the boundary point is in J ( f ) since
Fatou components are connected open subsets. Therefore, we have f (U) is contained in
only one Fatou component U′.

At this point, suppose f (U) ( U′. Let w ∈ U′ be a point in the boundary of f (U).
Consider a sequence {wn} of points in f (U) converging to w ∈ ∂ f (U), and the sequence
{vn} of the preimages of wn in U. If v is any accumulation point of the sequence of
vn, then f (v) = w. In that case, v ∈ ∂U ⊂ J ( f ), which contradicts with the fact that
w ∈ U′ ⊂ F ( f ). In conclusion, we have that f (U) = U′ is another Fatou component.

Therefore the domains, images of a certain Fatou component U, of the sequence

U, f (U), ...., f n(U), ...

are also Fatou components. In that direction, we present some definitions.

27
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Definition. In general, we say that a Fatou component U is a:

• Periodic Fatou component of period p ≥ 1 if f p(U) = U and f n(U) 6= U for all n < p.

• Preperiodic Fatou component if f m(U) = U is a periodic Fatou component for some
m ≥ 1, that is eventually periodic Fatou components.

• Fixed Fatou component if f (U) = U, that is a periodic Fatou component of period 1.

• Wandering domain if all f n(U) are distinct.

But for rationals maps, its that the wandering domain case is not a possibility due to
Sullivan’s No wandering Domain Theorem (1985).

Theorem 4.2. Sullivan’s No Wandering Domain Theorem Every Fatou component of a
rational map is eventually periodic.

This is a key theorem to complete the classification of Fatou components for rational
maps, although it is beyond the scope of this project because it requires quasiconformal
surgery’s theory. For more details, see [3].

Finally, we determine the possible number of components of the Fatou set of a rational
map.

Proposition 4.3. Let f be a rational map of degree d ≥ 2. The Fatou set of f contains at most two
simply connected completely invariant components.

Proof. By the Riemann Mapping Theorem, such components are conformally equivalent
to the unit disc D. Then the restriction of f to D is a d-to-1 mapping.

From the Riemann-Hurwitz Formula, we have that f has

nc = d− 1

critical points in D, counting multiplicity. Since in last chapter we deduced a common
upper bound of 2d− 2 critical points for a rational maps, we may have at most two such
Fatou componets, i.e. at most two simply connected completely invariant components of
F ( f ).

Proposition 4.4. The Fatou set of a rational map f has either 0, 1, 2 or infinitely many compo-
nents.

Proof. For d = 1 this is trivial. If d ≥ 2, we are going to apply the last proposition for
the case that F ( f ) has only finitely many components U1, ..., Uk. Here f must act as a
permutation of them, so there is an integer m such that g = f m maps each Ui to itself, i.e.
g is the identity map of the Fatou set into itself. Since F ( f ) = F ( f m), we have that each
Ui is completely invariant for g.



4.1 Properties of Fatou components for rational maps 29

Moreover, since J ( f ) is the smallest closed completely invariant closed set under g,
we have ∂Ui = J ( f ), so the sequence { f n} omits the open set Ui on Ĉ \Ui. Then { f n} is
normal there by Montel’s theorem, and hence Ĉ \Ui ⊂ F ( f ). Since Ui is connected, each
other component of Ĉ \Ui is simply connected. And in a similar way Ui is also simply
connected. Then by the preceding proposition there are at most two such components.

Definition. A stable fixed domain V of f is called a Fatou domain, if the sequence
{ f n}n∈N converges to a fixed point a ∈ V, locally uniformly in V. More precisely, V
is called a

• Attracting basin (or Schröder domain) if a ∈ V and 0 < |λ| < 1.

• Superattracting basin (or Böttcher domain) if a ∈ V and λ = 0.

• Parabolic basin (or Leau domain) if a ∈ ∂V and λ = 1.

where λ is the multiplier of a.
A stable fixed domain is called a rotation domain if none of the limit functions of the

sequence { f n|V}n∈N is constant. According to its connectivity, V is called a

• Siegel disc if V is simply connected and it contains an indifferent fixpoint.

• Herman ring if V is doubly connected.

The same terminology is used for corresponding fixed domains of f p, i.e. for periodic
domains of f .

For the sake of completeness, we present the Shishikura’s sharp inequality for rational
maps, which seems related to a critical points on each type of Fatou components (any cicle
of Herman ring even needs two critical points) but this theorem also needs quasiconformal
surgery.

Theorem 4.5. Let f be a rational map of degree d ≥ 2. The number of distinct cycles of different
types of periodic Fatou components satisfy the inequalities:

nsuperattr + nattr + nindi f f + 2nAH ≤ 2(d− 1)

and

nAH < d− 1,

where nsuperattr, nattr, nindi f f and nAH are the number of cycles of periodic superattractive basins,
attractive basins, parabolic basins plus Siegel discs (indifferent cases), and Herman rings, respec-
tively.
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4.2 Classification Theorem of periodic Fatou components

Finally, we are ready to give a proof of the Classification Theorem of periodic Fatou
components for rationals maps. Here we apply all tools developed throughout these notes
such as the general Schwarz-Pick Lemma, the Uniformization Theorem, Montel’s theorem,
or the Snail Lemma, among other propositions related to hyperbolic geometry and theory
of rational maps, specially the one that compare the hyperbolic and spherical distances.

Theorem 4.6. (Classification of periodic Fatou components) A component U of period p in
the Fatou set of a rational map f is of exactly one of the following five types:

(1) An attractive basin: there is a point z0 in U, fixed by f p, with 0 < |( f p)′(z0)| < 1,
attracting all points of U under iteration of f p.

(2) A superattractive basin: as above, but z0 is a critical point of f p, so ( f p)′(z0) = 0.

(3) A parabolic basin: there is a point z0 in ∂U with ( f p)′(z0) = 1, attracting all points of U.

(4) A Siegel disc: U is conformally equivalent to the unit disk, and f p is conjugate to an irra-
tional rotation.

(5) A Herman ring: U is conformally equivalent to an annulus, and f p is conjugate again to an
irrational rotation.

Proof. Replacing f by f p, we can assume U is a fixed Fatou component, that is f (U) = U.
Since the Julia set is infinite, U is a hyperbolic Riemann surface. By the the Schwarz-Pick
Lemma, f does not increase the hyperbolic distance dU on U.

First, we are going to show that if one orbit tends to infinity in U (i.e. if it eventually
escapes any compact subset K ⊂ U, or in other words, the set of accumulation points of
the orbit of z0 satisfies A(z0) ⊂ ∂U), then all orbits tend to infinity in U. For this purpose,
suppose the orbit zn = f n(z0) of z0 ∈ U, tends to infinity in U, and let wn = f n(w0) be
another orbit in U. Since f is non-increasing the hyperbolic distance on U,

dU(zn, wn)) ≤ dU(z0, w0)

for all n ∈N.
Since the hyperbolic distance dU(zn, wn) is bounded by the constant distance r =

dU(z0, w0) between the initial points and the orbit zn has all his accumulation points on
∂U, we can apply the proposition that compares hyperbolic and spherical distances. This
one conclude that the spherical diameter of the hyperbolic closed ball BU(zn, wn) tends to
0, that is the orbit wn should also tends to infinity in U since convergence properties are
defined with the spherical metric on Ĉ. We should keep in mind this arguments because
they will be used several times throughout this proof, so we are not going to give all
details next time.

Since we have shown that if one orbit tend to infinity, then the other orbits should do
the same, we can distinguish the following two cases:
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(1) Every orbit tend to infinity in U, i.e. A(z) ⊆ ∂U, ∀z ∈ U.

Let z ∈ U, and let zn = f n(z0) be its orbit. We apply the same arguments as above:
the Schwarz-Pick Lemma implies that

dU(zn, zn+1) ≤ dU(z0, z1),

then by the Prop. 2.8 we have

d
Ĉ
(zn, zn+1)→ 0.

This fact tells us that A(z0), the set of accumulation points of the orbit of z0, consists
of fixed points of f lying on ∂U. Moreover, it is a connected set. Otherwise, A(z0)

would have at least 2 components A1 and A2, and then both of them would be
disjoint compact subsets of Ĉ, separated by a spherical distance δ > 0. But we know
that d

Ĉ
(zn, zn+1) < δ for n large (as we have seen it tends to 0), so this contradicts

the hypothesis that the orbit accumulates on both components.

Furthermore, we can show to show that the attracting basin of z0 is a singleton, i.e.
A(z0) = p, where p is an indifferent fixed point, as follows:

Since f is not the identity map, and A(z0) is a discrete subset that consists of fixed
points, the only possible connected set with these conditions is a singleton A(z0) =

p. Since, by the Schwarz-Pick Lemma,

dU( f n(w), zn) ≤ dU(w, z0),

we have that
d

Ĉ
( f n(w), zn)→ 0

due to Prop. 2.8. Then as p is a fixed point and we have shown that f n(w) → p, we
conclude that p ∈ ∂U attracts all points w ∈ U.

Since the fixed point p attracts all points in U, its multiplier should satisfy |λ| =
| f ′(p)| ≤ 1. As we have that p ∈ ∂U ⊂ J ( f ) and we know that all fixed points with
|λ| < 1 are in J ( f ), the fixed point p must be an indifferent fixed point with |λ| = 1.

Finally, we can choose any path α : [0, 1) → U from z0 to z1 = f (z0), and we
extended it to a path p : [0, ∞) → U by setting p(t + 1) = f (p(t)), that is we
construct p by glueing all pieces of path α, f (α),..., together, taking a unit of time
for each piece. Then if we apply the Snail Lemma in that case, we conclude that
λ = f ′(p) = 1, i.e. U is a parabolic basin (case 3).

(2) None of the orbits tend to infinity in U, i.e. A(z) ⊆ U, ∀z ∈ U.

Let zn = f n(z0) be the orbit of z0 ∈ U with an accumulation point p ∈ U. By
definitions, there is a subsequence {znj}j∈N such that znj → p.

We consider the family of rational maps

{gj := f nj+1−nj}j∈N,
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with the property

gj(znj) = f nj+1−nj(znj) = f nj+1(z0) = znj+1 .

Since U is hyperbolic, Montel’s Theorem says that there is a subsequence {gjl}l∈N

that converges locally uniformly to a limit function g : U → U that is holomorphic.

Furthermore, since znj+1 = gj(znj) and znj → p, taking limits we have g(p) = p, so p
is a fixed point of g in the two following cases.

According to the general Schwarz Lemma, one of the following two conditions hold:

(2a) f is a hyperbolic contraction: dU( f (z), f (w)) < dU(z, w), ∀z, w ∈ U (z 6= w).
Since f strictly decreases non-zero Poincaré distances, g must also decrease
non-zero Poincaré distances because

dU(g(z), g(w)) ≤ d( f (z), f (w)) < d(z, w),

for all z, w ∈ U (z 6= w).
Since g is the limit function of the iterates of f , and due to the relation

gj ◦ f = f ◦ gj,

we have that f and g commute. Therefore, f must map fixed points of g, such
as p = g(p), to fixed points of g, that is

f (p) = f (g(p)) = g( f (p)).

But since g decreases all non-zero hyperbolic distances, g cannot have 2 distinct
fixed points. And hence, p = f (p) is the only fixed point of g in U, and then
also the only one of f .
At the end, since f n(z) → p for all z ∈ U, we have that p ∈ U is an attracting
fixed point with |λ| < 1, i.e. U is an attractive or superattractive basin (case 1
or 2).

(2b) f is a local isometry: dU( f (z), f (w)) = dU(z, w), ∀z, w ∈ U.
By a local isometry, we mean that the lift of f : U → U to its universal covering
space (that is conformally conjugate to D due to the Uniformization Theorem)
is a hyperbolic isometry.
Since f preserves the hyperbolic distance, f is either a conformal automorphism
or just a covering map.
First, we have that the lift G : D → D of g is a conformal automorphism with
the corresponding fixed point φ(p), where g : U → U has the fixed point p ∈ U,
and φ : U → D is the map such that G ◦ φ = φ ◦ g. Thus G should be a rotation
about the fixed point φ(p) by the Schwarz Lemma.
Then we have a sequence gnj ⇒ idU , and since f nj+1−nj ⇒ g locally, there is a
sequence f mj ⇒ idU locally, i.e. converges uniformly on compact subsets of U.
Therefore f is one-to-one, and as it is a covering map, we conclude that f is a
conformal automorphism.
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Now we can prove that U has not two different simple closed hyperbolic geodesics:

Indeed, if U has a non-trivial simple closed hyperbolic geodesic γ, then f n(γ) =

γ for sufficiently large n, since any isometry of U sufficiently close to idU must
map γ to itself.

If U has two simple closed hyperbolic geodesics that intersect, then f n must fix
all intersection points, and hence must fix both geodesics pointwise, since f is
an isometry and f n ⇒ idU . This fact is due to the properties of isometries: they
send geodesics to geodesics, so they map closed geodesics to closed geodesics
when they are arbitrarily close to identity, and since all closed geodesics are
isolated, we have that f n must map γ to itself.

Therefore f n is also the identity for n large, but this is a contradiction because
deg( f n) = deg( f )n ≥ 2 so f cannot have finite order globally, and particularly
in U.

Finally we suppose that U has two disjoint closed hyperbolic geodesics. Let γ′

be a shortest geodesic segment connecting these two closed geodesics. Then
again f must fix γ′ pointwise, so we apply the same arguments and we arrive
to the same type of contradiction.

In conclusion, since U has at most one simple closed hyperbolic geodesic, and
the components of F ( f ) cannot contain isolated punctures (as J ( f ) does not
contain isolated points), we have that U is conformally equivalent to D or AR
with finite modulus. In fact, we have computed their hyperbolic metrics and
geodesics in chapter 2.

Therefore we can distinguish these two last cases:

(2b1) U is simply connected.
Since f is a conformal automorphism and it has a fixed point p ∈ U, we
have that f is conformally conjugate on U to a rotation Rθ : z → e2πiθz. If
θ ∈ Q, then f n = IdU for some n ∈ N, which is a contradiction because
deg( f ) ≥ 2. Hence θ ∈ R \Q, i.e. p is a rationally indifferent fixed point
and U is a Siegel disc (case 4).

(2b2) U is not simply connected.
Then it must be an annulus of finite modulus, that is a doubly connected
domain. An orientation-preserving isometry of the hyperbolic metric of an
annulus can only be a rotation, or an inversion which reverses the direction
of the circle, that is conformal automorphisms of the form z → e2πiθz or
z→ r

z .
The return map cannot be periodic, or else by analytic continuation the en-
tire rational map would be periodic. Moreover, if the return map reversed
the orientation of the circle, a second return map would be the identity.
Therefore, the return map can only be an irrational rotation of the annulus,
i.e. U is a Herman ring.
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4.3 Some examples

In this last section we present some beautiful pictures of Fatou components that we
have classified in last chapter.

We have used also other types of holomorphic maps such as for example Blaschke
factors that suppose the only explicit examples known to have an Arnol’d-Herman ring,
and they are of the form

f (z) = eiα
2p

∏
j=0

z− aj

1− ajz

In the case of iteration of entire functions, if a domain V is unbounded and if f is
holomorphic in V \ { ∞}, then it may arise that f n → ∞, locally uniformly in V. Such
domain is called Baker domain, a special type for entire maps.

In fact, entire maps are just holomorphic functions over the whole complex plane such
as polynomials, exponentials, sinus or cosinus.

An interesting subtype of them are the transcendental entire map, which are entire
map different than a polynomial. They have an essential singularity at ∞.

This picture invite us to continue the research on complex dynamics of transcendental
entire maps among others.

Figure 4.1: Rational function with infinite Fatou components. The yellow disc represent
the Fatou component of the attracting point z = 0. The other yellow components are
preimages of this one (preperiodic components).
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(a) (b)

Figure 4.2: One of the yellow annuli are invariant components is a Herman ring. All other
yellow annuli are preimages of this one. It is a rational map.

Figure 4.3: Baker domain for the function z 7→ z + α + β sin(z) for proper values of α and
β. In the red domain all points go to the right.
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Figure 4.4: Function z2 + 0.25. The point z = 0.5 is a parabolic point.

Figure 4.5: z2 + c. Some Siegel discs orbits are represented.
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